1
|
Wang HC, Shen WJ, You SL. Regio- and Enantioselective Rhodium-Catalyzed Allylic Arylation of Racemic Allylic Carbonates with Arylboronic Acids. Angew Chem Int Ed Engl 2025:e202421596. [PMID: 39792063 DOI: 10.1002/anie.202421596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Rhodium-catalyzed regio- and enantioselective allylic arylation of racemic alkyl- and aryl- substituted allylic carbonates with arylboronic acids using commercially available BIBOP ligand is reported. This reaction proceeds at room temperature without base or other additive to deliver allylic arylation products in excellent yields, regio- and enantioselectivity (up to 95 % yield, >20 : 1 b/l, >99 % ee). Rh/BIBOP is disclosed as an efficient catalytic system for allylic substitution reaction.
Collapse
Affiliation(s)
- Hu-Chong Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Wen-Jie Shen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
2
|
Brösamlen D, Neb D, Oestreich M. Enantio- and Regioconvergent Nickel-Catalyzed Etherification of Phenols by Allylation to Access Chiral C(sp 3)-O Allyl Aryl Ethers. Angew Chem Int Ed Engl 2024; 63:e202412181. [PMID: 39155679 DOI: 10.1002/anie.202412181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
An enantio- and regioconvergent allylation of phenols under nickel catalysis with an α-/γ-regioisomeric mixture of racemic silylated/germylated allylic chlorides is reported. The silyl/germyl group governs the regioselectivity, and the transformation affords enantiomerically enriched unsymmetrical 1,3-disubstituted allyl aryl ethers with excellent regiocontrol in good yields and excellent enantioselectivities. Notably, no nickel-mediated C-O bond activation is observed at room temperature. The synthetic value of these densely functionalized silicon-containing building blocks is demonstrated in a series of chemoselective transformations, including a [3,3]-sigmatropic rearrangement for the construction of an α-chiral silane.
Collapse
Affiliation(s)
- Daniel Brösamlen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Daniel Neb
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
3
|
Hassan S, Bilal M, Khalid S, Rasool N, Imran M, Shah AA. Cobalt-catalyzed reductive cross-coupling: a review. Mol Divers 2024:10.1007/s11030-024-11017-1. [PMID: 39466351 DOI: 10.1007/s11030-024-11017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Transition-metal-catalyzed reductive cross-coupling is highly efficient for forming C-C bonds. It earns its limelight from its application by coupling unreactive electrophilic substrates to synthesize a variety of carbon-carbon bonds with various hybridizations (sp, sp2, and sp3), late-stage functionalization, and bioactive molecules' synthesis. Reductive cross-coupling is challenging to bring selectivity but promising approach. Cobalt is comparatively more affordable than other highly efficient metals e.g., palladium and nickel but cobalt catalysis is still facing efficacy challenges. Researchers are trying to harness the maximum out of cobalt's catalytic properties. Shortly, with efficiency achieved combined with the affordability of cobalt, it will revolutionize industrial applications. This review gives insight into the core of cobalt-catalyzed reductive cross-coupling reactions with a variety of substrates forming a range of differently hybridized coupled products.
Collapse
Affiliation(s)
- Shamoon Hassan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), University Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
4
|
Zhuang HF, Gu J, Ye Z, He Y. Stereospecific 3-Aza-Cope Rearrangement Interrupted Asymmetric Allylic Substitution-Isomerization. Angew Chem Int Ed Engl 2024:e202418951. [PMID: 39417348 DOI: 10.1002/anie.202418951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Transition-metal catalyzed asymmetric allylic substitution with alkyl and heteroaryl carbon nucleophiles has been well-established. However, the asymmetric allylic arylation of acyclic internal alkenes with aryl nucleophiles remains challenging and underdeveloped. Herein we report a stereospecific 3-aza-Cope rearrangement interrupted asymmetric allylic substitution-isomerization (Int-AASI) that enables asymmetric allylic arylation. By means of this stepwise strategy, both enantioenriched allylic arylation products and axially chiral alkenes could be readily obtained in high enantioselectivities. Experimental studies support a mechanism involving a cascade of asymmetric allylic amination, stereospecific 3-aza-Cope rearrangement and alkene isomerization. Density functional theory studies detailed the reasons of achieving the high chemoselectivity, regioselectivity, stereoselectivity and stereospecificity, respectively.
Collapse
Affiliation(s)
- Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Liu W, Xing Y, Yan D, Kong W, Shen K. Nickel-catalyzed electrophiles-controlled enantioselective reductive arylative cyclization and enantiospecific reductive alkylative cyclization of 1,6-enynes. Nat Commun 2024; 15:1787. [PMID: 38413585 PMCID: PMC10899222 DOI: 10.1038/s41467-024-45617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Transition metal-catalyzed asymmetric cyclization of 1,6-enynes is a powerful tool for the construction of chiral nitrogen-containing heterocycles. Despite notable achievements, these transformations have been largely limited to the use of aryl or alkenyl metal reagents, and stereoselective or stereospecific alkylative cyclization of 1,6-enynes remains unexploited. Herein, we report Ni-catalyzed enantioselective reductive anti-arylative cyclization of 1,6-enynes with aryl iodides, providing enantioenriched six-membered carbo- and heterocycles in good yields with excellent enantioselectivities. Additionally, we have realized Ni-catalyzed enantiospecific reductive cis-alkylative cyclization of 1,6-enynes with alkyl bromides, furnishing chiral five-membered heterocycles with high regioselectivity and stereochemical fidelity. Mechanistic studies reveal that the arylative cyclization of 1,6-enynes is initiated by the oxidative addition of Ni(0) to aryl halides and the alkylative cyclization is triggered by the oxidative addition of Ni(0) to allylic acetates. The utility of this strategy is further demonstrated in the enantioselective synthesis of the antiepileptic drug Brivaracetam.
Collapse
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yunxin Xing
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Denghong Yan
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
| | - Kun Shen
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Herbert C, Jarvo ER. Nickel-Catalyzed Stereoselective Coupling Reactions of Benzylic and Alkyl Alcohol Derivatives. Acc Chem Res 2023; 56:3313-3324. [PMID: 37936256 PMCID: PMC10666291 DOI: 10.1021/acs.accounts.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
ConspectusNickel-catalyzed reactions of alkyl alcohol derivatives leverage the high prevalence of hydroxyl groups in natural products, medicinal agents, and synthetic intermediates to provide access to C(sp3)-rich frameworks. This Account describes our laboratory's development of stereospecific and stereoconvergent C-C bond forming reactions employing C(sp3)-O and C(sp3)-N electrophiles. In the context of development of new transformations, we also define fundamental characteristics of the nickel catalysts.Part I details the nickel-catalyzed cross-coupling reactions developed by our group which hinges on stereospecific formation of stable π-benzyl intermediates. Acyclic and cyclic ethers, esters, carbamates, lactones, and sulfonamides undergo Kumada-, Suzuki-, and Negishi-type coupling reactions to produce enantioenriched products with high fidelity of stereochemical information. We describe extension to include ring-opening reactions of saturated heterocycles to afford acyclic 1,3-fragments in high diastereomeric ratios. We also describe our advances in stereospecific nickel-catalyzed cross-electrophile coupling reactions. Tethered C-O and C-X electrophiles proved fruitful for construction of a variety of carbocyclic frameworks. We report an intramolecular cross-electrophile coupling of benzylic pivalates with aryl bromides for the synthesis of indanes and tetralins. We found that 4-halotetrahydropyrans and 4-halopiperidines readily undergo stereospecific ring contraction to afford substituted cyclopropanes. Mechanistic investigations are consistent with closed-shell intermediates, a Ni(0)/Ni(II) cycle, and an intramolecular SN2-type reaction of a key organonickel intermediate to form the cyclopropane. Building toward more complex cascade reactions, we have demonstrated that 2-alkynyl piperidines incorporate MeMgI in a dicarbofunctionalization of the alkyne to afford highly substituted vinyl cyclopropanes.In Part II we present our development of stereoconvergent reactions of alkyl alcohol derivatives. In order to expand the utility of the intramolecular XEC reaction, we sought to employ unactivated alkyl electrophiles. Specifically, alkyl dimesylates engage in intramolecular XEC reactions to form alkyl cyclopropanes. In contrast to our previous work, these reactions proceed through open-shell intermediates and favor stereoconvergent formation of the trans-cyclopropane. Enantioselective aldol reactions can be employed in syntheses of 1,3-diols which furnish enantioenriched cyclopropanes in high ee. Experimental and computational evidence reveals that MeMgI mediates formation of alkyl iodides in situ. The coupling reaction initiates with halogen atom abstraction at the secondary alkyl iodide. The alkyl Ni(II) complex then proceeds through a stereospecific SN2-type ring closure to form cyclopropane. In an effort to increase functional group compatibility in the synthesis of cyclopropanes from alkyl dimesylates we developed a zinc-mediated reaction of 1,3-dimesylates prepared from medicinal analogues. In challenging nickel-catalyzed intramolecular cross-electrophile coupling we were also able to show that vicinal carbocycles can be prepared under similar conditions, affording vicinal cyclopentyl-cyclopropyl motifs in high yield.In Part III we discuss our recent findings on the role of ligand identity in catalyst selectivity for stereospecific vs stereoablative mechanisms for oxidative addition. We demonstrate multivariable control of mechanism, where the choice of substrate and ligand work together to promote open- or closed-shell intermediates. In divergent reactions of 4-halotetrahydropyrans we observe distinct ligand preference for reactions at the C(sp3)-O center or the C(sp3)-Cl center. These findings are the source of continued investigations in our laboratory.
Collapse
Affiliation(s)
- Claire
A. Herbert
- Department of Chemistry, University
of California, Irvine, California 92697, United States
| | - Elizabeth R. Jarvo
- Department of Chemistry, University
of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Manna MS, Yoo SY, Sharique M, Choi H, Pudasaini B, Baik MH, Tambar UK. Copper-Catalyzed Regiodivergent Internal Allylic Alkylations. Angew Chem Int Ed Engl 2023; 62:e202304848. [PMID: 37327025 PMCID: PMC10528884 DOI: 10.1002/anie.202304848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
We report a copper-catalyzed, regioselective, and stereospecific alkylation of unbiased internal allylic carbonates with functionalized alkyl and aryl Grignard reagents. The reactions exhibit high stereospecificity and regioselectivity for either SN 2 or SN 2' products under two sets of copper-catalyzed conditions, which enables the preparation of a broad range of products with E-alkene selectivity. Density functional theory calculations reveal the origins of the regioselectivity based on the different behaviors of homo- and heterocuprates.
Collapse
Affiliation(s)
- Madhu Sudan Manna
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Seok Yeol Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mohammed Sharique
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Hyoju Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Uttam K. Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
8
|
Simlandy AK, Alturaifi TM, Nguyen JM, Oxtoby LJ, Wong QN, Chen JS, Liu P, Engle KM. Enantioselective Hydroalkenylation and Hydroalkynylation of Alkenes Enabled by a Transient Directing Group: Catalyst Generality through Rigidification. Angew Chem Int Ed Engl 2023; 62:e202304013. [PMID: 37141510 PMCID: PMC10524838 DOI: 10.1002/anie.202304013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/06/2023]
Abstract
The catalytic enantioselective synthesis of α-chiral alkenes and alkynes represents a powerful strategy for rapid generation of molecular complexity. Herein, we report a transient directing group (TDG) strategy to facilitate site-selective palladium-catalyzed reductive Heck-type hydroalkenylation and hydroalkynylation of alkenylaldehyes using alkenyl and alkynyl bromides, respectively, allowing for construction of a stereocenter at the δ-position with respect to the aldehyde. Computational studies reveal the dual beneficial roles of rigid TDGs, such as L-tert-leucine, in promoting TDG binding and inducing high levels of enantioselectivity in alkene insertion with a variety of migrating groups.
Collapse
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, PA 15260, Pittsburgh, USA
| | - Johny M Nguyen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| | - Lucas J Oxtoby
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| | - Quynh Nguyen Wong
- Automated Synthesis Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, PA 15260, Pittsburgh, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, CA 92037, La Jolla, USA
| |
Collapse
|
9
|
Xu J, He Z, Zhang J, Chen J, Huang Y. A Thioether‐Catalyzed Cross‐Coupling Reaction of Allyl Halides and Arylboronic Acids. Angew Chem Int Ed Engl 2022; 61:e202211408. [DOI: 10.1002/anie.202211408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jingwei Xu
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
- Pingshan Translational Medicine Center Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Zhiqi He
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jiwei Zhang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Jiean Chen
- Pingshan Translational Medicine Center Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Yong Huang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| |
Collapse
|
10
|
Xu J, He Z, Zhang J, Chen J, Huang Y. A Thioether‐Catalyzed Cross‐Coupling Reaction of Allyl Halides and Arylboronic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jingwei Xu
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Zhiqi He
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Jiwei Zhang
- Hong Kong University of Science and Technology School of Science Department of Chemistry HONG KONG
| | - Jiean Chen
- SZBL: Shenzhen Bay Laboratory Pingshan Translational Medicine Center CHINA
| | - Yong Huang
- The Hong Kong University of Science and Technology Chemistry Clear Water Bay 00000 Hong Kong HONG KONG
| |
Collapse
|
11
|
Ghorai D, Cristòfol À, Kleij AW. Nickel‐Catalyzed Allylic Substitution Reactions: An Evolving Alternative. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Debasish Ghorai
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluis Companys 23 08010– Barcelona Spain
| |
Collapse
|
12
|
Casalta C, Gourlaouen C, Bouzbouz S. Iridium(III) Catalyzed Z-Selective Allylic Arylation of α-Fluoro But-1-enoic Acid Amides via β-F-Elimination in Water. Org Lett 2021; 23:8122-8126. [PMID: 34617755 DOI: 10.1021/acs.orglett.1c02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allylic arylation of α-fluoro but-1-enoic acid amides with arylboronic acids was carried out in water by comparing the catalytic activity of iridium(III) and rhodium(III). Ir(III) has shown a strong superiority over Rh(III) to give allyl-aryl coupling products with excellent stereoselectivity in favor of the Z-isomer. The origin of high stereoselectivity is perhaps because of the a coordination of iridium Ir-N or Ir-O.
Collapse
Affiliation(s)
- Clément Casalta
- CNRS, University of Rouen, INSA, COBRA UMR 6014, 76800 Mont Saint Aignan, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 67070 Strasbourg, France
| | - Samir Bouzbouz
- CNRS, University of Rouen, INSA, COBRA UMR 6014, 76800 Mont Saint Aignan, France
| |
Collapse
|
13
|
Hu J, Ferger M, Shi Z, Marder TB. Recent advances in asymmetric borylation by transition metal catalysis. Chem Soc Rev 2021; 50:13129-13188. [PMID: 34709239 DOI: 10.1039/d0cs00843e] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organoboronates have played a critical role in organic chemistry and in the development of materials science and pharmaceuticals. Much effort has been devoted to exploring synthetic methodologies for the preparation of these compounds during the past few decades. Among the known methods, asymmetric catalysis has emerged as a practical and highly efficient strategy for their straightforward preparation, and recent years have witnessed remarkable advances in this respect. Approaches such as asymmetric borylative addition, asymmetric allylic borylation and stereospecific cross-coupling borylation, have been extensively explored and well established employing transition-metal catalysis with a chiral ligand. This review provides a comprehensive overview of transition metal-catalysed asymmetric borylation processes to construct carbon-boron, carbon-carbon, and other carbon-heteroatom bonds. It summarises a range of recent achievements in this area of research, with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Jiefeng Hu
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Matthias Ferger
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China.
| | - Todd B Marder
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
14
|
Xu J, Li Z, Xu Y, Shu X, Huo H. Stereodivergent Synthesis of Both Z- and E-Alkenes by Photoinduced, Ni-Catalyzed Enantioselective C(sp3)–H Alkenylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jitao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhilong Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yumin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaomin Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Haohua Huo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
15
|
Ma WY, Han GY, Kang S, Pang X, Liu XY, Shu XZ. Cobalt-Catalyzed Enantiospecific Dynamic Kinetic Cross-Electrophile Vinylation of Allylic Alcohols with Vinyl Triflates. J Am Chem Soc 2021; 143:15930-15935. [PMID: 34570474 DOI: 10.1021/jacs.1c08695] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asymmetric cross-electrophile coupling has emerged as a promising tool for producing chiral molecules; however, the potential of this chemistry with metals other than nickel remains unknown. Herein, we report a cobalt-catalyzed enantiospecific vinylation reaction of allylic alcohol with vinyl triflates. This work establishes a new method for the synthesis of enantioenriched 1,4-dienes. The reaction proceeds through a dynamic kinetic coupling approach, which not only allows for direct functionalization of allylic alcohols but also is essential to achieve high chemoselectivity. The use of cobalt enables the reactions to proceed with high enantiospecificity, which have failed to be realized by nickel catalysts.
Collapse
Affiliation(s)
- Wei-Yuan Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| | - Guan-Yu Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| | - Shaolin Kang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| |
Collapse
|
16
|
Fan P, Wang R, Wang C. Nickel/Photo-Cocatalyzed C(sp 2)-H Allylation of Aldehydes and Formamides. Org Lett 2021; 23:7672-7677. [PMID: 34553950 DOI: 10.1021/acs.orglett.1c02938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report a nickel/photo-cocatalyzed C(sp2)-H allylation of aldehydes and formamides wherein both allyl acetates and allyl alcohols can be used as the allylating agents. In this reaction, radical-type umpolung of the formyl moiety is enabled by tetrabutylammonium decatungstate as a hydrogen-atom-transfer photocatalyst, whereas nickel serves to cleave the C-O bond of allyl acetates or allyl alcohols. The synergistic effect of these two catalysts provides new access to various β,γ-unsaturated ketones and amides with high selectivities.
Collapse
Affiliation(s)
- Pei Fan
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China.,School of Chemical and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
17
|
Zhang WQ, Shen HC. Nickel/Enamine Cooperative Catalysis Enables Highly Enantioselective Allylic Alkylation of α-Branched Aldehydes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wen-Qian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hong-Cheng Shen
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
18
|
Cabrera-Afonso MJ, Sookezian A, Badir SO, El Khatib M, Molander GA. Photoinduced 1,2-dicarbofunctionalization of alkenes with organotrifluoroborate nucleophiles via radical/polar crossover. Chem Sci 2021; 12:9189-9195. [PMID: 34276949 PMCID: PMC8261722 DOI: 10.1039/d1sc02547c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/06/2021] [Indexed: 01/08/2023] Open
Abstract
Alkene 1,2-dicarbofunctionalizations are highly sought-after transformations as they enable a rapid increase of molecular complexity in one synthetic step. Traditionally, these conjunctive couplings proceed through the intermediacy of alkylmetal species susceptible to deleterious pathways including β-hydride elimination and protodemetalation. Herein, an intermolecular 1,2-dicarbofunctionalization using alkyl N-(acyloxy)phthalimide redox-active esters as radical progenitors and organotrifluoroborates as carbon-centered nucleophiles is reported. This redox-neutral, multicomponent reaction is postulated to proceed through photochemical radical/polar crossover to afford a key carbocation species that undergoes subsequent trapping with organoboron nucleophiles to accomplish the carboallylation, carboalkenylation, carboalkynylation, and carboarylation of alkenes with regio- and chemoselective control. The mechanistic intricacies of this difunctionalization were elucidated through Stern-Volmer quenching studies, photochemical quantum yield measurements, and trapping experiments of radical and ionic intermediates.
Collapse
Affiliation(s)
- María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Anasheh Sookezian
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Stellar-Chance Building, 422 Curie Boulevard Philadelphia Pennsylvania 19104-6059 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
19
|
Schuppe AW, Knippel JL, Borrajo-Calleja GM, Buchwald SL. Enantioselective Hydroalkenylation of Olefins with Enol Sulfonates Enabled by Dual Copper Hydride and Palladium Catalysis. J Am Chem Soc 2021; 143:5330-5335. [PMID: 33784090 PMCID: PMC8083184 DOI: 10.1021/jacs.1c02117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The catalytic enantioselective synthesis of α-chiral olefins represents a valuable strategy for rapid generation of structural diversity in divergent syntheses of complex targets. Herein, we report a protocol for the dual CuH- and Pd-catalyzed asymmetric Markovnikov hydroalkenylation of vinyl arenes and the anti-Markovnikov hydroalkenylation of unactivated olefins, in which readily available enol triflates can be utilized as alkenyl coupling partners. This method allowed for the synthesis of diverse α-chiral olefins, including tri- and tetrasubstituted olefin products, which are challenging to prepare by existing approaches.
Collapse
Affiliation(s)
- Alexander W Schuppe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - James Levi Knippel
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gustavo M Borrajo-Calleja
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Xu J, Bercher OP, Talley MR, Watson MP. Nickel-Catalyzed, Stereospecific C-C and C-B Cross-Couplings via C-N and C-O Bond Activation. ACS Catal 2021; 11:1604-1612. [PMID: 33986970 DOI: 10.1021/acscatal.0c05484] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Highly enantioenriched benzylic and allylic amines and alcohols are readily available via asymmetric synthesis and in complex natural products. The development of mild, nickel-catalyzed cross-couplings of their derivatives has advanced the tools available for the preparation of a range of highly enantioenriched products, including those with quaternary stereocenters. This perspective focuses on cross-couplings with convenient and functional group-tolerant organoboron reagents and highlights the discoveries of activating groups and conditions that have led to high-yielding and highly stereospecific reactions. Emphasis is placed on mechanistic understanding, particularly with regards to controlling inversion vs. retention pathways. Limitations and opportunities for future developments are also highlighted.
Collapse
Affiliation(s)
- Jianyu Xu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Olivia P. Bercher
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Michael R. Talley
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Mary P. Watson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Fereyduni E, Lahtigui O, Sanders JN, Tomiczek BM, Mannchen MD, Yu RA, Houk KN, Grenning AJ. Overcoming Kinetic and Thermodynamic Challenges of Classic Cope Rearrangements. J Org Chem 2021; 86:2632-2643. [PMID: 33476142 DOI: 10.1021/acs.joc.0c02690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Systematic evaluation of 1,5-dienes bearing 3,3-electron-withdrawing groups and 4-methylation results in the discovery of a Cope rearrangement for Meldrum's acid-containing substrates that have unexpectedly favorable kinetic and thermodynamic profiles. The protocol is quite general due to a concise and convergent synthesis from abundant starting materials. Furthermore, products with an embedded Meldrum's acid moiety are prepared, which, in turn, can yield complex amides under neutral conditions. We have now expanded the scope of the reductive Cope rearrangement, which, via chemoselective reduction, can promote thermodynamically unfavorable [3,3] sigmatropic rearrangements of 3,3-dicyano-1,5-dienes to form reduced Cope rearrangement products. The Cope rearrangement is found to be stereospecific and can yield enantioenriched building blocks when chiral, nonracemic 1,3-disubstituted allylic electrophiles are utilized. We expand further the use of Cope rearrangements for the synthesis of highly valuable building blocks for complex- and drug-like molecular synthesis.
Collapse
Affiliation(s)
- Ehsan Fereyduni
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ouidad Lahtigui
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Breanna M Tomiczek
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Michael D Mannchen
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Roland A Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Alexander J Grenning
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
22
|
Wu L, Wei H, Chen J, Zhang W. Development of Nickel-Catalyzed Cross-Coupling of Alcohol Derivatives to Construct Carbon-Carbon Bonds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Tran VT, Li ZQ, Gallagher TJ, Derosa J, Liu P, Engle KM. Integrating Allyl Electrophiles into Nickel-Catalyzed Conjunctive Cross-Coupling. Angew Chem Int Ed Engl 2020; 59:7029-7034. [PMID: 31958202 PMCID: PMC7184930 DOI: 10.1002/anie.201915454] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Allylation and conjunctive cross-coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel-catalyzed conjunctive cross-coupling with a non-conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate aza-heterocycle directing groups that are useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated by the facile reactivity of the β-γ alkene of the starting material, whereas the ϵ-ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of an analogous method with alkyne substrates. Mechanistic studies reveal the importance of the dissociation of the weakly coordinating directing group to allow the allyl moiety to bind and facilitate C(sp3 )-C(sp3 ) reductive elimination.
Collapse
Affiliation(s)
- Van T Tran
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, BCC-169, La Jolla, CA, 92037, USA
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, BCC-169, La Jolla, CA, 92037, USA
| | - Timothy J Gallagher
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, BCC-169, La Jolla, CA, 92037, USA
| | - Joseph Derosa
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, BCC-169, La Jolla, CA, 92037, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, BCC-169, La Jolla, CA, 92037, USA
| |
Collapse
|
24
|
Zhang HJ, Gu Q, You SL. Ni-Catalyzed Allylic Dearomatization Reaction of β-Naphthols with Allylic Alcohols. Org Lett 2020; 22:3297-3301. [DOI: 10.1021/acs.orglett.0c01109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui-Jun Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
25
|
Casalta C, Bouzbouz S. Rhodium(III) Catalyzed Regioselective and Stereospecific Allylic Arylation in Water by β-Fluorine Elimination of the Allylic Fluoride: Toward the Synthesis of Z-Alkenyl-Unsaturated Amides. Org Lett 2020; 22:2359-2364. [PMID: 32159966 DOI: 10.1021/acs.orglett.0c00551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A direct coupling of arylboronic acids with allylic fluorides was carried out in water without additives using a rhodium(III) catalyst (Cp*RhCl2)2. The transformation proceeded with excellent γ-selectivity to afford major allyl-aryl coupling products (Z) γ-substituted α,β-unsaturated amides. The reactions of α-chiral allylic fluorides took place with excellent α-to-γ chirality transfer to give allylated arenes with a stereogenic center at the benzylic and allylic position.
Collapse
Affiliation(s)
- Clément Casalta
- CNRS, University of Rouen, INSA of Rouen, COBRA UMR 6014, 1 rue Lucien Tesnière 76131, Mont Saint Aignan, France
| | - Samir Bouzbouz
- CNRS, University of Rouen, INSA of Rouen, COBRA UMR 6014, 1 rue Lucien Tesnière 76131, Mont Saint Aignan, France
| |
Collapse
|
26
|
Tran VT, Li Z, Gallagher TJ, Derosa J, Liu P, Engle KM. Integrating Allyl Electrophiles into Nickel‐Catalyzed Conjunctive Cross‐Coupling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Van T. Tran
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road, BCC-169 La Jolla CA 92037 USA
| | - Zi‐Qi Li
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road, BCC-169 La Jolla CA 92037 USA
| | - Timothy J. Gallagher
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road, BCC-169 La Jolla CA 92037 USA
| | - Joseph Derosa
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road, BCC-169 La Jolla CA 92037 USA
| | - Peng Liu
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Keary M. Engle
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road, BCC-169 La Jolla CA 92037 USA
| |
Collapse
|
27
|
Hamaguchi T, Takahashi Y, Tsuji H, Kawatsura M. Nickel-Catalyzed Hydroarylation of in Situ Generated 1,3-Dienes with Arylboronic Acids Using a Secondary Homoallyl Carbonate as a Surrogate for the 1,3-Diene and Hydride Source. Org Lett 2020; 22:1124-1129. [DOI: 10.1021/acs.orglett.9b04634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Hamaguchi
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Yoshiyuki Takahashi
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
28
|
Zhang HJ, Gu Q, You SL. Ni-Catalyzed Intermolecular Allylic Dearomatization Reaction of Tryptophols and Tryptamines. Org Lett 2019; 21:9420-9424. [DOI: 10.1021/acs.orglett.9b03633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hui-Jun Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
29
|
Ohtaka A, Kawase M, Usami A, Fukui S, Yamashita M, Yamaguchi K, Sakon A, Shiraki T, Ishida T, Nagata S, Kimura Y, Hamasaka G, Uozumi Y, Shinagawa T, Shimomura O, Nomura R. Mechanistic Study on Allylic Arylation in Water with Linear Polystyrene-Stabilized Pd and PdO Nanoparticles. ACS OMEGA 2019; 4:15764-15770. [PMID: 31572880 PMCID: PMC6761747 DOI: 10.1021/acsomega.9b02722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The catalytic cycle of allylic arylation in water catalyzed by linear polystyrene-stabilized Pd or PdO nanoparticles (PS-PdNPs or PS-PdONPs) was investigated. Stoichiometric stepwise reactions indicated that the reaction did not proceed stepwise on the surface of the catalyst. In the case of the reaction with PS-PdNPs, the leached Pd species is the catalytically active species and the reaction takes place through a similar reaction pathway accepted in the case of a complex catalyst. In contrast, allylic arylation using PS-PdONPs as a catalyst occurs via a Pd(II) catalytic cycle.
Collapse
Affiliation(s)
- Atsushi Ohtaka
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Misa Kawase
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Akira Usami
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Shiho Fukui
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Mana Yamashita
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Kazuki Yamaguchi
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Akira Sakon
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Tomoya Shiraki
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Taiki Ishida
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Soma Nagata
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Yuji Kimura
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Go Hamasaka
- Institute
for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Yasuhiro Uozumi
- Institute
for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Tsutomu Shinagawa
- Osaka
Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto, Osaka 536-8553, Japan
| | - Osamu Shimomura
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Ryôki Nomura
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| |
Collapse
|
30
|
Yang B, Wang ZX. Synthesis of Allylsilanes via Nickel-Catalyzed Cross-Coupling of Silicon Nucleophiles with Allyl Alcohols. Org Lett 2019; 21:7965-7969. [DOI: 10.1021/acs.orglett.9b02946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Bo Yang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| |
Collapse
|
31
|
Chen PP, Zhang H, Cheng B, Chen X, Cheng F, Zhang SQ, Lu Z, Meng F, Hong X. How Solvents Control the Stereospecificity of Ni-Catalyzed Miyaura Borylation of Allylic Pivalates. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02636] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Pan-Pan Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haiyan Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Biao Cheng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fengchang Cheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
32
|
Luo H, Hu G, Li P. Sulfur-Mediated Allylic C-H Arylation, Epoxidation, and Aziridination. J Org Chem 2019; 84:10569-10578. [PMID: 31287687 DOI: 10.1021/acs.joc.9b01438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transition-metal-free, sulfur-mediated allylic C-H arylation, epoxidation, and aziridination were realized through one-pot procedures. The reaction design involved initial addition between olefins and triflic anhydride activated sulfoxides, followed by subsequent reactions of the allylic sulfur ylides generated under basic conditions with arylboronic acids, aldehydes, or aldimines, to give allylic arylation, epoxidation, or aziridination products, respectively.
Collapse
Affiliation(s)
- Hang Luo
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Gang Hu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China.,Department of Chemistry , Baotou Teacher's College , Baotou 014030 , China
| | - Pingfan Li
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
33
|
Sun M, Chen JF, Chen S, Li C. Construction of Vicinal Quaternary Carbon Centers via Cobalt-Catalyzed Asymmetric Reverse Prenylation. Org Lett 2019; 21:1278-1282. [DOI: 10.1021/acs.orglett.8b04030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minghe Sun
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Jia-Feng Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
34
|
Shen L, Zhao Y, Luo Q, Li QS, Liu B, Redshaw C, Wu B, Yang XJ. Cyclotrimerization of alkynes catalyzed by a self-supported cyclic tri-nuclear nickel(0) complex with α-diimine ligands. Dalton Trans 2019; 48:4643-4649. [DOI: 10.1039/c9dt00819e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cyclic tri-nickel(0) complex [{Ni(μ-LMe-2,4)}3] (LMe-2,4 = [(2,4-Me2C6H3)NC(Me)]2) self-supported by the α-diimines catalyzes cyclotrimerization of alkynes to form substituted benzenes.
Collapse
Affiliation(s)
- Lingyi Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Qiong Luo
- Center for Computational Quantum Chemistry
- South China Normal University
- Guangzhou 510631
- China
| | - Qian-Shu Li
- Center for Computational Quantum Chemistry
- South China Normal University
- Guangzhou 510631
- China
| | - Bin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Carl Redshaw
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| |
Collapse
|
35
|
Knecht T, Pinkert T, Dalton T, Lerchen A, Glorius F. Cp*RhIII-Catalyzed Allyl–Aryl Coupling of Olefins and Arylboron Reagents Enabled by C(sp3)–H Activation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04677] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tobias Knecht
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Tobias Pinkert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Toryn Dalton
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Andreas Lerchen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
36
|
Agirre M, Henrion S, Rivilla I, Miranda JI, Cossío FP, Carboni B, Villalgordo JM, Carreaux F. 1,3-Dioxa-[3,3]-sigmatropic Oxo-Rearrangement of Substituted Allylic Carbamates: Scope and Mechanistic Studies. J Org Chem 2018; 83:14861-14881. [PMID: 30457341 DOI: 10.1021/acs.joc.8b01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unexpected 1,3-dioxa-[3,3]-sigmatropic rearrangement during the treatment of aryl- and alkenyl-substituted allylic alcohols with activated isocyanates is reported. The reorganization of bonds is highly dependent on the electron density of the aromatic ring and the nature of isocyanate used. This metal-free tandem reaction from branched allyl alcohols initiated by a carbamoylation reaction and followed by a sigmatropic rearrangement thus offers a new access to ( E)-cinnamyl and conjugated ( E, E)-diene carbamates, such as N-acyl and N-sulfonyl derivatives. A computational study was conducted in order to rationalize this phenomenon, and a rearrangement progress kinetic analysis was performed.
Collapse
Affiliation(s)
- Maddalen Agirre
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química , Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P° Manuel Lardizabal 3 , 20018 San Sebastián/Donostia , Spain
| | - Sylvain Henrion
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , 263, avenue du Général Leclerc, Campus de Beaulieu , F-35000 Rennes , France
| | - Ivan Rivilla
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química , Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P° Manuel Lardizabal 3 , 20018 San Sebastián/Donostia , Spain
| | - José I Miranda
- SGIker NMR Facility , Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) , Avda. Tolosa 72 , E-20018 San Sebastián/Donostia , Spain
| | - Fernando P Cossío
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química , Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P° Manuel Lardizabal 3 , 20018 San Sebastián/Donostia , Spain
| | - Bertrand Carboni
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , 263, avenue du Général Leclerc, Campus de Beaulieu , F-35000 Rennes , France
| | - José M Villalgordo
- VillaPharma Research, Parque Tecnológico de Fuente Alamo , Ctra. El Estrecho-Lobosillo, Av. Azul , 30320 Murcia , Spain
| | - François Carreaux
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , 263, avenue du Général Leclerc, Campus de Beaulieu , F-35000 Rennes , France
| |
Collapse
|
37
|
Pound SM, Watson MP. Asymmetric synthesis via stereospecific C-N and C-O bond activation of alkyl amine and alcohol derivatives. Chem Commun (Camb) 2018; 54:12286-12301. [PMID: 30283929 PMCID: PMC6261259 DOI: 10.1039/c8cc07093h] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This perspective showcases our development of benzylic and allylic amine and alcohol derivatives as electrophiles for stereospecific, nickel-catalyzed cross-coupling reactions, as well as the prior art that inspired our efforts. The success of our effort has relied on the use of benzyl ammonium triflates as electrophiles for cross-couplings via C-N bond activation and benzylic and allylic carboxylates for cross-couplings via C-O bond activation. Our work, along with others' exciting discoveries, has demonstrated the potential of stereospecific, nickel-catalyzed cross-couplings of alkyl electrophiles in asymmetric synthesis, and enables efficient generation of both tertiary and quaternary stereocenters.
Collapse
Affiliation(s)
- Sarah M Pound
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | | |
Collapse
|
38
|
Michel NWM, Jeanneret ADM, Kim H, Rousseaux SAL. Nickel-Catalyzed Cyanation of Benzylic and Allylic Pivalate Esters. J Org Chem 2018; 83:11860-11872. [DOI: 10.1021/acs.joc.8b01763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicholas W. M. Michel
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Alexandria D. M. Jeanneret
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Hyehwang Kim
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sophie A. L. Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
39
|
|
40
|
Ngamnithiporn A, Jette CI, Bachman S, Virgil SC, Stoltz BM. Nickel-catalyzed enantioselective allylic alkylation of lactones and lactams with unactivated allylic alcohols. Chem Sci 2018; 9:2547-2551. [PMID: 29732133 PMCID: PMC5912103 DOI: 10.1039/c7sc05216b] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/12/2018] [Indexed: 11/25/2022] Open
Abstract
Reported is the first nickel-catalyzed enantioselective allylic alkylation of lactones and lactams to provide products bearing an all-carbon quaternary stereocenter.
The first nickel-catalyzed enantioselective allylic alkylation of lactone and lactam substrates to deliver products bearing an all-carbon quaternary stereocenter is reported. The reaction, which utilizes a commercially available chiral bisphosphine ligand, proceeds in good yield with a high level of enantioselectivity (up to 90% ee) on a range of unactivated allylic alcohols for both lactone and lactam nucleophiles. The utility of this method is further highlighted via a number of synthetically useful product transformations.
Collapse
Affiliation(s)
- Aurapat Ngamnithiporn
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Carina I Jette
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Shoshana Bachman
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Scott C Virgil
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| |
Collapse
|
41
|
Wen L, Cheng F, Li H, Zhang S, Hong X, Meng F. Copper-Catalyzed Enantioselective Hydroboration of 1,1-Disubstituted Alkenes: Method Development, Applications and Mechanistic Studies. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lu Wen
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Fengchang Cheng
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Han Li
- Department of Chemistry; Zhejiang University; 38 Zheda Road Hangzhou 310027 China
| | - Shuoqing Zhang
- Department of Chemistry; Zhejiang University; 38 Zheda Road Hangzhou 310027 China
| | - Xin Hong
- Department of Chemistry; Zhejiang University; 38 Zheda Road Hangzhou 310027 China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
42
|
Zhang SQ, Taylor BLH, Ji CL, Gao Y, Harris MR, Hanna LE, Jarvo ER, Houk KN, Hong X. Mechanism and Origins of Ligand-Controlled Stereoselectivity of Ni-Catalyzed Suzuki-Miyaura Coupling with Benzylic Esters: A Computational Study. J Am Chem Soc 2017; 139:12994-13005. [PMID: 28838241 PMCID: PMC5607113 DOI: 10.1021/jacs.7b04973] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nickel catalysts have shown unique ligand control of stereoselectivity in the Suzuki-Miyaura cross-coupling of boronates with benzylic pivalates and derivatives involving C(sp3)-O cleavage. The SIMes ligand (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) produces the stereochemically inverted C-C coupling product, while the tricyclohexylphosphine (PCy3) ligand delivers the retained stereochemistry. We have explored the mechanism and origins of the ligand-controlled stereoselectivity with density functional theory (DFT) calculations. The oxidative addition determines the stereoselectivity with two competing transition states, an SN2 back-side attack type transition state that inverts the benzylic stereogenic center and a concerted oxidative addition through a cyclic transition state, which provides stereoretention. The key difference between the two transition states is the substrate-nickel-ligand angle distortion; the ligand controls the selectivity by differentiating the ease of this angle distortion. For the PCy3 ligand, the nickel-ligand interaction involves mainly σ-donation, which does not require a significant energy penalty for the angle distortion. The facile angle distortion with PCy3 ligand allows the favorable cyclic oxidative addition transition state, leading to the stereoretention. For the SIMes ligand, the extra d-p back-donation from nickel to the coordinating carbene increases the rigidity of the nickel-ligand bond, and the corresponding angle distortion is more difficult. This makes the concerted cyclic oxidative addition unfavorable with SIMes ligand, and the back-side SN2-type oxidative addition delivers the stereoinversion.
Collapse
Affiliation(s)
- Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Buck L. H. Taylor
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Chemistry, Carleton College, Minnesota 55057, United States
| | - Chong-Lei Ji
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuan Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Michael R. Harris
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Luke E. Hanna
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Elizabeth R. Jarvo
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
43
|
Cobb KM, Rabb-Lynch JM, Hoerrner ME, Manders A, Zhou Q, Watson MP. Stereospecific, Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling of Allylic Pivalates To Deliver Quaternary Stereocenters. Org Lett 2017; 19:4355-4358. [PMID: 28783357 DOI: 10.1021/acs.orglett.7b02063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recognizing the importance of all-carbon, quaternary stereocenters in complex molecule synthesis, a stereospecific, nickel-catalyzed cross-coupling of allylic pivalates with arylboroxines to deliver products equipped with quaternary stereocenters and internal alkenes was developed. The enantioenriched allylic pivalate starting materials are readily prepared, and a variety of functional groups can be incorporated on both the allylic pivalate and the arylboroxine. Additional advantages include the use of a commercially available and air-stable Ni(II) salt and BISBI ligand, mild reaction conditions, and high yields and ee's. The observed stereoinversion of this reaction is consistent with an open transition state in the oxidative addition step.
Collapse
Affiliation(s)
- Kelsey M Cobb
- Department of Chemistry & Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Javon M Rabb-Lynch
- Department of Chemistry & Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Megan E Hoerrner
- Department of Chemistry & Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Alex Manders
- Department of Chemistry & Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Qi Zhou
- Department of Chemistry & Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Mary P Watson
- Department of Chemistry & Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
44
|
Troshin K, Hartwig JF. Snap deconvolution: An informatics approach to high-throughput discovery of catalytic reactions. Science 2017; 357:175-181. [DOI: 10.1126/science.aan1568] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022]
|
45
|
Yap C, Lenagh‐Snow GMJ, Karad SN, Lewis W, Diorazio LJ, Lam HW. Enantioselective Nickel-Catalyzed Intramolecular Allylic Alkenylations Enabled by Reversible Alkenylnickel E/Z Isomerization. Angew Chem Int Ed Engl 2017; 56:8216-8220. [PMID: 28544752 PMCID: PMC5499723 DOI: 10.1002/anie.201703380] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 11/08/2022]
Abstract
Enantioselective nickel-catalyzed arylative cyclizations of substrates containing a Z-allylic phosphate tethered to an alkyne are described. These reactions give multisubstituted chiral aza- and carbocycles, and are initiated by the addition of an arylboronic acid to the alkyne, followed by cyclization of the resulting alkenylnickel species onto the allylic phosphate. The reversible E/Z isomerization of the alkenylnickel species is essential for the success of the reactions.
Collapse
Affiliation(s)
- Connor Yap
- The GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | | - Somnath Narayan Karad
- The GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - William Lewis
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Louis J. Diorazio
- AstraZenecaPharmaceutical Technology and DevelopmentEtherow F53/20, Charter WayMacclesfieldCheshireSK10 2NAUK
| | - Hon Wai Lam
- The GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
46
|
Yap C, Lenagh-Snow GMJ, Karad SN, Lewis W, Diorazio LJ, Lam HW. Enantioselective Nickel-Catalyzed Intramolecular Allylic Alkenylations Enabled by Reversible Alkenylnickel E
/Z
Isomerization. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Connor Yap
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry; University of Nottingham; Jubilee Campus; Triumph Road Nottingham NG7 2TU UK
- School of Chemistry; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | | | - Somnath Narayan Karad
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry; University of Nottingham; Jubilee Campus; Triumph Road Nottingham NG7 2TU UK
- School of Chemistry; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | - William Lewis
- School of Chemistry; University of Nottingham; University Park; Nottingham NG7 2RD UK
| | - Louis J. Diorazio
- AstraZeneca; Pharmaceutical Technology and Development; Etherow F53/20, Charter Way Macclesfield Cheshire SK10 2NA UK
| | - Hon Wai Lam
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry; University of Nottingham; Jubilee Campus; Triumph Road Nottingham NG7 2TU UK
- School of Chemistry; University of Nottingham; University Park; Nottingham NG7 2RD UK
| |
Collapse
|
47
|
Cai Y, Benischke AD, Knochel P, Gosmini C. Cobalt-Catalyzed Reductive Cross-Coupling Between Styryl and Benzyl Halides. Chemistry 2016; 23:250-253. [PMID: 27762460 DOI: 10.1002/chem.201603832] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 12/14/2022]
Abstract
A simple and efficient protocol for the direct reductive cross-coupling between alkenyl and benzyl halides using a Co/Mn system has been developed. This reaction proceeds smoothly in the presence of [CoBr2 (PPh3 )2 ] as the catalyst, with NaI as an additive in acetonitrile with a broad scope of functionalized alkenyl and benzyl halides. Different functional groups are tolerated on both coupling partners, thus, significantly extending the general scope of transition-metal-catalyzed benzylation of alkenyl halides. Moderate to excellent yields were also obtained. From a mechanistic point of view, a radical chain mechanism was proposed. This reaction is stereospecific and some studies suggest the retention of the double-bond configuration.
Collapse
Affiliation(s)
- Yingxiao Cai
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128, Palaiseau, France
| | - Andreas D Benischke
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Corinne Gosmini
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128, Palaiseau, France
| |
Collapse
|
48
|
Zhou Q, Srinivas HD, Zhang S, Watson MP. Accessing Both Retention and Inversion Pathways in Stereospecific, Nickel-Catalyzed Miyaura Borylations of Allylic Pivalates. J Am Chem Soc 2016; 138:11989-11995. [PMID: 27589327 PMCID: PMC5023504 DOI: 10.1021/jacs.6b07396] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have developed a stereospecific, nickel-catalyzed Miyaura borylation of allylic pivalates, which delivers highly enantioenriched α-stereogenic γ-aryl allylboronates with good yields and regioselectivities. Our complementary sets of conditions enable access to either enantiomer of allylboronate product from a single enantiomer of readily prepared allylic pivalate substrate. Excellent functional group tolerance, yields, regioselectivities, and stereochemical fidelities are observed. The stereochemical switch from stereoretention to stereoinversion largely depends upon solvent and can be explained by competitive pathways for the oxidative addition step. Our mechanistic investigations support a stereoretentive pathway stemming from a directed oxidative addition and a stereoinvertive pathway that is dominant when MeCN blocks coordination of the directing group by binding the nickel catalyst.
Collapse
Affiliation(s)
| | | | - Songnan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Mary P. Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
49
|
Mao Y, Zhai X, Khan A, Cheng J, Wu X, Zhang YJ. Cross-coupling of vinylethylene carbonates with arylboronic acids catalyzed by in situ generated palladium nanoparticles in water. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Sha SC, Jiang H, Mao J, Bellomo A, Jeong SA, Walsh PJ. Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights. Angew Chem Int Ed Engl 2015; 55:1070-4. [PMID: 26756444 DOI: 10.1002/anie.201507494] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/19/2015] [Indexed: 11/09/2022]
Abstract
Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising.
Collapse
Affiliation(s)
- Sheng-Chun Sha
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Hui Jiang
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Jianyou Mao
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Ana Bellomo
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Soo A Jeong
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA.
| |
Collapse
|