1
|
Cao Z, Wang Q, Neumann H, Beller M. Modular and Diverse Synthesis of Acrylamides by Palladium-Catalyzed Hydroaminocarbonylation of Acetylene. Angew Chem Int Ed Engl 2024; 63:e202410597. [PMID: 38986016 DOI: 10.1002/anie.202410597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
The development of all kinds of covalent drugs had a major impact on the improvement of the human health system. Covalent binding to target proteins is achieved by so-called electrophilic warheads, which are incorporated in the respective drug molecule. In the last decade, specifically acrylamides emerged as attractive warheads in covalent drug design. Herein, a straightforward palladium-catalyzed hydroaminocarbonylation of acetylene has been developed, allowing a modular and diverse synthesis of bio-active acrylamides. This general protocol features high atom efficiency, wide functional group compatibility, high chemoselectivity and proceeds additive free under mild reaction conditions. The synthetic utility of this protocol is showcased in the synthesis of ibrutinib, osimertinib, and other bio-active compound derivatives.
Collapse
Affiliation(s)
- Zhusong Cao
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Qiang Wang
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
2
|
Álvarez-Constantino AM, Chaves-Pouso A, Fañanás-Mastral M. Enantioselective Allylboration of Acetylene: A Versatile Tool for the Stereodivergent Synthesis of Natural Products. Angew Chem Int Ed Engl 2024; 63:e202407813. [PMID: 38860849 DOI: 10.1002/anie.202407813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Efficient catalytic methods that allow the use of simple and abundant chemical feedstocks for the preparation of synthetically versatile compounds are central to modern synthetic chemistry. Acetylene is a basic feedstock with a remarkable production over one million tons per year, although it is underutilized in the stereoselective synthesis of fine chemicals. Here we report a facile catalytic multicomponent reaction that allows for the enantio- and diastereoselective allylboration of acetylene gas. This process is catalyzed by a chiral copper catalyst, operates without specialized equipment or pressurization, and provides chiral skipped dienes bearing stereodefined and orthogonally functionalized olefins with excellent levels of chemo-, regio-, enantio- and diastereoselectivity. The combined stereochemical features and orthogonal functionalization make the products privileged structural scaffolds to access the complete set of stereoisomers of the chiral skipped diene core through simple enantio- and diastereodivergent pathways. The utility of the method is demonstrated with the enantioselective synthesis of three bioactive natural skipped diene products, namely (+)-Nyasol, (+)-Hinokiresinol and Phorbasin C, and other related synthetically relevant chiral molecules.
Collapse
Affiliation(s)
- Andrés M Álvarez-Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Andrea Chaves-Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Lin Z, Liu B, Wang Y, Li S, Zhu S. Correction: Synthesis of vinyl-substituted alcohols using acetylene as a C2 building block. Chem Sci 2023; 14:1919. [PMID: 36812102 PMCID: PMC9930916 DOI: 10.1039/d3sc90023a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
[This corrects the article DOI: 10.1039/D2SC06400F.].
Collapse
Affiliation(s)
- Zhicong Lin
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Boxiang Liu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Yu Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Siju Li
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
4
|
Li K, Long X, Zhu S. Photoredox/Nickel Dual Catalysis-Enabled Modular Synthesis of Arylallyl Alcohols with Acetylene as the Two-Carbon Synthon. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kangkui Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xianyang Long
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Ortiz E, Shezaf J, Chang YH, Krische MJ. Enantioselective Metal-Catalyzed Reductive Coupling of Alkynes with Carbonyl Compounds and Imines: Convergent Construction of Allylic Alcohols and Amines. ACS Catal 2022; 12:8164-8174. [PMID: 37082110 PMCID: PMC10112658 DOI: 10.1021/acscatal.2c02444] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of alkynes as vinylmetal pronucleophiles in intermolecular enantioselective metal-catalyzed carbonyl and imine reductive couplings to form allylic alcohols and amines is surveyed. Related hydrogen auto-transfer processes, wherein alcohols or amines serve dually as reductants and carbonyl or imine proelectrophiles, also are cataloged, as are applications in target-oriented synthesis. These processes represent an emerging alternative to the use of stoichiometric vinylmetal reagents or Nozaki-Hiyama-Kishi (NHK) reactions in carbonyl and imine alkenylation.
Collapse
Affiliation(s)
- Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Jonathan Shezaf
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Yu-Hsiang Chang
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
6
|
Cheng T, Liu B, Wu R, Zhu S. Cu-catalyzed carboboration of acetylene with Michael acceptors. Chem Sci 2022; 13:7604-7609. [PMID: 35872813 PMCID: PMC9241969 DOI: 10.1039/d2sc02306g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
A copper-catalyzed three-component carboboration of acetylene with B2Pin2 and Michael acceptors is reported. In this reaction, a cheap and abundant C2 chemical feedstock, acetylene, was used as a starting material to afford cis-alkenyl boronates bearing a homoallylic carbonyl group. The reaction was robust and could be reliably performed on the molar scale. Furthermore, the resulting cis-alkenyl boronates could be converted to diverse functionalized molecules with ease.
Collapse
Affiliation(s)
- Tairan Cheng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Boxiang Liu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Rui Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
7
|
Yang B, Lu S, Wang Y, Zhu S. Diverse synthesis of C2-linked functionalized molecules via molecular glue strategy with acetylene. Nat Commun 2022; 13:1858. [PMID: 35388000 PMCID: PMC8986794 DOI: 10.1038/s41467-022-29556-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/13/2022] [Indexed: 02/08/2023] Open
Abstract
As the simplest alkyne and an abundant chemical feedstock, acetylene is an ideal two-carbon building block. However, in contrast to substituted alkynes, catalytic methods to incorporate acetylene into fine chemicals are quite limited. Herein, we developed a photoredox-catalyzed synthetic protocol for diverse C2-linked molecules via a molecular glue strategy using gaseous acetylene under mild conditions. Initiated by addition of an acyl radical to acetylene, two cascade transformations follow. One involves a double addition for the formation of 1,4-diketones and the other where the intermediate vinyl ketone is intercepted by a radical formed from a heterocycle. In addition to making two new C-C bonds, two C-H bonds are also created in two mechanistically distinct ways: one via a C-H abstraction and the other via protonation. This system offers a reliable and safe way to incorporate gaseous acetylene into fine chemicals and expands the utility of acetylene in organic synthesis. Although acetylene is an ideal two-carbon building block, very few catalytic methods can be applied to incorporate acetylene into fine chemicals. Here, the authors show photoredox-catalyzed syntheses of C2- linked molecules with gaseous acetylene under mild conditions.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shaodong Lu
- Singfar Laboratories, Guangzhou, 510670, China
| | | | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
8
|
Shi Z, Shen C, Dong K. Diastereoselective Alkene Hydroesterification Enabling the Synthesis of Chiral Fused Bicyclic Lactones. Chemistry 2021; 27:18039-18042. [PMID: 34734440 DOI: 10.1002/chem.202103318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 01/03/2023]
Abstract
Palladium-catalysed diastereoselective hydroesterification of alkenes assisted by the coordinative hydroxyl group in the substrate afforded a variety of chiral γ-butyrolactones bearing two stereocenters. Employing the carbonylation-lactonization products as the key intermediates, the route from the alkenes with single chiral center to chiral THF-fused bicyclic γ-lactones containing three stereocenters was developed.
Collapse
Affiliation(s)
- Zhanglin Shi
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, No. 500, Dongchuan Road, Shanghai, 200241, China
| | - Chaoren Shen
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, No. 500, Dongchuan Road, Shanghai, 200241, China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, No. 500, Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
9
|
Spinello BJ, Wu J, Cho Y, Krische MJ. Conversion of Primary Alcohols and Butadiene to Branched Ketones via Merged Transfer Hydrogenative Carbonyl Addition-Redox Isomerization Catalyzed by Rhodium. J Am Chem Soc 2021; 143:13507-13512. [PMID: 34415159 PMCID: PMC8739284 DOI: 10.1021/jacs.1c07230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first examples of rhodium-catalyzed carbonyl addition via hydrogen autotransfer are described, as illustrated in tandem butadiene-mediated carbonyl addition-redox isomerizations that directly convert primary alcohols to isobutyl ketones. Related reductive coupling-redox isomerizations of aldehyde reactants mediated by sodium formate also are reported. A double-labeling crossover experiment reveals that the rhodium alkoxide obtained upon carbonyl addition enacts redox isomerization without dissociation of rhodium at any intervening stage.
Collapse
Affiliation(s)
- Brian J Spinello
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica Wu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Santana CG, Krische MJ. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catal 2021; 11:5572-5585. [PMID: 34306816 PMCID: PMC8302072 DOI: 10.1021/acscatal.1c01109] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atom-efficient processes that occur via addition, redistribution or removal of hydrogen underlie many large volume industrial processes and pervade all segments of chemical industry. Although carbonyl addition is one of the oldest and most broadly utilized methods for C-C bond formation, the delivery of non-stabilized carbanions to carbonyl compounds has relied on premetalated reagents or metallic/organometallic reductants, which pose issues of safety and challenges vis-à-vis large volume implementation. Catalytic carbonyl reductive couplings promoted via hydrogenation, transfer hydrogenation and hydrogen auto-transfer allow abundant unsaturated hydrocarbons to serve as substitutes to organometallic reagents, enabling C-C bond formation in the absence of stoichiometric metals. This perspective (a) highlights past milestones in catalytic hydrogenation, hydrogen transfer and hydrogen auto-transfer, (b) summarizes current methods for catalytic enantioselective carbonyl reductive couplings, and (c) describes future opportunities based on the patterns of reactivity that animate transformations of this type.
Collapse
Affiliation(s)
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
11
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal-Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target-Oriented Synthesis. Angew Chem Int Ed Engl 2019; 58:14055-14064. [PMID: 31162793 PMCID: PMC6764920 DOI: 10.1002/anie.201905532] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 12/11/2022]
Abstract
Use of abundant feedstock pronucleophiles in catalytic carbonyl reductive coupling enhances efficiency in target-oriented synthesis. For such reactions, equally inexpensive reductants are desired or, ideally, corresponding hydrogen autotransfer processes may be enacted wherein alcohols serve dually as reductant and carbonyl proelectrophile. As described in this Minireview, these concepts allow reactions that traditionally require preformed organometallic reagents to be conducted catalytically in a byproduct-free manner from inexpensive π-unsaturated precursors.
Collapse
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Cole C. Meyer
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
12
|
Lee H, Park Y, Jung H, Kim ST, Sin S, Ko E, Myeong IS, Moon H, Suhl CH, Jung Y, Jung E, Lee J, Lee KY, Oh CY, Song J, Yoon SH, Kang W, Jung J, Shin H. Synthesis of the C1–C13 fragment of eribulin mesylate. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal‐Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target‐Oriented Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Cole C. Meyer
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
14
|
Ma W, Yu C, Chen T, Xu L, Zhang WX, Xi Z. Correction: Metallacyclopentadienes: synthesis, structure and reactivity. Chem Soc Rev 2018; 47:2217. [PMID: 29505048 DOI: 10.1039/c8cs90022a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Correction for 'Metallacyclopentadienes: synthesis, structure and reactivity' by Wangyang Ma et al., Chem. Soc. Rev., 2017, 46, 1160-1192.
Collapse
Affiliation(s)
- Wangyang Ma
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
15
|
Roane J, Wippich J, Ramgren SD, Krische MJ. Synthesis of the C(1)-C(13) Fragment of Leiodermatolide via Hydrogen-Mediated C-C Bond Formation. Org Lett 2017; 19:6634-6637. [PMID: 29168383 PMCID: PMC5732063 DOI: 10.1021/acs.orglett.7b03351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Indexed: 12/23/2022]
Abstract
The C(1)-C(13) fragment of the antimitotic marine macrolide leiodermatolide is prepared in seven steps via hydrogenative and transfer-hydrogenative reductive C-C couplings. A hydrogen-mediated reductive coupling of acetylene with a Roche-type aldehyde is used to construct C(7)-C(13). A 2-propanol-mediated reductive coupling of allyl acetate with (E)-2-methylbut-2-enal at a low loading of iridium (1 mol %) is used to construct C(1)-C(6), which is converted to an allylsilane using Oestereich's copper-catalyzed allylic substitution of Si-Zn reagents. The union of the C(1)-C(6) and C(7)-C(13) fragments is achieved via stereoselective Sakurai allylation.
Collapse
Affiliation(s)
| | | | - Stephen D. Ramgren
- Department of Chemistry, University of Texas at Austin Austin, Texas 78712, United States
| | - Michael J. Krische
- Department of Chemistry, University of Texas at Austin Austin, Texas 78712, United States
| |
Collapse
|
16
|
Ghosh AK, Brindisi M. Achmatowicz Reaction and its Application in the Syntheses of Bioactive Molecules. RSC Adv 2016; 6:111564-111598. [PMID: 28944049 PMCID: PMC5603243 DOI: 10.1039/c6ra22611f] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Substituted pyranones and tetrahydropyrans are structural subunits of many bioactive natural products. Considerable efforts are devoted toward the chemical synthesis of these natural products due to their therapeutic potential as well as low natural abundance. These embedded pyranones and tetrahydropyran structural motifs have been the subject of synthetic interest over the years. While there are methods available for the syntheses of these subunits, there are issues related to regio and stereochemical outcomes, as well as versatility and compatibility of reaction conditions and functional group tolerance. The Achmatowicz reaction, an oxidative ring enlargement of furyl alcohol, was developed in the 1970s. The reaction provides a unique entry to a variety of pyranone derivatives from functionalized furanyl alcohols. These pyranones provide convenient access to substituted tetrahydropyran derivatives. This review outlines general approaches to the synthesis of tetrahydropyrans, covering general mechanistic aspects of the Achmatowicz reaction or rearrangement with an overview of the reagents utilized for the Achmatowicz reaction. The review then focuses on the synthesis of functionalized tetrahydropyrans and pyranones and their applications in the synthesis of natural products and medicinal agents.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Feng J, Kasun ZA, Krische MJ. Enantioselective Alcohol C-H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis. J Am Chem Soc 2016; 138:5467-78. [PMID: 27113543 PMCID: PMC4871165 DOI: 10.1021/jacs.6b02019] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development and application of stereoselective and site-selective catalytic methods that directly convert lower alcohols to higher alcohols are described. These processes merge the characteristics of transfer hydrogenation and carbonyl addition, exploiting alcohols and π-unsaturated reactants as redox pairs, which upon hydrogen transfer generate transient carbonyl-organometal pairs en route to products of C-C coupling. Unlike classical carbonyl additions, stoichiometric organometallic reagents and discrete alcohol-to-carbonyl redox reactions are not required. Additionally, due to a kinetic preference for primary alcohol dehydrogenation, the site-selective modification of glycols and higher polyols is possible, streamlining or eliminating use of protecting groups. The total syntheses of several iconic type I polyketide natural products were undertaken using these methods. In each case, the target compounds were prepared in significantly fewer steps than previously achieved.
Collapse
Affiliation(s)
- Jiajie Feng
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Zachary A. Kasun
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
18
|
Wang HY, Yang K, Yin D, Liu C, Glazier DA, Tang W. Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Lactols for De Novo Synthesis of Carbohydrate. Org Lett 2015; 17:5272-5. [DOI: 10.1021/acs.orglett.5b02641] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hao-Yuan Wang
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Ka Yang
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Dan Yin
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Can Liu
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Daniel A. Glazier
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Weiping Tang
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
Song W, Zhao Y, Lynch JC, Kim H, Tang W. Divergent de novo synthesis of all eight stereoisomers of 2,3,6-trideoxyhexopyranosides and their oligomers. Chem Commun (Camb) 2015; 51:17475-8. [PMID: 26477956 DOI: 10.1039/c5cc07787g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
All eight possible stereoisomers of 2,3,6-trideoxyhexopyranosides are prepared systematically from furan derivatives by a sequence of Achmatowicz rearrangement, Pd-catalysed glycosidation, and chiral catalyst-controlled tandem reductions. This sequence provides access to all possible stereoisomers of naturally occurring rhodinopyranosides, amicetopyranosides, disaccharide narbosine B, and other unnatural oligomeric 2,3,6-trideoxyhexopyranosides. It comprises a unique and systematic strategy for the de novo synthesis of deoxysugars.
Collapse
Affiliation(s)
- Wangze Song
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705-2222, USA.
| | | | | | | | | |
Collapse
|
20
|
Park BY, Luong T, Sato H, Krische MJ. A Metallacycle Fragmentation Strategy for Vinyl Transfer from Enol Carboxylates to Secondary Alcohol C-H Bonds via Osmium- or Ruthenium-Catalyzed Transfer Hydrogenation. J Am Chem Soc 2015; 137:7652-5. [PMID: 26066660 DOI: 10.1021/jacs.5b04688] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategy for catalytic vinyl transfer from enol carboxylates to activated secondary alcohol C-H bonds is described. Using XPhos-modified ruthenium(0) or osmium(0) complexes, enol carboxylate-carbonyl oxidative coupling forms transient β-acyloxy-oxametallacycles, which eliminate carboxylate to deliver allylic ruthenium(II) or osmium(II) alkoxides. Reduction of the metal(II) salt via hydrogen transfer from the secondary alcohol reactant releases the product of carbinol C-H vinylation and regenerates ketone and zero-valent catalyst.
Collapse
Affiliation(s)
- Boyoung Y Park
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tom Luong
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hiroki Sato
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
22
|
Sam B, Breit B, Krische MJ. Paraformaldehyde and methanol as C1 feedstocks in metal-catalyzed C-C couplings of π-unsaturated reactants: beyond hydroformylation. Angew Chem Int Ed Engl 2014; 54:3267-74. [PMID: 25430585 DOI: 10.1002/anie.201407888] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Indexed: 11/11/2022]
Abstract
Ruthenium-catalyzed reductive couplings of paraformaldehyde with dienes, alkynes, and allenes provide access to products of hydrohydroxymethylation that cannot be formed selectively under the conditions of hydroformylation. In certain cases, the regioselectivity of the CC coupling can be inverted by using nickel catalysts. With iridium catalysts, methanol engages in redox-neutral regioselective hydrohydroxymethylations.
Collapse
Affiliation(s)
- Brannon Sam
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Welch Hall (A5300), Austin, TX 78712-1167 (USA)
| | | | | |
Collapse
|
23
|
Sam B, Breit B, Krische MJ. Paraformaldehyd und Methanol als C1-Rohstoffe in metallkatalysierten C-C-Kupplungen π-ungesättigter Edukte. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407888] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Shin I, Wang G, Krische MJ. Catalyst-directed diastereo- and site-selectivity in successive nucleophilic and electrophilic allylations of chiral 1,3-diols: protecting-group-free synthesis of substituted pyrans. Chemistry 2014; 20:13382-9. [PMID: 25169904 PMCID: PMC4177504 DOI: 10.1002/chem.201404065] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Indexed: 12/12/2022]
Abstract
The iridium-catalyzed, protecting group-free synthesis of 4-hydroxy-2,6-cis- or trans-pyrans through successive nucleophilic and electrophilic allylations of chiral 1,3-diols occurs with complete levels of catalyst-directed diastereoselectivity in the absence of protecting groups, premetallated reagents, or discrete alcohol-to-aldehyde redox reactions.
Collapse
Affiliation(s)
- Inji Shin
- University of Texas at Austin, Department of Chemistry, 1 University Station – A5300, Austin, TX 78712-1167 (USA)
| | - Gang Wang
- University of Texas at Austin, Department of Chemistry, 1 University Station – A5300, Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 1 University Station – A5300, Austin, TX 78712-1167 (USA)
| |
Collapse
|
25
|
Del Valle DJ, Krische MJ. Total synthesis of (+)-trienomycins A and F via C-C bond-forming hydrogenation and transfer hydrogenation. J Am Chem Soc 2013; 135:10986-9. [PMID: 23862627 PMCID: PMC3757526 DOI: 10.1021/ja4061273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The triene-containing C17-benzene ansamycins trienomycins A and F were prepared in 16 steps (longest linear sequence, LLS) and 28 total steps. The C11-C13 stereotriad was generated via enantioselective Ru-catalyzed alcohol CH syn crotylation followed by chelation-controlled carbonyl dienylation. Enantioselective Rh-catalyzed acetylene-aldehyde reductive coupling mediated by gaseous H2 was used to form a diene that ultimately was subjected to diene-diene ring closing metathesis to form the macrocycle. The present approach is 14 steps shorter (LLS) than the prior syntheses of trienomycins A and F, and 8 steps shorter than any prior synthesis of a triene-containing C17-benzene ansamycin.
Collapse
Affiliation(s)
- David J Del Valle
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
26
|
Huang G, Kalek M, Himo F. Mechanism and Selectivity of Rhodium-Catalyzed 1:2 Coupling of Aldehydes and Allenes. J Am Chem Soc 2013; 135:7647-59. [DOI: 10.1021/ja4014166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Genping Huang
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marcin Kalek
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fahmi Himo
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
27
|
Shen K, Han X, Lu X. Cationic Pd(II)-Catalyzed Reductive Cyclization of Alkyne-Tethered Ketones or Aldehydes Using Ethanol as Hydrogen Source. Org Lett 2013; 15:1732-5. [DOI: 10.1021/ol400531a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kun Shen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiuling Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiyan Lu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
28
|
Wang X, Lim YN, Lee C, Jang HY, Lee BY. 1,5,7-Triazabicyclo[4.4.0]dec-1-ene-Mediated Acetylene Dicarboxylation and Alkyne Carboxylation Using Carbon Dioxide. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201608] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Dechert-Schmitt AMR, Schmitt DC, Krische MJ. Protecting-Group-Free Diastereoselective CC Coupling of 1,3-Glycols and Allyl Acetate through Site-Selective Primary Alcohol Dehydrogenation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Dechert-Schmitt AMR, Schmitt DC, Krische MJ. Protecting-group-free diastereoselective C-C coupling of 1,3-glycols and allyl acetate through site-selective primary alcohol dehydrogenation. Angew Chem Int Ed Engl 2013; 52:3195-8. [PMID: 23364927 DOI: 10.1002/anie.201209863] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Anne-Marie R Dechert-Schmitt
- University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station-A5300, Austin, TX 78712-1167, USA
| | | | | |
Collapse
|
31
|
Schmitt DC, Dechert-Schmitt AMR, Krische MJ. Iridium-catalyzed allylation of chiral β-stereogenic alcohols: bypassing discrete formation of epimerizable aldehydes. Org Lett 2012; 14:6302-5. [PMID: 23231774 PMCID: PMC3529126 DOI: 10.1021/ol3030692] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclometalated π-allyliridium 3,4-dinitro-C,O-benzoate complex modified by (R)- or (S)-Cl,MeO-BIPHEP promotes the transfer hydrogenative coupling of allyl acetate to β-stereogenic alcohols with good to excellent levels of catalyst-directed diastereoselectivity to furnish homoallylic alcohols. Remote electronic effects of the C,O-benzoate of the catalyst play a critical role in suppressing epimerization of the transient α-stereogenic aldehyde.
Collapse
Affiliation(s)
- Daniel C. Schmitt
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712
| | | | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712
| |
Collapse
|
32
|
Li Y, Yin Z, Wang B, Meng XB, Li ZJ. Synthesis of orthogonally protected l-glucose, l-mannose, and l-galactose from d-glucose. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
De Paolis M, Chataigner I, Maddaluno J. Recent advances in stereoselective synthesis of 1,3-dienes. Top Curr Chem (Cham) 2012; 327:87-146. [PMID: 22527407 DOI: 10.1007/128_2012_320] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of this review is to present the latest developments in the stereoselective synthesis of conjugated dienes, covering the period 2005-2010. Since the use of this class of compounds is linked to the nature of their appendages (aryls, alkyls, electron-withdrawing, and heterosubstituted groups), the review has been categorized accordingly and illustrates the most representative strategies and mechanisms to access these targets.
Collapse
|
34
|
Hassan A, Krische MJ. Unlocking Hydrogenation for C-C Bond Formation: A Brief Overview of Enantioselective Methods. Org Process Res Dev 2011; 15:1236-1242. [PMID: 22125398 PMCID: PMC3224080 DOI: 10.1021/op200195m] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogenation of π-unsaturated reactants in the presence of carbonyl compounds or imines promotes reductive C-C coupling, providing a byproduct-free alternative to stoichiometric organometallic reagents in an ever-increasing range of C=X (X = O, NR) additions. Under transfer hydrogenation conditions, hydrogen exchange between alcohols and π-unsaturated reactants triggers generation of electrophile-nucleophile pairs, enabling carbonyl addition directly from the alcohol oxidation level, bypassing discrete alcohol oxidation and generation of stoichiometric byproducts.
Collapse
Affiliation(s)
- Abbas Hassan
- University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station – A5300, Austin, TX 78712-1167, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station – A5300, Austin, TX 78712-1167, USA
| |
Collapse
|
35
|
Monrad RN, Madsen R. Modern methods for shortening and extending the carbon chain in carbohydrates at the anomeric center. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.08.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Leung JC, Patman RL, Sam B, Krische MJ. Alkyne-aldehyde reductive C-C coupling through ruthenium-catalyzed transfer hydrogenation: direct regio- and stereoselective carbonyl vinylation to form trisubstituted allylic alcohols in the absence of premetallated reagents. Chemistry 2011; 17:12437-43. [PMID: 21953608 DOI: 10.1002/chem.201101554] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/11/2011] [Indexed: 11/08/2022]
Abstract
Nonsymmetric 1,2-disubstituted alkynes engage in reductive coupling to a variety of aldehydes under the conditions of ruthenium-catalyzed transfer hydrogenation by employing formic acid as the terminal reductant and delivering the products of carbonyl vinylation with good to excellent levels of regioselectivity and with complete control of olefin stereochemistry. As revealed in an assessment of the ruthenium counterion, iodide plays an essential role in directing the regioselectivity of C-C bond formation. Isotopic labeling studies corroborate reversible catalytic propargyl C-H oxidative addition in advance of the C-C coupling, and demonstrate that the C-C coupling products do not experience reversible dehydrogenation by way of enone intermediates. This transfer hydrogenation protocol enables carbonyl vinylation in the absence of stoichiometric metallic reagents.
Collapse
Affiliation(s)
- Joyce C Leung
- University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station, A5300, Austin, TX 78712-1167, USA
| | | | | | | |
Collapse
|
37
|
Lu Y, Woo SK, Krische MJ. Total synthesis of bryostatin 7 via C-C bond-forming hydrogenation. J Am Chem Soc 2011; 133:13876-9. [PMID: 21780806 DOI: 10.1021/ja205673e] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The marine macrolide bryostatin 7 is prepared in 20 steps (longest linear sequence) and 36 total steps with five C-C bonds formed using hydrogenative methods. This approach represents the most concise synthesis of any bryostatin reported, to date.
Collapse
Affiliation(s)
- Yu Lu
- University of Texas at Austin, Department of Chemistry and Biochemistry, 78712, United States
| | | | | |
Collapse
|
38
|
Bausch CC, Patman RL, Breit B, Krische MJ. Divergent Regioselectivity in the Synthesis of Trisubstituted Allylic Alcohols by Nickel- and Ruthenium-Catalyzed Alkyne Hydrohydroxymethylation with Formaldehyde. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101496] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Bausch CC, Patman RL, Breit B, Krische MJ. Divergent Regioselectivity in the Synthesis of Trisubstituted Allylic Alcohols by Nickel- and Ruthenium-Catalyzed Alkyne Hydrohydroxymethylation with Formaldehyde. Angew Chem Int Ed Engl 2011; 50:5687-90. [DOI: 10.1002/anie.201101496] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Indexed: 11/07/2022]
|
40
|
Gao X, Zhang YJ, Krische MJ. Iridium-Catalyzed anti-Diastereo- and Enantioselective Carbonyl (α-Trifluoromethyl)allylation from the Alcohol or Aldehyde Oxidation Level. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Gao X, Zhang YJ, Krische MJ. Iridium-catalyzed anti-diastereo- and enantioselective carbonyl (α-trifluoromethyl)allylation from the alcohol or aldehyde oxidation level. Angew Chem Int Ed Engl 2011; 50:4173-5. [PMID: 21472938 DOI: 10.1002/anie.201008296] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/28/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Gao
- University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station-A5300, Austin, TX 78712-1167, USA
| | | | | |
Collapse
|
42
|
Hassan A, Zbieg JR, Krische MJ. Enantioselective iridium-catalyzed vinylogous Reformatsky-aldol reaction from the alcohol oxidation level: linear regioselectivity by way of carbon-bound enolates. Angew Chem Int Ed Engl 2011; 50:3493-6. [PMID: 21381171 PMCID: PMC3162040 DOI: 10.1002/anie.201100646] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Indexed: 11/12/2022]
Affiliation(s)
- Abbas Hassan
- University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station—A5300, Austin, TX 78712-1167 (USA)
| | - Jason R. Zbieg
- University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station—A5300, Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station—A5300, Austin, TX 78712-1167 (USA)
| |
Collapse
|
43
|
Hassan A, Zbieg JR, Krische MJ. Enantioselective Iridium-Catalyzed Vinylogous Reformatsky-Aldol Reaction from the Alcohol Oxidation Level: Linear Regioselectivity by Way of Carbon-Bound Enolates. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100646] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Liu P, Krische MJ, Houk KN. Mechanism and origins of regio- and enantioselectivities in RhI-catalyzed hydrogenative couplings of 1,3-diynes and activated carbonyl partners: intervention of a cumulene intermediate. Chemistry 2011; 17:4021-9. [PMID: 21365696 DOI: 10.1002/chem.201002741] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/12/2010] [Indexed: 01/11/2023]
Abstract
The mechanism of the rhodium-catalyzed reductive coupling of 1,3-diynes and vicinal dicarbonyl compounds employing H(2) as reductant was investigated by density functional theory. Oxidative coupling through 1,4-addition of the Rh(I)-bound dicarbonyl to the conjugated diyne via a seven-membered cyclic cumulene transition state leads to exclusive formation of linear adducts. Diyne 1,4-addition is much faster than the 1,2-addition to simple alkynes. The 1,2-dicarbonyl compound is bound to rhodium in a bidentate fashion during the oxidative coupling event. The chemo-, regio-, and enantioselectivities of this reaction were investigated and are attributed to this unique 1,4-addition pathway. The close proximity of the ligand and the alkyne substituent distal to the forming C-C bond controls the regio- and enantioselectivity: coupling occurs at the sterically more demanding alkyne terminus, which minimizes nonbonded interaction with the ligand. A stereochemical model is proposed that accounts for preferential formation of the (R)-configurated coupling product when (R)-biaryl phosphine ligands are used.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
45
|
Rössle M, Del Valle DJ, Krische MJ. Synthesis of the cytotrienin A core via metal catalyzed C-C coupling. Org Lett 2011; 13:1482-5. [PMID: 21323372 DOI: 10.1021/ol200160p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A synthetic approach to the C17-benzene ansamycins via metal catalyzed C-C coupling is described. Key bond formations include direct iridium catalyzed carbonyl crotylation from the alcohol oxidation level followed by chelation-controlled Sakurai-Seyferth dienylation to form the stereotriad, which is attached to the arene via Suzuki cross-coupling. The diene-containing carboxylic acid is prepared using rhodium catalyzed acetylene-aldehyde reductive C-C coupling mediated by gaseous hydrogen. Finally, ring-closing metathesis delivers the cytotrienin core.
Collapse
Affiliation(s)
- Michael Rössle
- University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, Texas 78712, United States
| | | | | |
Collapse
|
46
|
Bower JF, Krische MJ. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation. TOP ORGANOMETAL CHEM 2011; 34:107-138. [PMID: 21822399 PMCID: PMC3149833 DOI: 10.1007/978-3-642-15334-1_5] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds.
Collapse
Affiliation(s)
- John F Bower
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station - A5300, Austin, TX 78712-0165, USA and Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford 1 3TA, UK
| | | |
Collapse
|
47
|
|
48
|
Barlan AU, Micalizio GC. The regio- and stereochemical course of reductive cross-coupling reactions between 1,3-disubstituted allenes and vinylsilanes: Synthesis of ( Z)-dienes. Tetrahedron 2010; 66:4775-4783. [PMID: 24031099 PMCID: PMC3769195 DOI: 10.1016/j.tet.2010.02.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In investigations aimed at exploring the potential of disubstituted allenes in stereoselective synthesis, we report studies that explore the reductive cross-coupling reaction of vinylsilanes with a range of substituted allenes. Regiochemical control is attained by employing allenic alkoxides, where the proximal heteroatom dictates the site-selectivity in a process that proceeds by net formal metallo-[3,3] rearrangement (directed carbometalation/elimination). Stereoselectivity in these reactions is complex, with both the nature of allene substitution and relative stereochemistry of the substrate impacting the stereoselective generation of each alkene of a substituted 1,3-diene. 2009 Elsevier Ltd. All rights reserved.
Collapse
Affiliation(s)
- Allan U Barlan
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458
| | | |
Collapse
|
49
|
Williams VM, Kong JR, Ko BJ, Mantri Y, Brodbelt JS, Baik MH, Krische MJ. ESI-MS, DFT, and synthetic studies on the H(2)-mediated coupling of acetylene: insertion of C=X bonds into rhodacyclopentadienes and Brønsted acid cocatalyzed hydrogenolysis of organorhodium intermediates. J Am Chem Soc 2010; 131:16054-62. [PMID: 19845357 DOI: 10.1021/ja906225n] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The catalytic mechanism of the hydrogen-mediated coupling of acetylene to carbonyl compounds and imines has been examined using three techniques: (a) ESI-MS and ESI-CAD-MS analyses, (b) computational modeling, and (c) experiments wherein putative reactive intermediates are diverted to alternate reaction products. ESI-MS analysis of reaction mixtures from the hydrogen-mediated reductive coupling of acetylene to alpha-ketoesters or N-benzenesulfonyl aldimines corroborate a catalytic mechanism involving C horizontal lineX (X = O, NSO(2)Ph) insertion into a cationic rhodacyclopentadiene obtained by way of acetylene oxidative dimerization with subsequent Brønsted acid cocatalyzed hydrogenolysis of the resulting oxa- or azarhodacycloheptadiene. Hydrogenation of 1,6-diynes in the presence of alpha-ketoesters provides analogous coupling products. ESI mass spectrometric analysis again corroborates a catalytic mechanism involving carbonyl insertion into a cationic rhodacyclopentadiene. For all ESI-MS experiments, the structural assignments of ions are supported by multistage collisional activated dissociation (CAD) analyses. Further support for the proposed catalytic mechanism derives from experiments aimed at the interception of putative reactive intermediates and their diversion to alternate reaction products. For example, rhodium-catalyzed coupling of acetylene to an aldehyde in the absence of hydrogen or Brønsted acid cocatalyst provides the corresponding (Z)-butadienyl ketone, which arises from beta-hydride elimination of the proposed oxarhodacycloheptadiene intermediate, as corroborated by isotopic labeling. Additionally, the putative rhodacyclopentadiene intermediate obtained from the oxidative coupling of acetylene is diverted to the product of reductive [2 + 2 + 2] cycloaddition when N-p-toluenesulfonyl-dehydroalanine ethyl ester is used as the coupling partner. The mechanism of this transformation also is corroborated by isotopic labeling. Computer model studies based on density functional theory (DFT) support the proposed mechanism and identify Brønsted acid cocatalyst assisted hydrogenolysis to be the most difficult step. The collective studies provide new insight into the reactivity of cationic rhodacyclopentadienes, which should facilitate the design of related rhodium-catalyzed C-C couplings.
Collapse
Affiliation(s)
- Vanessa M Williams
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Han SB, Kim IS, Krische MJ. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency. Chem Commun (Camb) 2009:7278-87. [PMID: 20024203 PMCID: PMC2851162 DOI: 10.1039/b917243m] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Existing methods for enantioselective carbonyl allylation, crotylation and tert-prenylation require stoichiometric generation of pre-metallated nucleophiles, and often employ stoichiometric chiral modifiers. Under the conditions of transfer hydrogenation employing an ortho-cyclometallated iridium C,O-benzoate catalyst, enantioselective carbonyl allylations, crotylations and tert-prenylations are achieved in the absence of stoichiometric metallic reagents or stoichiometric chiral modifiers. Moreover, under transfer hydrogenation conditions, primary alcohols function dually as hydrogen donors and aldehyde precursors, enabling enantioselective carbonyl addition directly from the alcohol oxidation level.
Collapse
Affiliation(s)
- Soo Bong Han
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0165, USA
| | - In Su Kim
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0165, USA
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Michael J. Krische
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0165, USA
| |
Collapse
|