1
|
Saridakis I, Klose I, Jones BT, Maulide N. Hydride Shuttle Catalysis: From Conventional to Inverse Mode. JACS AU 2024; 4:3358-3369. [PMID: 39328743 PMCID: PMC11423322 DOI: 10.1021/jacsau.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
Hydride shuttle catalysis has emerged as a powerful synthetic platform, enabling the selective formation of C-C bonds to yield sp3-rich structures. By virtue of the compelling reactivity of sterically encumbered Lewis acids from the frustrated Lewis pair regime, hydride shuttle catalysis enables the regioselective functionalization of alkyl amines at either the α- or β-position. In contrast to classical Lewis acid reactivity, the increased steric hindrance prevents interaction with the Lewis basic amine itself, instead leading to reversible abstraction of a hydride from the amine α-carbon. The created positive charge facilitates the occurrence of transformations before hydride rebound or a similar capture event happen. In this Perspective, we outline a broad selection of transformations featuring hydride shuttle catalysis, as well as the recently developed approach of inverse hydride shuttle catalysis. Both strategies give rise to a wide array of functionalized amines and offer elegant approaches to otherwise elusive bond formations.
Collapse
Affiliation(s)
- Iakovos Saridakis
- Institute
of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Immo Klose
- Institute
of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Benjamin T. Jones
- Institute
of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Ghosh A, Van Nguyen TH, Bellanger C, Chelli S, Ahmad M, Saffon-Merceron N, Taillier C, Dalla V, Mayer RJ, Dixon IM, Lakhdar S. Unraveling C-Selective Ring-Opening of Phosphiranes with Carboxylic Acids and Other Nucleophiles: A Mechanistically-Driven Approach. Angew Chem Int Ed Engl 2024:e202414172. [PMID: 39140616 DOI: 10.1002/anie.202414172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Phosphiranes are weak Lewis bases reacting with only a limited number of electrophiles to produce the corresponding phosphiranium ions. These salts are recognized for their propensity to undergo reactions with oxygen pronucleophiles at the phosphorus site, leading to the formation of phosphine oxide adducts. Building on a thorough mechanistic understanding, we have developed an unprecedented approach that enables the selective reaction of carboxylic acids, and other nucleophiles, at the carbon site of phosphiranes. This method involves the photochemical generation of highly reactive carbenes, which react with 1-mesitylphosphirane to yield ylides. The latter undergoes a stepwise reaction with carboxylic acids, resulting in the production of the desired phosphines. In addition to DFT calculations, we have successfully isolated and fully characterized the key intermediates involved in the reaction.
Collapse
Affiliation(s)
- Avisek Ghosh
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Thi Hong Van Nguyen
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Corentin Bellanger
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Saloua Chelli
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Mohammad Ahmad
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Nathalie Saffon-Merceron
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT- UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 9, France
| | - Catherine Taillier
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Vincent Dalla
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Robert J Mayer
- School of Natural Sciences, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, F-31062, Toulouse, France
| | - Sami Lakhdar
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
3
|
Yoshizawa K, Li BX, Matsuyama T, Wang C, Uchiyama M. Visible-Light-Driven Germyl Radical Generation via EDA-Catalyzed ET-HAT Process. Chemistry 2024; 30:e202401546. [PMID: 38716768 DOI: 10.1002/chem.202401546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 06/28/2024]
Abstract
We have established a facile and efficient protocol for the generation of germyl radicals by employing photo-excited electron transfer (ET) in an electron donor-acceptor (EDA) complex to drive hydrogen-atom transfer (HAT) from germyl hydride (R3GeH). Using a catalytic amount of EDA complex of commercially available thiol and benzophenone derivatives, the ET-HAT cycle smoothly proceeds simply upon blue-light irradiation without any transition metal or photocatalyst. This protocol also affords silyl radical from silyl hydride.
Collapse
Affiliation(s)
- Kaito Yoshizawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Bi-Xiao Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taro Matsuyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Chao Wang
- Faculty of Pharmaceutical Sciences, Institute of Medicinal, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa-shi, Ishikawa, 920-1192, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano, 380-8553, Japan
| |
Collapse
|
4
|
Durin G, Romero RM, Godou T, Chauvier C, Thuéry P, Nicolas E, Cantat T. Formoxyboranes as hydroborane surrogates for the catalytic reduction of carbonyls through transfer hydroboration. Catal Sci Technol 2024; 14:1848-1853. [PMID: 38571548 PMCID: PMC10987016 DOI: 10.1039/d3cy01702h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
A new class of Lewis base stabilized formoxyboranes demonstrates the feasibility of catalytic transfer hydroboration. In the presence of a ruthenium catalyst, they have shown broad applicability for reducing carbonyl compounds. Various borylated alcohols are obtained in high selectivity and yields up to 99%, tolerating several functional groups. Computational studies enabled to propose a mechanism for this transformation, revealing the role of the ruthenium catalyst and the absence of hydroborane intermediates.
Collapse
Affiliation(s)
- Gabriel Durin
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - R Martin Romero
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Timothé Godou
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Clément Chauvier
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Pierre Thuéry
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Emmanuel Nicolas
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Thibault Cantat
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex France
| |
Collapse
|
5
|
Su X, Wang Y, Feng Q, Sun J. Heterodifunctionalization of Electron-Rich Alkynes Catalyzed by in Situ Generated Silylium Ions. Org Lett 2024; 26:421-426. [PMID: 38166166 DOI: 10.1021/acs.orglett.3c04208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Silylium ions are versatile Lewis acids in organic synthesis. While they have been well-known for the activation of σ donors, catalysis initiated by the activation of π donors remains underdeveloped, particularly for alkynes. Herein, we demonstrate an example of silylium-catalyzed alkyne heterodifunctionalization. The silylium ion generated in situ from HNTf2 and the silyl reagent serve as superior catalysts in the efficient silylphosphination and silylcyanation of electron-rich alkynes with excellent regio- and stereoselectivity. The compatibility of this protocol with strongly coordinating ligands (Ph2P and CN) not only complements the metal-catalyzed systems but also expands the scope of silylium-catalyzed reactions.
Collapse
Affiliation(s)
- Xiang Su
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| | - Qiang Feng
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
6
|
Lamač M, Urbán B, Horáček M, Bůžek D, Leonová L, Stýskalík A, Vykydalová A, Škoch K, Kloda M, Mahun A, Kobera L, Lang K, Londesborough MGS, Demel J. "Activated Borane": A Porous Borane Cluster Polymer as an Efficient Lewis Acid-Based Catalyst. ACS Catal 2023; 13:14614-14626. [PMID: 38026813 PMCID: PMC10660343 DOI: 10.1021/acscatal.3c04011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Borane cluster-based porous covalent networks, named activated borane (ActB), were prepared by cothermolysis of decaborane(14) (nido-B10H14) and selected hydrocarbons (toluene, ActB-Tol; cyclohexane, ActB-cyHx; and n-hexane, ActB-nHx) under anaerobic conditions. These amorphous solid powders exhibit different textural and Lewis acid (LA) properties that vary depending on the nature of the constituent organic linker. For ActB-Tol, its LA strength even approaches that of the commonly used molecular LA, B(C6F5)3. Most notably, ActBs can act as heterogeneous LA catalysts in hydrosilylation/deoxygenation reactions with various carbonyl substrates as well as in the gas-phase dehydration of ethanol. These studies reveal the potential of ActBs in catalytic applications, showing (a) the possibility for tuning catalytic reaction outcomes (selectivity) in hydrosilylation/deoxygenation reactions by changing the material's composition and (b) the very high activity toward ethanol dehydration that exceeds the commonly used γ-Al2O3 by achieving a stable conversion of ∼93% with a selectivity for ethylene production of ∼78% during a 17 h continuous period on stream at 240 °C.
Collapse
Affiliation(s)
- Martin Lamač
- Department
of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy
of Sciences Dolejškova 2155, 182 00 Prague 8, Czech Republic
| | - Béla Urbán
- Department
of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy
of Sciences Dolejškova 2155, 182 00 Prague 8, Czech Republic
| | - Michal Horáček
- Department
of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy
of Sciences Dolejškova 2155, 182 00 Prague 8, Czech Republic
| | - Daniel Bůžek
- Department
of Materials Chemistry, Institute of Inorganic
Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Lucie Leonová
- Department
of Chemistry, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Aleš Stýskalík
- Department
of Chemistry, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Anna Vykydalová
- Department
of Materials Chemistry, Institute of Inorganic
Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Karel Škoch
- Department
of Materials Chemistry, Institute of Inorganic
Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Matouš Kloda
- Department
of Materials Chemistry, Institute of Inorganic
Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Andrii Mahun
- Department
of Structural Analysis, Institute of Macromolecular
Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Libor Kobera
- Department
of Structural Analysis, Institute of Macromolecular
Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Kamil Lang
- Department
of Materials Chemistry, Institute of Inorganic
Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Michael G. S. Londesborough
- Department
of Materials Chemistry, Institute of Inorganic
Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Jan Demel
- Department
of Materials Chemistry, Institute of Inorganic
Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| |
Collapse
|
7
|
Arii H, Nakane D, Nakao K, Masuda H, Kawashima T. Dehydrogenative Annulation of Silylated 1 H-Indoles with Alkynes via Silyl Migration. Org Lett 2023. [PMID: 37449923 DOI: 10.1021/acs.orglett.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
We investigated the dehydrogenative annulation of silylated 1H-indole derivatives with alkynes to synthesize a silole-fused indole. The addition of the in situ generated silylium ion to alkynes was followed by the sila-Friedel-Crafts reaction via silyl migration, realizing regioselective dehydrogenative annulation controlled by the steric bulkiness of a base. The optical properties of the obtained siloloindoles indicated fluorescence of which the intensity depends on the location of the fused silole.
Collapse
Affiliation(s)
- Hidekazu Arii
- Faculty of Education, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Daisuke Nakane
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Kenichi Nakao
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takayuki Kawashima
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Gunma, Japan
| |
Collapse
|
8
|
Nowicki M, Zaranek M, Grzelak M, Pawluć P, Hoffmann M. Mechanism of Silylation of Vinyl Arenes by Hydrodisiloxanes Driven by Stoichiometric Amounts of Sodium Triethylborohydride-A Combined DFT and Experimental Study. Int J Mol Sci 2023; 24:ijms24054924. [PMID: 36902355 PMCID: PMC10003527 DOI: 10.3390/ijms24054924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The reactions of vinyl arenes with hydrodisiloxanes in the presence of sodium triethylborohydride were studied using experimental and computational methods. The expected hydrosilylation products were not detected because triethylborohydrides did not exhibit the catalytic activity observed in previous studies; instead, the product of formal silylation with dimethylsilane was identified, and triethylborohydride was consumed in stoichiometric amounts. In this article, the mechanism of the reaction is described in detail, with due consideration given to the conformational freedom of important intermediates and the two-dimensional curvature of the potential energy hypersurface cross sections. A simple way to reestablish the catalytic character of the transformation was identified and explained with reference to its mechanism. The reaction presented here is an example of the application of a simple transition-metal-free catalyst in the synthesis of silylation products, with flammable gaseous reagents replaced by a more convenient silane surrogate.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Maciej Zaranek
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Magdalena Grzelak
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Correspondence:
| |
Collapse
|
9
|
Denker L, Wullschläger D, Martínez JP, Świerczewski S, Trzaskowski B, Tamm M, Frank R. Cobalt(I)-Catalyzed Transformation of Si–H Bonds: H/D Exchange in Hydrosilanes and Hydrosilylation of Olefins. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Lars Denker
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106Braunschweig, Germany
| | - Daniela Wullschläger
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106Braunschweig, Germany
| | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097Warsaw, Poland
| | - Stanisław Świerczewski
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097Warsaw, Poland
- College of Inter-faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2C, 02-097Warsaw, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097Warsaw, Poland
| | - Matthias Tamm
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106Braunschweig, Germany
| | - René Frank
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106Braunschweig, Germany
| |
Collapse
|
10
|
Guzmán J, Urriolabeitia A, Padilla M, García-Orduña P, Polo V, Fernández-Alvarez FJ. Mechanism Insights into the Iridium(III)- and B(C 6F 5) 3-Catalyzed Reduction of CO 2 to the Formaldehyde Level with Tertiary Silanes. Inorg Chem 2022; 61:20216-20221. [PMID: 36472385 PMCID: PMC10468102 DOI: 10.1021/acs.inorgchem.2c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 12/12/2022]
Abstract
The catalytic system [Ir(CF3CO2)(κ2-NSiMe)2] [1; NSiMe = (4-methylpyridin-2-yloxy)dimethylsilyl]/B(C6F5)3 promotes the selective reduction of CO2 with tertiary silanes to the corresponding bis(silyl)acetal. Stoichiometric and catalytic studies evidenced that species [Ir(CF3COO-B(C6F5)3)(κ2-NSiMe)2] (3), [Ir(κ2-NSiMe)2][HB(C6F5)3] (4), and [Ir(HCOO-B(C6F5)3)(κ2-NSiMe)2] (5) are intermediates of the catalytic process. The structure of 3 has been determined by X-ray diffraction methods. Theoretical calculations show that the rate-limiting step for the 1/B(C6F5)3-catalyzed hydrosilylation of CO2 to bis(silyl)acetal is a boron-promoted Si-H bond cleavage via an iridium silylacetal borane adduct.
Collapse
Affiliation(s)
- Jefferson Guzmán
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| | - Asier Urriolabeitia
- Facultad
de Ciencias, Departamento de Química Física, BIFI, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Marina Padilla
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| | - Pilar García-Orduña
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| | - Víctor Polo
- Facultad
de Ciencias, Departamento de Química Física, BIFI, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Francisco J. Fernández-Alvarez
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| |
Collapse
|
11
|
Ríos P, Rodríguez A, Conejero S. Activation of Si-H and B-H bonds by Lewis acidic transition metals and p-block elements: same, but different. Chem Sci 2022; 13:7392-7418. [PMID: 35872827 PMCID: PMC9241980 DOI: 10.1039/d2sc02324e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023] Open
Abstract
In this Perspective we discuss the ability of transition metal complexes to activate and cleave the Si-H and B-H bonds of hydrosilanes and hydroboranes (tri- and tetra-coordinated) in an electrophilic manner, avoiding the need for the metal centre to undergo two-electron processes (oxidative addition/reductive elimination). A formal polarization of E-H bonds (E = Si, B) upon their coordination to the metal centre to form σ-EH complexes (with coordination modes η1 or η2) favors this type of bond activation that can lead to reactivities involving the formation of transient silylium and borenium/boronium cations similar to those proposed in silylation and borylation processes catalysed by boron and aluminium Lewis acids. We compare the reactivity of transition metal complexes and boron/aluminium Lewis acids through a series of catalytic reactions in which pieces of evidence suggest mechanisms involving electrophilic reaction pathways.
Collapse
Affiliation(s)
- Pablo Ríos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Amor Rodríguez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Salvador Conejero
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
12
|
Romero RM, Thyagarajan N, Hellou N, Chauvier C, Godou T, Anthore-Dalion L, Cantat T. Silyl formates as hydrosilane surrogates for the transfer hydrosilylation of ketones. Chem Commun (Camb) 2022; 58:6308-6311. [PMID: 35522145 PMCID: PMC9476892 DOI: 10.1039/d2cc00666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transfer hydrosilylation of ketones employing silyl formates as hydrosilane surrogates under mild conditions is presented. A total of 24 examples of ketones have been successfully converted to their corresponding silyl ethers with 61-99% yields in the presence of a PNHP-based ruthenium catalyst and silyl formate reagent. The crucial role of the ligand for the transformation is demonstrated.
Collapse
Affiliation(s)
- R Martin Romero
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| | - Neethu Thyagarajan
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| | - Nora Hellou
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| | - Clément Chauvier
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| | - Timothé Godou
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| | | | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Abstract
In the last two decades, boron-based catalysis has been gaining increasing traction in the field of organic synthesis. The use of halogenated triarylboranes as main group Lewis acid catalysts is an attractive strategy. It has been applied in a growing number of transformations over the years, where they may perform comparably or even better than the gold standard catalysts. This review discusses methods of borane synthesis and cutting-edge boron-based Lewis acid catalysis, focusing especially on tris(pentafluorophenyl)-borane [B(C6F5)3], and other halogenated triarylboranes, highlighting how boron Lewis acids employed as catalysts can unlock a plethora of unprecedented chemical transformations or improve the efficiency of existing reactions.
Collapse
|
14
|
Huang Z, Chen Z, Jiang Y, Li N, Yang S, Wang G, Pan X. Metal-Free Hydrosilylation Polymerization by Merging Photoredox and Hydrogen Atom Transfer Catalysis. J Am Chem Soc 2021; 143:19167-19177. [PMID: 34738793 DOI: 10.1021/jacs.1c09263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Organosilicon compounds and polymers have found wide applications as synthetic building blocks and functional materials. Hydrosilylation is a common strategy toward the synthesis of organosilicon compounds and polymers. Although transition-metal-catalyzed hydrosilylation has achieved great advances, the metal-free hydrosilylation polymerization of dienes and bis(silane)s, especially the one suitable for both electron-rich and electron-deficient dienes, is largely lacking. Herein, we report a visible-light-driven metal-free hydrosilylation polymerization of both electron-rich and electron-deficient dienes with bis(silane)s by using the organic photocatalyst and hydrogen atom transfer (HAT) catalyst. We achieved the well-controlled step-growth hydrosilylation polymerizations of the electron-rich diene and bis(silane) monomer due to the selective activation of Si-H bonds by the organic photocatalyst (4CzIPN) and the thiol polarity reversal reagent (HAT 1). For the electron-deficient dienes, hydrosilylation polymerization and self-polymerization occurred simultaneously in the presence of 4CzIPN and aceclidine (HAT 2), providing the opportunity to produce linear, hyperbranched, and network polymers by rationally tuning the concentration of electron-deficient dienes and the ratio of bis(silane)s and dienes to alter the proportion of the two polymerizations. A wide scope of bis(silane)s and dienes furnished polycarbosilanes with high molecular weight, excellent thermal stability, and tunable architectures.
Collapse
Affiliation(s)
- Zhujun Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhe Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yuan Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Ning Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Shicheng Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
Hashimoto T, Shiota K, Ishimaru T, Yamaguchi Y. Hydrosilylation of Alkenes Using a Hydrosiloxane as a Surrogate for Me
2
SiH
2
and Catalyzed by a Nickel‐Pincer Complex. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Toru Hashimoto
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 240-8501 Yokohama Kanagawa Japan
- Department of Applied Chemistry Faculty of Engineering Sanyo-Onoda City University 756-0884 Sanyo-Onoda Yamaguchi Japan
| | - Keisuke Shiota
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 240-8501 Yokohama Kanagawa Japan
| | - Toshiya Ishimaru
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 240-8501 Yokohama Kanagawa Japan
| | - Yoshitaka Yamaguchi
- Department of Advanced Materials Chemistry Graduate School of Engineering Yokohama National University 240-8501 Yokohama Kanagawa Japan
| |
Collapse
|
16
|
Mayer RJ, Hampel N, Ofial AR. Lewis Acidic Boranes, Lewis Bases, and Equilibrium Constants: A Reliable Scaffold for a Quantitative Lewis Acidity/Basicity Scale. Chemistry 2021; 27:4070-4080. [PMID: 33215760 PMCID: PMC7985883 DOI: 10.1002/chem.202003916] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/15/2022]
Abstract
A quantitative Lewis acidity/basicity scale toward boron-centered Lewis acids has been developed based on a set of 90 experimental equilibrium constants for the reactions of triarylboranes with various O-, N-, S-, and P-centered Lewis bases in dichloromethane at 20 °C. Analysis with the linear free energy relationship log KB =LAB +LBB allows equilibrium constants, KB , to be calculated for any type of borane/Lewis base combination through the sum of two descriptors, one for Lewis acidity (LAB ) and one for Lewis basicity (LBB ). The resulting Lewis acidity/basicity scale is independent of fixed reference acids/bases and valid for various types of trivalent boron-centered Lewis acids. It is demonstrated that the newly developed Lewis acidity/basicity scale is easily extendable through linear relationships with quantum-chemically calculated or common physical-organic descriptors and known thermodynamic data (ΔHBF 3 ). Furthermore, this experimental platform can be utilized for the rational development of borane-catalyzed reactions.
Collapse
Affiliation(s)
- Robert J. Mayer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| | - Nathalie Hampel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| | - Armin R. Ofial
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
17
|
Shinohara K, Tsurugi H, Anwander R, Mashima K. Trivalent Rare-Earth Metal Amide Complexes as Catalysts for the Hydrosilylation of Benzophenone Derivatives with HN(SiHMe 2 ) 2 by Amine-Exchange Reaction. Chemistry 2020; 26:14130-14136. [PMID: 32634253 PMCID: PMC7745047 DOI: 10.1002/chem.202002011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/22/2020] [Indexed: 11/10/2022]
Abstract
The rare-earth metal complexes Ln(L1 )[N(SiHMe2 )2 ](thf) (Ln=La, Ce, Y; L1 =N,N''-bis(pentafluorophenyl)diethylenetriamine dianion) were synthesized by treating Ln[N(SiHMe2 )2 ]3 (thf)2 with L1 H2 . The lanthanum and cerium derivatives are active catalysts for the hydrosilylation of benzophenone derivatives with HN(SiHMe2 )2 . An amine-exchange reaction was revealed as a key step of the catalytic cycle, in which Ln-Si-H β-agostic interactions are proposed to promote insertion of the carbonyl moiety into the Si-H bond.
Collapse
Affiliation(s)
- Koichi Shinohara
- Department of ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560-8531Japan
| | - Hayato Tsurugi
- Department of ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560-8531Japan
| | - Reiner Anwander
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Kazushi Mashima
- Department of ChemistryGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560-8531Japan
| |
Collapse
|
18
|
Huang Y, Jiang W, Xi X, Li Y, Wang X, Yang M, Zhang Z, Su M, Zhu H. Versatile Reaction Patterns of Phosphanylhydrosilylalkyne with B(C
6
F
5
)
3
: A Remarkable Group Substitution Effect. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanting Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Wenjun Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Xin Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Yan Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University 311121 Hangzhou China
| | - Xiaoping Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Ming‐Chung Yang
- Department of Applied Chemistry National Chiayi University 60004 Chiayi Taiwan
| | - Zheng‐Feng Zhang
- Department of Applied Chemistry National Chiayi University 60004 Chiayi Taiwan
| | - Ming‐Der Su
- Department of Applied Chemistry National Chiayi University 60004 Chiayi Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 80708 Kaohsiung Taiwan
| | - Hongping Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| |
Collapse
|
19
|
Chan JZ, Yesilcimen A, Cao M, Zhang Y, Zhang B, Wasa M. Direct Conversion of N-Alkylamines to N-Propargylamines through C-H Activation Promoted by Lewis Acid/Organocopper Catalysis: Application to Late-Stage Functionalization of Bioactive Molecules. J Am Chem Soc 2020; 142:16493-16505. [PMID: 32830966 PMCID: PMC8048775 DOI: 10.1021/jacs.0c08599] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient catalytic method to convert an α-C-H bond of N-alkylamines into an α-C-alkynyl bond was developed. In the past, such transformations were carried out under oxidative conditions, and the enantioselective variants were confined to tetrahydroisoquinoline derivatives. Here, we disclose a method for the union of N-alkylamines and trimethylsilyl alkynes, without the presence of an external oxidant and promoted through cooperative actions of two Lewis acids, B(C6F5)3 and a Cu-based complex. A variety of propargylamines can be synthesized in high diastereo- and enantioselectivity. The utility of the approach is demonstrated by the late-stage site-selective modification of bioactive amines. Kinetic investigations that shed light on various mechanistic nuances of the catalytic process are presented.
Collapse
Affiliation(s)
| | | | - Min Cao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yuyang Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bochao Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
20
|
Affiliation(s)
- Nan Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University Beijing 100871 China
- Henan Key Laboratory of Function‐Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang Henan 471934 China
| | - Wen‐Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University Beijing 100871 China
| |
Collapse
|
21
|
Minami Y, Furuya Y, Hiyama T. Facile Construction of Furanoacenes by a Three-Step Sequence Going through Disilyl-exo-cyclic Dienes. Chemistry 2020; 26:9471-9474. [PMID: 32181527 DOI: 10.1002/chem.202001119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 11/07/2022]
Abstract
Facile synthesis of various benzonaphthofurans was achieved by intramolecular hydroarylation of 1,4-disilyl-2-aryloxy-1,3-enynes followed by cycloaddition with arynes or alkenes and finally desilylaromatization. The three-step transformation can be operated sequentially in one-pot, providing with a range of furanoacenes easily and highly effectively.
Collapse
Affiliation(s)
- Yasunori Minami
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, Japan.,Research and Development Initiative, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yuki Furuya
- Department of Applied Chemistry, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Tamejiro Hiyama
- Research and Development Initiative, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
22
|
Carden JL, Dasgupta A, Melen RL. Halogenated triarylboranes: synthesis, properties and applications in catalysis. Chem Soc Rev 2020; 49:1706-1725. [PMID: 32100762 DOI: 10.1039/c9cs00769e] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Halogenated triarylboranes (BAr3) have been known for decades, however it has only been since the surge of interest in main group catalysis that their application as strong Lewis acid catalysts has been recognised. This review aims to look past the popular tris(pentafluorophenyl)borane [B(C6F5)3] to the other halogenated triarylboranes, to give a greater breadth of understanding as to how tuning the Lewis acidity of BAr3 by modifications of the aryl rings can lead to improved reactivity. In this review, a discussion on Lewis acidity determination of boranes is given, the synthesis of these boranes is discussed, and examples of how they are being used for catalysis and frustrated Lewis pair (FLP) chemistry are explained.
Collapse
Affiliation(s)
- Jamie L Carden
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | | | | |
Collapse
|
23
|
Nowicki M, Zaranek M, Pawluć P, Hoffmann M. DFT study of trialkylborohydride-catalysed hydrosilylation of alkenes – the mechanism and its implications. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02261a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed DFT study reveals the mechanism of trialkylborohydride-catalysed Markovnikov hydrosilylation of aromatic alkenes.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Laboratory of Quantum Chemistry
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - Maciej Zaranek
- Center for Advanced Technology
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
- Department of Organometallic Chemistry
| | - Piotr Pawluć
- Center for Advanced Technology
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
- Department of Organometallic Chemistry
| | - Marcin Hoffmann
- Laboratory of Quantum Chemistry
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| |
Collapse
|
24
|
Zhou M, Park S, Dang L. Dual reactivity of B(C6F5)3 enables the silylative cascade conversion of N-aryl piperidines to sila-N-heterocycles: DFT calculations. Org Chem Front 2020. [DOI: 10.1039/c9qo01437c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A theoretical study reveals that the dual reactivity of B(C6F5)3 enables the unique silylative cascade conversion of N-aryl piperidines to bridged sila-N-heterocycles.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Guangdong 515063
- P. R. China
| | - Sehoon Park
- Department of Chemistry
- Guangdong Technion Israel Institute of Technology
- Shantou 515063
- China
- Technion-Israel Institute of Technology
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Guangdong 515063
- P. R. China
| |
Collapse
|
25
|
Fritz-Langhals E. Silicon(II) Cation Cp*Si:+ X–: A New Class of Efficient Catalysts in Organosilicon Chemistry. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00260] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Elke Fritz-Langhals
- WACKER Chemie AG, Consortium, Zielstattstraße 20-22, D-81379 Munich, Germany
| |
Collapse
|
26
|
Sample CS, Lee SH, Li S, Bates MW, Lensch V, Versaw BA, Bates CM, Hawker CJ. Metal-Free Room-Temperature Vulcanization of Silicones via Borane Hydrosilylation. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Caitlin S. Sample
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Sang-Ho Lee
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Shaoguang Li
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Morgan W. Bates
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Valerie Lensch
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Brooke A. Versaw
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher M. Bates
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
Hanna S, Butcher TW, Hartwig JF. Contra-thermodynamic Olefin Isomerization by Chain-Walking Hydrofunctionalization and Formal Retro-hydrofunctionalization. Org Lett 2019; 21:7129-7133. [PMID: 31424215 DOI: 10.1021/acs.orglett.9b02695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report a contra-thermodynamic isomerization of internal olefins to terminal olefins driven by redox reactions and formation of Si-F bonds. This process involves chain-walking hydrosilylation of internal olefins and subsequent formal retro-hydrosilylation. The process rests upon the high activities of platinum hydrosilylation catalysts for isomerization of metal alkyl intermediates and a new, metal-free process for the conversion of alkylsilanes to alkenes. By this approach, 1,2-disubstituted and trisubstituted olefins are converted to terminal olefins.
Collapse
Affiliation(s)
- Steven Hanna
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Trevor W Butcher
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Affiliation(s)
- Sehoon Park
- Department of ChemistryGuangdong Technion Israel Institute of Technology Shantou Guangdong 515063 China
| |
Collapse
|
29
|
Růžičková Z, Jambor R, Novák M. Spontaneous Hydrosilylation of Substituted C=N Imines. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zdeňka Růžičková
- Department of General and Inorganic Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Miroslav Novák
- Institute of Chemistry and Technology of Macromolecular Materials Faculty of Chemical Technology University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| |
Collapse
|
30
|
Affiliation(s)
- Weiqiang Chen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
31
|
Mehta M, McGrady JE, Goicoechea JM. B(C 6 F 5 ) 3 -Enabled Synthesis of a Cyclic cis-Arsaphosphene. Chemistry 2019; 25:5445-5450. [PMID: 30835903 DOI: 10.1002/chem.201901022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 11/06/2022]
Abstract
The synthesis and characterization of an (arsino)phosphaketene, As(PCO){[N(Dipp)](CH2 )}2 (Dipp=2,6-diisopropylphenyl) is reported along with its subsequent reactivity with B(C6 F5 )3 . When reacted in a stoichiometric ratio, B(C6 F5 )3 drove the insertion of the P=C bond of the phosphaketene into one of the As-N bonds of the arsino functionality, affording an acid-stabilized, seven-membered, cyclic arsaphosphene. In contrast, when catalytic amounts of B(C6 F5 )3 were employed, dimeric species, which formed through a formal [2+2] cycloaddition of the cyclic arsaphosphene, were generated. The cyclic arsaphosphene product represents the first example of such a compound in which the two substituents are arranged in a cis-configuration.
Collapse
Affiliation(s)
- Meera Mehta
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - John E McGrady
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
32
|
Huang Y, Wang X, Li Y, Yang MC, Su MD, Zhu H. A self-hydrosilylation of phosphanylhydrosilylalkynes promoted by B(C 6F 5) 3? An experimental and mechanistic study. Chem Commun (Camb) 2019; 55:1494-1497. [PMID: 30648174 DOI: 10.1039/c8cc09022j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phosphanylhydrosilylalkynes Me2HSiC[triple bond, length as m-dash]CPAr2 (Ar = Ph, 1a; 4-MeC6H4, 1b) were synthesized, which reacted with B(C6F5)3 to produce alkenes [(E)-(C6F5)3BCH[double bond, length as m-dash]C(PAr2)SiMe2]2 (2a and 2b) and (Z)-(C6F5)2BCH[double bond, length as m-dash]C(PAr2)SiMe2(C6F5) (3a and 3b). The formation of 2a (or 2b) involved a Wrackmeyer's SiHMe2 migration followed by Si-H addition across the C[triple bond, length as m-dash]C bond, whereas, that of 3a (or 3b) involved a similar mechanism with a further C6F5 migration. The B(C6F5)3-promoted reaction of the Si-centered geminal H and C[triple bond, length as m-dash]C groups is thus realized, which may be considered as a self-hydrosilylation. Mechanistic studies by both variable temperature NMR spectroscopy and DFT calculations were accomplished.
Collapse
Affiliation(s)
- Yanting Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | | | | | | | | | | |
Collapse
|
33
|
Tian JJ, Zeng NN, Liu N, Tu XS, Wang XC. Intramolecular Cyclizations of Vinyl-Substituted N,N-Dialkyl Arylamines Enabled by Borane-Assisted Hydride Transfer. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04485] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jun-Jie Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ning-Ning Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ning Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xian-Shuang Tu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Jupp AR, Johnstone TC, Stephan DW. Improving the Global Electrophilicity Index (GEI) as a Measure of Lewis Acidity. Inorg Chem 2018; 57:14764-14771. [PMID: 30422644 DOI: 10.1021/acs.inorgchem.8b02517] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The global electrophilicity index (GEI) has been further explored as a general and base-free metric for Lewis acidity. A number of computational methods, including post-Hartree-Fock, density functional theory, and time-dependent density functional theory, have been explored. In this fashion, we sought the method most applicable to a range of different Lewis acids with differing structural and electronic features, including boron trihalides, silicon tetrahalides, fluoroaryl boranes, and group 15 pentahalides. The most accurate and computationally efficient approach was found to use the energies of the orbitals from a geometry optimization at the B3LYP/def2-TZVP level of theory. In addition, the GEI is shown to act as an effective acidity metric that is complementary to the fluoride ion affinity. The GEI also proved to be a better gauge of Lewis acidity for softer bases, as confirmed by comparison to the iodide ion affinity of the group 15 pentahalides.
Collapse
Affiliation(s)
- Andrew R Jupp
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Timothy C Johnstone
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Douglas W Stephan
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
35
|
Maier AFG, Tussing S, Zhu H, Wicker G, Tzvetkova P, Flörke U, Daniliuc CG, Grimme S, Paradies J. Borane-Catalyzed Synthesis of Quinolines Bearing Tetrasubstituted Stereocenters by Hydride Abstraction-Induced Electrocyclization. Chemistry 2018; 24:16287-16291. [DOI: 10.1002/chem.201804777] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Alexander F. G. Maier
- Department of Chemistry; University of Paderborn; Warburger Strasse 100 33098 Paderborn Germany
| | - Sebastian Tussing
- Department of Chemistry; University of Paderborn; Warburger Strasse 100 33098 Paderborn Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry; University of Bonn; Beringstr. 4 53115 Bonn Germany
| | - Garrit Wicker
- Department of Chemistry; University of Paderborn; Warburger Strasse 100 33098 Paderborn Germany
| | - Pavleta Tzvetkova
- Institute of Organic Chemistry and Institute for Biological Interfaces-4; Karlsruhe Institute of Technology (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Ulrich Flörke
- Department of Chemistry; University of Paderborn; Warburger Strasse 100 33098 Paderborn Germany
| | - Constantin G. Daniliuc
- Institute of Organic Chemistry; University of Münster; Corrensstrasse 40 48149 Münster Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry; University of Bonn; Beringstr. 4 53115 Bonn Germany
| | - Jan Paradies
- Department of Chemistry; University of Paderborn; Warburger Strasse 100 33098 Paderborn Germany
| |
Collapse
|
36
|
Jupp AR, Johnstone TC, Stephan DW. The global electrophilicity index as a metric for Lewis acidity. Dalton Trans 2018; 47:7029-7035. [PMID: 29737357 DOI: 10.1039/c8dt01699b] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The global electrophilicity index, GEI, is used as a general, quantitative and base-independent metric of Lewis acidity. This parameter has been benchmarked against the established fluoride ion affinity, FIA, for a range of 22 neutral and cationic Lewis acids from across the p-block, including boranes, trityl derivatives, phosphonium cations and sulfoxonium cations. As a demonstration of utility, the GEI is used to catalogue a library of fluoroaryl boranes as it provides a rapid tool for the comparison of a series of Lewis acids featuring peripheral substituent variation.
Collapse
Affiliation(s)
- Andrew R Jupp
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada M5S 3H6.
| | | | | |
Collapse
|
37
|
|
38
|
Banerjee S, Vanka K. B(C6F5)3: Catalyst or Initiator? Insights from Computational Studies into Surrogate Silicon Chemistry. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Subhrashis Banerjee
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Kumar Vanka
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
39
|
Bähr S, Oestreich M. A Neutral RuII
Hydride Complex for the Regio- and Chemoselective Reduction of N
-Silylpyridinium Ions. Chemistry 2018; 24:5613-5622. [DOI: 10.1002/chem.201705899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Susanne Bähr
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany
| | - Martin Oestreich
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
40
|
Skrodzki M, Witomska S, Pawluć P. Sodium triethylborohydride as a catalyst for the dehydrogenative silylation of terminal alkynes with hydrosilanes. Dalton Trans 2018; 47:5948-5951. [DOI: 10.1039/c8dt00684a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sodium triethylborohydride has been found to be a highly selective catalyst for the dehydrogenative silylation of aromatic and aliphatic alkynes with hydrosilanes.
Collapse
Affiliation(s)
- Maciej Skrodzki
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
- Center for Advanced Technologies
| | - Samanta Witomska
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
- Center for Advanced Technologies
| | - Piotr Pawluć
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
- Center for Advanced Technologies
| |
Collapse
|
41
|
Hofmann RJ, Vlatković M, Wiesbrock F. Fifty Years of Hydrosilylation in Polymer Science: A Review of Current Trends of Low-Cost Transition-Metal and Metal-Free Catalysts, Non-Thermally Triggered Hydrosilylation Reactions, and Industrial Applications. Polymers (Basel) 2017; 9:E534. [PMID: 30965835 PMCID: PMC6418815 DOI: 10.3390/polym9100534] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023] Open
Abstract
Hydrosilylation reactions, the (commonly) anti-Markovnikov additions of silanes to unsaturated bonds present in compounds such as alkenes and alkynes, offer numerous unique and advantageous properties for the preparation of polymeric materials, such as high yields and stereoselectivity. These reactions require to be catalyzed, for which platinum compounds were used in the initial stages. Celebrating the 50th anniversary of hydrosilylations in polymer science and, concomitantly, five decades of continuously growing research, hydrosilylation reactions have advanced to a level that renders them predestined for transfer into commercial products on the large scale. Facing this potential transfer, this review addresses and discusses selected current trends of the scientific research in the area, namely low-cost transition metal catalysts (focusing on iron, cobalt, and nickel complexes), metal-free catalysts, non-thermally triggered hydrosilylation reactions (highlighting stimuli such as (UV-)light), and (potential) industrial applications (highlighting the catalysts used and products manufactured). This review focuses on the hydrosilylation reactions involving alkene reactants.
Collapse
Affiliation(s)
- Robin J Hofmann
- Polymer Competence Center Leoben GmbH (PCCL), Roseggerstrasse 12, 8700 Leoben, Austria.
- Institute for Chemistry and Technology of Materials, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria.
| | - Matea Vlatković
- Polymer Competence Center Leoben GmbH (PCCL), Roseggerstrasse 12, 8700 Leoben, Austria.
| | - Frank Wiesbrock
- Polymer Competence Center Leoben GmbH (PCCL), Roseggerstrasse 12, 8700 Leoben, Austria.
| |
Collapse
|
42
|
Gudz A, Payne PR, Gagné MR. Phosphines as Silylium Ion Carriers for Controlled C–O Deoxygenation: Catalyst Speciation and Turnover Mechanisms. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anton Gudz
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Philippa R. Payne
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Michel R. Gagné
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
43
|
Shin K, Joung S, Kim Y, Chang S. Selective Synthesis of Silacycles by Borane-Catalyzed Domino Hydrosilylation of Proximal Unsaturated Bonds: Tunable Approach to 1,n-Diols. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kwangmin Shin
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
| | - Seewon Joung
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Youyoung Kim
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalization; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| |
Collapse
|
44
|
Keess S, Oestreich M. Cyclohexa-1,4-dienes in transition-metal-free ionic transfer processes. Chem Sci 2017; 8:4688-4695. [PMID: 28936336 PMCID: PMC5596415 DOI: 10.1039/c7sc01657c] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/20/2017] [Indexed: 12/04/2022] Open
Abstract
Adequately substituted cyclohexa-1,4-dienes with an electrofuge attached to one of the bisallylic carbon atoms serve as surrogates for small molecules.
Safe- and convenient-to-handle surrogates of hazardous chemicals are always in demand. Recently introduced cyclohexa-1,4-dienes with adequate substitution fulfil this role as El+/H– equivalents in B(C6F5)3-catalysed transfer reactions of El–H to π- and σ-donors (C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C/C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C and CO/CN). Surrogates of Si–H/Ge–H, H–H and even C–H bonds have been designed and successfully applied to ionic transfer hydrosilylation/hydrogermylation, hydrogenation and hydro-tert-butylation, respectively. These processes and their basic principles are summarised in this Minireview. The similarities and differences between these transfer reactions as well as the challenges associated with these transformations are discussed.
Collapse
Affiliation(s)
- Sebastian Keess
- Institut für Chemie , Technische Universität Berlin , Strasse des 17. Juni 115 , 10623 Berlin , Germany .
| | - Martin Oestreich
- Institut für Chemie , Technische Universität Berlin , Strasse des 17. Juni 115 , 10623 Berlin , Germany .
| |
Collapse
|
45
|
Keess S, Oestreich M. Access to Fully Alkylated Germanes by B(C6F5)3-Catalyzed Transfer Hydrogermylation of Alkenes. Org Lett 2017; 19:1898-1901. [DOI: 10.1021/acs.orglett.7b00672] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Keess
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
46
|
Baird DA, Jamal S, Johnson SA. Influence of the Transmetalating Agent in Difficult Coupling Reactions: Control in the Selectivity of C–F Bond Activation by Ni(0) Complexes in the Presence of AlMe3. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Drake A. Baird
- Department of Chemistry and
Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - S. Jamal
- Department of Chemistry and
Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Samuel A. Johnson
- Department of Chemistry and
Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
47
|
(Aminomethyl)pyridine Complexes for the Cobalt‐Catalyzed Anti‐Markovnikov Hydrosilylation of Alkoxy‐ or Siloxy(vinyl)silanes with Alkoxy‐ or Siloxyhydrosilanes. Angew Chem Int Ed Engl 2017; 56:3665-3669. [DOI: 10.1002/anie.201612460] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 11/07/2022]
|
48
|
Lee KL. (Aminomethyl)pyridine Complexes for the Cobalt‐Catalyzed Anti‐Markovnikov Hydrosilylation of Alkoxy‐ or Siloxy(vinyl)silanes with Alkoxy‐ or Siloxyhydrosilanes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kangsang L. Lee
- Core R&D The Dow Chemical Company 2200 West Salzburg Road Auburn MI 48611 USA
| |
Collapse
|
49
|
Bähr S, Oestreich M. Hidden Enantioselective Hydrogenation of N-Silyl Enamines and Silyl Enol Ethers in Net C═N and C═O Hydrosilylations Catalyzed by Ru–S Complexes with One Monodentate Chiral Phosphine Ligand. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Susanne Bähr
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
50
|
Fasano V, Radcliffe JE, Curless LD, Ingleson MJ. N-Methyl-Benzothiazolium Salts as Carbon Lewis Acids for Si-H σ-Bond Activation and Catalytic (De)hydrosilylation. Chemistry 2017; 23:187-193. [PMID: 27780294 PMCID: PMC5396135 DOI: 10.1002/chem.201604613] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 11/08/2022]
Abstract
N-Me-Benzothiazolium salts are introduced as a new family of Lewis acids able to activate Si-H σ bonds. These carbon-centred Lewis acids were demonstrated to have comparable Lewis acidity towards hydride as found for the triarylboranes widely used in Si-H σ-bond activation. However, they display low Lewis acidity towards hard Lewis bases such as Et3 PO and H2 O in contrast to triarylboranes. The N-Me-benzothiazolium salts are effective catalysts for a range of hydrosilylation and dehydrosilylation reactions. Judicious selection of the C2 aryl substituent in these cations enables tuning of the steric and electronic environment around the electrophilic centre to generate more active catalysts. Finally, related benzoxazolium and benzimidazolium salts were found also to be active for Si-H bond activation and as catalysts for the hydrosilylation of imines.
Collapse
Affiliation(s)
- Valerio Fasano
- School of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | | | - Liam D. Curless
- School of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | | |
Collapse
|