1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Shiveshwarkar P, Jaworski J. Spray-On Colorimetric Sensors for Distinguishing the Presence of Lead Ions. CHEMOSENSORS (BASEL, SWITZERLAND) 2023; 11:327. [PMID: 38463943 PMCID: PMC10923167 DOI: 10.3390/chemosensors11060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Sprayable stimuli-responsive material coatings represent a new class of detection system which can be quickly implemented to transform a surface into a color-responsive sensor. In this work, we describe a dipicolylamine-terminated diacetylene-containing amphiphile formulation for spray coating on to a simple paper substrate to yield disposable test strips that can be used to detect the presence of lead ions in solution. We find the response to be very selective to only lead ions and that the sensitivity can be modulated by altering the UV curing time after spraying. Sensitive detection to at least 0.1 mM revealed a clear color change from a blue to red phase. This represents the first demonstration of a spray-on sensor system capable of detection of lead ions in solution.
Collapse
Affiliation(s)
- Priyanka Shiveshwarkar
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Justyn Jaworski
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| |
Collapse
|
3
|
Gomes LJ, Carrilho JP, Pereira PM, Moro AJ. A Near InfraRed Emissive Chemosensor for Zn 2+ and Phosphate Derivatives Based on a Di-(2-picolyl)amine-styrylflavylium Push-Pull Fluorophore. SENSORS (BASEL, SWITZERLAND) 2023; 23:471. [PMID: 36617069 PMCID: PMC9823994 DOI: 10.3390/s23010471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
A new Near InfraRed (NIR) fluorescent chemosensor for metal ions and anions is herein presented. The fluorophore is based on a styrylflavylium dye, a synthetic analogue of the natural anthocyanin family, with a di-(2-picolyl)amine (DPA) moiety as the metal chelating unit. The substitution pattern of the styrylflavylium core (with tertiary amines on positions 7 and 4') shifts the optical properties of the dye towards the NIR region of the electronic spectra, due to a strong push-pull character over the π-conjugated system. The NIR chemosensor is highly sensitive to the presence of Zn2+, which induces a strong CHelation Enhanced Fluorescence (CHEF) effect upon binding to the DPA unit (2.7 fold increase). The strongest competing ion is Cu2+, with a complete fluorescence quenching, while other metals induce lower responses on the optical properties of the chemosensor. Subsequent anion screening of the Zn2+-chemosensor coordination compound has demonstrated a distinct selectivity towards adenosine 5'-triphosphate (ATP) and adenosine 5'-diphosphate (ADP), with high association constants (K ~ 106 M-1) and a strong CHEF effect (2.4 and 2.9 fold fluorescence increase for ATP and ADP, respectively). Intracellular studies with the Zn2+-complexed sensor showed strong luminescence in the cellular membrane of Gram- bacteria (E. coli) and mitochondrial membrane of mammalian cells (A659), which highlights its possible application for intracellular labelling.
Collapse
Affiliation(s)
- Liliana J. Gomes
- LAQV-REQUIMTE, Departamento de Química, CQFB, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João P. Carrilho
- Intracelular Microbial Infection Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro M. Pereira
- Intracelular Microbial Infection Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Artur J. Moro
- LAQV-REQUIMTE, Departamento de Química, CQFB, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Lee LCC, Lo KKW. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J Am Chem Soc 2022; 144:14420-14440. [PMID: 35925792 DOI: 10.1021/jacs.2c03437] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been emerging interest in the exploitation of the photophysical and photochemical properties of transition metal complexes for diagnostic and therapeutic applications. In this Perspective, we highlight the major recent advances in the development of luminescent and photofunctional transition metal complexes, in particular, those of rhenium(I), ruthenium(II), osmium(II), iridium(III), and platinum(II), as bioimaging reagents and phototherapeutic agents, with a focus on the molecular design strategies that harness and modulate the interesting photophysical and photochemical behavior of the complexes. We also discuss the current challenges and future outlook of transition metal complexes for both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
5
|
Godarzbod F, Mirjafary Z, Saeidian H, Rouhani M. Palladium@silica-coated magnetic nanoparticles as efficient and recyclable catalysts for ligand-free Suzuki–Miyaura coupling reaction under mild conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Mo X, Chen K, Chen Z, Chu B, Liu D, Liang Y, Xiong J, Yang Y, Cai J, Liang F. Antitumor Activities for Two Pt(II) Complexes of Tropolone and 8-Hydroxyquinoline Derivative. Inorg Chem 2021; 60:16128-16139. [PMID: 34647723 DOI: 10.1021/acs.inorgchem.1c01763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reactions of cis-Pt(DMSO)2Cl2 and tropolone (HL) with 8-hydroxyquinoline (HQ) or 2-methyl-8-hydroxyquinoline (HMQ) gave [Pt(Q)(L)] (1) and [Pt(MQ)(L)] (2), which present mononuclear structures with their Pt(II) ions four-coordinated in square planar geometries. Their in vitro biological properties were evaluated by MTT assay, which showed a remarkable cytotoxic activity on the cancer cell lines. 1 shows higher cytotoxic activities on tumor cells such as T24, HeLa, A549, and NCI-H460 than complex 2 and cisplatin, with IC50 values <16 μM. Among them, an IC50 value of 3.6 ± 0.63 μM was found for complex 1 against T24 cells. It presented a tuning cytotoxic activity by substitution groups on 8-hydroxyquinoline skeleton. In our case, the substitution groups of -H are much superior to -CH3 against tumor cells. It revealed that both complexes can induce cell apoptosis by decreasing the potential of a mitochondrial membrane, enhancing reactive oxygen species and increasing Ca2+ levels of T24 cells. The T24 cell cycle can be arrested at G2 and G1 phases by complexes 1 and 2, respectively, with an upregulation for P21 and P27 expression levels and a down-regulation for cyclin A, CDK1, Cdc25A, and cyclin B expression levels. Furthermore, complex 1 exhibits satisfactory in vivo antitumor activity as revealed by the tumor inhibitory rate and the tumor weight change as well as by the cute toxicity assay and renal pathological examinations, which is close to cisplatin and much better than complex 2. All of these suggest that 1 might be a potential candidate for developing into a safe and effective anticancer agent.
Collapse
Affiliation(s)
- Xiyu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Kaiyong Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Bo Chu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Jianwen Xiong
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Yubing Yang
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - JinYuan Cai
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P.R. China
| |
Collapse
|
7
|
Domenichini A, Casari I, Simpson PV, Desai NM, Chen L, Dustin C, Edmands JS, van der Vliet A, Mohammadi M, Massi M, Falasca M. Rhenium N-heterocyclic carbene complexes block growth of aggressive cancers by inhibiting FGFR- and SRC-mediated signalling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:276. [PMID: 33287862 PMCID: PMC7720599 DOI: 10.1186/s13046-020-01777-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Platinum-based anticancer drugs have been at the frontline of cancer therapy for the last 40 years, and are used in more than half of all treatments for different cancer types. However, they are not universally effective, and patients often suffer severe side effects because of their lack of cellular selectivity. There is therefore a compelling need to investigate the anticancer activity of alternative metal complexes. Here we describe the potential anticancer activity of rhenium-based complexes with preclinical efficacy in different types of solid malignancies. METHODS Kinase profile assay of rhenium complexes. Toxicology studies using zebrafish. Analysis of the growth of pancreatic cancer cell line-derived xenografts generated in zebrafish and in mice upon exposure to rhenium compounds. RESULTS We describe rhenium complexes which block cancer proliferation in vitro by inhibiting the signalling cascade induced by FGFR and Src. Initially, we tested the toxicity of rhenium complexes in vivo using a zebrafish model and identified one compound that displays anticancer activity with low toxicity even in the high micromolar range. Notably, the rhenium complex has anticancer activity in very aggressive cancers such as pancreatic ductal adenocarcinoma and neuroblastoma. We demonstrate the potential efficacy of this complex via a significant reduction in cancer growth in mouse xenografts. CONCLUSIONS Our findings provide a basis for the development of rhenium-based chemotherapy agents with enhanced selectivity and limited side effects compared to standard platinum-based drugs.
Collapse
Affiliation(s)
- Alice Domenichini
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin University, Perth, WA, 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin University, Perth, WA, 6102, Australia
| | - Peter V Simpson
- Curtin Institute of Functional Molecules and Interfaces, Department of Chemistry, Curtin University, Perth, WA, 6102, Australia
| | - Nima Maheshkumar Desai
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin University, Perth, WA, 6102, Australia
| | - Lingfeng Chen
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Christopher Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jeanne S Edmands
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Massimiliano Massi
- Curtin Institute of Functional Molecules and Interfaces, Department of Chemistry, Curtin University, Perth, WA, 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
8
|
Delasoie J, Pavic A, Voutier N, Vojnovic S, Crochet A, Nikodinovic-Runic J, Zobi F. Identification of novel potent and non-toxic anticancer, anti-angiogenic and antimetastatic rhenium complexes against colorectal carcinoma. Eur J Med Chem 2020; 204:112583. [PMID: 32731186 DOI: 10.1016/j.ejmech.2020.112583] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Combination therapy targeting both tumor growth and vascularization is considered to be a cornerstone for colorectal carcinomas (CRC) treatment. However, the major obstacles of most clinical anticancer drugs are their weak selective activity towards cancer cells and inherent inner organs toxicity, accompanied with fast drug resistance development. In our effort to discover novel selective and non-toxic agents effective against CRC, we designed, synthesized and characterized a series of rhenium(I) tricarbonyl-based complexes with increased lipophilicity. Two of these novel compounds were discovered to possess remarkable anticancer, anti-angiogenic and antimetastatic activity in vivo (zebrafish-human HCT-116 xenograft model), being effective at very low doses (1-3 μM). At doses as high as 250 μM the complexes did not provoke toxicity issues encountered in clinical anticancer drugs (cardio-, hepato-, and myelotoxicity). In vivo assays showed that the two compounds exceed the anti-tumor and anti-angiogenic activity of clinical drugs cisplatin and sunitinib malate, and display a large therapeutic window.
Collapse
Affiliation(s)
- Joachim Delasoie
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Noémie Voutier
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland.
| |
Collapse
|
9
|
Murphy BL, Marker SC, Lambert VJ, Woods JJ, MacMillan SN, Wilson JJ. Synthesis, characterization, and biological properties of rhenium(I) tricarbonyl complexes bearing nitrogen-donor ligands. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Gómez A, Jara G, Flores E, Maldonado T, Godoy F, Muñoz-Osses M, Vega A, Mera R, Silva C, Pavez J. Synthesis of mono/dinuclear rhenium(i) tricarbonyl substituted with 4-mercaptopyridine related ligands: spectral and theoretical evidence of thiolate/thione interconversion. NEW J CHEM 2020. [DOI: 10.1039/d0nj02328k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
κ1-S complexes show solvent-mediated tautomerism. The S–S bridge cleavage in κ1-N derivatives is attributed to the presence of a proton source.
Collapse
Affiliation(s)
- Alejandra Gómez
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Chile
| | - Geraldine Jara
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Chile
| | - Erick Flores
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Chile
| | - Tamara Maldonado
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Chile
| | - Fernando Godoy
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Chile
| | - Michelle Muñoz-Osses
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Chile
| | - Andrés Vega
- Departamento de Ciencias Químicas
- Facultad de Ciencias Exactas
- Universidad Andrés Bello
- Viña del Mar
- Chile
| | - Raul Mera
- Departamento de Ciencias del Ambiente
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Chile
| | - Carlos Silva
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Chile
| | - Jorge Pavez
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Chile
| |
Collapse
|
11
|
Thomas B, Yan KC, Hu XL, Donnier-Maréchal M, Chen GR, He XP, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev 2020; 49:593-641. [DOI: 10.1039/c8cs00118a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent glycoconjugates are discussed for their applications in biology in vitro, in cell assays and in animal models. Advantages and limitations are presented for each design using a fluorescent core conjugated with glycosides, or vice versa.
Collapse
Affiliation(s)
- Baptiste Thomas
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| |
Collapse
|
12
|
Yadav S, Natarajan M, Sathiyendiran M, Kaur-Ghumaan S. Electrochemical aspects of restricted rhenium(I)-based supramolecular complexes with semi-rigid benzimidazolyl and rigid hydroxyquinone ligands. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1689-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Abhervé A, Martin K, Hauser A, Avarvari N. Helicene Bis(pyrazol-1-yl)pyridine Ligands for Luminescent Transition-Metal Complexes. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexandre Abhervé
- MOLTECH-Anjou, UMR 6200; CNRS, UNIV Angers; 2 bd Lavoisier 49045 ANGERS Cedex France
| | - Kévin Martin
- MOLTECH-Anjou, UMR 6200; CNRS, UNIV Angers; 2 bd Lavoisier 49045 ANGERS Cedex France
| | - Andreas Hauser
- Department of Physical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1211 Geneva Switzerland
| | - Narcis Avarvari
- MOLTECH-Anjou, UMR 6200; CNRS, UNIV Angers; 2 bd Lavoisier 49045 ANGERS Cedex France
| |
Collapse
|
14
|
Ma DL, Wong SY, Kang TS, Ng HP, Han QB, Leung CH. Iridium(III)-based chemosensors for the detection of metal ions. Methods 2019; 168:3-17. [DOI: 10.1016/j.ymeth.2019.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 01/10/2023] Open
|
15
|
Pizarro N, Saldías M, Guzmán N, Sandoval-Altamirano C, Kahlal S, Saillard JY, Hamon JR, Vega A. 1IL and 3MLCT excited states modulated by H+: the structure and photophysical properties of [(2-bromo-5-(1H-pyrazol-1-yl)pyrazine)Re(CO)3Br]. NEW J CHEM 2019. [DOI: 10.1039/c8nj04196b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical characterization of pyrazolyl–pyrazine Re(i) complex, shows a 1IL and 3MLCT excited states, being just the 3MLCT able to react with trifluoroacetic acid to yield the protonated and long-lived 3ILH+ species. These findings make the compound a potential sensor for protons in solution in the presence of light.
Collapse
Affiliation(s)
- Nancy Pizarro
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
| | - Marianela Saldías
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
| | - Nicolás Guzmán
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
| | | | - Samia Kahlal
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Jean-René Hamon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Andrés Vega
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA
- Chile
| |
Collapse
|
16
|
Wei Q, Dai Y, Chen C, Shi L, Si Z, Wan Y, Zuo Q, Han D, Duan Q. Aggregation-induced phosphorescent emission enhancement (AIPEE) Re(I) complexes: Synthesize, photophysical and theoretical simulations. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Bright lights down under: Metal ion complexes turning the spotlight on metabolic processes at the cellular level. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Yip AMH, Lo KKW. Luminescent rhenium(I), ruthenium(II), and iridium(III) polypyridine complexes containing a poly(ethylene glycol) pendant or bioorthogonal reaction group as biological probes and photocytotoxic agents. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Wang J, Delavaux-Nicot B, Wolff M, Mallet-Ladeira S, Métivier R, Benoist E, Fery-Forgues S. The unsuspected influence of the pyridyl-triazole ligand isomerism upon the electronic properties of tricarbonyl rhenium complexes: an experimental and theoretical insight. Dalton Trans 2018; 47:8087-8099. [DOI: 10.1039/c8dt01120f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How can the intimate nature of the triazole moiety govern the geometry and luminescence properties of a rhenium complex?
Collapse
Affiliation(s)
- Jinhui Wang
- SPCMIB
- CNRS UMR5068
- Université Toulouse III Paul-Sabatier
- 31062 Toulouse cedex 9
- France
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination
- CNRS UPR 8241
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse UPS
| | - Mariusz Wolff
- Institute of Chemistry
- Department of Crystallography
- University of Silesia
- 40-006 Katowice
- Poland
| | - Sonia Mallet-Ladeira
- Service commun RX
- Institut de Chimie de Toulouse
- ICT- FR2599
- Université Toulouse III Paul-Sabatier
- 31062 Toulouse cedex 9
| | - Rémi Métivier
- PPSM
- ENS Cachan
- CNRS
- Université Paris-Saclay
- 94235 Cachan
| | - Eric Benoist
- SPCMIB
- CNRS UMR5068
- Université Toulouse III Paul-Sabatier
- 31062 Toulouse cedex 9
- France
| | - Suzanne Fery-Forgues
- SPCMIB
- CNRS UMR5068
- Université Toulouse III Paul-Sabatier
- 31062 Toulouse cedex 9
- France
| |
Collapse
|
20
|
Muñoz-Osses M, Siegmund D, Gómez A, Godoy F, Fierro A, Llanos L, Aravena D, Metzler-Nolte N. Influence of the substituent on the phosphine ligand in novel rhenium(i) aldehydes. Synthesis, computational studies and first insights into the antiproliferative activity. Dalton Trans 2018; 47:13861-13869. [DOI: 10.1039/c8dt03160f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyrhetrenyl phosphine derivatives were synthesized and evaluated as potential anticancer agents. Electrochemical and computational studies were carried out.
Collapse
Affiliation(s)
- Michelle Muñoz-Osses
- Laboratory of Organometallic Chemistry
- Faculty of Chemistry and Biology
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Daniel Siegmund
- Inorganic Chemistry I – Bioinorganic Chemistry
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Alejandra Gómez
- Laboratory of Organometallic Chemistry
- Faculty of Chemistry and Biology
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Fernando Godoy
- Laboratory of Organometallic Chemistry
- Faculty of Chemistry and Biology
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Angélica Fierro
- Laboratory of Bioorganic and Molecular Simulation
- Department of Organic Chemistry
- Faculty of Chemistry
- Pontificia Universidad Católica de Chile
- Santiago
| | - Leonel Llanos
- Laboratory of Computational Inorganic Chemistry
- Faculty of Chemistry and Biology
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Daniel Aravena
- Laboratory of Computational Inorganic Chemistry
- Faculty of Chemistry and Biology
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Nils Metzler-Nolte
- Inorganic Chemistry I – Bioinorganic Chemistry
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
21
|
Lee MM, Lin J, Chang C, Hung C, Chen C, Hsu C, Sun S. Synthesis, Electrochemical and Photophysical Properties of 2,4,6‐Tripyridyl‐1,3,5‐Triazine‐Bridged Trinuclear Diimine Rhenium(I) Tricarbonyl Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mandy M. Lee
- Institute of Chemistry Academia Sinica 11529 Taipei Taiwan, Republic of China
| | - Ju‐Ling Lin
- Institute of Chemistry Academia Sinica 11529 Taipei Taiwan, Republic of China
| | - Che‐Wei Chang
- Institute of Chemistry Academia Sinica 11529 Taipei Taiwan, Republic of China
| | - Chen‐Yen Hung
- Institute of Chemistry Academia Sinica 11529 Taipei Taiwan, Republic of China
| | - Chih‐Wei Chen
- Institute of Chemistry Academia Sinica 11529 Taipei Taiwan, Republic of China
| | - Chao‐Ping Hsu
- Institute of Chemistry Academia Sinica 11529 Taipei Taiwan, Republic of China
| | - Shih‐Sheng Sun
- Institute of Chemistry Academia Sinica 11529 Taipei Taiwan, Republic of China
| |
Collapse
|
22
|
Knopf KM, Murphy BL, MacMillan SN, Baskin JM, Barr MP, Boros E, Wilson JJ. In Vitro Anticancer Activity and in Vivo Biodistribution of Rhenium(I) Tricarbonyl Aqua Complexes. J Am Chem Soc 2017; 139:14302-14314. [PMID: 28948792 PMCID: PMC8091166 DOI: 10.1021/jacs.7b08640] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Seven rhenium(I) complexes of the general formula fac-[Re(CO)3(NN)(OH2)]+ where NN = 2,2'-bipyridine (8), 4,4'-dimethyl-2,2'-bipyridine (9), 4,4'-dimethoxy-2,2'-bipyridine (10), dimethyl 2,2'-bipyridine-4,4'-dicarboxylate (11), 1,10-phenanthroline (12), 2,9-dimethyl-1,10-phenanthroline (13), or 4,7-diphenyl-1,10-phenanthroline (14), were synthesized and characterized by 1H NMR spectroscopy, IR spectroscopy, mass spectrometry, and X-ray crystallography. With the exception of 11, all complexes exhibited 50% growth inhibitory concentration (IC50) values that were less than 20 μM in HeLa cells, indicating that these compounds represent a new potential class of anticancer agents. Complexes 9, 10, and 13 were as effective in cisplatin-resistant cells as wild-type cells, signifying that they circumvent cisplatin resistance. The mechanism of action of the most potent complex, 13, was explored further by leveraging its intrinsic luminescence properties to determine its intracellular localization. These studies indicated that 13 induces cytoplasmic vacuolization that is lysosomal in nature. Additional in vitro assays indicated that 13 induces cell death without causing an increase in intracellular reactive oxygen species or depolarization of the mitochondrial membrane potential. Further studies revealed that the mode of cell death does not fall into one of the canonical categories such as apoptosis, necrosis, paraptosis, and autophagy, suggesting that a novel mode of action may be operative for this class of rhenium compounds. The in vivo biodistribution and metabolism of complex 13 and its 99mTc analogue 13* were also evaluated in naı̈ve mice. Complexes 13 and 13* exhibited comparable biodistribution profiles with both hepatic and renal excretion. High-performance liquid chromatography inductively coupled plasma mass-spectrometry (HPLC-ICP-MS) analysis of mouse blood plasma and urine postadministration showed considerable metabolic stability of 13, rendering this potent complex suitable for in vivo applications. These studies have shown the biological properties of this class of compounds and demonstrated their potential as promising theranostic anticancer agents that can circumvent cisplatin resistance.
Collapse
Affiliation(s)
- Kevin M. Knopf
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brendan L. Murphy
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M. Baskin
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Martin P. Barr
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James’s Hospital and Trinity College Dublin, Dublin, Ireland
| | - Eszter Boros
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Suite 2301, Charlestown, MA 02129, USA
| | - Justin J. Wilson
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Bonello RO, Pitak MB, Coles SJ, Hallett AJ, Fallis IA, Pope SJ. Synthesis and characterisation of phosphorescent rhenium(I) complexes of hydroxy- and methoxy-substituted imidazo[4,5- f ]-1,10-phenanthroline ligands. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Vanlı E, Mısır MN, Alp H, Ak T, Özbek N, Ocak Ü, Ocak M. Ion Sensor Properties of Fluorescent Schiff Bases Carrying Dipicolylamine Groups. A Simple Spectrofluorimetric Method to Determine Cu (II) in Water Samples. J Fluoresc 2017; 27:1759-1766. [DOI: 10.1007/s10895-017-2114-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/08/2017] [Indexed: 11/24/2022]
|
25
|
Singha DK, Majee P, Mondal SK, Mahata P. Selective Luminescence-Based Detection of Cd2+
and Zn2+
Ions in Water Using a Proton-Transferred Coordination Polymer-Amine Conjugate Pair. ChemistrySelect 2017. [DOI: 10.1002/slct.201700398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Debal Kanti Singha
- Department of Chemistry; Suri Vidyasagar College; Suri, Birbhum PIN−731101, West Bengal India
| | - Prakash Majee
- Department of Chemistry, Siksha−Bhavana; Visva−Bharati University; Santiniketan−731235, West Bengal India
| | - Sudip Kumar Mondal
- Department of Chemistry, Siksha−Bhavana; Visva−Bharati University; Santiniketan−731235, West Bengal India
| | - Partha Mahata
- Department of Chemistry; Suri Vidyasagar College; Suri, Birbhum PIN−731101, West Bengal India
| |
Collapse
|
26
|
Chakraborty I, Jimenez J, Sameera WMC, Kato M, Mascharak PK. Luminescent Re(I) Carbonyl Complexes as Trackable PhotoCORMs for CO delivery to Cellular Targets. Inorg Chem 2017; 56:2863-2873. [PMID: 28225252 PMCID: PMC5731781 DOI: 10.1021/acs.inorgchem.6b02999] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A family of Re(I) carbonyl complexes of general formula [ReX(CO)3(phen)]0/1+ (where X = Cl-, CF3SO3-, MeCN, PPh3, and methylimidazole) derived from 1,10-phenanthroline (phen) exhibits variable emission characteristics depending on the presence of the sixth ancillary ligand/group (X). All complexes but with X = MeCN exhibit moderate CO release upon irradiation with low-power UV light and are indefinitely stable in anaerobic/aerobic environment in solution as well as in solid state when kept under dark condition. These CO donors liberate three, one, or no CO depending on the nature of sixth ligand upon illumination as studied with the aid of time-dependent IR spectroscopy. Results of excited-state density functional theory (DFT) and time-dependent DFT calculations provided insight into the origin of the emission characteristics of these complexes. The luminescent rheinum(I) photoCORMs uniformly displayed efficient cellular internalization by the human breast adenocarcinoma cells, MDA-MB-231, while the complex with PPh3 as ancillary ligand showed moderate nuclear localization in addition to the cytosolic distribution. These species hold significant promise as theranostic photoCORMs (photoinduced CO releasing molecules), where the entry of the pro-drug can be tracked within the cellular matrices.
Collapse
Affiliation(s)
- Indranil Chakraborty
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Jorge Jimenez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - W. M. C. Sameera
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
27
|
Lee LCC, Leung KK, Lo KKW. Recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Trans 2017; 46:16357-16380. [DOI: 10.1039/c7dt03465b] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Perspective summarizes recent advances in the biological applications of luminescent rhenium(i) tricarbonyl polypyridine complexes.
Collapse
Affiliation(s)
| | - Kam-Keung Leung
- Department of Chemistry
- City University of Hong Kong
- P. R. China
| | | |
Collapse
|
28
|
Raszeja LJ, Siegmund D, Cordes AL, Güldenhaupt J, Gerwert K, Hahn S, Metzler-Nolte N. Asymmetric rhenium tricarbonyl complexes show superior luminescence properties in live cell imaging. Chem Commun (Camb) 2016; 53:905-908. [PMID: 28008445 DOI: 10.1039/c6cc07553c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthesis and photophysical properties of a novel series of rhenium tricarbonyl complexes based on tridentate phenanthridinyl-containing ligands are described. Photophysical data reveal beneficial luminescence behaviour especially for compounds with an asymmetric ligand set. These advantageous properties are not limited to organic solvents, but indeed also improved in aqueous solutions. The suitability of our new rhenium complexes as potent imaging agents has been confirmed by fluorescence microscopy on living cancer cells, which also confirms superior long-time stability under fluorescence microscopy conditions. Colocalisation studies with commercial organelle stains reveal an accumulation of the complexes in the endoplasmic reticulum for all tested cell lines.
Collapse
Affiliation(s)
- Lukasz J Raszeja
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Li SPY, Yip AMH, Liu HW, Lo KKW. Installing an additional emission quenching pathway in the design of iridium(III)-based phosphorogenic biomaterials for bioorthogonal labelling and imaging. Biomaterials 2016; 103:305-313. [PMID: 27429251 DOI: 10.1016/j.biomaterials.2016.06.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
Abstract
We report the synthesis, characterization, photophysical and electrochemical behaviour and biological labelling applications of new phosphorogenic bioorthogonal probes derived from iridium(III) polypyridine complexes containing a 1,2,4,5-tetrazine moiety. In contrast to common luminescent cyclometallated iridium(III) polypyridine complexes, these tetrazine complexes are almost non-emissive due to effective Förster resonance energy transfer (FRET) and/or photoinduced electron transfer (PET) from the excited iridium(III) polypyridine unit to the appended tetrazine moiety. However, they exhibited significant emission enhancement upon reacting with (1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN-OH) (ca. 19.5-121.9 fold) and BCN-modified bovine serum albumin (BCN-BSA) (ca. 140.8-1133.7 fold) as a result of the conversion of the tetrazine unit to a non-quenching pyridazine derivative. The complexes were applied to image azide-modified glycans in live cells using a homobifunctional crosslinker, 1,13-bis((1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonylamino)-4,7,10-trioxatridecane (bis-BCN).
Collapse
Affiliation(s)
- Steve Po-Yam Li
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Alex Man-Hei Yip
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hua-Wei Liu
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
30
|
Alreja P, Kaur N. Recent advances in 1,10-phenanthroline ligands for chemosensing of cations and anions. RSC Adv 2016. [DOI: 10.1039/c6ra00150e] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review encompasses and highlights recent developments of 1,10-phenanthroline ligands behaving as a customized moiety used in recognition and sensing of cations and anions.
Collapse
Affiliation(s)
- Priya Alreja
- Department of Chemistry
- Panjab University
- Chandigarh 160014
- India
| | - Navneet Kaur
- Department of Chemistry
- Panjab University
- Chandigarh 160014
- India
| |
Collapse
|
31
|
Carreño A, Gacitúa M, Fuentes JA, Páez-Hernández D, Peñaloza JP, Otero C, Preite M, Molins E, Swords WB, Meyer GJ, Manríquez JM, Polanco R, Chávez I, Arratia-Pérez R. Fluorescence probes for prokaryotic and eukaryotic cells using Re(CO)3+complexes with an electron withdrawing ancillary ligand. NEW J CHEM 2016. [DOI: 10.1039/c6nj00905k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Re(CO)3+complexes with an ancillary ligand present an electron withdrawing effect suitable for cell imaging.
Collapse
|
32
|
Lo KKW. Luminescent Iridium(III) and Rhenium(I) Complexes as Biomolecular Probes and Imaging Reagents. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Zhang X, Li S, He YJ, Han T, Wang XL, Chen B, Zou KY, Li ZX. Four Metal Complexes Based on Bulky Imidazole Ligands: Solvothermal Syntheses, Crystal Structures, and Fluorescence Properties. Z Anorg Allg Chem 2015. [DOI: 10.1002/zaac.201500230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Rhenium(I) polypyridine dibenzocyclooctyne complexes as phosphorescent bioorthogonal probes: Synthesis, characterization, emissive behavior, and biolabeling properties. J Inorg Biochem 2015; 148:2-10. [DOI: 10.1016/j.jinorgbio.2015.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 01/20/2023]
|
35
|
Kowalski K, Szczupak Ł, Bernaś T, Czerwieniec R. Luminescent rhenium(I)–chromone bioconjugate: Synthesis, photophysical properties, and confocal luminescence microscopy investigation. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Choi AWT, Tso KKS, Yim VMW, Liu HW, Lo KKW. Modification of 1,2,4,5-tetrazine with cationic rhenium(i) polypyridine units to afford phosphorogenic bioorthogonal probes with enhanced reaction kinetics. Chem Commun (Camb) 2015; 51:3442-5. [DOI: 10.1039/c4cc09532d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
New phosphorogenic bioorthogonal probes derived from rhenium(i) polypyridine tetrazine complexes have been designed.
Collapse
Affiliation(s)
- Alex Wing-Tat Choi
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- P. R. China
| | - Karson Ka-Shun Tso
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- P. R. China
| | - Vicki Man-Wai Yim
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- P. R. China
| | - Hua-Wei Liu
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- P. R. China
| |
Collapse
|
37
|
Fiorini V, Ranieri AM, Muzzioli S, Magee KDM, Zacchini S, Akabar N, Stefan A, Ogden MI, Massi M, Stagni S. Targeting divalent metal cations with Re(i) tetrazolato complexes. Dalton Trans 2015; 44:20597-608. [DOI: 10.1039/c5dt03690a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design, preparation and characterization of four new Re(i) tetrazolato complexes together with the study of their luminescent sensing abilities toward Zn(ii), Cd(ii) and Cu(ii) are described herein.
Collapse
Affiliation(s)
- Valentina Fiorini
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Anna Maria Ranieri
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Sara Muzzioli
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Karen D. M. Magee
- Nanochemistry Research Institute
- Department of Chemistry
- Curtin University
- Perth
- Australia 6845
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Nurshadrina Akabar
- Nanochemistry Research Institute
- Department of Chemistry
- Curtin University
- Perth
- Australia 6845
| | - Alessandra Stefan
- Department of Pharmacy and Biotechnology
- University of Bologna
- I-40136 Bologna
- Italy
| | - Mark I. Ogden
- Nanochemistry Research Institute
- Department of Chemistry
- Curtin University
- Perth
- Australia 6845
| | - Massimiliano Massi
- Nanochemistry Research Institute
- Department of Chemistry
- Curtin University
- Perth
- Australia 6845
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| |
Collapse
|
38
|
Carreño A, Gacitua M, Schott E, Zarate X, Manriquez JM, Preite M, Ladeira S, Castel A, Pizarro N, Vega A, Chavez I, Arratia-Perez R. Experimental and theoretical studies of the ancillary ligand (E)-2-((3-amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol in the rhenium(i) core. NEW J CHEM 2015. [DOI: 10.1039/c5nj00772k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Re(CO)3(deeb)L+ complex with an ancillary ligand that presents electron withdrawing effects was synthesized and studied by experimental and computational methods.
Collapse
|
39
|
Leonidova A, Gasser G. Underestimated potential of organometallic rhenium complexes as anticancer agents. ACS Chem Biol 2014; 9:2180-93. [PMID: 25137157 DOI: 10.1021/cb500528c] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the recent years, organometallic compounds have become recognized as promising anti-cancer drug candidates. While radioactive (186/188)Re compounds are already used in clinics for cancer treatment, cold Re organometallic compounds have mostly been explored as luminescent probes for cell imaging and photosensitizers in photocatalysis. However, a growing number of studies have recently revealed the potential of Re organometallic complexes as anti-cancer agents. Several compounds have displayed cytotoxicity equaling or exceeding that of the well-established anti-cancer drug cisplatin. In this review, we present the currently known Re organometallic complexes that have shown anti-proliferative activity on cancer cell lines. A particular emphasis is placed on their cellular uptake and localization as well as their potential mechanism of action.
Collapse
Affiliation(s)
- Anna Leonidova
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Gilles Gasser
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
40
|
Mondal P, Sarkar R, Hens A, Rajak KK. Mononuclear rhenium(i) complexes incorporating 2-(arylazo)phenyl benzyl thioethers: synthesis, structure, spectral, DFT and TDDFT studies. RSC Adv 2014. [DOI: 10.1039/c4ra05699j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
41
|
Scherbakow S, Keller M, Bannwarth W. Modulation of Olefin Metathesis Reactions by Chelation. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Fernández-Moreira V, Marzo I, Gimeno MC. Luminescent Re(i) and Re(i)/Au(i) complexes as cooperative partners in cell imaging and cancer therapy. Chem Sci 2014. [DOI: 10.1039/c4sc01684j] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
43
|
Choi AWT, Yim VMW, Liu HW, Lo KKW. Rhenium(I) Polypyridine Diamine Complexes as Intracellular Phosphorogenic Sensors: Synthesis, Characterization, Emissive Behavior, Biological Properties, and Nitric Oxide Sensing. Chemistry 2014; 20:9633-42. [DOI: 10.1002/chem.201402502] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Indexed: 11/09/2022]
|
44
|
Kitanovic I, Can S, Alborzinia H, Kitanovic A, Pierroz V, Leonidova A, Pinto A, Spingler B, Ferrari S, Molteni R, Steffen A, Metzler-Nolte N, Wölfl S, Gasser G. A deadly organometallic luminescent probe: anticancer activity of a ReI bisquinoline complex. Chemistry 2014; 20:2496-507. [PMID: 24464824 DOI: 10.1002/chem.201304012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Indexed: 12/25/2022]
Abstract
The photophysical properties of [Re(CO)3 (L-N3)]Br (L-N3 =2-azido-N,N-bis[(quinolin-2-yl)methyl]ethanamine), which could not be localized in cancer cells by fluorescence microscopy, have been revisited in order to evaluate its use as a luminescent probe in a biological environment. The Re(I) complex displays concentration-dependent residual fluorescence besides the expected phosphorescence, and the nature of the emitting excited states have been evaluated by DFT and time-dependent (TD) DFT methods. The results show that fluorescence occurs from a (1) LC/MLCT state, whereas phosphorescence mainly stems from a (3) LC state, in contrast to previous assignments. We found that our luminescent probe, [Re(CO)3 (L-N3)]Br, exhibits an interesting cytotoxic activity in the low micromolar range in various cancer cell lines. Several biochemical assays were performed to unveil the cytotoxic mechanism of the organometallic Re(I) bisquinoline complex. [Re(CO)3 (L-N3)]Br was found to be stable in human plasma indicating that [Re(CO)3 (L-N3)]Br itself and not a decomposition product is responsible for the observed cytotoxicity. Addition of [Re(CO)3 (L-N3)]Br to MCF-7 breast cancer cells grown on a biosensor chip micro-bioreactor immediately led to reduced cellular respiration and increased glycolysis, indicating a large shift in cellular metabolism and inhibition of mitochondrial activity. Further analysis of respiration of isolated mitochondria clearly showed that mitochondrial respiratory activity was a direct target of [Re(CO)3 (L-N3)]Br and involved two modes of action, namely increased respiration at lower concentrations, potentially through increased proton transport through the inner mitochondrial membrane, and efficient blocking of respiration at higher concentrations. Thus, we believe that the direct targeting of mitochondria in cells by [Re(CO)3 (L-N3)]Br is responsible for the anticancer activity.
Collapse
Affiliation(s)
- Igor Kitanovic
- Department of Bioanalytics and Molecular Biology, Institute for Pharmacy and Molecular Biology, University of Heidelberg im Neuenheimer Feld 364, 69120 Heidelberg (Germany), Tel: (+49) 622-1544-878 http://www.uni-heidelberg.de/fakultaeten/biowissenschaften/ipmb/biologie/woelfl/index.html
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Luminescent rhenium(I) complexes of substituted imidazole[4,5-f]-1,10-phenanthroline derivatives. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Lo KKW, Li SPY. Utilization of the photophysical and photochemical properties of phosphorescent transition metal complexes in the development of photofunctional cellular sensors, imaging reagents, and cytotoxic agents. RSC Adv 2014. [DOI: 10.1039/c3ra47611a] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Gong ZL, Zhong YW. Stepwise Coordination Followed by Oxidation Mechanism for the Multichannel Detection of Cu2+ in an Aqueous Environment. Organometallics 2013. [DOI: 10.1021/om400999h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhong-Liang Gong
- Beijing National Laboratory for
Molecular Sciences,
CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yu-Wu Zhong
- Beijing National Laboratory for
Molecular Sciences,
CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Beijing 100190, People’s Republic of China
| |
Collapse
|
48
|
Shankar B, Elumalai P, Sathiyendiran M. Synthesis of a polynuclear complex possessing four spatially arranged rhenium units. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Zhang LK, Xing LB, Chen B, Yang QZ, Tong QX, Wu LZ, Tung CH. A highly selective and sensitive luminescent chemosensor for Zn2+ ions based on cyclometalated platinum(II) complexes. Dalton Trans 2013; 42:4244-7. [PMID: 23396567 DOI: 10.1039/c3dt32603a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel luminescent Zn(2+) ions chemosensor, a cyclometalated platinum(II) bipyridyl acetylide complex, was designed. Of particular significance is that it shows a high sensitivity towards Zn(2+) ions without interference from other biologically important cations in acetonitrile. The tautomerization of amide favors detecting Zn(2+) ions among other HTM (heavy and transition metal) ions in aqueous systems.
Collapse
Affiliation(s)
- Li-Kun Zhang
- Department of Chemistry, Shantou University, Guangdong 515063, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Ma DL, Zhong HJ, Fu WC, Chan DSH, Kwan HY, Fong WF, Chung LH, Wong CY, Leung CH. Phosphorescent imaging of living cells using a cyclometalated iridium (III) complex. PLoS One 2013; 8:e55751. [PMID: 23457478 PMCID: PMC3573050 DOI: 10.1371/journal.pone.0055751] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/29/2012] [Indexed: 01/04/2023] Open
Abstract
A cell permeable cyclometalated iridium(III) complex has been developed as a phosphorescent probe for cell imaging. The iridium(III) solvato complex [Ir(phq)2(H2O]2)] preferentially stains the cytoplasm of both live and dead cells with a bright luminescence.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|