1
|
Costa D, Scalise E, Ielapi N, Bracale UM, Faga T, Michael A, Andreucci M, Serra R. Omics Science and Social Aspects in Detecting Biomarkers for Diagnosis, Risk Prediction, and Outcomes of Carotid Stenosis. Biomolecules 2024; 14:972. [PMID: 39199360 PMCID: PMC11353051 DOI: 10.3390/biom14080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Carotid stenosis is characterized by the progressive narrowing of the carotid arteries due to the formation of atherosclerotic plaque, which can lead to stroke and death as major complications. Numerous biomarkers allow for its study and characterization, particularly those related to "omics" sciences. Through the most common research databases, we report representative studies about carotid stenosis biomarkers based on genomics, transcriptomics, proteomics, and metabolomics in a narrative review. To establish a priority among studies based on their internal validity, we used a quality assessment tool, the Scale for the Assessment of Narrative Review Articles (SANRA). Genes, transcriptomes, proteins, and metabolites can diagnose the disease, define plaque connotations, predict consequences after revascularization interventions, and associate carotid stenosis with other patient comorbidities. It also emerged that many aspects determining the patient's psychological and social sphere are implicated in carotid disease. In conclusion, when taking the multidisciplinary approach that combines human sciences with biological sciences, it is possible to comprehensively define a patient's health and thus improve their clinical management through precision medicine.
Collapse
Affiliation(s)
- Davide Costa
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Enrica Scalise
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Roma, Italy;
| | | | - Teresa Faga
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Ashour Michael
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Mekke JM, Verwer MC, Stroes ESG, Kroon J, Timmers L, Pasterkamp G, de Borst GJ, van der Laan SW, de Kleijn DPV. Plasma Lipoprotein Lipase Is Associated with Risk of Future Major Adverse Cardiovascular Events in Patients Following Carotid Endarterectomy. Eur J Vasc Endovasc Surg 2023; 65:700-709. [PMID: 36708756 DOI: 10.1016/j.ejvs.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Carotid plaque intraplaque haemorrhage (IPH) is associated with future cardiovascular events. It was hypothesised that plasma proteins associated with carotid plaque IPH are also likely to be associated with major adverse cardiovascular events (MACE) after carotid endarterectomy (CEA). METHODS In pre-operative blood samples from patients undergoing CEA within the Athero-Express biobank, proteins involved in cardiovascular disease were measured using three OLINK proteomics immunoassays. The association between proteins and IPH was analysed using logistic regression analyses. Subsequently, the association between the IPH associated plasma proteins and the three year post-operative risk of MACE (including stroke, myocardial infarction, or cardiovascular death) was analysed. RESULTS Within the three year follow up, 130 patients (18.9%) of 688 symptomatic and asymptomatic patients undergoing CEA developed MACE. Six of 276 plasma proteins were found to be significantly associated with IPH, from which only lipoprotein lipase (LPL) was associated with the post-operative risk of MACE undergoing CEA. Within the 30 day peri-operative period, high plasma LPL was independently associated with an increased risk of MACE (adjusted hazard ratio [HR] per standard deviation [SD] 1.60, 1.10 - 2.30), p = .014). From 30 days to three years, however, high LPL was associated with a lower risk of MACE (adjusted HR per SD 0.80, 0.65 - 0.99, p= .036). CONCLUSION High LPL concentrations were found to be associated with a higher risk of MACE in the first 30 post-operative days but with a lower risk MACE between 30 days and three years, meaning that LPL has different hazards at different time points.
Collapse
Affiliation(s)
- Joost M Mekke
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten C Verwer
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Erik S G Stroes
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | - Leo Timmers
- Department of Cardiology, St. Antonius Hospital Nieuwegein, Nieuwegein, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, Division Laboratories and Pharmacy, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sander W van der Laan
- Central Diagnostic Laboratory, Division Laboratories and Pharmacy, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Chiorescu RM, Mocan M, Inceu AI, Buda AP, Blendea D, Vlaicu SI. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci 2022; 23:13638. [PMID: 36362423 PMCID: PMC9656166 DOI: 10.3390/ijms232113638] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis and its clinical manifestations, coronary and cerebral artery diseases, are the most common cause of death worldwide. The main pathophysiological mechanism for these complications is the rupture of vulnerable atherosclerotic plaques and subsequent thrombosis. Pathological studies of the vulnerable lesions showed that more frequently, plaques rich in lipids and with a high level of inflammation, responsible for mild or moderate stenosis, are more prone to rupture, leading to acute events. Identifying the vulnerable plaques helps to stratify patients at risk of developing acute vascular events. Traditional imaging methods based on plaque appearance and size are not reliable in prediction the risk of rupture. Intravascular imaging is a novel technique able to identify vulnerable lesions, but it is invasive and an operator-dependent technique. This review aims to summarize the current data from literature regarding the main biomarkers involved in the attempt to diagnose vulnerable atherosclerotic lesions. These biomarkers could be the base for risk stratification and development of the new therapeutic drugs in the treatment of patients with vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Mihaela Mocan
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine, 400349 Cluj-Napoca, Romania
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Andreea Paula Buda
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
- Department of Cardiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| | - Sonia Irina Vlaicu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Molvin J, Jujić A, Melander O, Pareek M, Råstam L, Lindblad U, Daka B, Leósdóttir M, Nilsson PM, Olsen MH, Magnusson M. Proteomic exploration of common pathophysiological pathways in diabetes and cardiovascular disease. ESC Heart Fail 2020; 7:4151-4158. [PMID: 33047884 PMCID: PMC7754972 DOI: 10.1002/ehf2.13036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022] Open
Abstract
Aims The epidemiological association between diabetes and cardiovascular disease is well established, but the pathophysiological link is complex and multifactorial. We investigated seven proteins, previously linked to incident diabetes mellitus, and their association with cardiovascular disease and mortality. Methods and results Plasma samples from 1713 individuals from the Swedish population‐based Malmö Preventive Project (mean age 67.4 ± 6.0 years; 29.1% women) were analysed with a proximity extension assay panel. Seven proteins [scavenger receptor cysteine rich type 1 protein M130 (CD163), fatty acid‐binding protein 4 (FABP4), plasminogen activator inhibitor 1 (PAI), insulin‐like growth factor‐binding protein 2 (IGFB2), cathepsin D (CTSD), galectin‐4 (GAL4), and paraoxonase‐3 (PON3)] previously shown to be associated with incident diabetes were analysed for associations with all‐cause mortality (ACM), cardiovascular mortality (CVM), incident coronary events (CEs), and incident heart failure (HF). After exclusion of prevalent cases of respective outcome, proteins that met Bonferroni‐corrected significance were analysed in multivariable Cox regression models. Significant associations were identified between five proteins [GAL4 (hazard ratio; 95% confidence interval: 1.17–1.41), CTSD (1.15–1.37), CD163 (1.09–1.30), IGFBP2 (1.05–1.30), and FABP4 (1.04–1.29)] and ACM and four proteins [GAL4 (1.38–1.56), CTSD (1.14–1.43), CD163 (1.09–1.36), and IGFBP2 (1.03–1.35)] with CVM. Three proteins [GAL4 (1.14–1.57), CTSD (1.12–1.50), and FABP4 (1.05–1.55)] were significantly associated with incident CE and two [GAL4 (1.03–1.54) and CTSD (1.01–1.46)] were associated with incident HF after adjusting for traditional risk factors including N‐terminal pro‐brain natriuretic peptide. Conclusions In a general Swedish population, four proteins previously shown to be associated with diabetes were associated with ACM and CVM. Three proteins were associated with incident CE. Finally, GAL4 and CTSD displayed novel associations with incident HF and were the only proteins associated with all outcomes.
Collapse
Affiliation(s)
- John Molvin
- Department of Clinical Sciences, Lund University, Clinical Research Center, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Amra Jujić
- Department of Clinical Sciences, Lund University, Clinical Research Center, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Clinical Research Center, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden.,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Manan Pareek
- Department of Internal Medicine, Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA.,Department of Cardiology, North Zealand Hospital, Hillerød, Denmark
| | - Lennart Råstam
- Department of Clinical Sciences, Lund University, Clinical Research Center, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden
| | - Ulf Lindblad
- Institute of Medicine, Department of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bledar Daka
- Institute of Medicine, Department of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margrét Leósdóttir
- Department of Clinical Sciences, Lund University, Clinical Research Center, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Clinical Research Center, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden.,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Michael H Olsen
- Centre for Individualized Medicine in Arterial Diseases (CIMA), University of Southern Denmark, Odense, Denmark.,Department of Internal Medicine, Holbaek Hospital, Holbaek, Denmark
| | - Martin Magnusson
- Department of Clinical Sciences, Lund University, Clinical Research Center, Inga Marie Nilssons gata 47, Malmö, 20502, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Shirmohammadi L, Ghayour-Mobarhan M, Saberi-Karimian M, Iranshahi M, Tavallaie S, Emamian M, Sahebkar A. Effect of Curcumin on Serum Cathepsin D in Patients with Metabolic Syndrome. Cardiovasc Hematol Disord Drug Targets 2019; 20:116-121. [PMID: 31538907 DOI: 10.2174/1871529x19666190919110652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/21/2019] [Accepted: 06/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inflammation has been shown to accompany Metabolic Syndrome (MetS) and its features. Cathepsin D is one of a proinflammatory mediator. In the current study, we aimed to investigate the effect of curcumin supplementation on serum cathepsin D levels in patients with MetS. METHODS The current study was conducted on 18-65 years old individuals with MetS diagnosed according to the International Diabetes Federation guidelines. A total of 80 participants were randomly divided into treatment and control groups. The first group (n=40) was given 2 capsules containing 500 mg of phosphatidylcholine complex of curcumin, and the other group (n=40) was given two 500 mg placebo capsules for 6 weeks. Before (week 0) and after (week 6) the intervention, anthropometric indices and blood pressure were measured and blood samples were taken. Serum cathepsin D was measured using an ELISA kit. RESULTS There was no significant difference between treatment and control groups in terms of weight, body mass index, waist circumference and serum cathepsin D levels before and after the intervention. In addition, there was no significant difference between pre- and post-trial values of serum cathepsin D. CONCLUSION The present results do not suggest any effect of curcumin on cathepsin D levels in patients with MetS.
Collapse
Affiliation(s)
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Student Research Committee, Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaie
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Emamian
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Biotechnology, School of Medicine, Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Xu S, Jiang J, Zhang Y, Chen T, Zhu M, Fang C, Mi Y. Discovery of potential plasma protein biomarkers for acute myocardial infarction via proteomics. J Thorac Dis 2019; 11:3962-3972. [PMID: 31656670 DOI: 10.21037/jtd.2019.08.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Acute myocardial infarction (AMI) is an acute disease with high mortality and seriously threatens human health. The identification of new effective biological markers for AMI is a prerequisite for treatment. Most proteomic studies have focused on atherosclerotic plaques, vascular cells, monocytes and platelets in the blood; however, the concentration of these factors in plasma is low, making it difficult to measure the complexity of plasma components. Moreover, some studies have examined the plasma protein of patients with acute coronary syndrome with histochemistry; however, the results are not consistent. Therefore, it is necessary to further investigate the differential proteins in the plasma of patients with AMI via proteomics to identify new biomarkers of AMI. Methods In this study, immunodepletion of high-abundance plasma proteins followed by an isobaric tagging for relative and absolute quantitation (iTRAQ)-based quantitative proteomic approach was used to analyze plasma samples from 5 control individuals and 10 AMI patients. Results Four hundred sixty-eight proteins were identified from two samples, and 33 proteins were differentially expressed in AMI patients compared to the controls. Among the 33 proteins, 12 proteins showed a ≥1.5-fold change between AMI and control samples. These proteins included fatty acid binding protein 3 (FABP3, ratio =6.36), creatine kinase-MB (CK-MB ratio =4.89), adenylate kinase1 (AK1 ratio =4.16), pro-platelet basic protein (PPBP ratio =3.29), creatine kinase (CK ratio =2.88), platelet factor 4 (PF4 ratio =2.62), peptidyl prolyl isomerase Cyclophilin A (PPIA ratio =2.05), Cofilin-1 (CFL1 ratio =1.81), coronin1A (CORO1A ratio =1.71), protein kinase M (PKM ratio =1.63), ribonuclease inhibitor (RNH1, ratio =1.67), and triose phosphate isomerase (TPI1 ratio =1.56). By contrast, there was a decrease of 19 proteins, such as adiponectin (ADIPOQ ratio =0.70), insulin-like growth factor binding protein6 (IGFBP6 ratio =0.70), Dickkopf-related protein 3 (DKK3 ratio =0.70) and complement 4B (C4B ratio =0.68). The most over-represented term was regulation of cell proliferation in the cellular component category of Gene Ontology (GO). The top 3 biological process terms were regulation of cell proliferation, response to wounding and wound healing. These proteins included immune proteins, blood coagulation proteins, lipid metabolism proteins, cytoskeleton proteins, energy metabolism proteins, gene regulation proteins, myocutaneous proteins, and myocardial remodeling proteins and were highly connected with each other, which indicates that the functional network of these processes contribute to the pathophysiology of AMI. Conclusions In conclusion, the present quantitative proteomic study identified novel AMI biomarker candidates and might provide fundamental information for the development of an AMI biomarker.
Collapse
Affiliation(s)
- Shasha Xu
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Jianjun Jiang
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Yang Zhang
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Tingting Chen
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Min Zhu
- Enze Medical Research Center, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Chongfeng Fang
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Yafei Mi
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Enze Medical Research Center, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| |
Collapse
|
7
|
Arnao V, Tuttolomondo A, Daidone M, Pinto A. Lipoproteins in Atherosclerosis Process. Curr Med Chem 2019; 26:1525-1543. [PMID: 31096892 DOI: 10.2174/0929867326666190516103953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/17/2017] [Accepted: 12/10/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Dyslipidaemias is a recognized risk factor for atherosclerosis, however, new evidence brought to light by trials investigating therapies to enhance HDLcholesterol have suggested an increased atherosclerotic risk when HDL-C is high. RESULTS Several studies highlight the central role in atherosclerotic disease of dysfunctional lipoproteins; oxidised LDL-cholesterol is an important feature, according to "oxidation hypothesis", of atherosclerotic lesion, however, there is today a growing interest for dysfunctional HDL-cholesterol. The target of our paper is to review the functions of modified and dysfunctional lipoproteins in atherogenesis. CONCLUSION Taking into account the central role recognized to dysfunctional lipoproteins, measurements of functional features of lipoproteins, instead of conventional routine serum evaluation of lipoproteins, could offer a valid contribution in experimental studies as in clinical practice to stratify atherosclerotic risk.
Collapse
Affiliation(s)
- Valentina Arnao
- BioNeC Dipartimento di BioMedicina Sperimentale e Neuroscienze Cliniche, Universita degli Studi di Palermo, Palermo, Italy.,PhD School of: Medicina Clinica e Scienze del Comportamento-Biomedical Department of Internal and Specialistic Medicine. (Di.Bi.M.I.S), University of Palermo, Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, (PROMISE), University of Palermo, Palermo, Italy
| | - Mario Daidone
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, (PROMISE), University of Palermo, Palermo, Italy
| | - Antonio Pinto
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Mohammadpour AH, Salehinejad Z, Elyasi S, Mouhebati M, Mirhafez SR, Samadi S, Ghayour-Mobarhan M, Ferns G, Sahebkar A. Evaluation of serum cathepsin D concentrations in coronary artery disease. Indian Heart J 2018; 70:471-475. [PMID: 30170638 PMCID: PMC6117802 DOI: 10.1016/j.ihj.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/09/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
Background Coronary artery disease (CAD) cannot be sufficiently explained by the presence of traditional risk factors. Cathepsin D has been proposed to serve as a surrogate marker of atherosclerosis but its alterations in CAD patients have not been studied. Objective To evaluate serum cathepsin D concentrations in relation to the presence and severity of CAD. Materials and methods A total of 104 subjects were recruited; 71 patients with suspected CAD and 33 healthy subjects. Thirty-four patients had >50% coronary stenosis of at least one artery (CAD+); the remaining 37 patients had <50% stenosis (CAD−) based on angiography. CAD+ patients were sub-divided into three sub-groups with single (SVD; n = 15), double (2VD; n = 9), and triple vessel (3VD; n = 10) disease. Serum soluble cathepsin D concentrations were determined using an enzyme-linked immunosorbent assay (ELISA). Results Serum cathepsin D concentrations were significantly higher in the CAD+ compared with healthy control (p = 0.016) but not CAD− group (p = 0.098). Within the CAD+ group, patients with 3VD had significantly higher serum cathepsin D concentrations compared with the SVD group (p = 0.025), and also compared with the CAD− (p = 0.011) and SVD (p = 0.001) groups. No significant associations were found between serum cathepsin D concentrations and potential confounders including age, sex, blood pressure, smoking history and dyslipidemia. Conclusion Serum cathepsin D concentrations may be associated with the presence of CAD.
Collapse
Affiliation(s)
- Amir Hooshang Mohammadpour
- Clinical Pharmacy Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zakieh Salehinejad
- Clinical Pharmacy Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Clinical Pharmacy Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mouhebati
- Cardiovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Reza Mirhafez
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Sara Samadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gordon Ferns
- Division of Medical Education, Rm 342, Mayfield House, University of Brighton, BN1 9PH, United Kingdom
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Panda S, Kar A, Biswas S. Preventive effect of Agnucastoside C against Isoproterenol-induced myocardial injury. Sci Rep 2017; 7:16146. [PMID: 29170391 PMCID: PMC5701045 DOI: 10.1038/s41598-017-16075-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
An iridoid glycoside, agnucastoside C (ACC) was isolated from the leaves of Moringa oliefera and its cardio protective potential was investigated in adult rats by examining the effects of this test compound, ACC at 30 mg/kg for 14 days in isoproterenol (100 mg/kg)-induced myocardial injury. Isoproterenol (ISO) administration induced the myocardial injury as evidenced by the altered ECG pattern with ST-segment elevation and an increase in the levels of cardiac injury markers including troponin-I, creatine kinase-MB, alanine transaminase, aspartate transaminase, lactate dehydrogenase; inflammatory markers, interleukine-6 and tumor necrosis factor. In this group, there was also an increase in cardiac lipid peroxidation and a decrease in cellular antioxidants. However, pretreatment with ACC maintained the normal ECG pattern and nearly normal levels of all the cardiac markers in ISO-induced animals. Electron microscopic and histological studies also showed marked reduction in ISO-induced cardiac damages including infarct size by ACC. Analysis by 2-DE revealed the involvement of 19 different cardiac proteins, associated with energy metabolism, oxidative stress and maintenance of cytoskeleton. The expression of those proteins were altered by ISO, but maintained in ACC pretreated rats. Our findings reveal the potential of isolated ACC in the prevention of myocardial damage.
Collapse
Affiliation(s)
- Sunanda Panda
- School of Life Sciences, Takshashila Campus, Devi Ahilya University, Indore, India
| | - Anand Kar
- School of Life Sciences, Takshashila Campus, Devi Ahilya University, Indore, India.
| | - Sagarika Biswas
- Department of Genomics & Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
10
|
Martin-Rojas T, Mourino-Alvarez L, Alonso-Orgaz S, Rosello-Lleti E, Calvo E, Lopez-Almodovar LF, Rivera M, Padial LR, Lopez JA, de la Cuesta F, Barderas MG. iTRAQ proteomic analysis of extracellular matrix remodeling in aortic valve disease. Sci Rep 2015; 5:17290. [PMID: 26620461 PMCID: PMC4664895 DOI: 10.1038/srep17290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023] Open
Abstract
Degenerative aortic stenosis (AS) is the most common worldwide cause of valve replacement. The aortic valve is a thin, complex, layered connective tissue with compartmentalized extracellular matrix (ECM) produced by specialized cell types, which directs blood flow in one direction through the heart. There is evidence suggesting remodeling of such ECM during aortic stenosis development. Thus, a better characterization of the role of ECM proteins in this disease would increase our understanding of the underlying molecular mechanisms. Aortic valve samples were collected from 18 patients which underwent aortic valve replacement (50% males, mean age of 74 years) and 18 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by 2D-LC MS/MS iTRAQ methodology. The results showed an altered expression of 13 ECM proteins of which 3 (biglycan, periostin, prolargin) were validated by Western blotting and/or SRM analyses. These findings are substantiated by our previous results demonstrating differential ECM protein expression. The present study has demonstrated a differential ECM protein pattern in individuals with AS, therefore supporting previous evidence of a dynamic ECM remodeling in human aortic valves during AS development.
Collapse
Affiliation(s)
- Tatiana Martin-Rojas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Sergio Alonso-Orgaz
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Esther Rosello-Lleti
- Cardiocirculatory Unit, Health Research Institute, Hospital La Fe, Valencia, Spain
| | | | | | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute, Hospital La Fe, Valencia, Spain
| | - Luis R Padial
- Department of Cardiology, Hospital Virgen de la Salud, SESCAM, Toledo, Spain
| | | | - Fernando de la Cuesta
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
11
|
Serpooshan V, Mahmoudi M, Zhao M, Wei K, Sivanesan S, Motamedchaboki K, Malkovskiy AV, Gladstone AB, Cohen JE, Yang PC, Rajadas J, Bernstein D, Woo YJ, Ruiz-Lozano P. Protein Corona Influences Cell-Biomaterial Interactions in Nanostructured Tissue Engineering Scaffolds. ADVANCED FUNCTIONAL MATERIALS 2015; 25:4379-4389. [PMID: 27516731 PMCID: PMC4978190 DOI: 10.1002/adfm.201500875] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biomaterials are extensively used to restore damaged tissues, in the forms of implants (e.g. tissue engineered scaffolds) or biomedical devices (e.g. pacemakers). Once in contact with the physiological environment, nanostructured biomaterials undergo modifications as a result of endogenous proteins binding to their surface. The formation of this macromolecular coating complex, known as 'protein corona', onto the surface of nanoparticles and its effect on cell-particle interactions are currently under intense investigation. In striking contrast, protein corona constructs within nanostructured porous tissue engineering scaffolds remain poorly characterized. As organismal systems are highly dynamic, it is conceivable that the formation of distinct protein corona on implanted scaffolds might itself modulate cell-extracellular matrix interactions. Here, we report that corona complexes formed onto the fibrils of engineered collagen scaffolds display specific, distinct, and reproducible compositions that are a signature of the tissue microenvironment as well as being indicative of the subject's health condition. Protein corona formed on collagen matrices modulated cellular secretome in a context-specific manner ex-vivo, demonstrating their role in regulating scaffold-cellular interactions. Together, these findings underscore the importance of custom-designing personalized nanostructured biomaterials, according to the biological milieu and disease state. We propose the use of protein corona as in situ biosensor of temporal and local biomarkers.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Stanford Cardiovascular Institute, Stanford, CA, 94305 USA
- Department of Pediatrics, Stanford University, 300 Pasteur Dr., Stanford, CA 94305
| | - Morteza Mahmoudi
- Stanford Cardiovascular Institute, Stanford, CA, 94305 USA
- Division of Cardiovascular Medicine, Stanford University, 300 Pasteur Dr., Stanford, CA 94305
| | - Mingming Zhao
- Department of Pediatrics, Stanford University, 300 Pasteur Dr., Stanford, CA 94305
| | - Ke Wei
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037
| | - Senthilkumar Sivanesan
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, 300 Pasteur Dr., Stanford, CA 94305
| | | | - Andrey V. Malkovskiy
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, 300 Pasteur Dr., Stanford, CA 94305
| | - Andrew B. Gladstone
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Stanford, CA 94305
| | - Jeffrey E. Cohen
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Stanford, CA 94305
| | - Phillip C. Yang
- Stanford Cardiovascular Institute, Stanford, CA, 94305 USA
- Division of Cardiovascular Medicine, Stanford University, 300 Pasteur Dr., Stanford, CA 94305
| | - Jayakumar Rajadas
- Stanford Cardiovascular Institute, Stanford, CA, 94305 USA
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, 300 Pasteur Dr., Stanford, CA 94305
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford, CA, 94305 USA
- Department of Pediatrics, Stanford University, 300 Pasteur Dr., Stanford, CA 94305
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Stanford, CA 94305
| | - Pilar Ruiz-Lozano
- Stanford Cardiovascular Institute, Stanford, CA, 94305 USA
- Department of Pediatrics, Stanford University, 300 Pasteur Dr., Stanford, CA 94305
| |
Collapse
|
12
|
Cubedo J, Padró T, García-Arguinzonis M, Vilahur G, Miñambres I, Pou JM, Ybarra J, Badimon L. A novel truncated form of apolipoprotein A-I transported by dense LDL is increased in diabetic patients. J Lipid Res 2015; 56:1762-73. [PMID: 26168996 DOI: 10.1194/jlr.p057513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 11/20/2022] Open
Abstract
Diabetic (DM) patients have exacerbated atherosclerosis and high CVD burden. Changes in lipid metabolism, lipoprotein structure, and dysfunctional HDL are characteristics of diabetes. Our aim was to investigate whether serum ApoA-I, the main protein in HDL, was biochemically modified in DM patients. By using proteomic technologies, we have identified a 26 kDa ApoA-I form in serum. MS analysis revealed this 26 kDa form as a novel truncated variant lacking amino acids 1-38, ApoA-IΔ(1-38). DM patients show a 2-fold increase in ApoA-IΔ(1-38) over nondiabetic individuals. ApoA-IΔ(1-38) is found in LDL, but not in VLDL or HDL, with an increase in LDL3 and LDL4 subfractions. To identify candidate mechanisms of ApoA-I truncation, we investigated potentially involved enzymes by in silico data mining, and tested the most probable molecule in an established animal model of diabetes. We have found increased hepatic cathepsin D activity as one of the potential proteases involved in ApoA-I truncation. Cathepsin D-cleaved ApoA-I exhibited increased LDL binding affinity and decreased antioxidant activity against LDL oxidation. In conclusion, we show for the first time: a) presence of a novel truncated ApoA-I form, ApoA-IΔ(1-38), in human serum; b) ApoA-IΔ(1-38) is transported by LDL; c) ApoA-IΔ(1-38) is increased in dense LDL fractions of DM patients; and d) cathepsin D-ApoA-I truncation may lead to ApoA-IΔ(1-38) binding to LDLs, increasing their susceptibility to oxidation and contributing to the high cardiovascular risk of DM patients.
Collapse
Affiliation(s)
- Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (CSIC-ICCC), Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Maisa García-Arguinzonis
- Cardiovascular Research Center (CSIC-ICCC), Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Research Center (CSIC-ICCC), Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Inka Miñambres
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jose María Pou
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain Cardiovascular Research Chair, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Lin SY, Hsu WH, Lin CC, Chen CJ. Mass spectrometry-based proteomics in Chest Medicine, Gerontology, and Nephrology: subgroups omics for personalized medicine. Biomedicine (Taipei) 2014; 4:25. [PMID: 25520938 PMCID: PMC4264973 DOI: 10.7603/s40681-014-0025-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/30/2014] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometry (MS) is currently the most promising tool for studying proteomics to investigate largescale proteins in a specific proteome. Emerging MS-based proteomics is widely applied to decipher complex proteome for discovering potential biomarkers. Given its growing usage in clinical medicine for biomarker discovery to predict, diagnose and confer prognosis, MS-based proteomics can benefit study of personalized medicine. In this review we introduce some fundamental MS theory and MS-based quantitative proteomic approaches as well as several representative clinical MS-based proteomics issues in Chest Medicine, Gerontology, and Nephrology.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Institute of Clinical Medical Science, China Medical University College of Medicine, 404 Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, 404 Taichung, Taiwan
- Division of Nephrology and Kidney Institute, China Medical University Hospital, 404 Taichung, Taiwan
| | - Wu-Huei Hsu
- Institute of Clinical Medical Science, China Medical University College of Medicine, 404 Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, 404 Taichung, Taiwan
- Division of Pulmonary and Critical Care Medicine, China Medical University Hospital and China Medical University, 404 Taichung, Taiwan
| | - Cheng-Chieh Lin
- Institute of Clinical Medical Science, China Medical University College of Medicine, 404 Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, 404 Taichung, Taiwan
- School of Medicine, College of Medicine China Medical University, No. 91, Hsueh Shih Road, 404 Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, 402 Taichung, Taiwan
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, 404 Taichung, Taiwan
| |
Collapse
|
14
|
Martín-Ventura JL, Blanco-Colio LM, Tunon J, Gomez-Guerrero C, Michel JB, Meilhac O, Egido J. Proteomics in atherothrombosis: a future perspective. Expert Rev Proteomics 2014; 4:249-60. [PMID: 17425460 DOI: 10.1586/14789450.4.2.249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherothrombosis is the primary cause of death in Western countries. The cellular and molecular mechanisms underlying atherosclerosis remain widely unknown. The complex nature of atherosclerotic cardiovascular diseases demands the development of novel technologies that enable discovery of new biomarkers for early disease detection and risk stratification, which may predict clinical outcome. In this review, we outline potential sources and recent proteomic approaches that could be applied in the search of novel biomarkers of cardiovascular risk. In addition, we describe some issues raised in relation to the application of proteomics to blood samples, as well as two novel emerging concepts, such as peptidomics and population proteomics. In the future, the use of high-throughput techniques (proteomic, genomics and metabolomics) will potentially identify novel patterns of biomarkers, which, along with traditional risk factors and imaging techniques, could help to target vulnerable patients and monitor the beneficial effects of pharmacological agents.
Collapse
|
15
|
Kaga E, Karademir B, Baykal AT, Ozer NK. Identification of differentially expressed proteins in atherosclerotic aorta and effect of vitamin E. J Proteomics 2013; 92:260-73. [DOI: 10.1016/j.jprot.2013.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
|
16
|
Calmodulin Expression Distinguishes the Smooth Muscle Cell Population of Human Carotid Plaque. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:996-1009. [DOI: 10.1016/j.ajpath.2013.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/06/2013] [Accepted: 06/03/2013] [Indexed: 11/20/2022]
|
17
|
Shalia KK, Mashru MR, Shah VK, Soneji SL, Payannavar S. Levels of cathepsins in acute myocardial infarction. Indian Heart J 2013; 64:290-4. [PMID: 22664813 DOI: 10.1016/s0019-4832(12)60089-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AIMS/OBJECTIVE Over expression of matrix degrading enzymes have been implicated in plaque destabilisation and rupture. Cathepsins associated with extracellular matrix breakdown make them intriguing suspects. The aim of the study was to analyse peripheral levels of cathepsin B and cathepsin K and their inhibitor cystatin C during acute myocardial infarction (AMI). MATERIALS AND METHODS Study population included AMI patients at acute event (AMI group, n=48), stable angina patients (stable angina group n = 17), and healthy individuals (Control group, n=31). Cathepsin B, cathepsin K, cystatin C, and matrix metalloproteinases (MMP)-9 were analysed by enzyme-linked immunosorbent assay (ELISA) method. RESULTS Cathepsin B (45.9%) and cathepsin K (92.31%) at acute event of myocardial infarction (AMI group) increased (P=0.001) while cystatin C decreased marginally (12.5%) as compared to controls. Stable angina group, demonstrated only marginal reduction in all the parameters studied as compared to controls. CONCLUSION Cathepsin B and cathepsin K can be further evaluated as biomarkers in identifying high-risk individuals for AMI.
Collapse
Affiliation(s)
- Kavita K Shalia
- Research Scientist, Sir HN Medical Research Society, Sir HN Hospital and Research Centre, Raja Rammohan Roy Road, Mumbai - 400004.
| | | | | | | | | |
Collapse
|
18
|
ALDH2 protects against stroke by clearing 4-HNE. Cell Res 2013; 23:915-30. [PMID: 23689279 PMCID: PMC3698638 DOI: 10.1038/cr.2013.69] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/05/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that metabolizes ethanol and toxic aldehydes such as 4-hydroxy-2-nonenal (4-HNE). Using an unbiased proteomic search, we identified ALDH2 deficiency in stroke-prone spontaneously hypertensive rats (SHR-SP) as compared with spontaneously hypertensive rats (SHR). We concluded the causative role of ALDH2 deficiency in neuronal injury as overexpression or activation of ALDH2 conferred neuroprotection by clearing 4-HNE in in vitro studies. Further, ALDH2-knockdown rats revealed the absence of neuroprotective effects of PKCε. Moderate ethanol administration that is known to exert protection against stroke was shown to enhance the detoxification of 4-HNE, and to protect against ischemic cerebral injury through the PKCε-ALDH2 pathway. In SHR-SP, serum 4-HNE level was persistently elevated and correlated inversely with the lifespan. The role of 4-HNE in stroke in humans was also suggested by persistent elevation of its plasma levels for at least 6 months after stroke. Lastly, we observed that 21 of 1 242 subjects followed for 8 years who developed stroke had higher initial plasma 4-HNE levels than those who did not develop stroke. These findings suggest that activation of the ALDH2 pathway may serve as a useful index in the identification of stroke-prone subjects, and the ALDH2 pathway may be a potential target of therapeutic intervention in stroke.
Collapse
|
19
|
Ngounou Wetie AG, Sokolowska I, Woods AG, Wormwood KL, Dao S, Patel S, Clarkson BD, Darie CC. Automated Mass Spectrometry–Based Functional Assay for the Routine Analysis of the Secretome. ACTA ACUST UNITED AC 2013; 18:19-29. [DOI: 10.1177/2211068212454738] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Abstract
Cardiovascular diseases constitute the largest of death in developed countries, being atherosclerosis the major contributor. Atherosclerosis is a process of chronic inflammation, characterized by the accumulation of lipids, cells, and fibrous elements in medium and large arteries. There is a continuum in atherosclerotic cardiovascular pathology that extends from the initial endothelial damage to diseases such as angina, myocardial infarction, and stroke. The extent of inflammation, proteolysis, calcification, and neovascularization influences the development of advanced lesions (atheroma plaques) on the arteries. Plaque rupture and the ensuing thrombosis cause the acute complications of atherosclerosis, i.e., myocardial infarction and cerebral ischemia. Thus, identification of early biomarkers of plaque unstability and susceptibility to rupture is of capital importance in preventing acute events. In recent years proteomics has been successfully applied to study proteins involved in these pathological processes. Thus, proteomic studies have been carried out focusing on different elements such as vascular tissues (arteries), artery layers, cells looking at proteomes and secretomes, plasma/serum, exosomes, lipoproteins, and metabolites. This chapter will provide an overview of latest advances in proteomic studies of atherosclerosis and related vascular diseases.
Collapse
Affiliation(s)
- Maria G Barderas
- Department of Vascular Physiopathology, SESCAM, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | |
Collapse
|
21
|
Fernández E, García C, de la Espriella R, Dueñas CR, Manzur F. Biomarcadores cardíacos: Presente y futuro. REVISTA COLOMBIANA DE CARDIOLOGÍA 2012. [DOI: 10.1016/s0120-5633(12)70151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Pula G, Perera S, Prokopi M, Sidibe A, Boulanger CM, Mayr M. Proteomic analysis of secretory proteins and vesicles in vascular research. Proteomics Clin Appl 2012; 2:882-91. [PMID: 21136886 DOI: 10.1002/prca.200800040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The release of proteins and membrane vesicles in the bloodstream regulates diverse vascular processes, both physiological, such as angiogenesis and haemostasis, and pathological, such as atherosclerosis and atherothrombosis. Proteomics, beside its canonical application for the expression profiling in cells and organs, can be applied to the study of secreted proteins and microvesicles, which play a significant role in the homeostasis of the vasculature, and the development of the atherosclerotic disease.
Collapse
Affiliation(s)
- Giordano Pula
- Cardiovascular Division, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
23
|
Moheimani F, Kim CHJ, Rahmanto AS, van Reyk DM, Davies MJ. Inhibition of lysosomal function in macrophages incubated with elevated glucose concentrations: a potential contributory factor in diabetes-associated atherosclerosis. Atherosclerosis 2012; 223:144-51. [PMID: 22658253 DOI: 10.1016/j.atherosclerosis.2012.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 12/22/2022]
Abstract
OBJECTIVE People with diabetes have an elevated risk of atherosclerosis. The accumulation of lipid within macrophage cells in the artery wall is believed to arise via the uptake and subsequent processing of modified low-density lipoproteins (LDL) via the endo-lysosomal system. In this study the effects of prolonged exposure to elevated glucose upon macrophage lysosomal function was examined to determine whether this contributes to modulated protein catabolism. METHODS Human monocytes were isolated from white-cell concentrates and differentiated, in vitro, into monocyte-derived macrophages over 11 days in medium containing 5-30 mmol/L glucose. Murine macrophage-like J774A.1 cells were incubated similarly. Lysosomal cathepsin (B, D, L and S) and acid lipase activities were assessed using fluorogenic substrates; cathepsin protein levels were examined by Western blotting. Lysosomal numbers were examined using the lysomotropic fluorescent dye LysoTracker DND-99, measurement of aryl sulfatase activity, and quantification of lysosome-associated membrane glycoprotein-1 (LAMP-1) by Western blotting. RESULTS Exposure to elevated glucose, but not mannitol, resulted in a concentration-dependent decrease in the activity, and to a lesser extent protein levels, of four lysosomal cathepsins. Acid lipase activity was also significantly reduced. Arysulfatase activity, LAMP-1 levels and lysosomal numbers were also decreased at the highest glucose concentrations, though to a lesser extent. CONCLUSION Long term exposure of human and murine macrophage cells to elevated glucose levels result in a depression of lysosomal proteolytic and lipase activities. This may result in decreased clearance and cellular accumulation of (lipo)proteins and contribute to the accumulation of modified proteins and lipids in diabetes-associated atherosclerosis.
Collapse
|
24
|
Krishnamurthy K, Kanagasabai R, Druhan LJ, Ilangovan G. Heat shock protein 25-enriched plasma transfusion preconditions the heart against doxorubicin-induced dilated cardiomyopathy in mice. J Pharmacol Exp Ther 2012; 341:829-39. [PMID: 22438470 DOI: 10.1124/jpet.112.192245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extracellular heat shock proteins (eHsps) in the circulation have recently been found to activate both apoptotic and protective signaling in the heart. However, the role of eHsps in doxorubicin (Dox)-induced heart failure has not yet been studied. The objective of the present study was to determine how Dox affects circulating eHsp25 in blood plasma and how eHsp25 affects Dox-induced dilated cardiomyopathy. Wild-type mice [HSF-1(+/+)] were pretreated with 100 μl of heterozygous heat shock factor-1 [HSF-1(+/-)] mouse plasma (which contained 4-fold higher eHsp25 compared with wild-type mice), HSF-1(+/+) plasma, or saline, before treatment with Dox (6 mg/kg). After 4 weeks of this treatment protocol, HSF-1(+/-) plasma-pretreated mice showed increased eHsp25 in plasma and improved cardiac function (percentage of fractional shortening 37.3 ± 2.1 versus 26.4 ± 4.0) and better life span (31 ± 2 versus 22 ± 3 days) compared with the HSF-1(+/+) plasma or saline-pretreated mice. Preincubation of isolated adult cardiomyocytes with HSF-1(+/-) plasma or recombinant human Hsp27 (rhHsp27) significantly reduced Dox-induced activation of nuclear factor-κB and cytokine release and delayed cardiomyocyte death. Moreover, when cardiomyocytes were incubated with fluorescence-tagged rhHsp27, a saturation in binding was observed, suggesting that eHsp25 can bind to surface receptors. Competitive assays with a Toll-like receptor 2 (TLR2) antibody reduced the rhHSP27 binding, indicating that Hsp25 interacts with TLR2. In conclusion, transfusion of Hsp25-enriched blood plasma protected the heart from Dox-induced cardiotoxicity. Hsp25 antagonized Dox binding to the TLR2 receptor on cardiomyocytes.
Collapse
Affiliation(s)
- Karthikeyan Krishnamurthy
- Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
25
|
Martín-Rojas T, Gil-Dones F, Lopez-Almodovar LF, Padial LR, Vivanco F, Barderas MG. Proteomic profile of human aortic stenosis: insights into the degenerative process. J Proteome Res 2012; 11:1537-50. [PMID: 22276806 DOI: 10.1021/pr2005692] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Degenerative aortic stenosis is the most common worldwide cause of valve replacement. While it shares certain risk factors with coronary artery disease, it is not delayed or reversed by reducing exposure to risk factors (e.g., therapies that lower lipids). Therefore, it is necessary to better understand its pathophysiology for preventive measures to be taken. In this work, aortic valve samples were collected from 20 patients that underwent aortic valve replacement (55% males, mean age of 74 years) and 20 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by quantitative differential electrophoresis (2D-DIGE) and mass spectrometry, and 35 protein species were clearly increased in aortic valves, including apolipoprotein AI, alpha-1-antitrypsin, serum albumin, lumican, alfa-1-glycoprotein, vimentin, superoxide dismutase Cu-Zn, serum amyloid P-component, glutathione S-transferase-P, fatty acid-binding protein, transthyretin, and fibrinogen gamma. By contrast, 8 protein species were decreased (transgelin, haptoglobin, glutathione peroxidase 3, HSP27, and calreticulin). All of the proteins identified play a significant role in cardiovascular processes, such as fibrosis, homeostasis, and coagulation. The significant changes observed in the abundance of key cardiovascular proteins strongly suggest that they can be involved in the pathogenesis of degenerative aortic stenosis. Further studies are warranted to better understand this process before we can attempt to modulate it.
Collapse
Affiliation(s)
- Tatiana Martín-Rojas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, Toledo, Spain
| | | | | | | | | | | |
Collapse
|
26
|
[Inflammatory biomarkers in the acute coronary syndrome]. Med Clin (Barc) 2011; 136:461-2; author reply 462. [PMID: 20961586 DOI: 10.1016/j.medcli.2009.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 11/10/2009] [Indexed: 11/21/2022]
|
27
|
Ghayour-Mobarhan M, Saber H, Ferns GAA. The potential role of heat shock protein 27 in cardiovascular disease. Clin Chim Acta 2011; 413:15-24. [PMID: 21514288 DOI: 10.1016/j.cca.2011.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/03/2011] [Accepted: 04/05/2011] [Indexed: 12/13/2022]
Abstract
Heat shock proteins (Hsps) comprise several families of proteins expressed by a number of cell types following exposure to stressful environmental conditions that include heat, free radicals, toxins and ischemia, and are particularly involved in the recognition and renaturation of mis-folded proteins. Heat shock protein-27 (Hsp27) is a member of the small Hsp (sHsp) family with a molecular weight of approximately 27 KDa. In addition to its chaperoning functions, Hsp27 also appears to be involved in a diverse range of cellular functions, promoting cell survival through effects on the apoptotic pathway and plays important roles in cytoskeleton dynamics, cell differentiation and embryogenesis. Over the past two decades there has been an increasing interest in the relationship between Hsp27 and cardiovascular disease. Hsp27 is thought to exert an important role in the atherosclerotic process. Serum Hsp27 concentrations appear to be a biomarker of myocardial ischemia. In this review, we will focus on the possible protective and immuno-modulatory roles of Hsp27 in atherogenesis with special emphasis on their changes following acute coronary events and their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Biochemistry and Nutrition Research Center and Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | |
Collapse
|
28
|
Katsaros KM, Wiesbauer F, Speidl WS, Kastl SP, Huber K, Zorn G, Niessner A, Glogar D, Maurer G, Wojta J. High soluble Fas and soluble Fas Ligand serum levels before stent implantation are protective against restenosis. Thromb Haemost 2011; 105:883-91. [PMID: 21359408 DOI: 10.1160/th10-09-0566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/20/2011] [Indexed: 01/24/2023]
Abstract
Percutaneous coronary intervention (PCI) represents the most important treatment of coronary artery stenosis today. But instent restenosis (ISR) is a limitation for the outcome. Fas and Fas Ligand have been implicated in apoptosis and vessel wall inflammation. Their role in ISR is not known so far. In this prospective study we studied 137 patients with stable coronary artery disease who underwent elective PCI. Blood samples were taken directly before and 24 hours after PCI. Soluble (s)Fas and sFas Ligand serum levels were measured by ELISA. Restenosis was evaluated six to eight months later either by coronary angiography or by exercise testing. During the follow-up period, 18 patients (13%) developed ISR. At baseline, patients with ISR had significantly lower median sFas, as well as sFas Ligand levels compared to patients without ISR (sFAS: ISR 492 pg/ml, no ISR 967 pg/ml, p=0.014; sFAS Ligand: ISR: 26 pg/ml, no ISR: 42 pg/ml, p=0.001). After PCI median sFas levels significantly decreased in patients with ISR compared to patients without ISR [ISR: -152 pg/ml (IQR -36 to -227), no ISR: -38 pg/ml (IQR -173 to +150 pg/ml), p=0.03]. sFas Ligand levels after PCI significantly increased in ISR patients compared to patients without ISR [ISR: 14 pg/ml (IQR -3 to +26 pg/ml), no ISR -6 pg/ml (IQR -22 to +21 pg/ml), p=0.014]. In conclusion, sFas and sFas Ligand seem to be associated with the development of ISR. Determination of serum levels before and after PCI might help identifying patients at higher risk of ISR.
Collapse
Affiliation(s)
- K M Katsaros
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Burghoff S, Schrader J. Secretome of human endothelial cells under shear stress. J Proteome Res 2011; 10:1160-9. [PMID: 21184611 DOI: 10.1021/pr100937a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells are exposed to different types of shear stress which triggers the secretion of subsets of proteins. In this study, we analyzed the secretome of endothelial cells under static, laminar, and oscillatory flow. To differentiate between endogenously expressed and added proteins, isolated human umbilical vein endothelial cells were labeled with l-Lysine-(13)C(6),(15)N(2) and l-Arginine-(13)C(6),(15)N(4). Shear stress was applied for 24 h using a cone-and-plate viscometer. Proteins from the supernatants were isolated, trypsinized, and finally analyzed using LC-MS/MS (LTQ). Under static control condition 395 proteins could be identified, of which 78 proteins were assigned to the secretome according to Swiss-Prot database. Under laminar shear stress conditions, 327 proteins (83 secreted) and under oscillatory shear stress 507 proteins (79 secreted) were measured. We were able to identify 6 proteins specific for control conditions, 8 proteins specific for laminar shear stress, and 5 proteins specific for oscillatory shear stress. In addition, we identified flow-specific secretion patterns like the increased secretion of cell adhesion proteins and of proteins involved in protein binding. In conclusion, the identification of shear stress specific secreted proteins (101 under different flow conditions) emphasizes the role of endothelial cells in modulating the plasma composition according to the physiological requirements.
Collapse
Affiliation(s)
- Sandra Burghoff
- Institute for Cardiovascular Physiology, Heinrich Heine University, Duesseldorf, Germany.
| | | |
Collapse
|
30
|
Serrani Azcurra D. Marcadores precoces de disfunción endotelial en trastorno de estrés postraumático. Rol en la aterogénesis. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2010; 3:128-36. [DOI: 10.1016/j.rpsm.2010.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 09/04/2010] [Accepted: 09/16/2010] [Indexed: 02/08/2023]
|
31
|
Porcelli B, Ciari I, Felici C, Pagani R, Banfi C, Brioschi M, Giubbolini M, de Donato G, Setacci C, Terzuoli L. Proteomic analysis of atherosclerotic plaque. Biomed Pharmacother 2010; 64:369-72. [DOI: 10.1016/j.biopha.2009.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022] Open
|
32
|
York TP, van den Oord EJCG, Langston TB, Edmiston JS, McKinney W, Webb BT, Murrelle EL, Zedler BK, Flora JW. High-resolution mass spectrometry proteomics for the identification of candidate plasma protein biomarkers for chronic obstructive pulmonary disease. Biomarkers 2010; 15:367-77. [DOI: 10.3109/13547501003789901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Correlation between cathepsin D serum concentration and carotid intima-media thickness in hemodialysis patients. Int Urol Nephrol 2010; 43:841-8. [PMID: 20387115 DOI: 10.1007/s11255-010-9729-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
AIM Cardiovascular (CV) disease is the leading cause of death in hemodialysis (HD) patients, and approximately half of mortalities in HD patients are attributed to CV disease. Atherosclerosis is the most frequent cause of CV complications in patients with end-stage renal disease (ESRD). Based on recent studies, cathepsin D has been suggested as a potential marker of atherosclerosis, and we hypothesized that there is an association between serum concentration of cathepsin D and carotid intima-media thickness (CIMT) in hemodialysis patients. METHODS Thirty-one hemodialysis patients (18 men and 13 women) were enrolled in this study. Serum levels of soluble cathepsin D were measured with an enzyme-linked immunosorbant assay (ELISA) kit. CIMT was determined in each patient. RESULTS The data showed that there was a positive significant correlation between serum concentration of cathepsin D and CIMT by using Pearson correlation (P value <0.05). CONCLUSION Based on the results of this study, cathepsin D could be suggested to have a role in the development of atherosclerotic plaques.
Collapse
|
34
|
Moseley FL, Bicknell KA, Marber MS, Brooks G. The use of proteomics to identify novel therapeutic targets for the treatment of disease. J Pharm Pharmacol 2010; 59:609-28. [PMID: 17524226 DOI: 10.1211/jpp.59.5.0001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
The completion of the Human Genome Project has revealed a multitude of potential avenues for the identification of therapeutic targets. Extensive sequence information enables the identification of novel genes but does not facilitate a thorough understanding of how changes in gene expression control the molecular mechanisms underlying the development and regulation of a cell or the progression of disease. Proteomics encompasses the study of proteins expressed by a population of cells, and evaluates changes in protein expression, post-translational modifications, protein interactions, protein structure and splice variants, all of which are imperative for a complete understanding of protein function within the cell. From the outset, proteomics has been used to compare the protein profiles of cells in healthy and diseased states and as such can be used to identify proteins associated with disease development and progression. These candidate proteins might provide novel targets for new therapeutic agents or aid the development of assays for disease biomarkers. This review provides an overview of the current proteomic techniques available and focuses on their application in the search for novel therapeutic targets for the treatment of disease.
Collapse
Affiliation(s)
- Fleur L Moseley
- School of Pharmacy, The University of Reading, Whiteknights, Reading, Berkshire, RG6 6AP, UK
| | | | | | | |
Collapse
|
35
|
Banerjee I, Fuseler JW, Souders CA, Bowers SL, Baudino TA. The role of interleukin-6 in the formation of the coronary vasculature. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2009; 15:415-421. [PMID: 19709461 PMCID: PMC2854414 DOI: 10.1017/s1431927609990353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The formation and the patterning of the coronary vasculature are critical to the development and pathology of the heart. Alterations in cytokine signaling and biomechanical load can alter the vascular distribution of the vessels within the heart. Changes in the physical patterning of the vasculature can have significant impacts on the relationships of the pressure-flow network and distribution of critical growth and survival factors to the tissue. Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates several biological processes, including vasculogenesis. Using both immunohistological and cardioangiographic analyses, we tested the hypothesis that IL-6-loss will result in decreased vessel density, along with changes in vascular distribution. Moreover, given the impact of vascular patterning on pressure-flow and distribution mechanics, we utilized non-Euclidean geometrical fractal analysis to quantify the changes in patterning resulting from IL-6-loss. Our analyses revealed that IL-6-loss results in a decreased capillary density and increase in intercapillary distances, but does not alter vessel size or diameter. We also observed that the IL-6-/- coronary vasculature had a marked increase in fractal dimension (D value), indicating that IL-6-loss alters vascular patterning. Characterization of IL-6-loss on coronary vasculature may lend insight into the role of IL-6 in the formation and patterning of the vascular bed.
Collapse
|
36
|
Martín-Ventura JL, Blanco-Colio LM, Tuñón J, Muñoz-García B, Madrigal-Matute J, Moreno JA, Vega de Céniga M, Egido J. Biomarkers in cardiovascular medicine. Rev Esp Cardiol 2009; 62:677-88. [PMID: 19480764 DOI: 10.1016/s1885-5857(09)72232-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cardiovascular disease is the principal cause of death in developed countries. The underlying pathological process is arterial wall thickening due to the formation of atherosclerotic plaque, which is frequently complicated by thrombus, thereby giving rise to the possibility of acute coronary syndrome or stroke. One of the major challenges in cardiovascular medicine is to find a way of predicting the risk that an individual will suffer an acute thrombotic event. During the last few decades, there has been considerable interest in finding diagnostic and prognostic biomarkers that can be detected in blood. Of these, C-reactive protein is the best known. Others, such as the soluble CD40 ligand, can be used to predict cardiovascular events. However, to date, no biomarker has been generally accepted for use in clinical practice. At present, there are a number of high-performance techniques, such as proteomics, that have the ability to detect multiple potential biomarkers. In the near future, these approaches may lead to the discovery of new biomarkers that, when used with imaging techniques, could help improve our ability to predict the occurrence of acute vascular events.
Collapse
Affiliation(s)
- José L Martín-Ventura
- Laboratorio de Patología Vascular, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, España
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Barderas MG, Tuñón J, Dardé VM, De la Cuesta F, Jiménez-Nácher JJ, Tarín N, López-Bescós L, Egido J, Vivanco F. Atorvastatin modifies the protein profile of circulating human monocytes after an acute coronary syndrome. Proteomics 2009; 9:1982-93. [PMID: 19294693 DOI: 10.1002/pmic.200700583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aggressive treatment with high-dose atorvastatin reduces more effectively the incidence of cardiovascular events than moderate statin therapy. The mechanism of this benefit has not been fully elucidated. In order to know the potential effects of statin treatment on the protein expression of circulating monocytes in acute coronary syndrome (ACS) patients, a proteomic analysis of these cells was carried out by 2-DE and MS. Twenty-five patients with non-ST-elevation acute coronary syndrome (NSTEACS) were randomized, the fourth day after admission, to receive ATV 80 mg/dL (n = 14) or conventional treatment (CT) (n = 11), for two months. Blood was withdrawn at the end of the treatment, and monocytes were extracted for proteomic analysis and their protein expression patterns determined. Age, sex, total cholesterol, LDL, HDL, triglycerides, body mass index, presence of hypertension, diabetes, and smoking status were not significantly different between the two groups of patients. The expression of 20 proteins was modified by intensive ATV. Among the most relevant results stand out the normalization by intensive ATV treatment of the expression of proteins that modulate inflammation and thrombosis such as protein disulfide isomerase ER60 (PDI), Annexin I, and prohibitin, or that have other protective effects as HSP-70. Thus, this approach shed light at the molecular level of the beneficial mechanisms of anti-atherothrombotic drugs.
Collapse
|
38
|
Abstract
Proteomics is fulfilling its potential and beginning to impact the diagnosis and therapy of cardiovascular disease. As de novo proteomics analysis gets more streamlined, and robust high-throughput methods are developed, more and more attention is being directed toward the field of cardiovascular serum and plasma biomarker discovery. To take cardiovascular proteomics from bench to bedside, great care must be taken to achieve reproducible results. Despite technical advances, however, the absolute number of clinical biomarkers thus far discovered by a proteomics approach is small. Although several factors contribute to this lack, one step is to build "translation teams" involving a close collaboration between researchers and clinicians.
Collapse
|
39
|
Martín-Ventura JL, Blanco-Colio LM, Tuñón J, Muñoz-García B, Madrigal-Matute J, Moreno JA, Vega de Céniga M, Egido J. Biomarcadores en la medicina cardiovascular. Rev Esp Cardiol 2009. [DOI: 10.1016/s0300-8932(09)71335-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Proteomic profiling during atherosclerosis progression: Effect of nebivolol treatment. Mol Cell Biochem 2009; 331:9-17. [PMID: 19421716 DOI: 10.1007/s11010-009-0139-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
There is a great need for the identification of biomarkers for the early diagnosis of atherosclerosis and the agents to prevent its progression. The aim of this study was to explore the effect of 24 week of nebivolol (a third-generation vasodilatory beta-blocker) treatment on serum protein profiles in Apo E(-/-) mice during atherosclerosis progression. Nebivolol treated and non-treated (the control group) groups consisted of 10 genetically modified homozygous Apo E(-/-) mice. Proteomic analyses were performed using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the serum samples from the nebivolol treated and non-treated Apo E(-/-) mice. The protein profiles obtained using three different chips, CM10 (weak cation-exchange), H50 (reverse phase), and IMAC30-Cu(2+) (immobilized metal affinity capture) were statistically analyzed using the ProteinChip data manager 3.0 program. At the end of 24 week of nebivolol-treatment period, a total of 662 protein/peptide clustering peaks were detected using 12 different conditions and reading with high and low intensity laser energy. The highest total number of protein/peptide clusters was found on H50 chip array. The peak intensities of 95 of the 662 protein/peptide clusters were significantly different in the nebivolol-treated atherosclerotic group in comparison to the non-treated control mice groups (P < 0.05). Forty-three protein/peptides were up-regulated (high signal intensity) while 52 protein/peptides had lower signal intensity (down-regulated) in the nebivolol-treated atherosclerotic group. The proteomic profiles of nebivolol-treated Apo E(-/-) mice were different than the control group indicating a potential role of nebivolol in atherosclerosis. Our study contributes to understand the efficacy of nebivolol on serum protein/peptide profiles during atherosclerosis development.
Collapse
|
41
|
Wang Y, Chiu JF, He QY. Genomics and Proteomics in Drug Design and Discovery. Pharmacology 2009. [DOI: 10.1016/b978-0-12-369521-5.00020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Edwards AV, White MY, Cordwell SJ. The Role of Proteomics in Clinical Cardiovascular Biomarker Discovery. Mol Cell Proteomics 2008; 7:1824-37. [DOI: 10.1074/mcp.r800007-mcp200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
43
|
Barderas MG, Dardé VM, de la Cuesta F, Martin-Ventura JL, Blanco-Colio LM, Jiménez-Narcher J, Alvarez-Llamas G, Lopez-Bescos L, Tuñó J, Egido J, Vivanco F. Proteomic Analysis of Circulating Monocytes Identifies Cathepsin D as A Potential Novel Plasma Marker of Acute Coronary Syndromes. Clin Med Cardiol 2008. [DOI: 10.4137/cmc.s654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Maria G. Barderas
- Vascular Pathophysiology, Hospital Nacional de Paraplejicos, SESCAM, Toledo
| | - Veróica M. Dardé
- Department of Immunology, Fundació Jiménez Díaz, Autóoma University, Madrid
- Vascular Pathophysiology, Hospital Nacional de Paraplejicos, SESCAM, Toledo
| | | | | | | | | | | | | | - José Tuñó
- Department of Cardiology, Fundació Jiménez Díaz, Autóoma University, Madrid
| | - Jesús Egido
- Vascular Research Laboratory, Fundació Jiménez Díaz, Autóoma University, Madrid
| | - Fernando Vivanco
- Department of Immunology, Fundació Jiménez Díaz, Autóoma University, Madrid
- Proteomic Unit, Universidad Complutense, Madrid, Spain
| |
Collapse
|
44
|
Genetic networks of cooperative redox regulation of osteopontin. Matrix Biol 2008; 27:462-74. [PMID: 18378437 DOI: 10.1016/j.matbio.2008.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
Osteopontin is a primary cytokine and matrix-associated protein involved in medial thickening and neointima formation. Osteopontin binds integrin receptors, activates cell migration and matrix metalloproteinases, and mediates arteriosclerotic lesion formation and vessel calcification. To understand the complex biology of osteopontin, computational methodology was employed to identify sets of genes whose transcriptional states were predictive of osteopontin gene expression based on the transcriptional states of 12,400 genes and ESTs across 235 independent Affymetrix Murine Genome Array MG_U74Av2 hybridizations. Arginase [GenBank: U51805] and Mac-2 antigen [GenBank: X16834] were identified as primary attractors within the gene-gene interaction network of osteopontin. Resolution of molecular interactions among these genes indicated that the majority of predictor genes could be linked through redox regulated transcription by nuclear factor kappa-B and transforming growth factor beta inducible early gene 1 regulatory elements. Subsequent molecular analyses established redox sensitivity of a 200 bp region within the 5' UTR of opn promoter and implicated nuclear factor kappa-B and transforming growth factor beta inducible early gene 1 cis-acting elements in the regulation of osteopontin.
Collapse
|
45
|
Vivanco F, Padial L, Darde V, de la Cuesta F, Alvarez-Llamas G, Diaz-Prieto N, Barderas M. Proteomic Biomarkers of Atherosclerosis. Biomark Insights 2008; 3:101-113. [PMID: 19578499 PMCID: PMC2688368 DOI: 10.4137/bmi.s488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SUMMARY: Biomarkers provide a powerful approach to understanding the spectrum of cardiovascular diseases. They have application in screening, diagnostic, prognostication, prediction of recurrences and monitoring of therapy. The "omics" tool are becoming very useful in the development of new biomarkers in cardiovascular diseases. Among them, proteomics is especially fitted to look for new proteins in health and disease and is playing a significant role in the development of new diagnostic tools in cardiovascular diagnosis and prognosis. This review provides an overview of progress in applying proteomics to atherosclerosis. First, we describe novel proteins identified analysing atherosclerotic plaques directly. Careful analysis of proteins within the atherosclerotic vascular tissue can provide a repertoire of proteins involved in vascular remodelling and atherogenesis. Second, we discuss recent data concerning proteins secreted by atherosclerotic plaques. The definition of the atheroma plaque secretome resides in that proteins secreted by arteries can be very good candidates of novel biomarkers. Finally we describe proteins that have been differentially expressed (versus controls) by individual cells which constitute atheroma plaques (endothelial cells, vascular smooth muscle cells, macrophages and foam cells) as well as by circulating cells (monocytes, platelets) or novel biomarkers present in plasma.
Collapse
Affiliation(s)
- F. Vivanco
- Department of Immunology. Fundación Jiménez Díaz, Madrid, Spain
- Department of Biochemistry and Molecular Biology I, Universidad Complutense, Proteomic Unit, Madrid, Spain
| | - L.R. Padial
- Department of Cardiology. Hospital Virgen de la Salud, SESCAM, Toledo, Spain
| | - V.M. Darde
- Department of Immunology. Fundación Jiménez Díaz, Madrid, Spain
| | - F. de la Cuesta
- Department of Immunology. Fundación Jiménez Díaz, Madrid, Spain
| | | | - Natacha Diaz-Prieto
- Department of Vascular Pathophysiology. Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - M.G. Barderas
- Department of Immunology. Fundación Jiménez Díaz, Madrid, Spain
- Department of Vascular Pathophysiology. Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| |
Collapse
|
46
|
Wang XL, Fu A, Spiro C, Lee HC. Clinical application of proteomics approaches in vascular diseases. Proteomics Clin Appl 2008; 2:238-50. [DOI: 10.1002/prca.200780005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Indexed: 01/12/2023]
|
47
|
Brown A, Lattimore JD, McGrady M, Sullivan D, Dyer W, Braet F, dos Remedios C. Stable and unstable angina: Identifying novel markers on circulating leukocytes. Proteomics Clin Appl 2007; 2:90-8. [DOI: 10.1002/prca.200780090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Indexed: 11/11/2022]
|
48
|
Wu J, Liu W, Sousa E, Qiu Y, Pittman DD, Maganti V, Feldman J, Gill D, Lu Z, Dorner AJ, Schaub R, Tan XY. Proteomic identification of endothelial proteins isolated in situ from atherosclerotic aorta via systemic perfusion. J Proteome Res 2007; 6:4728-36. [PMID: 17997517 DOI: 10.1021/pr070537c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The functional and structural alterations of vascular endothelium contribute to the initiation, progression, and complications of atherosclerotic plaque formation, but limited information is known about the molecular composition and pathways underlying pathological changes during atherosclerosis. We have developed an affinity proteomic strategy for in situ isolation and differential mapping of vascular endothelial proteins in normal and atherosclerotic aorta tissues. The selective labeling was carried out by perfusion of the blood vessels with an active biotin reagent for covalent modification of accessible vascular endothelial proteins. The biotinylated proteins were then enriched by streptavidin affinity chromatography, separated by SDS-PAGE, and subsequently characterized by LC-MS/MS. The described procedure led to the identification of 454 distinct proteins in normal and atherosclerotic aorta tissues. A majority of the proteins are plasma membrane associated and extracellular matrix proteins, and 81 showed altered expressions in atherosclerotic aorta tissue. The differentially expressed proteins are involved in immune and inflammatory responses, cell adhesion, and lipid metabolism. The method provides a new avenue for investigating the endothelial dysfunction and development of atherosclerosis.
Collapse
Affiliation(s)
- Jiang Wu
- Biological Technologies, Cardiovascular and Metabolic Diseases, Wyeth Research, Cambridge, Massachusetts 02140, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hellings WE, Peeters W, Moll FL, Pasterkamp G. From vulnerable plaque to vulnerable patient: the search for biomarkers of plaque destabilization. Trends Cardiovasc Med 2007; 17:162-71. [PMID: 17574124 DOI: 10.1016/j.tcm.2007.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is a strong need for biomarkers to identify patients at risk for future cardiovascular events related with progressive atherosclerotic disease. Ideally, increasing knowledge of the mechanisms of atherosclerotic plaque destabilization should be translated in clinical practice. Currently, the following commonly followed strategies can be identified with the objective to detect either the local vulnerable plaque that is prone to rupture and gives rise to a thrombotic occlusion, or the systemic vulnerable patient, who has a high probability to suffer from an adverse clinical event. On the one hand, studies are ongoing to determine local atherosclerotic plaque characteristics to predict future local plaque rupture and subsequent vascular thrombosis. Newly developed imaging modalities are being developed and validated to detect these plaques in vivo. On the other hand, systemic approaches are pursued to discover serum biomarkers that are applicable to define patients at risk for future cardiovascular events. We propose a third original approach that is optional but yet unexplored, that is, to use local plaque characteristics as a biomarker not just for local plaque destabilization but for future cardiovascular events due to plaque progression in any vascular system. This review aims to provide an overview of the current standings of the identification of the vulnerable plaque and the vulnerable patient.
Collapse
Affiliation(s)
- Willem E Hellings
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, The Netherlands
| | | | | | | |
Collapse
|
50
|
Lampert FM, Matt P, Grapow M, Lefkovits I, Zerkowski HR, Grussenmeyer T. "Turnover proteome" of human atrial trabeculae. J Proteome Res 2007; 6:4458-68. [PMID: 17915906 DOI: 10.1021/pr0704229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most of the biologically relevant data on cardiomyocytes are derived from isolated cells under conditions that are, to some extent, altered compared to the natural milieu of the functional heart. The handling procedure of the dissection, isolation, and short-term culturing induces changes in the cells such that the subsequently measured parameters (among others, the protein synthesis) reflect the actual experimental conduct rather than the intrinsic properties of these terminally differentiated cells. Although it is known that the protein synthetic machinery of isolated cardiomyocytes is operational and functional, the biosynthetic yield of human cardiomyocytes in the natural milieu of the trabeculae remains to be established, with a special emphasis to clarify whether the protein synthesis includes just a limited set of polypeptides or it encompasses all cellular constituents. Knowledge on this issue is a prerequisite for achieving further advances in our understanding of heart remodeling related to hypertrophy in particular, and for attempting interventions leading to repair of damaged heart in general. The experimental system of "organ bath" enables simultaneous registration of contractile forces of portions of cardiac muscle tissue (and other myocyte-containing tissues) and biosynthetic labeling of newly synthesized cellular constituents. The organ bath methodology was adapted for this project such as enabling to measure molecular changes in response to in vitro applied stimuli. Instead of Krebs-Henseleit-solution, as used in classical protocols of organ bath studies, we utilized cell culture media suitable to experimental conditions related to metabolic labeling. Proteome patterns established by performing two-dimensional gel electrophoresis of the extracts from biosynthetically labeled trabeculae revealed that cardiomyocytes synthesize the full spectrum of cellular proteins. Proteomic silver-stain readout was used to obtain samples for spot excisions, as material suitable for mass spectrometric analysis. Protein spots were identified both from the excised spots and also by matching with the in-house- and www-databases (Swiss-Prot/High-Performance Heart). From our findings that protein synthesis in terminally differentiated cardiomyocytes is not confined just to the synthesis of those structures needed for the post-mitotic house-keeping functions, we conclude that this model might serve as a valid experimental system to study and elucidate the effects of various pharmacological compounds under conditions where physiology (contractile forces) and biochemistry (protein synthesis) of intact human heart tissue are monitored simultaneously.
Collapse
Affiliation(s)
- Florian M Lampert
- Department of Research, University Hospital Basel, Hebelstrasse 20, CH 4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|