1
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
2
|
Lin Z, Wu B, Paul MW, Li KW, Yao Y, Smal I, Proietti Onori M, Hasanbegovic H, Bezstarosti K, Demmers J, Houtsmuller AB, Meijering E, Hoebeek FE, Schonewille M, Smit AB, Gao Z, De Zeeuw CI. Protein Phosphatase 2B Dual Function Facilitates Synaptic Integrity and Motor Learning. J Neurosci 2021; 41:5579-5594. [PMID: 34021041 PMCID: PMC8244972 DOI: 10.1523/jneurosci.1741-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
Protein phosphatase 2B (PP2B) is critical for synaptic plasticity and learning, but the molecular mechanisms involved remain unclear. Here we identified different types of proteins that interact with PP2B, including various structural proteins of the postsynaptic densities (PSDs) of Purkinje cells (PCs) in mice. Deleting PP2B reduced expression of PSD proteins and the relative thickness of PSD at the parallel fiber to PC synapses, whereas reexpression of inactive PP2B partly restored the impaired distribution of nanoclusters of PSD proteins, together indicating a structural role of PP2B. In contrast, lateral mobility of surface glutamate receptors solely depended on PP2B phosphatase activity. Finally, the level of motor learning covaried with both the enzymatic and nonenzymatic functions of PP2B. Thus, PP2B controls synaptic function and learning both through its action as a phosphatase and as a structural protein that facilitates synapse integrity.SIGNIFICANCE STATEMENT Phosphatases are generally considered to serve their critical role in learning and memory through their enzymatic operations. Here, we show that protein phosphatase 2B (PP2B) interacts with structural proteins at the synapses of cerebellar Purkinje cells. Differentially manipulating the enzymatic and structural domains of PP2B leads to different phenotypes in cerebellar learning. We propose that PP2B is crucial for cerebellar learning via two complementary actions, an enzymatic and a structural operation.
Collapse
Affiliation(s)
- Zhanmin Lin
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Bin Wu
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Maarten W Paul
- Optical Imaging Center, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Yao Yao
- Department of Medical informatics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Medical informatics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | | | - Hana Hasanbegovic
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Center for Proteomics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Jeroen Demmers
- Center for Proteomics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | | | - Erik Meijering
- School of Computer Science and Engineering & Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Department for Developmental Origins of Disease, Wilhelmina Children's Hospital and Brain Center, Utrecht Medical Center, 3584 EA, Utrecht, The Netherlands
| | | | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, KNAW, 1105 BA, Amsterdam, The Netherlands
| |
Collapse
|
3
|
van Deijk ALF, Camargo N, Timmerman J, Heistek T, Brouwers JF, Mogavero F, Mansvelder HD, Smit AB, Verheijen MHG. Astrocyte lipid metabolism is critical for synapse development and function in vivo. Glia 2017; 65:670-682. [PMID: 28168742 DOI: 10.1002/glia.23120] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte-derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element-binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage-activating protein (SCAP) was deleted from GFAP-expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP-25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short-term and long-term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670-682.
Collapse
Affiliation(s)
- Anne-Lieke F van Deijk
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Nutabi Camargo
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Jaap Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Tim Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Yalelaan 1, 3584 CL Utrecht University, Utrecht, The Netherlands
| | - Floriana Mogavero
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - August B Smit
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
4
|
Ramadan N, Ghazale H, El-Sayyad M, El-Haress M, Kobeissy FH. Neuroproteomics Studies: Challenges and Updates. Methods Mol Biol 2017; 1598:3-19. [PMID: 28508355 DOI: 10.1007/978-1-4939-6952-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Human Genome Project in 2003 has resulted in the complete sequence of ~99% of the human genome paving the road for the Human Proteome Project (HPP) assessing the full characterization of the translated protein map of the 20,300 protein-coding genes. Consequently, the emerging of the proteomics field has successfully been adopted as the method of choice for the proteome characterization. Proteomics is a term that is used to encompass multidisciplinary approaches combining different technologies that aim to study the entire spectrum of protein changes at a specific physiological condition. Proteomics research has shown excellent outcomes in different fields, among which is neuroscience; however, the complexity of the nervous systems necessitated the genesis of a new subdiscipline of proteomics termed as "neuroproteomics." Neuroproteomics studies involve assessing the quantitative and qualitative aspects of nervous system components encompassing global dynamic events underlying various brain-related disorders ranging from neuropsychiatric disorders, degenerative disorders, mental illness, and most importantly brain-specific neurotrauma-related injuries. In this introductory chapter, we will provide a brief historical perspective on the field of neuroproteomics. In doing so, we will highlight on the recent applications of neuroproteomics in the areas of neurotrauma, an area that has benefitted from neuroproteomics in terms of biomarker research, spatiotemporal injury mechanism, and its use to translate its findings from experimental settings to human translational applications. Importantly, this chapter will include some recommendation to the general studies in the area of neuroproteomics and the need to move from this field from being a descriptive, hypothesis-free approach to being an independent mature scientific discipline.
Collapse
Affiliation(s)
- Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Mohamad El-Haress
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Harris KP, Zhang YV, Piccioli ZD, Perrimon N, Littleton JT. The postsynaptic t-SNARE Syntaxin 4 controls traffic of Neuroligin 1 and Synaptotagmin 4 to regulate retrograde signaling. eLife 2016; 5. [PMID: 27223326 PMCID: PMC4880446 DOI: 10.7554/elife.13881] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/25/2016] [Indexed: 12/14/2022] Open
Abstract
Postsynaptic cells can induce synaptic plasticity through the release of activity-dependent retrograde signals. We previously described a Ca(2+)-dependent retrograde signaling pathway mediated by postsynaptic Synaptotagmin 4 (Syt4). To identify proteins involved in postsynaptic exocytosis, we conducted a screen for candidates that disrupted trafficking of a pHluorin-tagged Syt4 at Drosophila neuromuscular junctions (NMJs). Here we characterize one candidate, the postsynaptic t-SNARE Syntaxin 4 (Syx4). Analysis of Syx4 mutants reveals that Syx4 mediates retrograde signaling, modulating the membrane levels of Syt4 and the transsynaptic adhesion protein Neuroligin 1 (Nlg1). Syx4-dependent trafficking regulates synaptic development, including controlling synaptic bouton number and the ability to bud new varicosities in response to acute neuronal stimulation. Genetic interaction experiments demonstrate Syx4, Syt4, and Nlg1 regulate synaptic growth and plasticity through both shared and parallel signaling pathways. Our findings suggest a conserved postsynaptic SNARE machinery controls multiple aspects of retrograde signaling and cargo trafficking within the postsynaptic compartment.
Collapse
Affiliation(s)
- Kathryn P Harris
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yao V Zhang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Zachary D Piccioli
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
6
|
Schmitz SK, King C, Kortleven C, Huson V, Kroon T, Kevenaar JT, Schut D, Saarloos I, Hoetjes JP, de Wit H, Stiedl O, Spijker S, Li KW, Mansvelder HD, Smit AB, Cornelisse LN, Verhage M, Toonen RF. Presynaptic inhibition upon CB1 or mGlu2/3 receptor activation requires ERK/MAPK phosphorylation of Munc18-1. EMBO J 2016; 35:1236-50. [PMID: 27056679 DOI: 10.15252/embj.201592244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 03/02/2016] [Indexed: 01/22/2023] Open
Abstract
Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.
Collapse
Affiliation(s)
- Sabine K Schmitz
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Cillian King
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Christian Kortleven
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Vincent Huson
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Tim Kroon
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Josta T Kevenaar
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Desiree Schut
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Ingrid Saarloos
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Joost P Hoetjes
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Heidi de Wit
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Sabine Spijker
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Lennart Niels Cornelisse
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit (VU) and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Loos M, Li KW, van der Schors R, Gouwenberg Y, van der Loo R, Williams RW, Smit AB, Spijker S. Impact of genetic variation on synaptic protein levels in genetically diverse mice. Proteomics 2016; 16:1123-30. [DOI: 10.1002/pmic.201500154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 12/07/2015] [Accepted: 01/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Maarten Loos
- Department of Molecular and Cellular Neurobiology; Center for Neurogenomics and Cognitive Research; Neuroscience Campus Amsterdam; VU University Amsterdam; Amsterdam The Netherlands
- Sylics (Synaptologics BV); Amsterdam The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology; Center for Neurogenomics and Cognitive Research; Neuroscience Campus Amsterdam; VU University Amsterdam; Amsterdam The Netherlands
| | - Roel van der Schors
- Department of Molecular and Cellular Neurobiology; Center for Neurogenomics and Cognitive Research; Neuroscience Campus Amsterdam; VU University Amsterdam; Amsterdam The Netherlands
| | - Yvonne Gouwenberg
- Department of Molecular and Cellular Neurobiology; Center for Neurogenomics and Cognitive Research; Neuroscience Campus Amsterdam; VU University Amsterdam; Amsterdam The Netherlands
| | - Rolinka van der Loo
- Department of Molecular and Cellular Neurobiology; Center for Neurogenomics and Cognitive Research; Neuroscience Campus Amsterdam; VU University Amsterdam; Amsterdam The Netherlands
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics; University of Tennessee Health Science Center; Memphis TN USA
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology; Center for Neurogenomics and Cognitive Research; Neuroscience Campus Amsterdam; VU University Amsterdam; Amsterdam The Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology; Center for Neurogenomics and Cognitive Research; Neuroscience Campus Amsterdam; VU University Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
8
|
Eising E, de Leeuw C, Min JL, Anttila V, Verheijen MHG, Terwindt GM, Dichgans M, Freilinger T, Kubisch C, Ferrari MD, Smit AB, de Vries B, Palotie A, van den Maagdenberg AMJM, Posthuma D. Involvement of astrocyte and oligodendrocyte gene sets in migraine. Cephalalgia 2015; 36:640-7. [DOI: 10.1177/0333102415618614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 01/13/2023]
Abstract
Background Migraine is a common episodic brain disorder characterized by recurrent attacks of severe unilateral headache and additional neurological symptoms. Two main migraine types can be distinguished based on the presence of aura symptoms that can accompany the headache: migraine with aura and migraine without aura. Multiple genetic and environmental factors confer disease susceptibility. Recent genome-wide association studies (GWAS) indicate that migraine susceptibility genes are involved in various pathways, including neurotransmission, which have already been implicated in genetic studies of monogenic familial hemiplegic migraine, a subtype of migraine with aura. Methods To further explore the genetic background of migraine, we performed a gene set analysis of migraine GWAS data of 4954 clinic-based patients with migraine, as well as 13,390 controls. Curated sets of synaptic genes and sets of genes predominantly expressed in three glial cell types (astrocytes, microglia and oligodendrocytes) were investigated. Discussion Our results show that gene sets containing astrocyte- and oligodendrocyte-related genes are associated with migraine, which is especially true for gene sets involved in protein modification and signal transduction. Observed differences between migraine with aura and migraine without aura indicate that both migraine types, at least in part, seem to have a different genetic background.
Collapse
Affiliation(s)
- Else Eising
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
| | - Christiaan de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, The Netherlands
- Institute for Computing and Information Sciences, Radboud University, The Netherlands
| | - Josine L Min
- MRC Integrative Epidemiology Unit, University of Bristol, UK
| | - Verneri Anttila
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, USA
| | - Mark HG Verheijen
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Neuroscience, Campus Amsterdam, VU University, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Germany
- Munich Cluster for Systems Neurology (SyNergy), Germany
| | - Tobias Freilinger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Germany
- Department of Neurology and Epileptology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Germany
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Neuroscience, Campus Amsterdam, VU University, The Netherlands
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
| | - Aarno Palotie
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, The Netherlands
- Department of Clinical Genetics, VU University Medical Centre, The Netherlands
| | | |
Collapse
|
9
|
GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci 2015; 35:8462-79. [PMID: 26041915 DOI: 10.1523/jneurosci.3567-14.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.
Collapse
|
10
|
Lenselink AM, Rotaru DC, Li KW, van Nierop P, Rao-Ruiz P, Loos M, van der Schors R, Gouwenberg Y, Wortel J, Mansvelder HD, Smit AB, Spijker S. Strain Differences in Presynaptic Function: PROTEOMICS, ULTRASTRUCTURE, AND PHYSIOLOGY OF HIPPOCAMPAL SYNAPSES IN DBA/2J AND C57Bl/6J MICE. J Biol Chem 2015; 290:15635-15645. [PMID: 25911096 DOI: 10.1074/jbc.m114.628776] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 12/25/2022] Open
Abstract
The inbred strains C57BL/6J and DBA/2J (DBA) display striking differences in a number of behavioral tasks depending on hippocampal function, such as contextual memory. Historically, this has been explained through differences in postsynaptic protein expression underlying synaptic transmission and plasticity. We measured the synaptic hippocampal protein content (iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) and mass spectrometry), CA1 synapse ultrastructural morphology, and synaptic functioning in adult C57BL/6J and DBA mice. DBA mice showed a prominent decrease in the Ras-GAP calcium-sensing protein RASAL1. Furthermore, expression of several presynaptic markers involved in exocytosis, such as syntaxin (Stx1b), Ras-related proteins (Rab3a/c), and rabphilin (Rph3a), was reduced. Ultrastructural analysis of CA1 hippocampal synapses showed a significantly lower number of synaptic vesicles and presynaptic cluster size in DBA mice, without changes in postsynaptic density or active zone. In line with this compromised presynaptic morphological and molecular phenotype in DBA mice, we found significantly lower paired-pulse facilitation and enhanced short term depression of glutamatergic synapses, indicating a difference in transmitter release and/or refilling mechanisms. Taken together, our data suggest that in addition to strain-specific postsynaptic differences, the change in dynamic properties of presynaptic transmitter release may underlie compromised synaptic processing related to cognitive functioning in DBA mice.
Collapse
Affiliation(s)
- A Mariette Lenselink
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Diana C Rotaru
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Ka Wan Li
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Pim van Nierop
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Priyanka Rao-Ruiz
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Maarten Loos
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Roel van der Schors
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Yvonne Gouwenberg
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Joke Wortel
- Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - August B Smit
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Sabine Spijker
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Lubbers BR, van Mourik Y, Schetters D, Smit AB, De Vries TJ, Spijker S. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking. Biol Psychiatry 2014; 76:750-8. [PMID: 24631130 DOI: 10.1016/j.biopsych.2014.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 01/16/2014] [Accepted: 02/04/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Current smoking cessation therapies offer limited success, as relapse rates remain high. Nicotine, which is the major component of tobacco smoke, is thought to be primarily responsible for the addictive properties of tobacco. However, little is known about the molecular mechanisms underlying nicotine relapse, hampering development of more effective therapies. The objective of this study was to elucidate the role of medial prefrontal cortex (mPFC) glutamatergic and gamma-aminobutyric acid (GABA)ergic receptors in controlling relapse to nicotine seeking. METHODS Using an intravenous self-administration model, we studied glutamate and gamma-aminobutyric acid receptor regulation in the synaptic membrane fraction of the rat mPFC following extinction and cue-induced relapse to nicotine seeking. Subsequently, we locally intervened at the level of GABAergic signaling by using a mimetic peptide of the GABA receptor associated protein-interacting domain of GABA type A (GABAA) receptor subunit γ2 (TAT-GABAγ2) and muscimol, a GABAA receptor agonist. RESULTS Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors were not regulated after the 30-min relapse test. However, GABAA receptor subunits α1 and γ2 were upregulated, and interference with GABAA receptor insertion in the cell membrane using the TAT-GABAγ2 peptide in the dorsal mPFC, but not the ventral mPFC, significantly increased responding during relapse. Increasing GABAA transmission with muscimol in the dorsal and ventral mPFC attenuated relapse. CONCLUSIONS These data indicate that cue-induced relapse entails a GABAergic plasticity mechanism that limits nicotine seeking by restoring inhibitory control in the dorsal mPFC. GABAA receptor-mediated neurotransmission in the dorsal mPFC constitutes a possible future therapeutic target for maintaining smoking abstinence.
Collapse
Affiliation(s)
- Bart R Lubbers
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
| | - Yvar van Mourik
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Dustin Schetters
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
| | - Taco J De Vries
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam; Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam.
| |
Collapse
|
12
|
Végh MJ, Rausell A, Loos M, Heldring CM, Jurkowski W, van Nierop P, Paliukhovich I, Li KW, del Sol A, Smit AB, Spijker S, van Kesteren RE. Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline. Mol Cell Proteomics 2014; 13:2975-85. [PMID: 25044018 DOI: 10.1074/mcp.m113.032086] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Age-related cognitive decline is a serious health concern in our aging society. Decreased cognitive function observed during healthy brain aging is most likely caused by changes in brain connectivity and synaptic dysfunction in particular brain regions. Here we show that aged C57BL/6J wild-type mice have hippocampus-dependent spatial memory impairments. To identify the molecular mechanisms that are relevant to these memory deficits, we investigated the temporal profile of mouse hippocampal synaptic proteome changes at 20, 40, 50, 60, 70, 80, 90, and 100 weeks of age. Extracellular matrix proteins were the only group of proteins that showed robust and progressive up-regulation over time. This was confirmed by immunoblotting and histochemical analysis, which indicated that the increased levels of hippocampal extracellular matrix might limit synaptic plasticity as a potential cause of age-related cognitive decline. In addition, we observed that stochasticity in synaptic protein expression increased with age, in particular for proteins that were previously linked with various neurodegenerative diseases, whereas low variance in expression was observed for proteins that play a basal role in neuronal function and synaptic neurotransmission. Together, our findings show that both specific changes and increased variance in synaptic protein expression are associated with aging and may underlie reduced synaptic plasticity and impaired cognitive performance in old age.
Collapse
Affiliation(s)
- Marlene J Végh
- From the ‡Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Antonio Rausell
- §Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Maarten Loos
- From the ‡Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; ¶Sylics (Synaptologics BV), PO Box 71033, 1008BA Amsterdam, The Netherlands
| | - Céline M Heldring
- From the ‡Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Wiktor Jurkowski
- §Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Pim van Nierop
- From the ‡Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Iryna Paliukhovich
- From the ‡Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Ka Wan Li
- From the ‡Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Antonio del Sol
- §Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - August B Smit
- From the ‡Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Sabine Spijker
- From the ‡Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- From the ‡Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands;
| |
Collapse
|
13
|
Végh MJ, Heldring CM, Kamphuis W, Hijazi S, Timmerman AJ, Li KW, van Nierop P, Mansvelder HD, Hol EM, Smit AB, van Kesteren RE. Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2014; 2:76. [PMID: 24974208 PMCID: PMC4149201 DOI: 10.1186/s40478-014-0076-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease is caused by increased production or reduced clearance of amyloid-β, which results in the formation amyloid-β plaques and triggers a cascade of downstream events leading to progressive neurodegeneration. The earliest clinical symptoms of Alzheimer’s disease, i.e., memory loss, are however poorly understood from a molecular and cellular perspective. Here we used APPswe/PS1dE9 (APP/PS1) transgenic mice to study the early pre-pathological effects of increased amyloid-β levels on hippocampal synaptic plasticity and memory. Using an unbiased proteomics approach we show that the early increase in amyloid-β levels in APP/PS1 mice at three months of age coincides with a robust and significant upregulation of several protein components of the extracellular matrix in hippocampal synaptosome preparations. This increase in extracellular matrix levels occurred well before the onset of plaque formation and was paralleled by impairments in hippocampal long-term potentiation and contextual memory. Direct injection into the hippocampus of the extracellular matrix inactivating enzyme chondroitinase ABC restored both long-term potentiation and contextual memory performance. These findings indicate an important role for the extracellular matrix in causing early memory loss in Alzheimer’s disease.
Collapse
|
14
|
Li KW, Jimenez CR. Synapse proteomics: current status and quantitative applications. Expert Rev Proteomics 2014; 5:353-60. [DOI: 10.1586/14789450.5.2.353] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Tran PV, Dakoji S, Reise KH, Storey KK, Georgieff MK. Fetal iron deficiency alters the proteome of adult rat hippocampal synaptosomes. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1297-306. [PMID: 24089371 DOI: 10.1152/ajpregu.00292.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal and neonatal iron deficiency results in cognitive impairments in adulthood despite prompt postnatal iron replenishment. To systematically determine whether abnormal expression and localization of proteins that regulate adult synaptic efficacy are involved, we used a quantitative proteomic approach (isobaric tags for relative and absolute quantitation, iTRAQ) and pathway analysis to identify dysregulated proteins in hippocampal synapses of fetal iron deficiency model. Rat pups were made iron deficient (ID) from gestational day 2 through postnatal day (P) 7 by providing pregnant and nursing dams an ID diet (4 ppm Fe) after which they were rescued with an iron-sufficient diet (200 ppm Fe). This paradigm resulted in a 40% loss of brain iron at P15 with complete recovery by P56. Synaptosomes were prepared from hippocampi of the formerly iron-deficient (FID) and always iron-sufficient controls rats at P65 using a sucrose gradient method. Six replicates per group that underwent iTRAQ labeling and LC-MS/MS analysis for protein identification and comparison elucidated 331 differentially expressed proteins. Western analysis was used to confirm findings for selected proteins in the glutamate receptor signaling pathway, which regulates hippocampal synaptic plasticity, a cellular process critical for learning and memory. Bioinformatics were performed using knowledge-based Interactive Pathway Analysis. FID synaptosomes show altered expression of synaptic proteins-mediated cellular signalings, supporting persistent impacts of fetal iron deficiency on synaptic efficacy, which likely cause the cognitive dysfunction and neurobehavioral abnormalities. Importantly, the findings uncover previously unsuspected pathways, including neuronal nitric oxide synthase signaling, identifying additional mechanisms that may contribute to the long-term biobehavioral deficits.
Collapse
Affiliation(s)
- Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | | |
Collapse
|
16
|
Ottis P, Topic B, Loos M, Li KW, de Souza A, Schulz D, Smit AB, Huston JP, Korth C. Aging-induced proteostatic changes in the rat hippocampus identify ARP3, NEB2 and BRAG2 as a molecular circuitry for cognitive impairment. PLoS One 2013; 8:e75112. [PMID: 24069387 PMCID: PMC3777897 DOI: 10.1371/journal.pone.0075112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/10/2013] [Indexed: 11/28/2022] Open
Abstract
Disturbed proteostasis as a particular phenotype of the aging organism has been advanced in C. elegans experiments and is also conceived to underlie neurodegenerative diseases in humans. Here, we investigated whether particular changes in non-disease related proteostasis can be identified in the aged mammalian brain, and whether a particular signature of aberrant proteostasis is related to behavioral performance of learning and memory. Young (adult, n = 30) and aged (2 years, n = 50) Wistar rats were tested in the Morris Water Maze (MWM) to distinguish superior and inferior performers. For both young and old rats, the best and worst performers in the MWM were selected and the insoluble proteome, termed aggregome, was purified from the hippocampus as evidence for aberrant proteostasis. Quantitative proteomics (iTRAQ) was performed. The aged inferior performers were considered as a model for spontaneous, age-associated cognitive impairment. Whereas variability of the insoluble proteome increased with age, absolute changes in the levels of insoluble proteins were small compared to the findings in the whole C. elegans insoluble proteome. However, we identified proteins with aberrant proteostasis in aging. For the cognitively impaired rats, we identified a changed molecular circuitry of proteins selectively involved in F-actin remodeling, synapse building and long-term depression: actin related protein 3 (ARP3), neurabin II (NEB2) and IQ motif and SEC7 domain-containing protein 1 (BRAG2). We demonstrate that aberrant proteostasis is a specific phenotype of brain aging in mammals. We identify a distinct molecular circuitry where changes in proteostasis are characteristic for poor learning and memory performance in the wild type, aged rat. Our findings 1. establish the search for aberrant proteostasis as a successful strategy to identify neuronal dysfunction in deficient cognitive behavior, 2. reveal a previously unknown functional network of proteins (ARP3, NEB2, BRAG2) involved in age-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Philipp Ottis
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Bianca Topic
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Maarten Loos
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
- Synaptologics B.V., Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Angelica de Souza
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Daniela Schulz
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Joseph P. Huston
- Center for Behavioral Neuroscience, Department Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
17
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 986] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
18
|
Richardson K, Denny R, Hughes C, Skilling J, Sikora J, Dadlez M, Manteca A, Jung HR, Jensen ON, Redeker V, Melki R, Langridge JI, Vissers JPC. A probabilistic framework for peptide and protein quantification from data-dependent and data-independent LC-MS proteomics experiments. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:468-82. [PMID: 22871168 DOI: 10.1089/omi.2012.0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A probability-based quantification framework is presented for the calculation of relative peptide and protein abundance in label-free and label-dependent LC-MS proteomics data. The results are accompanied by credible intervals and regulation probabilities. The algorithm takes into account data uncertainties via Poisson statistics modified by a noise contribution that is determined automatically during an initial normalization stage. Protein quantification relies on assignments of component peptides to the acquired data. These assignments are generally of variable reliability and may not be present across all of the experiments comprising an analysis. It is also possible for a peptide to be identified to more than one protein in a given mixture. For these reasons the algorithm accepts a prior probability of peptide assignment for each intensity measurement. The model is constructed in such a way that outliers of any type can be automatically reweighted. Two discrete normalization methods can be employed. The first method is based on a user-defined subset of peptides, while the second method relies on the presence of a dominant background of endogenous peptides for which the concentration is assumed to be unaffected. Normalization is performed using the same computational and statistical procedures employed by the main quantification algorithm. The performance of the algorithm will be illustrated on example data sets, and its utility demonstrated for typical proteomics applications. The quantification algorithm supports relative protein quantification based on precursor and product ion intensities acquired by means of data-dependent methods, originating from all common isotopically-labeled approaches, as well as label-free ion intensity-based data-independent methods.
Collapse
|
19
|
Végh MJ, de Waard MC, van der Pluijm I, Ridwan Y, Sassen MJM, van Nierop P, van der Schors RC, Li KW, Hoeijmakers JHJ, Smit AB, van Kesteren RE. Synaptic proteome changes in a DNA repair deficient ercc1 mouse model of accelerated aging. J Proteome Res 2012; 11:1855-67. [PMID: 22289077 DOI: 10.1021/pr201203m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cognitive decline is one of the earliest hallmarks of both normal and pathological brain aging. Here we used Ercc1 mutant mice, which are impaired in multiple DNA repair systems and consequently show accelerated aging and progressive memory deficits, to identify changes in the levels of hippocampal synaptic proteins that potentially underlie these age-dependent deficits. Aged Ercc1 mutant mice show normal gross hippocampal dendritic morphology and synapse numbers, and Ercc1 mutant hippocampal neurons displayed normal outgrowth and synapse formation in vitro. However, using isobaric tag for relative and absolute quantification (iTRAQ) of hippocampal synaptic proteins at two different ages, postnatal days 28 and 112, we observed a progressive decrease in synaptic ionotropic glutamate receptor levels and increased levels of G-proteins and of cell adhesion proteins. These together may cause long-term changes in synapse function. In addition, we observed a downregulation of mitochondrial proteins and concomitant upregulation of Na,K-ATPase subunits, which might compensate for reduced mitochondrial activity. Thus, our findings show that under conditions of apparent intact neuronal connectivity, levels of specific synaptic proteins are already affected during the early stages of DNA damage-induced aging, which might contribute to age-dependent cognitive decline.
Collapse
Affiliation(s)
- Marlene J Végh
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Molecular and genetic analysis of the Drosophila model of fragile X syndrome. Results Probl Cell Differ 2012; 54:119-56. [PMID: 22009350 DOI: 10.1007/978-3-642-21649-7_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Drosophila genome contains most genes known to be involved in heritable disease. The extraordinary genetic malleability of Drosophila, coupled to sophisticated imaging, electrophysiology, and behavioral paradigms, has paved the way for insightful mechanistic studies on the causes of developmental and neurological disease as well as many possible interventions. Here, we focus on one of the most advanced examples of Drosophila genetic disease modeling, the Drosophila model of Fragile X Syndrome, which for the past decade has provided key advances into the molecular, cellular, and behavioral defects underlying this devastating disorder. We discuss the multitude of RNAs and proteins that interact with the disease-causing FMR1 gene product, whose function is conserved from Drosophila to human. In turn, we consider FMR1 mechanistic relationships in non-neuronal tissues (germ cells and embryos), peripheral motor and sensory circuits, and central brain circuits involved in circadian clock activity and learning/memory.
Collapse
|
21
|
Abstract
MICALs (molecules interacting with CasL) are atypical multidomain flavoenzymes with diverse cellular functions. The molecular pathways employed by MICAL proteins to exert their cellular effects remain largely uncharacterized. Via an unbiased proteomics approach, we identify MICAL-1 as a binding partner of NDR (nuclear Dbf2-related) kinases. NDR1/2 kinases are known to mediate apoptosis downstream of the mammalian Ste-20-like kinase MST1, and ablation of NDR1 in mice predisposes the mice to cancer as a result of compromised apoptosis. MST1 phosphorylates NDR1/2 kinases at their hydrophobic motif, thereby facilitating full NDR kinase activity and function. However, if and how this key phosphorylation event is regulated are unknown. Here we show that MICAL-1 interacts with the hydrophobic motif of NDR1/2 and that overexpression or knockdown of MICAL-1 reduces or augments NDR kinase activation or activity, respectively. Surprisingly, MICAL-1 is a phosphoprotein but not an NDR or MST1 substrate. Rather, MICAL-1 competes with MST1 for NDR binding and thereby antagonizes MST1-induced NDR activation. In line with this inhibitory effect, overexpression or knockdown of MICAL-1 inhibits or enhances, respectively, NDR-dependent proapoptotic signaling induced by extrinsic stimuli. Our findings unveil a previously unknown biological role for MICAL-1 in apoptosis and define a novel negative regulatory mechanism of MST-NDR signaling.
Collapse
|
22
|
Klemmer P, Meredith RM, Holmgren CD, Klychnikov OI, Stahl-Zeng J, Loos M, van der Schors RC, Wortel J, de Wit H, Spijker S, Rotaru DC, Mansvelder HD, Smit AB, Li KW. Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile X syndrome mouse model reveal presynaptic phenotype. J Biol Chem 2011; 286:25495-504. [PMID: 21596744 DOI: 10.1074/jbc.m110.210260] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.
Collapse
Affiliation(s)
- Patricia Klemmer
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fei SS, Wilmarth PA, Hitzemann RJ, McWeeney SK, Belknap JK, David LL. Protein database and quantitative analysis considerations when integrating genetics and proteomics to compare mouse strains. J Proteome Res 2011; 10:2905-12. [PMID: 21553863 PMCID: PMC3128464 DOI: 10.1021/pr200133p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades of genetics research comparing mouse strains has identified many regions of the genome associated with quantitative traits. Microarrays have been used to identify which genes in those regions are differentially expressed and are therefore potentially causal; however, genetic variants that affect probe hybridization lead to many false conclusions. Here we used spectral counting to compare brain striata between two mouse strains. Using strain-specific protein databases, we concluded that proteomics was more robust to sequence differences than microarrays; however, some proteins were still significantly affected. To generate strain-specific databases, we used a complete database that contained all of the putative genetic isoforms for each protein. While the increased proteome coverage in the databases led to a 6.8% gain in peptide assignments compared to a nonredundant database, it also necessitated the development of a strategy for grouping similar proteins due to a large number of shared peptides. Of the 4563 identified proteins (2.1% FDR), there were 1807 quantifiable proteins/groups that exceeded minimum count cutoffs. With four pooled biological replicates per strain, we used quantile normalization, ComBat (a package that adjusts for batch effects), and edgeR (a package for differential expression analysis of count data) to identify 101 differentially expressed proteins/groups, 84 of which had a coding region within one of the genomic regions of interest identified by the Portland Alcohol Research Center.
Collapse
Affiliation(s)
- Suzanne S Fei
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Dahlhaus M, Li KW, van der Schors RC, Saiepour MH, van Nierop P, Heimel JA, Hermans JM, Loos M, Smit AB, Levelt CN. The synaptic proteome during development and plasticity of the mouse visual cortex. Mol Cell Proteomics 2011; 10:M110.005413. [PMID: 21398567 PMCID: PMC3098591 DOI: 10.1074/mcp.m110.005413] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
During brain development, the neocortex shows periods of enhanced plasticity, which enables the acquisition of knowledge and skills that we use and build on in adult life. Key to persistent modifications of neuronal connectivity and plasticity of the neocortex are molecular changes occurring at the synapse. Here we used isobaric tag for relative and absolute quantification to measure levels of 467 synaptic proteins in a well-established model of plasticity in the mouse visual cortex and the regulation of its critical period. We found that inducing visual cortex plasticity by monocular deprivation during the critical period increased levels of kinases and proteins regulating the actin-cytoskeleton and endocytosis. Upon closure of the critical period with age, proteins associated with transmitter vesicle release and the tubulin- and septin-cytoskeletons increased, whereas actin-regulators decreased in line with augmented synapse stability and efficacy. Maintaining the visual cortex in a plastic state by dark rearing mice into adulthood only partially prevented these changes and increased levels of G-proteins and protein kinase A subunits. This suggests that in contrast to the general belief, dark rearing does not simply delay cortical development but may activate signaling pathways that specifically maintain or increase the plasticity potential of the visual cortex. Altogether, this study identified many novel candidate plasticity proteins and signaling pathways that mediate synaptic plasticity during critical developmental periods or restrict it in adulthood.
Collapse
Affiliation(s)
- Martijn Dahlhaus
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Counotte DS, Li KW, Wortel J, Gouwenberg Y, Van Der Schors RC, Smit AB, Spijker S. Changes in molecular composition of rat medial prefrontal cortex synapses during adolescent development. Eur J Neurosci 2010; 32:1452-60. [PMID: 20950357 DOI: 10.1111/j.1460-9568.2010.07404.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Postnatal brain development continues throughout adolescence into young adulthood. In particular, synapse strengthening and elimination are prominent processes during adolescence. However, molecular data of this relatively late stage of synaptic development are sparse. In this study, we used iTRAQ (isobaric tag for relative and absolute quantification)-based proteomics and electron microscopy to investigate the molecular composition of a synaptic membrane fraction from adolescent postnatal day (P)34 and P44 and adult (P78) rat medial prefrontal cortex. Differential expression of proteins was most prominent between early adolescence and young adulthood (35%, P34-P78), with an over-representation of cell-membrane proteins during adolescent development (between P34 and P44), and synaptic vesicle proteins between late adolescence and young adulthood (P44-P78). Indicative of the critical period of development, we found that, between P34 and P44, a substantial number of proteins was differentially expressed (14%), much more than during the period after adolescence, i.e. between P44 and P78 (5%). A striking observation was the developmental non-stoichiometric regulation of distinct classes of proteins from the synaptic vesicle and the presynaptic release machinery. Electron microscopy demonstrated a small change in the number of docked vesicles between P34 and P44, but not in the total number of synaptic vesicles and in the size of the vesicle cluster. We conclude that the molecular composition of synapses, and more specifically the synaptic release machinery, of the medial prefrontal cortex changes drastically during adolescent development.
Collapse
Affiliation(s)
- Danielle S Counotte
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Van den Oever MC, Lubbers BR, Goriounova NA, Li KW, Van der Schors RC, Loos M, Riga D, Wiskerke J, Binnekade R, Stegeman M, Schoffelmeer ANM, Mansvelder HD, Smit AB, De Vries TJ, Spijker S. Extracellular matrix plasticity and GABAergic inhibition of prefrontal cortex pyramidal cells facilitates relapse to heroin seeking. Neuropsychopharmacology 2010; 35:2120-33. [PMID: 20592718 PMCID: PMC3055295 DOI: 10.1038/npp.2010.90] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Successful treatment of drug addiction is hampered by high relapse rates during periods of abstinence. Neuroadaptation in the medial prefrontal cortex (mPFC) is thought to have a crucial role in vulnerability to relapse to drug seeking, but the molecular and cellular mechanisms remain largely unknown. To identify protein changes that contribute to relapse susceptibility, we investigated synaptic membrane fractions from the mPFC of rats that underwent 21 days of forced abstinence following heroin self-administration. Quantitative proteomics revealed that long-term abstinence from heroin self-administration was associated with reduced levels of extracellular matrix (ECM) proteins. After extinction of heroin self-administration, downregulation of ECM proteins was also present in the mPFC, as well as nucleus accumbens (NAc), and these adaptations were partially restored following cue-induced reinstatement of heroin seeking. In the mPFC, these ECM proteins are condensed in the perineuronal nets that exclusively surround GABAergic interneurons, indicating that ECM adaptation might alter the activity of GABAergic interneurons. In support of this, we observed an increase in the inhibitory GABAergic synaptic inputs received by the mPFC pyramidal cells after the re-exposure to heroin-conditioned cues. Recovering levels of ECM constituents by metalloproteinase inhibitor treatment (FN-439; i.c.v.) prior to a reinstatement test attenuated subsequent heroin seeking, suggesting that the reduced synaptic ECM levels during heroin abstinence enhanced sensitivity to respond to heroin-conditioned cues. We provide evidence for a novel neuroadaptive mechanism, in which heroin self-administration-induced adaptation of the ECM increased relapse vulnerability, potentially by augmenting the responsivity of mPFC GABAergic interneurons to heroin-associated stimuli.
Collapse
Affiliation(s)
- Michel C Van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, The Netherlands.
| | - Bart R Lubbers
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ka W Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Roel C Van der Schors
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Maarten Loos
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Danai Riga
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Joost Wiskerke
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rob Binnekade
- Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands
| | - M Stegeman
- Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands
| | | | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Taco J De Vries
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands,Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Geumann C, Grønborg M, Hellwig M, Martens H, Jahn R. A sandwich enzyme-linked immunosorbent assay for the quantification of insoluble membrane and scaffold proteins. Anal Biochem 2010; 402:161-9. [DOI: 10.1016/j.ab.2010.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
|
29
|
Klychnikov OI, Li KW, Sidorov IA, Loos M, Spijker S, Broos LAM, Frants RR, Ferrari MD, Mayboroda OA, Deelder AM, Smit AB, van den Maagdenberg AMJM. Quantitative cortical synapse proteomics of a transgenic migraine mouse model with mutated CaV2.1 calcium channels. Proteomics 2010; 10:2531-5. [DOI: 10.1002/pmic.200900733] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Li KW, Klemmer P, Smit AB. Interaction proteomics of synapse protein complexes. Anal Bioanal Chem 2010; 397:3195-202. [PMID: 20361179 PMCID: PMC2911543 DOI: 10.1007/s00216-010-3658-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/15/2010] [Accepted: 03/15/2010] [Indexed: 01/29/2023]
Abstract
The brain integrates complex types of information, and executes a wide range of physiological and behavioral processes. Trillions of tiny organelles, the synapses, are central to neuronal communication and information processing in the brain. Synaptic transmission involves an intricate network of synaptic proteins that forms the molecular machinery underlying transmitter release, activation, and modulation of transmitter receptors and signal transduction cascades. These processes are dynamically regulated and underlie neuroplasticity, crucial to learning and memory formation. In recent years, interaction proteomics has increasingly been used to elucidate the constituents of synaptic protein complexes. Unlike classic hypothesis-based assays, interaction proteomics detects both known and novel interactors without bias. In this trend article, we focus on the technical aspects of recent proteomics to identify synapse protein complexes, and the complementary methods used to verify the protein–protein interaction. Moreover, we discuss the experimental feasibility of performing global analysis of the synapse protein interactome.
Collapse
Affiliation(s)
- Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
31
|
Ali I, Aboul-Enein HY, Singh P, Singh R, Sharma B. Separation of biological proteins by liquid chromatography. Saudi Pharm J 2010; 18:59-73. [PMID: 23960722 DOI: 10.1016/j.jsps.2010.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 11/03/2009] [Indexed: 01/11/2023] Open
Abstract
After the success of human genome project, proteome is a new emerging field of biochemistry as it provides the knowledge of enzymes (proteins) interactions with different body organs and medicines administrated into human body. Therefore, the study of proteomics is very important for the development of new and effective drugs to control many lethal diseases. In proteomics study, analyses of proteome is essential and significant from the pathological point of views, i.e., in several serious diseases such as cancer, Alzheimer's disease and aging, heart diseases and also for plant biology. The separation and identification of proteomics is a challenging job due to their complex structures and closely related physico-chemical behaviors. However, the recent advances in liquid chromatography make this job easy. Various kinds of liquid chromatography, along with different detectors and optimization strategies, have been discussed in this article. Besides, attempts have been made to include chirality concept in proteomics for understanding mechanism and medication of various disease controlled by different body proteins.
Collapse
Key Words
- 2D-nano LC, two-dimensional nano liquid chromatography quadrupole
- ACN, acetonitrile
- AIEC, anion exchange chromatography
- CEC, capillary electro-chromatography
- CIEF, capillary isoelectric focusing
- CSF, cerebrospinal fluid
- Chirality
- EC, electro-chromatography
- ESI-LC–MS, electrospray ionization liquid chromatography–mass spectrometry
- FA, formic acid
- FLP, FMRF amide-like peptide
- FT-ICR-MS, ion cyclotron resonance-mass spectrometry
- GPI-APs, glycosylphosphadylinositol anchored proteins
- GSH, glutathione stimulating hormone
- GSTs, glutathione-S-transferase isoenzyme
- Gene
- HFBA, heptafluorobutyric acid
- HPLC, high performance liquid chromatography
- ICAT, isotope coded affinity tag
- IEF-SEC, isoelectrofocussing size-exclusion chromatography
- IMCD, inner medullary collecting duct
- LC-Q-TOF, liquid chromatography-quadrupole time-of-flight tandem mass
- LC-dual ESI, liquid chromatography dual electrospray ionization-Fourier transform
- LC–MS, liquid chromatography–mass spectrometry
- Liquid chromatography
- MALDI-TOF, matrix-assisted laser desorption/ionization-time-of flight
- MFGM, milk fat globule membranes
- MMA, mass measurement accuracy
- MPC, mesenchymal progenitor cell
- MS/MS, spectrometry
- NLFs, Nasal lavage fluids
- NLP, neuropeptide like protein
- Nano detection
- PC2, prohormone convertase-2
- PS II, photosystem II
- Preparation
- Proteomics
- Q-TOFMS/MS, time-of-flight tandem-mass spectrometry
- RPLC, reversed phase liquid chromatography
- SCX, strong cation exchange
- SEC, size-exclusion chromatography
- TFA, trifluoroacetic acid
- TIC, total ion current
- TRAF, tumor necrosis factor receptor
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110 025, India
| | | | | | | | | |
Collapse
|
32
|
Ruano D, Abecasis GR, Glaser B, Lips ES, Cornelisse LN, de Jong AP, Evans DM, Smith GD, Timpson NJ, Smit AB, Heutink P, Verhage M, Posthuma D. Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. Am J Hum Genet 2010; 86:113-25. [PMID: 20060087 PMCID: PMC2820181 DOI: 10.1016/j.ajhg.2009.12.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/26/2009] [Accepted: 12/04/2009] [Indexed: 01/06/2023] Open
Abstract
Although cognitive ability is a highly heritable complex trait, only a few genes have been identified, explaining relatively low proportions of the observed trait variation. This implies that hundreds of genes of small effect may be of importance for cognitive ability. We applied an innovative method in which we tested for the effect of groups of genes defined according to cellular function (functional gene group analysis). Using an initial sample of 627 subjects, this functional gene group analysis detected that synaptic heterotrimeric guanine nucleotide binding proteins (G proteins) play an important role in cognitive ability (PEMP = 1.9 × 10−4). The association with heterotrimeric G proteins was validated in an independent population sample of 1507 subjects. Heterotrimeric G proteins are central relay factors between the activation of plasma membrane receptors by extracellular ligands and the cellular responses that these induce, and they can be considered a point of convergence, or a “signaling bottleneck.” Although alterations in synaptic signaling processes may not be the exclusive explanation for the association of heterotrimeric G proteins with cognitive ability, such alterations may prominently affect the properties of neuronal networks in the brain in such a manner that impaired cognitive ability and lower intelligence are observed. The reported association of synaptic heterotrimeric G proteins with cognitive ability clearly points to a new direction in the study of the genetic basis of cognitive ability.
Collapse
|
33
|
Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 2010; 30:2-12. [PMID: 20053882 DOI: 10.1523/jneurosci.4074-09.2010] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles (SVs) store neurotransmitters and release them by exocytosis. The vesicular neurotransmitter transporters discriminate which transmitter will be sequestered and stored by the vesicles. However, it is unclear whether the neurotransmitter phenotype of SVs is solely defined by the transporters or whether it is associated with additional proteins. Here we have compared the protein composition of SVs enriched in vesicular glutamate (VGLUT-1) and GABA transporters (VGAT), respectively, using quantitative proteomics. Of >450 quantified proteins, approximately 50 were differentially distributed between the populations, with only few of them being specific for SVs. Of these, the most striking differences were observed for the zinc transporter ZnT3 and the vesicle proteins SV2B and SV31 that are associated preferentially with VGLUT-1 vesicles, and for SV2C that is associated mainly with VGAT vesicles. Several additional proteins displayed a preference for VGLUT-1 vesicles including, surprisingly, synaptophysin, synaptotagmins, and syntaxin 1a. Moreover, MAL2, a membrane protein of unknown function distantly related to synaptophysins and SCAMPs, cofractionated with VGLUT-1 vesicles. Both subcellular fractionation and immunolocalization at the light and electron microscopic level revealed that MAL2 is a bona-fide membrane constituent of SVs that is preferentially associated with VGLUT-1-containing nerve terminals. We conclude that SVs specific for different neurotransmitters share the majority of their protein constituents, with only few vesicle proteins showing preferences that, however, are nonexclusive, thus confirming that the vesicular transporters are the only components essential for defining the neurotransmitter phenotype of a SV.
Collapse
|
34
|
Abstract
The central nervous systems of molluscan species contain high levels of structurally diverse peptides that function as neurotransmitters, neuromodulators or neurohormones. Peptide diversity is believed to be a way to increase the information handling capacity of neurons in the context of a brain with low cell numbers and neuronal connectivity. Accordingly, much effort has been made to identify peptides from single neurons and tissues of interest. In the past decade a mass spectrometry-based approach has been applied to detect and characterize peptides from single neurons, nerves and tissues of the molluscan brain. Peptides from single neurons are often analysed directly by mass spectrometry without prior sample preparation. Single neurons from the molluscan brain may be identified based on their position, cell morphology and colour. Neurons that cannot be readily identified can be tagged functionally or chemically. For the analysis of peptides from tissues, special extraction methods in conjunction with peptide separation by liquid chromatography coupled to mass spectrometry have been developed. Tens to hundreds of peptides from the tissue extract can be detected and characterized in a single analysis.
Collapse
Affiliation(s)
- Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Nederlands.
| | | |
Collapse
|
35
|
Mischerikow N, van Nierop P, Li KW, Bernstein HG, Smit AB, Heck AJR, Altelaar AFM. Gaining efficiency by parallel quantification and identification of iTRAQ-labeled peptides using HCD and decision tree guided CID/ETD on an LTQ Orbitrap. Analyst 2010; 135:2643-52. [DOI: 10.1039/c0an00267d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Proteomic analysis uncovers novel actions of the neurosecretory protein VGF in nociceptive processing. J Neurosci 2009; 29:13377-88. [PMID: 19846725 DOI: 10.1523/jneurosci.1127-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Peripheral tissue injury is associated with changes in protein expression in sensory neurons that may contribute to abnormal nociceptive processing. We used cultured dorsal root ganglion (DRG) neurons as a model of axotomized neurons to investigate early changes in protein expression after nerve injury. Comparing protein levels immediately after DRG dissociation and 24 h later by proteomic differential expression analysis, we found a substantial increase in the levels of the neurotrophin-inducible protein VGF (nonacronymic), a putative neuropeptide precursor. In a rodent model of nerve injury, VGF levels were increased within 24 h in both injured and uninjured DRG neurons, and the increase persisted for at least 7 d. VGF was also upregulated 24 h after hindpaw inflammation. To determine whether peptides derived from proteolytic processing of VGF participate in nociceptive signaling, we examined the spinal effects of AQEE-30 and LQEQ-19, potential proteolytic products shown previously to be bioactive. Each peptide evoked dose-dependent thermal hyperalgesia that required activation of the mitogen-activated protein kinase p38. In addition, LQEQ-19 induced p38 phosphorylation in spinal microglia when injected intrathecally and in the BV-2 microglial cell line when applied in vitro. In summary, our results demonstrate rapid upregulation of VGF in sensory neurons after nerve injury and inflammation and activation of microglial p38 by VGF peptides. Therefore, VGF peptides released from sensory neurons may participate in activation of spinal microglia after peripheral tissue injury.
Collapse
|
37
|
Abul-Husn NS, Bushlin I, Morón JA, Jenkins SL, Dolios G, Wang R, Iyengar R, Ma'ayan A, Devi LA. Systems approach to explore components and interactions in the presynapse. Proteomics 2009; 9:3303-15. [PMID: 19562802 DOI: 10.1002/pmic.200800767] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The application of proteomic techniques to neuroscientific research provides an opportunity for a greater understanding of nervous system structure and function. As increasing amounts of neuroproteomic data become available, it is necessary to formulate methods to integrate these data in a meaningful way to obtain a more comprehensive picture of neuronal subcompartments. Furthermore, computational methods can be used to make biologically relevant predictions from large proteomic data sets. Here, we applied an integrated proteomics and systems biology approach to characterize the presynaptic (PRE) nerve terminal. For this, we carried out proteomic analyses of presynaptically enriched fractions, and generated a PRE literature-based protein-protein interaction network. We combined these with other proteomic analyses to generate a core list of 117 PRE proteins, and used graph theory-inspired algorithms to predict 92 additional components and a PRE complex containing 17 proteins. Some of these predictions were validated experimentally, indicating that the computational analyses can identify novel proteins and complexes in a subcellular compartment. We conclude that the combination of techniques (proteomics, data integration, and computational analyses) used in this study are useful in obtaining a comprehensive understanding of functional components, especially low-abundance entities and/or interactions in the PRE nerve terminal.
Collapse
Affiliation(s)
- Noura S Abul-Husn
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 2009; 10:617-27. [PMID: 19687803 DOI: 10.1038/nrg2633] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The systematic and quantitative molecular analysis of mutant organisms that has been pioneered by studies on mutant metabolomes and transcriptomes holds great promise for improving our understanding of how phenotypes emerge. Unfortunately, owing to the limitations of classical biochemical analysis, proteins have previously been excluded from such studies. Here we review how technical advances in mass spectrometry-based proteomics can be applied to measure changes in protein abundance, posttranslational modifications and protein-protein interactions in mutants at the scale of the proteome. We finally discuss examples that integrate proteomics data with genomic and phenomic information to build network-centred models, which provide a promising route for understanding how phenotypes emerge.
Collapse
|
39
|
Rajcevic U, Petersen K, Knol JC, Loos M, Bougnaud S, Klychnikov O, Li KW, Pham TV, Wang J, Miletic H, Peng Z, Bjerkvig R, Jimenez CR, Niclou SP. iTRAQ-based proteomics profiling reveals increased metabolic activity and cellular cross-talk in angiogenic compared with invasive glioblastoma phenotype. Mol Cell Proteomics 2009; 8:2595-612. [PMID: 19674965 PMCID: PMC2773724 DOI: 10.1074/mcp.m900124-mcp200] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Malignant gliomas (glioblastoma multiforme) have a poor prognosis with an average patient survival under current treatment regimens ranging between 12 and 14 months. The tumors are characterized by rapid cell growth, extensive neovascularization, and diffuse cellular infiltration of normal brain structures. We have developed a human glioblastoma xenograft model in nude rats that is characterized by a highly infiltrative non-angiogenic phenotype. Upon serial transplantation this phenotype will develop into a highly angiogenic tumor. Thus, we have developed an animal model where we are able to establish two characteristic tumor phenotypes that define human glioblastoma (i.e. diffuse infiltration and high neovascularization). Here we aimed at identifying potential biomarkers expressed by the non-angiogenic and the angiogenic phenotypes and elucidating the molecular pathways involved in the switch from invasive to angiogenic growth. Focusing on membrane-associated proteins, we profiled protein expression during the progression from an invasive to an angiogenic phenotype by analyzing serially transplanted glioma xenografts in rats. Applying isobaric peptide tagging chemistry (iTRAQ) combined with two-dimensional LC and MALDI-TOF/TOF mass spectrometry, we were able to identify several thousand proteins in membrane-enriched fractions of which 1460 were extracted as quantifiable proteins (isoform- and species-specific and present in more than one sample). Known and novel candidate proteins were identified that characterize the switch from a non-angiogenic to a highly angiogenic phenotype. The robustness of the data was corroborated by extensive bioinformatics analysis and by validation of selected proteins on tissue microarrays from xenograft and clinical gliomas. The data point to enhanced intercellular cross-talk and metabolic activity adopted by tumor cells in the angiogenic compared with the non-angiogenic phenotype. In conclusion, we describe molecular profiles that reflect the change from an invasive to an angiogenic brain tumor phenotype. The identified proteins could be further exploited as biomarkers or therapeutic targets for malignant gliomas.
Collapse
Affiliation(s)
- Uros Rajcevic
- Norlux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public Santé (CRP-Santé), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nat Neurosci 2009; 11:1053-8. [PMID: 19160503 DOI: 10.1038/nn.2165] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Associative learning processes have an important role in the initiation and persistence of heroin-seeking. Here we show in a rat self-administration model that reexposure to cues previously associated with heroin results in downregulation of AMPA receptor subunit GluR2 and concomitant upregulation of clathrin-coat assembly protein AP2ml in synaptic membranes of the medial prefrontal cortex (mPFC). Reduced AMPA receptor expression in synaptic membranes was associated with a decreased AMPA/NMDA current ratio and increased rectification index in mPFC pyramidal neurons. Systemic or ventral (but not dorsal) mPFC injections of a peptide inhibiting GluR2 endocytosis attenuated both the rectification index and cue-induced relapse to heroin-seeking, without affecting sucrose-seeking. We conclude that GluR2 receptor endocytosis and the resulting synaptic depression in ventral mPFC are crucial for cue-induced relapse to heroin-seeking. As reexposure to conditioned stimuli is a major cause for heroin relapse, inhibition of GluR2 endocytosis may provide a new target for the treatment of heroin addiction.
Collapse
|
41
|
Klemmer P, Smit AB, Li KW. Proteomics analysis of immuno-precipitated synaptic protein complexes. J Proteomics 2008; 72:82-90. [PMID: 19022416 DOI: 10.1016/j.jprot.2008.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/21/2008] [Accepted: 10/23/2008] [Indexed: 11/18/2022]
Abstract
Synapses are key neuronal elements of the brain. They are responsible for transmission, integration, and storage of information between nerve cells. A synapse is considered as the most complex cellular organelle consisting of approximately 1500 of proteins that are interacting in an activity dependent manner. We have initiated a series of immuno-precipitation experiments in conjunction with LC-MS/MS analysis in order to gain better insight into the organization of the synapse. In particular, we focused on proteins that have been implicated previously in the process of neuroplasticity, i.e., the glutamate receptor (GluR2), scaffolding proteins (PSD-95 and CASK), voltage gated potassium (KCNQ2 and Kv4.2) and calcium (CaV beta4) channel subunits, the signalling protein (GIT1) and synaptic vesicle protein (synaptophysin). This study confirms the previous reported protein-protein interactions and furthermore detects novel interactors. In conjunction with the literature reported protein-protein interaction a simple synaptic protein interactome was constructed. This model implicates the potential interaction of distinct protein complexes, and the engagement of single proteins, especially the scaffolding proteins, in multiple protein complexes.
Collapse
Affiliation(s)
- P Klemmer
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam,De Boelelaan 1085, 1081 Amsterdam, The Netherlands
| | | | | |
Collapse
|
42
|
A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia. Mol Psychiatry 2008; 13:878-96. [PMID: 18504422 DOI: 10.1038/mp.2008.60] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many studies in recent years suggest that schizophrenia is a synaptic disease that crucially involves a hypofunction of N-methyl-D-aspartate receptor-mediated signaling. However, at present it is unclear how these pathological processes are reflected in the protein content of the synapse. We have employed two-dimensional gel electrophoresis in conjunction with mass spectrometry to characterize and compare the synaptic proteomes of the human left dorsolateral prefrontal cortex in chronic schizophrenia and of the cerebral cortex of rats treated subchronically with ketamine. We found consistent changes in the synaptic proteomes of human schizophrenics and in rats with induced ketamine psychosis compared to controls. However, commonly regulated proteins between both groups were very limited and only prohibitin was found upregulated in both chronic schizophrenia and the rat ketamine model. Prohibitin, however, could be a new potential marker for the synaptic pathology of schizophrenia and might be causally involved in the disease process.
Collapse
|
43
|
Abstract
Synaptic plasticity is the dynamic regulation of the strength of synaptic communication between nerve cells. It is central to neuronal development as well as experience-dependent remodeling of the adult nervous system as occurs during memory formation. Aberrant forms of synaptic plasticity also accompany a variety of neurological and psychiatric diseases, and unraveling the biological basis of synaptic plasticity has been a major goal in neurobiology research. The biochemical and structural mechanisms underlying different forms of synaptic plasticity are complex, involving multiple signaling cascades, reconfigurations of structural proteins and the trafficking of synaptic proteins. As such, proteomics should be a valuable tool in dissecting the molecular events underlying normal and disease-related forms of plasticity. In fact, progress in this area has been disappointingly slow. We discuss the particular challenges associated with proteomic interrogation of synaptic plasticity processes and outline ways in which we believe proteomics may advance the field over the next few years. We pay particular attention to technical advances being made in small sample proteomics and the advent of proteomic imaging in studying brain plasticity.
Collapse
Affiliation(s)
- Stuart R Cobb
- Division of Neuroscience & Biomedical Systems, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
44
|
Li KW, Smit AB. Proteomics of brain synapses and molecular dissection of synaptic subdomains. Proteomics Clin Appl 2007; 1:1476-84. [DOI: 10.1002/prca.200700328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|