1
|
Neale Q, Neustaeter H, Spicer V, Krokhin OV. Chromatographic properties of deamidated peptides with Asn-Gly sequences in proteomic bottom-up experiments. J Chromatogr A 2024; 1738:465513. [PMID: 39549499 DOI: 10.1016/j.chroma.2024.465513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Studies surrounding deamidation have relied on the chromatographic and mass spectrometric differentiation of Asn containing peptides and their isomeric Asp and isoAsp products. The development of mass spectrometry analytical techniques and characterization of isomer specific fragmentation patterns has permitted the investigation of some deamidation species but has struggled to remain effective when applied and on complex samples or in high throughput scenarios. On the other hand, chromatographic separations can provide additional information to facilitate detection of deamidation. In this work the retention characteristics of deamidation products have been reported in reversed-phase separations using formic acid as an ion-pairing modifier. We found three major elution patterns depending on primary and secondary structure of Asn-Gly containing tryptic peptides. Random coil, helical conformations, and N-terminal positioning of Asn usually result in Asn < isoAsp < Asp, isoAsp < Asn < Asp, and Asn < Asp < isoAsp elution order, respectively. These trends, found from the analyses of proteomic samples, were subsequently confirmed via analytical scale UV-HPLC. Additionally, we determined the retention shifts following deamidation for twenty various separation settings used as a first-dimension fractionation for high-throughput proteomic 2D LC-MS/MS analyses.
Collapse
Affiliation(s)
- Quinn Neale
- Department of Chemistry, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg R3T 2N2, Canada; Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada
| | - Haley Neustaeter
- Department of Chemistry, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg R3T 2N2, Canada
| | - Vic Spicer
- Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada; Department of Internal Medicine, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada.
| |
Collapse
|
2
|
Neale Q, Yeung D, Spicer V, Perreault H, Krokhin O. Peptide retention time prediction for electrostatic repulsion-hydrophilic interaction chromatography. J Chromatogr A 2024; 1736:465414. [PMID: 39378622 DOI: 10.1016/j.chroma.2024.465414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC) is one of the legacy separation tools developed by Dr. Andrew Alpert and has been used for developing unique separation methods of hydrophilic compounds, including peptides. In the past it has been studied using designed peptide libraries to elucidate major features of its separation mechanism, while comprehensive peptide retention modeling for ERLIC is still lacking. In this work we employed a proteomics-derived ∼170,000 peptide retention datasets to evaluate major ERLIC retention features using the framework of our Sequence-Specific Retention Calculator model. The separation conditions were adjusted to obtain a wider proteome coverage, particularly for non-modified peptides, resulting in a superior separation orthogonality for a 2D LC combination with reversed-phase C18 LC-MS in the second dimension. The SSRCalc ERLIC model presents a consistent theme with the existing ERLIC retention mechanism, reflecting a dependence on peptide orientation and the position of charged and hydrophilic residues across the peptide backbone. R2 values of 0.935 and 0.955 accuracy were demonstrated for the standard interpretable SSRCalc model and machine learning algorithm, respectively. The effects of various PTMs on peptide retention were evaluated in this study, covering spontaneous (oxidation, deamidation) and enzymatic (N-terminal acetylation, phosphorylation, glycosylation) modifications.
Collapse
Affiliation(s)
- Quinn Neale
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, MB R3E 3P4, Canada
| | - Darien Yeung
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, MB R3E 3P4, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, MB R3E 3P4, Canada
| | - Helene Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Oleg Krokhin
- Manitoba Centre for Proteomics and Systems Biology, Health Science Centre, Winnipeg, MB R3E 3P4, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
3
|
Takagi S, Suzuki N, Ishihama Y. Revisiting Protein Reversed-Phase Chromatography for Bottom-Up Proteomics. J Proteome Res 2024; 23:4704-4714. [PMID: 39293027 DOI: 10.1021/acs.jproteome.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
We revisited protein reversed-phase chromatography (RP), using state-of-the-art RP columns developed for biopharmaceuticals, such as monoclonal antibodies, in order to evaluate the suitability of this methodology as a prefractionation step for bottom-up proteomics. The protein RP prefractionation (Prot-RP) method was compared with two other widely used prefractionation methods, SDS-PAGE and high-pH peptide RP (Pept-RP) by using cell lysates as samples. The overlap between fractions of Prot-RP was comparable to that of SDS-PAGE, and the protein recovery was approximately 2-fold higher. On the other hand, the overlap between fractions of Prot-RP was slightly larger than that of Pept-RP, but Prot-RP was able to identify more protein termini and more isoform-specific peptides than Pept-RP. Our results indicate that the combination of highly efficient protein prefractionation with modern mass spectrometers is particularly effective for proteoform profiling from cellular samples.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa 254-0014, Japan
| | - Nobuyuki Suzuki
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa 254-0014, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
4
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
5
|
Phlairaharn T, Ye Z, Krismer E, Pedersen AK, Pietzner M, Olsen JV, Schoof EM, Searle BC. Optimizing linear ion trap data independent acquisition towards single cell proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529444. [PMID: 36865114 PMCID: PMC9980145 DOI: 10.1101/2023.02.21.529444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
A linear ion trap (LIT) is an affordable, robust mass spectrometer that proves fast scanning speed and high sensitivity, where its primary disadvantage is inferior mass accuracy compared to more commonly used time-of-flight (TOF) or orbitrap (OT) mass analyzers. Previous efforts to utilize the LIT for low-input proteomics analysis still rely on either built-in OTs for collecting precursor data or OT-based library generation. Here, we demonstrate the potential versatility of the LIT for low-input proteomics as a stand-alone mass analyzer for all mass spectrometry measurements, including library generation. To test this approach, we first optimized LIT data acquisition methods and performed library-free searches with and without entrapment peptides to evaluate both the detection and quantification accuracy. We then generated matrix-matched calibration curves to estimate the lower limit of quantification using only 10 ng of starting material. While LIT-MS1 measurements provided poor quantitative accuracy, LIT-MS2 measurements were quantitatively accurate down to 0.5 ng on column. Finally, we optimized a suitable strategy for spectral library generation from low-input material, which we used to analyze single-cell samples by LIT-DIA using LIT-based libraries generated from as few as 40 cells.
Collapse
|
6
|
Proteomic Discovery and Validation of Novel Fluid Biomarkers for Improved Patient Selection and Prediction of Clinical Outcomes in Alzheimer’s Disease Patient Cohorts. Proteomes 2022; 10:proteomes10030026. [PMID: 35997438 PMCID: PMC9397030 DOI: 10.3390/proteomes10030026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by progressive cognitive decline. The two cardinal neuropathological hallmarks of AD include the buildup of cerebral β amyloid (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau. The current disease-modifying treatments are still not effective enough to lower the rate of cognitive decline. There is an urgent need to identify early detection and disease progression biomarkers that can facilitate AD drug development. The current established readouts based on the expression levels of amyloid beta, tau, and phospho-tau have shown many discrepancies in patient samples when linked to disease progression. There is an urgent need to identify diagnostic and disease progression biomarkers from blood, cerebrospinal fluid (CSF), or other biofluids that can facilitate the early detection of the disease and provide pharmacodynamic readouts for new drugs being tested in clinical trials. Advances in proteomic approaches using state-of-the-art mass spectrometry are now being increasingly applied to study AD disease mechanisms and identify drug targets and novel disease biomarkers. In this report, we describe the application of quantitative proteomic approaches for understanding AD pathophysiology, summarize the current knowledge gained from proteomic investigations of AD, and discuss the development and validation of new predictive and diagnostic disease biomarkers.
Collapse
|
7
|
Khitun A, Slavoff SA. Proteomic Detection and Validation of Translated Small Open Reading Frames. ACTA ACUST UNITED AC 2020; 11:e77. [PMID: 31750990 DOI: 10.1002/cpch.77] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small open reading frames (smORFs) encode previously unannotated polypeptides or short proteins that regulate translation in cis (eukaryotes) and/or are independently functional (prokaryotes and eukaryotes). Ongoing efforts for complete annotation and functional characterization of smORF-encoded proteins have yielded novel regulators and therapeutic targets. However, because they are excluded from protein databases, initiate at non-AUG start codons, and produce few unique tryptic peptides, unannotated small proteins cannot be detected with standard proteomic methods. Here,, we outline a procedure for mass spectrometry-based detection of translated smORFs in cultured human cells from protein extraction, digestion, and LC-MS/MS, to database preparation and data analysis. Following proteomic detection, translation from a unique smORF may be validated via siRNA-based silencing or overexpression and epitope tagging. This is necessary to unambiguously assign a peptide to a smORF within a specific transcript isoform or genomic locus. Provided that sufficient starting material is available, this workflow can be applied to any cell type/organism and adjusted to study specific (patho)physiological contexts including, but not limited to, development, stress, and disease. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Protein extraction, size selection, and trypsin digestion Alternate Protocol 1: In-solution C8 column size selection Support Protocol 1: Chloroform/methanol precipitation Support Protocol 2: Reduction, alkylation, and in-solution protease digestion Support Protocol 3: Peptide de-salting Basic Protocol 2: Two-dimensional LC-MS/MS with ERLIC fractionation Basic Protocol 3: Transcriptomic database construction Alternate Protocol 2: Transcriptomics database generation with gffread Basic Protocol 4: Non-annotated peptide identification from LC-MS/MS data Basic Protocol 5: Validation using isotopically labeled synthetic peptide standards and siRNA Basic Protocol 6: Transcript validation using transient overexpression.
Collapse
Affiliation(s)
- Alexandra Khitun
- Department of Chemistry, Yale University, New Haven, Connecticut.,Chemical Biology Institute, Yale University, West Haven, Connecticut
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, Connecticut.,Chemical Biology Institute, Yale University, West Haven, Connecticut.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| |
Collapse
|
8
|
Ying Y, Li H. Recent progress in the analysis of protein deamidation using mass spectrometry. Methods 2020; 200:42-57. [PMID: 32544593 DOI: 10.1016/j.ymeth.2020.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Deamidation is a nonenzymatic and spontaneous posttranslational modification (PTM) that introduces changes in both structure and charge of proteins, strongly associated with aging proteome instability and degenerative diseases. Deamidation is also a common PTM occurring in biopharmaceutical proteins, representing a major cause of degradation. Therefore, characterization of deamidation alongside its inter-related modifications, isomerization and racemization, is critically important to understand their roles in protein stability and diseases. Mass spectrometry (MS) has become an indispensable tool in site-specific identification of PTMs for proteomics and structural studies. In this review, we focus on the recent advances of MS analysis in protein deamidation. In particular, we provide an update on sample preparation, chromatographic separation, and MS technologies at multi-level scales, for accurate and reliable characterization of protein deamidation in both simple and complex biological samples, yielding important new insight on how deamidation together with isomerization and racemization occurs. These technological progresses will lead to a better understanding of how deamidation contributes to the pathology of aging and other degenerative diseases and the development of biopharmaceutical drugs.
Collapse
Affiliation(s)
- Yujia Ying
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Huilin Li
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
9
|
Lin Z, Ren Y, Shi Z, Zhang K, Yang H, Liu S, Hao P. Evaluation and minimization of nonspecific tryptic cleavages in proteomic sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8733. [PMID: 32031715 DOI: 10.1002/rcm.8733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
UNLABELLED High specificity of trypsin is a prerequisite for accurate identification and quantification of proteins in shotgun proteomics. It is important to minimize nonspecific enzymatic cleavages during proteomic sample preparation. METHODS In this study, protein extraction and trypsin digestion conditions were extensively evaluated using the less-complex Escherichia coli lysates to improve the sensitivity of detecting low-abundance nonspecific peptides by liquid chromatography/tandem mass spectrometry. RESULTS Trypsin digestion buffers and digestion times were proved to have a significant effect on nonspecific cleavages. The triethylammonium bicarbonate buffer induces significantly lower nonspecific cleavages than the other two buffers, but a freshly prepared urea solution does not induce more than sodium dodecyl sulfate. Because prolonged trypsin digestion resulted in a considerable number of nonspecific cleavages, an optimized 2-h protocol was developed with 45.2% less semispecific tryptic peptides but 18.5% more unmodified peptides identified than the commonly used 16-h protocol. CONCLUSIONS The significant decrease in nonspecific cleavages and artificial modifications improves the accuracy of protein quantification and the identification of low-abundance proteins, and it is especially useful for studying protein posttranslational modifications. For trypsin digestion, the proposed 2-h protocol can potentially be a replacement for the traditional 16-h protocol.
Collapse
Affiliation(s)
| | - Yan Ren
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zhaomei Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
10
|
Sze SK, JebaMercy G, Ngan SC. Profiling the 'deamidome' of complex biosamples using mixed-mode chromatography-coupled tandem mass spectrometry. Methods 2020; 200:31-41. [PMID: 32418626 DOI: 10.1016/j.ymeth.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/26/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Deamidation is a spontaneous degenerative protein modification (DPM) that disrupts the structure and function of both endogenous proteins and various therapeutic agents. While deamidation has long been recognized as a critical event in human aging and multiple degenerative diseases, research progress in this field has been restricted by the technical challenges associated with studying this DPM in complex biological samples. Asparagine (Asn) deamidation generates L-aspartic acid (L-Asp), D-aspartic acid (D-Asp), L-isoaspartic acid (L-isoAsp) or D-isoaspartic acid (D-isoAsp) residues at the same position of Asn in the affected protein, but each of these amino acids displays similar hydrophobicity and cannot be effectively separated by reverse phase liquid chromatography. The Asp and isoAsp isoforms are also difficult to resolve using mass spectrometry since they have the same mass and fragmentation pattern in MS/MS. Moreover, the 13C peaks of the amidated peptide are often misassigned as monoisotopic peaks of the corresponding deamidated peptides in protein database searches. Furthermore, typical protein isolation and proteomic sample preparation methods induce artificial deamidation that cannot be distinguished from the physiological forms. To better understand the role of deamidation in biological aging and degenerative pathologies, new technologies are now being developed to address these analytical challenges, including mixed mode electrostatic-interaction modified hydrophilic interaction liquid chromatography (emHILIC). When coupled to high resolution, high accuracy tandem mass spectrometry this technology enables unprecedented, proteome-wide study of the 'deamidome' of complex samples. The current article therefore reviews recent advances in sample preparation methods, emHILIC-MS/MS technology, and MS instrumentation / data processing approaches to achieving accurate and reliable characterization of protein deamidation in complex biological and clinical samples.
Collapse
Affiliation(s)
- Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Gnanasekaran JebaMercy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - SoFong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
11
|
Serum albumin cysteine trioxidation is a potential oxidative stress biomarker of type 2 diabetes mellitus. Sci Rep 2020; 10:6475. [PMID: 32296090 PMCID: PMC7160123 DOI: 10.1038/s41598-020-62341-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/11/2020] [Indexed: 01/24/2023] Open
Abstract
Metabolic disorders in T2DM generate multiple sources of free radicals and oxidative stress that accelerate nonenzymatic degenerative protein modifications (DPMs) such as protein oxidation, disrupt redox signaling and physiological function, and remain a major risk factor for clinical diabetic vascular complications. In order to identify potential oxidative biomarkers in the blood plasma of patients with T2DM, we used LC-MS/MS-based proteomics to profile plasma samples from patients with T2DM and healthy controls. The results showed that human serum albumin (HSA) is damaged by irreversible cysteine trioxidation, which can be a potential oxidative stress biomarker for the early diagnosis of T2DM. The quantitative detection of site-specific thiol trioxidation is technically challenging; thus, we developed a sensitive and selective LC-MS/MS workflow that has been used to discover and quantify three unique thiol-trioxidized HSA peptides, ALVLIAFAQYLQQC(SO3H)PFEDHVK (m/z 1241.13), YIC(SO3H)ENQDSISSK (m/z 717.80) and RPC(SO3H)FSALEVDETYVPK (m/z 951.45), in 16 individual samples of healthy controls (n = 8) and individuals with diabetes (n = 8). Targeted quantitative analysis using multiple reaction monitoring mass spectrometry revealed impairment of the peptides with m/z 1241.13, m/z 717.80 and m/z 951.45, with significance (P < 0.02, P < 0.002 and P < 0.03), in individuals with diabetes. The results demonstrated that a set of three HSA thiol-trioxidized peptides, which are irreversibly oxidatively damaged in HSA in the plasma of patients with T2DM, can be important indicators and potential biomarkers of oxidative stress in T2DM.
Collapse
|
12
|
Au DT, Ying Z, Hernández-Ochoa EO, Fondrie WE, Hampton B, Migliorini M, Galisteo R, Schneider MF, Daugherty A, Rateri DL, Strickland DK, Muratoglu SC. LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca 2+ Signaling and Expression of Cytoskeleton-Related Proteins. Arterioscler Thromb Vasc Biol 2018; 38:2651-2664. [PMID: 30354243 PMCID: PMC6214382 DOI: 10.1161/atvbaha.118.311197] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 09/12/2018] [Indexed: 01/12/2023]
Abstract
Objective- Mutations affecting contractile-related proteins in the ECM (extracellular matrix), microfibrils, or vascular smooth muscle cells can predispose the aorta to aneurysms. We reported previously that the LRP1 (low-density lipoprotein receptor-related protein 1) maintains vessel wall integrity, and smLRP1-/- mice exhibited aortic dilatation. The current study focused on defining the mechanisms by which LRP1 regulates vessel wall function and integrity. Approach and Results- Isometric contraction assays demonstrated that vasoreactivity of LRP1-deficient aortic rings was significantly attenuated when stimulated with vasoconstrictors, including phenylephrine, thromboxane receptor agonist U-46619, increased potassium, and L-type Ca2+ channel ligand FPL-64176. Quantitative proteomics revealed proteins involved in actin polymerization and contraction were significantly downregulated in aortas of smLRP1-/- mice. However, studies with calyculin A indicated that although aortic muscle from smLRP1-/- mice can contract in response to calyculin A, a role for LRP1 in regulating the contractile machinery is not revealed. Furthermore, intracellular calcium imaging experiments identified defects in calcium release in response to a RyR (ryanodine receptor) agonist in smLRP1-/- aortic rings and cultured vascular smooth muscle cells. Conclusions- These results identify a critical role for LRP1 in modulating vascular smooth muscle cell contraction by regulating calcium signaling events that potentially protect against aneurysm development.
Collapse
MESH Headings
- Actin Cytoskeleton/drug effects
- Actin Cytoskeleton/genetics
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/ultrastructure
- Animals
- Aorta/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Female
- Gene Expression Regulation
- Low Density Lipoprotein Receptor-Related Protein-1
- Male
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Tissue Culture Techniques
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Dianaly T. Au
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erick O. Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - William E. Fondrie
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brian Hampton
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Rebeca Galisteo
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Martin F. Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Debra L. Rateri
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Selen C. Muratoglu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Zhen J, Kim J, Zhou Y, Gaidamauskas E, Subramanian S, Feng P. Antibody characterization using novel ERLIC-MS/MS-based peptide mapping. MAbs 2018; 10:951-959. [PMID: 30130443 DOI: 10.1080/19420862.2018.1505179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Electrostatic repulsion hydrophilic interaction chromatography (ERLIC) coupled with mass spectrometry (MS) is a technique that is increasingly being used as a trapping/enrichment tool for glycopeptides/phosphorylated peptides or sample fractionation in proteomics research. Here, we describe a novel ERLIC-MS/MS-based peptide mapping method that was successfully used for the characterization of denosumab, in particular the analysis of sequence coverage, terminal peptides, methionine oxidation, asparagine deamidation and glycopeptides. Compared to reversed phase liquid chromatography (RPLC)-MS/MS methods, ERLIC demonstrated unique advantages in the retention of small peptides, resulting in 100% sequence coverage for both the light and heavy chains. It also demonstrated superior performance in the separation and characterization of asparagine deamidated peptides, which is known to be challenging by RPLC-MS/MS. The developed method can be used alone for peptide mapping-based characterization of monoclonal antibodies, or as an orthogonal method to complement the RPLC-MS/MS method. This study extends the applications of ERLIC from that of a trapping/fractioning column to biologic therapeutics characterization. The ERLIC-MS/MS method can enhance biologic therapeutics analysis with more reliability and confidence for bottom-up peptide mapping-based characterization.
Collapse
Affiliation(s)
- Jing Zhen
- a Department of Analytical Sciences and Operations , Biologics CMC, Teva Pharmaceutical Industries , West Chester , PA , USA
| | - John Kim
- a Department of Analytical Sciences and Operations , Biologics CMC, Teva Pharmaceutical Industries , West Chester , PA , USA
| | - Ying Zhou
- a Department of Analytical Sciences and Operations , Biologics CMC, Teva Pharmaceutical Industries , West Chester , PA , USA
| | - Ervinas Gaidamauskas
- a Department of Analytical Sciences and Operations , Biologics CMC, Teva Pharmaceutical Industries , West Chester , PA , USA
| | - Shyamsundar Subramanian
- b Department of Upstream Development and Operations , Biologics CMC, Teva Pharmaceutical Industries , West Chester , PA , USA
| | - Ping Feng
- a Department of Analytical Sciences and Operations , Biologics CMC, Teva Pharmaceutical Industries , West Chester , PA , USA
| |
Collapse
|
14
|
Serra A, Gallart-Palau X, Dutta B, Sze SK. Online Removal of Sodium Dodecyl Sulfate via Weak Cation Exchange in Liquid Chromatography–Mass Spectrometry Based Proteomics. J Proteome Res 2018; 17:2390-2400. [DOI: 10.1021/acs.jproteome.8b00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
15
|
Kontos C, Androutsou ME, Vlamis-Gardikas A, Tselios T. Recovery and quantification of a myelin oligodendrocyte glycoprotein peptide from rat plasma after protein precipitation. Anal Biochem 2017; 538:71-73. [PMID: 28958915 DOI: 10.1016/j.ab.2017.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022]
Abstract
The recovery of high molecular weight peptides from complex biological samples is a challenging task. Herein, a reliable, cost effective and rapid methodology was developed for the recovery and quantification of a myelin oligodendrocyte glycoprotein epitope namely (LysGly)5MOG35-55, from rat plasma. Removal of plasma proteins before quantification of the peptide was achieved after precipitation by an acetonitrile/water/formic acid solution. Using the developed protocol, average recoveries of the peptide from plasma ranged between 83.3 and 90.3%.
Collapse
Affiliation(s)
- Christos Kontos
- Department of Chemistry, University of Patras, Rion, 26504, Greece
| | - Maria-Eleni Androutsou
- Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, Nea Erythrea, 14671, Greece
| | | | - Theodore Tselios
- Department of Chemistry, University of Patras, Rion, 26504, Greece.
| |
Collapse
|
16
|
Wingo TS, Duong DM, Zhou M, Dammer EB, Wu H, Cutler DJ, Lah JJ, Levey AI, Seyfried NT. Integrating Next-Generation Genomic Sequencing and Mass Spectrometry To Estimate Allele-Specific Protein Abundance in Human Brain. J Proteome Res 2017; 16:3336-3347. [PMID: 28691493 DOI: 10.1021/acs.jproteome.7b00324] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene expression contributes to phenotypic traits and human disease. To date, comparatively less is known about regulators of protein abundance, which is also under genetic control and likely influences clinical phenotypes. However, identifying and quantifying allele-specific protein abundance by bottom-up proteomics is challenging since single nucleotide variants (SNVs) that alter protein sequence are not considered in standard human protein databases. To address this, we developed the GenPro software and used it to create personalized protein databases (PPDs) to identify single amino acid variants (SAAVs) at the protein level from whole exome sequencing. In silico assessment of PPDs generated by GenPro revealed only a 1% increase in tryptic search space compared to a direct translation of all human transcripts and an equivalent search space compared to the UniProtKB reference database. To identify a large unbiased number of SAAV peptides, we performed high-resolution mass spectrometry-based proteomics for two human post-mortem brain samples and searched the collected MS/MS spectra against their respective PPD. We found an average of ∼117 000 unique peptides mapping to ∼9300 protein groups for each sample, and of these, 977 were unique variant peptides. We found that over 400 reference and SAAV peptide pairs were, on average, equally abundant in human brain by label-free ion intensity measurements and confirmed the absolute levels of three reference and SAAV peptide pairs using heavy labeled peptides standards coupled with parallel reaction monitoring (PRM). Our results highlight the utility of integrating genomic and proteomic sequencing data to identify sample-specific SAAV peptides and support the hypothesis that most alleles are equally expressed in human brain.
Collapse
Affiliation(s)
- Thomas S Wingo
- Division of Neurology, Department of Veterans Affairs Medical Center , Decatur, Georgia 30033, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Monocyte adhesion to atherosclerotic matrix proteins is enhanced by Asn-Gly-Arg deamidation. Sci Rep 2017; 7:5765. [PMID: 28720870 PMCID: PMC5515959 DOI: 10.1038/s41598-017-06202-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/09/2017] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis arises from leukocyte infiltration and thickening of the artery walls and constitutes a major component of vascular disease pathology, but the molecular events underpinning this process are not fully understood. Proteins containing an Asn-Gly-Arg (NGR) motif readily undergo deamidation of asparagine to generate isoDGR structures that bind to integrin αvβ3 on circulating leukocytes. Here we report the identification of isoDGR motifs in human atherosclerotic plaque components including extracellular matrix (ECM) proteins fibronectin and tenascin C, which have been strongly implicated in human atherosclerosis. We further demonstrate that deamidation of NGR motifs in fibronectin and tenascin C leads to increased adhesion of the monocytic cell line U937 and enhanced binding of primary human monocytes, except in the presence of a αvβ3-blocking antibody or the αv-selective inhibitor cilengitide. In contrast, under the same deamidating conditions monocyte-macrophages displayed only weak binding to the alternative ECM component vitronectin which lacks NGR motifs. Together, these findings confirm a critical role for isoDGR motifs in mediating leukocyte adhesion to the ECM via integrin αvβ3 and suggest that protein deamidation may promote the pathological progression of human atherosclerosis by enhancing monocyte recruitment to developing plaques.
Collapse
|
18
|
Ruprecht B, Wang D, Chiozzi RZ, Li LH, Hahne H, Kuster B. Hydrophilic Strong Anion Exchange (hSAX) Chromatography Enables Deep Fractionation of Tissue Proteomes. Methods Mol Biol 2017; 1550:69-82. [PMID: 28188524 DOI: 10.1007/978-1-4939-6747-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The bottom-up proteomic analysis of cell line and tissue samples to a depth > 10,000 proteins still represents a considerable challenge because of the sheer number of peptides generated by proteolytic digestions and the high dynamic range of protein expression. As a result, comprehensive protein coverage requires multidimensional peptide separation. Recently, off-line hydrophilic strong cation exchange (hSAX) chromatography has proven its merits for high resolution separation of peptides due to its high degree of orthogonality to reversed-phase liquid chromatography. Here we describe the use of hSAX for the deep analysis of tissue proteomes. The protocol includes optimized sample preparation steps (lysis with the aid of mechanical disruption, one-step disulfide bridge reduction and alkylation), setup and operation of hSAX columns and gradients, desalting of hSAX fractions prior to LC-MS/MS analysis, and suggestions for the choice of data acquisition parameters and data analysis using MaxQuant. Application of the protocol to the fractionation of 300 μg human brain tissue digest led to the identification of more than 100,000 unique peptide sequences representing over 10,195 proteins and 9,500 genes in 3 days of measurement time on a Q Exactive Plus mass spectrometer.
Collapse
Affiliation(s)
- Benjamin Ruprecht
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
- Center for Integrated Protein Science Munich (CIPSM), Freising, Germany
| | - Dongxue Wang
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | | | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany.
- Center for Integrated Protein Science Munich (CIPSM), Freising, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Biomolecular Mass Spectrometry Center, Technische Universität München, Freising, Germany.
| |
Collapse
|
19
|
Serra A, Gallart-Palau X, Wei J, Sze SK. Characterization of Glutamine Deamidation by Long-Length Electrostatic Repulsion-Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry (LERLIC-MS/MS) in Shotgun Proteomics. Anal Chem 2016; 88:10573-10582. [DOI: 10.1021/acs.analchem.6b02688] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Juan Wei
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
20
|
Gallart-Palau X, Serra A, Sze SK. Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol Neurodegener 2016; 11:41. [PMID: 27216497 PMCID: PMC4877958 DOI: 10.1186/s13024-016-0108-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/16/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) act as key mediators of intercellular communication and are secreted and taken up by all cell types in the central nervous system (CNS). While detailed study of EV-based signaling is likely to significantly advance our understanding of human neurobiology, the technical challenges of isolating EVs from CNS tissues have limited their characterization using 'omics' technologies. We therefore developed a new Protein Organic Solvent Precipitation (PROSPR) method that can efficiently isolate the EV repertoire from human biological samples. RESULTS In the current report, we present a novel experimental workflow that outlines the process of sample extraction and enrichment of CNS-derived EVs using PROSPR. Subsequent LC-MS/MS-based proteomic profiling of EVs enriched from brain homogenates successfully identified 86 of the top 100 exosomal markers. Proteomic profiling of PROSPR-enriched CNS EVs indicated that > 75 % of the proteins identified matched previously reported exosomal and microvesicle cargoes, while also expanded the known human EV-associated proteome with 685 novel identifications. Similarly, lipidomic characterization of enriched CNS vesicles not only identified previously reported EV-specific lipid families (PS, SM, lysoPC, lysoPE) but also uncovered novel lipid isoforms not previously detected in human EVs. Finally, dedicated flow cytometry of PROSPR-CNS-EVs revealed that ~80 % of total microparticles observed were exosomes ranging in diameter from ≤100 nm to 300 nm. CONCLUSIONS These data demonstrate that the optimized use of PROSPR represents an easy-to-perform and inexpensive method of enriching EVs from human CNS tissues for detailed characterization by 'omics' technologies. We predict that widespread use of the methodology described herein will greatly accelerate the study of EVs biology in neuroscience.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- School of Biological Sciences, Division of Chemical Biology & BioTechnology, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Division of Chemical Biology & BioTechnology, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Division of Chemical Biology & BioTechnology, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
21
|
Källsten M, Bergquist J, Zhao H, Konzer A, Lind SB. A comparative study of phosphopeptide-selective techniques for a sub-proteome of a complex biological sample. Anal Bioanal Chem 2016; 408:2347-56. [DOI: 10.1007/s00216-016-9333-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/18/2015] [Accepted: 01/13/2016] [Indexed: 11/24/2022]
|
22
|
Cundiff JK, McConnell EJ, Lohe KJ, Maria SD, McMahon RJ, Zhang Q. Sensing Small Changes in Protein Abundance: Stimulation of Caco-2 Cells by Human Whey Proteins. J Proteome Res 2015; 15:125-43. [PMID: 26586228 DOI: 10.1021/acs.jproteome.5b00597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS)-based proteomic approaches have largely facilitated our systemic understanding of cellular processes and biological functions. Cutoffs in protein expression fold changes (FCs) are often arbitrarily determined in MS-based quantification with no demonstrable determination of small magnitude changes in protein expression. Therefore, many biological insights may remain veiled due to high FC cutoffs. Herein, we employ the intestinal epithelial cell (IEC) line Caco-2 as a model system to demonstrate the dynamicity of tandem-mass-tag (TMT) labeling over a range of 5-40% changes in protein abundance, with the variance controls of ± 5% FC for around 95% of TMT ratios when sampling 9-12 biological replicates. We further applied this procedure to examine the temporal proteome of Caco-2 cells upon exposure to human whey proteins (WP). Pathway assessments predict subtle effects due to WP in moderating xenobiotic metabolism, promoting proliferation and various other cellular functions in differentiating enterocyte-like Caco-2 cells. This demonstration of a sensitive MS approach may open up new perspectives in the system-wide exploration of elusive or transient biological effects by facilitating scrutiny of narrow windows of proteome abundance changes. Furthermore, we anticipate this study will encourage more investigations of WP on infant gastrointestinal tract development.
Collapse
Affiliation(s)
- Judy K Cundiff
- Mead Johnson Nutrition, 2400 West Lloyd Expressway, Evansville, Indiana 47721, United States
| | - Elizabeth J McConnell
- Mead Johnson Nutrition, 2400 West Lloyd Expressway, Evansville, Indiana 47721, United States
| | - Kimberly J Lohe
- Mead Johnson Nutrition, 2400 West Lloyd Expressway, Evansville, Indiana 47721, United States
| | - Sarah D Maria
- Mead Johnson Nutrition, 2400 West Lloyd Expressway, Evansville, Indiana 47721, United States
| | - Robert J McMahon
- Mead Johnson Nutrition, 2400 West Lloyd Expressway, Evansville, Indiana 47721, United States
| | - Qiang Zhang
- Mead Johnson Nutrition, 2400 West Lloyd Expressway, Evansville, Indiana 47721, United States
| |
Collapse
|
23
|
Sajic T, Varesio E, Szanto I, Hopfgartner G. Comparison of fractionation strategies for offline two-dimensional liquid chromatography tandem mass spectrometry analysis of proteins from mouse adipose tissue. Anal Biochem 2015; 484:122-32. [DOI: 10.1016/j.ab.2015.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/26/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
|
24
|
Loroch S, Schommartz T, Brune W, Zahedi RP, Sickmann A. Multidimensional electrostatic repulsion–hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:460-8. [DOI: 10.1016/j.bbapap.2015.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 11/29/2022]
|
25
|
Herring LE, Grant KG, Blackburn K, Haugh JM, Goshe MB. Development of a tandem affinity phosphoproteomic method with motif selectivity and its application in analysis of signal transduction networks. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 988:166-74. [PMID: 25777480 PMCID: PMC4489695 DOI: 10.1016/j.jchromb.2015.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 11/26/2022]
Abstract
Phosphorylation is an important post-translational modification that is involved in regulating many signaling pathways. Of particular interest are the growth factor mediated Ras and phosphoinositide 3-kinase (PI3K) signaling pathways which, if misregulated, can contribute to the progression of cancer. Phosphoproteomic methods have been developed to study regulation of signaling pathways; however, due to the low stoichiometry of phosphorylation, understanding these pathways is still a challenge. In this study, we have developed a multi-dimensional method incorporating electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with tandem IMAC/TiO2 enrichment for subsequent phosphopeptide identification by LC/MS/MS. We applied this method to PDGF-stimulated NIH 3T3 cells to provide over 11,000 unique phosphopeptide identifications. Upon motif analysis, IMAC was found to enrich for basophilic kinase substrates while the subsequent TiO2 step enriched for acidophilic kinase substrates, suggesting that both enrichment methods are necessary to capture the full complement of kinase substrates. Biological functions that were over-represented at each PDGF stimulation time point, together with the phosphorylation dynamics of several phosphopeptides containing known kinase phosphorylation sites, illustrate the feasibility of this approach in quantitative phosphoproteomic studies.
Collapse
Affiliation(s)
- Laura E Herring
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, United States
| | - Kyle G Grant
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-73522, United States
| | - Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, United States
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, United States
| | - Michael B Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, United States.
| |
Collapse
|
26
|
Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes. J Proteomics 2015; 119:154-68. [DOI: 10.1016/j.jprot.2015.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/07/2015] [Accepted: 02/15/2015] [Indexed: 01/30/2023]
|
27
|
Feist P, Hummon AB. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci 2015; 16:3537-63. [PMID: 25664860 PMCID: PMC4346912 DOI: 10.3390/ijms16023537] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022] Open
Abstract
Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed.
Collapse
Affiliation(s)
- Peter Feist
- Department of Chemistry and Biochemistry, Integrated Biomedical Sciences Program, and the Harper Cancer Research Institute, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Integrated Biomedical Sciences Program, and the Harper Cancer Research Institute, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
28
|
Periat A, Krull IS, Guillarme D. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins. J Sep Sci 2015; 38:357-67. [PMID: 25413716 DOI: 10.1002/jssc.201400969] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/25/2022]
Abstract
This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited.
Collapse
Affiliation(s)
- Aurélie Periat
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | | | | |
Collapse
|
29
|
Wang H, Sun S, Zhang Y, Chen S, Liu P, Liu B. An off-line high pH reversed-phase fractionation and nano-liquid chromatography–mass spectrometry method for global proteomic profiling of cell lines. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 974:90-5. [DOI: 10.1016/j.jchromb.2014.10.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 12/30/2022]
|
30
|
Abstract
The effectiveness of treatment of renal diseases is limited because the lack of diagnostic, prognostic and therapeutic markers. Despite the more than a decade of intensive investigation of urinary biomarkers, no new clinical biomarkers were approved. This is in part because the early expectations toward proteomics in biomarkers discovery were significantly higher than the capability of technology at the time. However, during the last decade, proteomic technology has made dramatic progress in both the hardware and software methods. In this review we are discussing modern quantitative methods of mass-spectrometry and providing several examples of their applications for discovery and validation of renal disease biomarkers. We are optimistic about future prospects for the development of novel of specific clinical urinary biomarkers.
Collapse
Affiliation(s)
- Marina Jerebtsova
- Department of Microbiology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Sergei Nekhai
- Department of Medicine, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA ; Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| |
Collapse
|
31
|
Gallart-Palau X, Serra A, Qian J, Chen CP, Kalaria RN, Sze SK. Temporal lobe proteins implicated in synaptic failure exhibit differential expression and deamidation in vascular dementia. Neurochem Int 2014; 80:87-98. [PMID: 25497727 DOI: 10.1016/j.neuint.2014.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022]
Abstract
Progressive synaptic failure precedes the loss of neurons and decline in cognitive function in neurodegenerative disorders, but the specific proteins and posttranslational modifications that promote synaptic failure in vascular dementia (VaD) remain largely unknown. We therefore used an isobaric tag for relative and absolute proteomic quantitation (iTRAQ) to profile the synapse-associated proteome of post-mortem human cortex from vascular dementia patients and age-matched controls. Brain tissue from VaD patients exhibited significant down-regulation of critical synaptic proteins including clathrin (0.29; p < 1.0⋅10(-3)) and GDI1 (0.51; p = 3.0⋅10(-3)), whereas SNAP25 (1.6; p = 5.5⋅10(-3)), bassoon (1.4; p = 1.3⋅10(-3)), excitatory amino acid transporter 2 (2.6; p = 9.2⋅10(-3)) and Ca(2+)/calmodulin dependent kinase II (1.6; p = 3.0⋅10(-2)) were substantially up-regulated. Our analyses further revealed divergent patterns of protein modification in the dementia patient samples, including a specific deamidation of synapsin1 predicted to compromise protein structure. Our results reveal potential molecular targets for intervention in synaptic failure and prevention of cognitive decline in VaD.
Collapse
Affiliation(s)
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jingru Qian
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore
| | - Raj N Kalaria
- Institute for Ageing and Health, NIHR Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
32
|
Batth TS, Francavilla C, Olsen JV. Off-Line High-pH Reversed-Phase Fractionation for In-Depth Phosphoproteomics. J Proteome Res 2014; 13:6176-86. [DOI: 10.1021/pr500893m] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tanveer S. Batth
- Proteomics
Program, Novo
Nordisk Foundation Center for Protein Research, Faculty of Health
and Medical Science, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Chiara Francavilla
- Proteomics
Program, Novo
Nordisk Foundation Center for Protein Research, Faculty of Health
and Medical Science, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Jesper V. Olsen
- Proteomics
Program, Novo
Nordisk Foundation Center for Protein Research, Faculty of Health
and Medical Science, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
33
|
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore
| |
Collapse
|
34
|
MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 2014; 5:5277. [PMID: 25358478 PMCID: PMC5036525 DOI: 10.1038/ncomms6277] [Citation(s) in RCA: 794] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but the software tools to analyze tandem mass spectra are lagging behind. We present a database search tool MS-GF+ that is sensitive (it identifies more peptides than most other database search tools) and universal (it works well for diverse types of spectra, different configurations of MS instruments and different experimental protocols). We benchmark MS-GF+ using diverse spectral datasets: (i) spectra of varying fragmentation methods; (ii) spectra of multiple enzyme digests; (iii) spectra of phosphorylated peptides; (iv) spectra of peptides with unusual fragmentation propensities produced by a novel alpha-lytic protease. For all these datasets, MS-GF+ significantly increases the number of identified peptides compared to commonly used methods for peptide identifications. We emphasize that while MS-GF+ is not specifically designed for any particular experimental set-up, it improves upon the performance of tools specifically designed for these applications (e.g., specialized tools for phosphoproteomics).
Collapse
|
35
|
Adav SS, Qian J, Ang YL, Kalaria RN, Lai MKP, Chen CP, Sze SK. iTRAQ quantitative clinical proteomics revealed role of Na(+)K(+)-ATPase and its correlation with deamidation in vascular dementia. J Proteome Res 2014; 13:4635-46. [PMID: 25152327 DOI: 10.1021/pr500754j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dementia is a major public health burden characterized by impaired cognition and loss of function. There are limited treatment options due to inadequate understanding of its pathophysiology and underlying causative mechanisms. Discovery-driven iTRAQ-based quantitative proteomics techniques were applied on frozen brain samples to profile the proteome from vascular dementia (VaD) and age-matched nondementia controls to elucidate the perturbed pathways contributing to pathophysiology of VaD. The iTRAQ quantitative data revealed significant up-regulation of protein-l-isoaspartate O-methyltransferase and sodium-potassium transporting ATPase, while post-translational modification analysis suggested deamidation of catalytic and regulatory subunits of sodium-potassium transporting ATPase. Spontaneous protein deamidation of labile asparagines, generating abnormal l-isoaspartyl residues, is associated with cell aging and dementia due to Alzheimer's disease and may be a cause of neurodegeneration. As ion channel proteins play important roles in cellular signaling processes, alterations in their function by deamidation may lead to perturbations in membrane excitability and neuronal function. Structural modeling of sodium-potassium transporting ATPase revealed the close proximity of these deamidated residues to the catalytic site during E2P confirmation. The deamidated residues may disrupt electrostatic interaction during E1 phosphorylation, which may affect ion transport and signal transduction. Our findings suggest impaired regulation and compromised activity of ion channel proteins contribute to the pathophysiology of VaD.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | | | | | |
Collapse
|
36
|
Comparative systems biology analysis to study the mode of action of the isothiocyanate compound Iberin on Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58:6648-59. [PMID: 25155599 DOI: 10.1128/aac.02620-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Food is now recognized as a natural resource of novel antimicrobial agents, including those that target the virulence mechanisms of bacterial pathogens. Iberin, an isothiocyanate compound from horseradish, was recently identified as a quorum-sensing inhibitor (QSI) of the bacterial pathogen Pseudomonas aeruginosa. In this study, we used a comparative systems biology approach to unravel the molecular mechanisms of the effects of iberin on QS and virulence factor expression of P. aeruginosa. Our study shows that the two systems biology methods used (i.e., RNA sequencing and proteomics) complement each other and provide a thorough overview of the impact of iberin on P. aeruginosa. RNA sequencing-based transcriptomics showed that iberin inhibits the expression of the GacA-dependent small regulatory RNAs RsmY and RsmZ; this was verified by using gfp-based transcriptional reporter fusions with the rsmY or rsmZ promoter regions. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics showed that iberin reduces the abundance of the LadS protein, an activator of GacS. Taken together, the findings suggest that the mode of QS inhibition in iberin is through downregulation of the Gac/Rsm QS network, which in turn leads to the repression of QS-regulated virulence factors, such as pyoverdine, chitinase, and protease IV. Lastly, as expected from the observed repression of small regulatory RNA synthesis, we also show that iberin effectively reduces biofilm formation. This suggests that small regulatory RNAs might serve as potential targets in the future development of therapies against pathogens that use QS for controlling virulence factor expression and assume the biofilm mode of growth in the process of causing disease.
Collapse
|
37
|
Li Z, Wang D, Li L, Pan S, Na Z, Tan CYJ, Yao SQ. "Minimalist" cyclopropene-containing photo-cross-linkers suitable for live-cell imaging and affinity-based protein labeling. J Am Chem Soc 2014; 136:9990-8. [PMID: 24972113 DOI: 10.1021/ja502780z] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Target identification of bioactive compounds within the native cellular environment is important in biomedical research and drug discovery, but it has traditionally been carried out in vitro. Information about how such molecules interact with their endogenous targets (on and off) is currently highly limited. An ideal strategy would be one that recapitulates protein-small molecule interactions in situ (e.g., in living cells) and at the same time enables enrichment of these complexes for subsequent proteome-wide target identification. Similarly, small molecule-based imaging approaches are becoming increasingly available for in situ monitoring of a variety of proteins including enzymes. Chemical proteomic strategies for simultaneous bioimaging and target identification of noncovalent bioactive compounds in live mammalian cells, however, are currently not available. This is due to a lack of photoaffinity labels that are minimally modified from their parental compounds, yet chemically tractable using copper-free bioorthogonal chemistry. We have herein developed novel minimalist linkers containing both an alkyl diazirine and a cyclopropene. We have shown chemical probes (e.g., BD-2) made from such linkers could be used for simultaneous in situ imaging and covalent labeling of endogenous BRD-4 (an important epigenetic protein) via a rapid, copper-free, tetrazine-cyclopropene ligation reaction (k2 > 5 M(-1) s(-1)). The key features of our cyclopropenes, with their unique C-1 linkage to BRD-4-targeting moiety, are their tunable reactivity and solubility, relative stability, and synthetic accessibility. BD-2, which is a linker-modified analogue of (+)-JQ1 (a recently discovered nanomolar protein-protein-interaction inhibitor of BRD-4), was subsequently used in a cell-based proteome profiling experiment for large-scale identification of potential off-targets of (+)-JQ1. Several newly identified targets were subsequently confirmed by preliminary validation experiments.
Collapse
Affiliation(s)
- Zhengqiu Li
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
38
|
Hao P, Ren Y, Pasterkamp G, Moll FL, de Kleijn DPV, Sze SK. Deep proteomic profiling of human carotid atherosclerotic plaques using multidimensional LC-MS/MS. Proteomics Clin Appl 2014; 8:631-5. [PMID: 24828403 DOI: 10.1002/prca.201400007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/28/2014] [Accepted: 05/09/2014] [Indexed: 11/07/2022]
Abstract
PURPOSE To increase the proteome coverage of human atherosclerotic plaques and identify low-abundance proteins that may have important functions during the development and progression of atherosclerosis. EXPERIMENTAL DESIGN Thirty-eight human carotid atherosclerotic plaques were pooled into two samples and analyzed in triplicate using offline multidimensional LC-MS/MS. The collected fractions of trypsin-digested peptides from Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC) were analyzed by LC-MS/MS on a Q Exactive (Thermo Fisher, MA, USA). RESULTS A total of 4702 proteins were identified from atherosclerotic plaques at a false discovery rate (FDR) of 1%, of which 3846 were identified with at least 2 unique peptides. Many pathways related to the development and progression of atherosclerosis were identified, such as atherosclerosis signaling, toll receptor signaling pathway and inhibition of matrix metalloproteases. Many low-abundance proteins with important functions in atherosclerosis that were previously unidentifiable using mass spectrometry based proteomics methods, such as TGF-β, interleukins and other growth factors, were identified confidently from plaques. CONCLUSIONS AND CLINICAL RELEVANCE This study has substantially increased the coverage of the atherosclerotic plaque proteome which represents a leap forward in understanding of plaque composition, development and progression. The identification of many low-abundance proteins may also facilitate biomarker discovery.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, Singapore; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | | | | | | | | | | |
Collapse
|
39
|
Horie K, Kamakura T, Ikegami T, Wakabayashi M, Kato T, Tanaka N, Ishihama Y. Hydrophilic Interaction Chromatography Using a Meter-Scale Monolithic Silica Capillary Column for Proteomics LC-MS. Anal Chem 2014; 86:3817-24. [DOI: 10.1021/ac4038625] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kanta Horie
- Eisai Co., Ltd, Pharmaceutical Science and Technology
Core Function Unit, Global Formulation Research, Kawashima, Kakamigahara, Gifu 501-6195, Japan
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Takeo Kamakura
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Tohru Ikegami
- Department
of Biomolecular Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Masaki Wakabayashi
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Takashi Kato
- Eisai Co., Ltd, Pharmaceutical Science and Technology
Core Function Unit, Global Formulation Research, Kawashima, Kakamigahara, Gifu 501-6195, Japan
| | - Nobuo Tanaka
- Department
of Biomolecular Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
- GL Sciences Inc., 237-2
Sayamagahara, Iruma, Saitama 358-0032, Japan
| | - Yasushi Ishihama
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
40
|
Datta A, Qian J, Chong R, Kalaria RN, Francis P, Lai MKP, Chen CP, Sze SK. Novel pathophysiological markers are revealed by iTRAQ-based quantitative clinical proteomics approach in vascular dementia. J Proteomics 2014; 99:54-67. [PMID: 24448401 PMCID: PMC4024194 DOI: 10.1016/j.jprot.2014.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/10/2013] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Vascular dementia (VaD) is a leading cause of dementia in the elderly together with Alzheimer's disease with limited treatment options. Poor understanding of the pathophysiology underlying VaD is hindering the development of new therapies. Hence, to unravel its underlying molecular pathology, an iTRAQ-2D-LC-MS/MS strategy was used for quantitative analysis of pooled lysates from Brodmann area 21 of pathologically confirmed cases of VaD and matched non-neurological controls. A total of 144 differentially expressed proteins out of 2281 confidently identified proteins (false discovery rate=0.3%) were shortlisted for bioinformatics analysis. Western blot analysis of selected proteins using samples from individual patients (n=10 per group) showed statistically significant increases in the abundance of SOD1 and NCAM and reduced ATP5A in VaD. This suggested a state of hypometabolism and vascular insufficiency along with an inflammatory condition during VaD. Elevation of SOD1 and increasing trend for iron-storage proteins (FTL, FTH1) may be indicative of an oxidative imbalance that is accompanied by an aberrant iron metabolism. The synaptic proteins did not exhibit a generalized decrease in abundance (e.g. syntaxin) in the VaD subjects. This reported proteome offers a reference data set for future basic or translational studies on VaD. BIOLOGICAL SIGNIFICANCE Our study is the first quantitative clinical proteomic study where iTRAQ-2D-LC-MS/MS strategy has been used to identify the differential proteome in the VaD cortex by comparing VaD and matched control subjects. We generate testable hypothesis about the involvement of various proteins in the vascular and parenchymal events during the evolution of VaD that finally leads to malfunction and demise of brain cells. This study also establishes quantitative proteomics as a complementary approach and viable alternative to existing neurochemical, electron microscopic and neuroimaging techniques that are traditionally being used to understand the molecular pathology of VaD. Our study could inspire fellow researchers to initiate similar retrospective studies targeting various ethnicities, age-groups or sub-types of VaD using brain samples available from brain banks across the world. Meta-analysis of these studies in the future may be able to shortlist candidate proteins or pathways for rationale exploration of therapeutic targets or biomarkers for VaD.
Collapse
Affiliation(s)
- Arnab Datta
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingru Qian
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ruifen Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Raj N Kalaria
- Institute for Ageing Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Paul Francis
- Wolfson Centre for Age-related Diseases, King's College London, London, UK
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore.
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
41
|
Chung HH, Sze SK, Woo ARE, Sun Y, Sim KH, Dong XM, Lin VCL. Lysine methylation of progesterone receptor at activation function 1 regulates both ligand-independent activity and ligand sensitivity of the receptor. J Biol Chem 2014; 289:5704-22. [PMID: 24415758 DOI: 10.1074/jbc.m113.522839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progesterone receptor (PR) exists in two isoforms, PRA and PRB, and both contain activation functions AF-1 and AF-2. It is believed that AF-1 is primarily responsible for the ligand-independent activity, whereas AF-2 mediates ligand-dependent PR activation. Although more than a dozen post-translational modifications of PR have been reported, no post-translational modification on AF-1 or AF-2 has been reported. Using LC-MS/MS-based proteomic analysis, this study revealed AF-1 monomethylation at Lys-464. Mutational analysis revealed the remarkable importance of Lys-464 in regulating PR activity. Single point mutation K464Q or K464A led to ligand-independent PR gel upshift similar to the ligand-induced gel upshift. This upshift was associated with increases in both ligand-dependent and ligand-independent PR phosphorylation and PR activity due to the hyperactivation of AF-1. In contrast, mutation of Lys-464 to the bulkier phenylalanine to mimic the effect of methylation caused a drastic decrease in PR activity. Importantly, PR-K464Q also showed heightened ligand sensitivity, and this was associated with increases in its functional interaction with transcription co-regulators NCoR1 and SRC-1. These results suggest that monomethylation of PR at Lys-464 probably has a repressive effect on AF-1 activity and ligand sensitivity.
Collapse
Affiliation(s)
- Hwa Hwa Chung
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | | | | | |
Collapse
|
42
|
Wiese H, Kuhlmann K, Wiese S, Stoepel NS, Pawlas M, Meyer HE, Stephan C, Eisenacher M, Drepper F, Warscheid B. Comparison of alternative MS/MS and bioinformatics approaches for confident phosphorylation site localization. J Proteome Res 2014; 13:1128-37. [PMID: 24364495 DOI: 10.1021/pr400402s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the past years, phosphoproteomics has advanced to a prime tool in signaling research. Since then, an enormous amount of information about in vivo protein phosphorylation events has been collected providing a treasure trove for gaining a better understanding of the molecular processes involved in cell signaling. Yet, we still face the problem of how to achieve correct modification site localization. Here we use alternative fragmentation and different bioinformatics approaches for the identification and confident localization of phosphorylation sites. Phosphopeptide-enriched fractions were analyzed by multistage activation, collision-induced dissociation and electron transfer dissociation (ETD), yielding complementary phosphopeptide identifications. We further found that MASCOT, OMSSA and Andromeda each identified a distinct set of phosphopeptides allowing the number of site assignments to be increased. The postsearch engine SLoMo provided confident phosphorylation site localization, whereas different versions of PTM-Score integrated in MaxQuant differed in performance. Based on high-resolution ETD and higher collisional dissociation (HCD) data sets from a large synthetic peptide and phosphopeptide reference library reported by Marx et al. [Nat. Biotechnol. 2013, 31 (6), 557-564], we show that an Andromeda/PTM-Score probability of 1 is required to provide an false localization rate (FLR) of 1% for HCD data, while 0.55 is sufficient for high-resolution ETD spectra. Additional analyses of HCD data demonstrated that for phosphotyrosine peptides and phosphopeptides containing two potential phosphorylation sites, PTM-Score probability cutoff values of <1 can be applied to ensure an FLR of 1%. Proper adjustment of localization probability cutoffs allowed us to significantly increase the number of confident sites with an FLR of <1%.Our findings underscore the need for the systematic assessment of FLRs for different score values to report confident modification site localization.
Collapse
Affiliation(s)
- Heike Wiese
- Faculty of Biology, Functional Proteomics, University of Freiburg , 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chung HH, Sze SK, Tay ASL, Lin VCL. Acetylation at lysine 183 of progesterone receptor by p300 accelerates DNA binding kinetics and transactivation of direct target genes. J Biol Chem 2013; 289:2180-94. [PMID: 24302725 DOI: 10.1074/jbc.m113.517896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The identification of lysine acetylation of steroid hormone receptors has previously been based on the presence of consensus motif (K/R)XKK. This study reports the discovery by mass spectrometry of a novel progesterone receptor acetylation site at Lys-183 that is not in the consensus motif. In vivo acetylation and mutagenesis experiments revealed that Lys-183 is a primary site of progesterone receptor (PR) acetylation. Lys-183 acetylation is enhanced by p300 overexpression and abrogated by p300 gene silencing, suggesting that p300 is the major acetyltransferase for Lys-183 acetylation. Furthermore, p300-mediated Lys-183 acetylation is associated with heightened PR activity. Accordingly, the acetylation-mimicking mutant PRB-K183Q exhibited accelerated DNA binding kinetics and greater activity compared with the wild-type PRB on genes containing progesterone response element. In contrast, Lys-183 acetylation had no influence on PR tethering effect on the nuclear factor κ-light chain enhancer of activated B cells (NFκB). Additionally, increases of Lys-183 acetylation by p300 overexpression or inhibition of deacetylation resulted in increases of Ser-294 phosphorylation levels. In conclusion, PR acetylation at Lys-183 by p300 potentiates PR activity through accelerated binding of its direct target genes without affecting PR tethering on other transcription factors. The effect may be mediated by enhancing Ser-294 phosphorylation.
Collapse
Affiliation(s)
- Hwa Hwa Chung
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
44
|
Boichenko AP, Govorukhina N, van der Zee AGJ, Bischoff R. Multidimensional separation of tryptic peptides from human serum proteins using reversed-phase, strong cation exchange, weak anion exchange, and fused-core fluorinated stationary phases. J Sep Sci 2013; 36:3463-70. [PMID: 24039020 DOI: 10.1002/jssc.201300750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Proteome profiling of crude serum is a challenging task due to the wide dynamic range of protein concentrations and the presence of high-abundance proteins, which cover >90% of the total protein mass in serum. Peptide fractionation on strong cation exchange, weak anion exchange in the electrostatic repulsion hydrophilic interaction chromatography (ERLIC) mode, RP C18 at pH 2.5 (low pH), fused-core fluorinated at pH 2.5, and RP C18 at pH 9.7 (high pH) stationary phases resulted in two to three times more identified proteins and three to four times more identified peptides in comparison with 1D nanoChip-LC-MS/MS quadrupole TOF analysis (45 proteins, 185 peptides). The largest number of peptides and proteins was identified after prefractionation in the ERLIC mode due to the more uniform distribution of peptides among the collected fractions and on the RP column at high pH due to the high efficiency of RP separations and the complementary selectivity of both techniques to low-pH RP chromatography. A 3D separation scheme combining ERLIC, high-pH RP, and low-pH nanoChip-LC-MS/MS for crude serum proteome profiling resulted in the identification of 208 proteins and 1088 peptides with the lowest reported concentration of 11 ng/mL for heat shock protein 74.
Collapse
Affiliation(s)
- Alexander P Boichenko
- Department of Analytical Biochemistry, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
45
|
Quantitative Analysis of the Human Milk Whey Proteome Reveals Developing Milk and Mammary-Gland Functions across the First Year of Lactation. Proteomes 2013; 1:128-158. [PMID: 28250401 PMCID: PMC5302745 DOI: 10.3390/proteomes1020128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/13/2022] Open
Abstract
In-depth understanding of the changing functions of human milk (HM) proteins and the corresponding physiological adaptions of the lactating mammary gland has been inhibited by incomplete knowledge of the HM proteome. We analyzed the HM whey proteome (n = 10 women with samples at 1 week and 1, 3, 6, 9 and 12 months) using a quantitative proteomic approach. One thousand three hundred and thirty three proteins were identified with 615 being quantified. Principal component analysis revealed a transition in the HM whey proteome-throughout the first year of lactation. Abundance changes in IgG, sIgA and sIgM display distinct features during the first year. Complement components and other acute-phase proteins are generally at higher levels in early lactation. Proteomic analysis further suggests that the sources of milk fatty acids (FA) shift from more direct blood influx to more de novo mammary synthesis over lactation. The abundances of the majority of glycoproteins decline over lactation, which is consistent with increased enzyme expression in glycoprotein degradation and decreased enzyme expression in glycoprotein synthesis. Cellular detoxification machinery may be transformed as well, thereby accommodating increased metabolic activities in late lactation. The multiple developing functions of HM proteins and the corresponding mammary adaption become more apparent from this study.
Collapse
|
46
|
Adav SS, Chao LT, Sze SK. Protein abundance in multiplexed samples (PAMUS) for quantitation of Trichoderma reesei secretome. J Proteomics 2013; 83:180-96. [DOI: 10.1016/j.jprot.2013.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 11/27/2022]
|
47
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 1007] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Mass spectrometry-based proteomics in molecular diagnostics: discovery of cancer biomarkers using tissue culture. BIOMED RESEARCH INTERNATIONAL 2013; 2013:783131. [PMID: 23586059 PMCID: PMC3613068 DOI: 10.1155/2013/783131] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
Abstract
Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.
Collapse
|
49
|
Hao P, Ren Y, Dutta B, Sze SK. Comparative evaluation of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and high-pH reversed phase (Hp-RP) chromatography in profiling of rat kidney proteome. J Proteomics 2013; 82:254-62. [PMID: 23486160 DOI: 10.1016/j.jprot.2013.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 01/17/2023]
Abstract
UNLABELLED ERLIC and high-pH RP (Hp-RP) have been reported to be promising alternatives to strong cation exchange (SCX) in proteome fractionation. Here we compared the performance of ERLIC, concatenated ERLIC and concatenated Hp-RP in proteome profiling. The protein identification is comparable in these three strategies, but significantly more unique peptides are identified by the two concatenation methods, resulting in a significant increase of the average protein sequence coverage. The pooling of fractions from spaced intervals results in more uniform distribution of peptides in each fraction compared with the chromatogram-based pooling of adjacent fractions. ERLIC fractionates peptides according to their pI and GRAVY values. These properties remains but becomes less remarkable in concatenated ERLIC. In contrast, the average pI and GRAVY values of the peptides are comparable in each fraction in concatenated Hp-RP. ERLIC performs the best in identifying peptides with pI>9 among the three strategies, while concatenated Hp-RP is good at identifying peptides with pI<4. These advantages are useful when either basic or acidic peptides/proteins are analytical targets. The power of ERLIC in identification of basic peptides seems to be due to their efficient separation from acidic peptides. This study facilitates the choice of proper fractionation strategies based on specific objectives. BIOLOGICAL SIGNIFICANCE For in-depth proteomic analysis of a cell, tissue and plasma, multidimensional liquid chromatography (MDLC) is still necessary to reduce sample complexity for improving analytical dynamic range and proteome coverage. This work conducts a direct comparison of three promising first-dimensional proteome fractionation methods. They are comparable in identifying proteins, but concatenated ERLIC and concatenated Hp-RP identify significantly more unique peptides than ERLIC. ERLIC is good at analyzing basic peptides, while concatenated Hp-RP performs the best in analyzing acidic peptides with pI<4. This will facilitate the choice of the proper peptide fractionation strategy based on a specific need. A combination of different fractionation strategies can be used to increase the sequence coverage and number of protein identification due to the complementary effect between different methods.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
50
|
Choi YS. Reaching for the deep proteome: recent nano liquid chromatography coupled with tandem mass spectrometry-based studies on the deep proteome. Arch Pharm Res 2012; 35:1861-70. [PMID: 23212627 DOI: 10.1007/s12272-012-1102-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/30/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022]
Abstract
In the last decade, there has been a dramatic progress in separation techniques, mass spectrometry, and bioinformatics, and this progress has significantly improved the techniques on protein analysis. However, the analysis of low-abundance proteins is still challenging because of the limited performance in the method of choice compared to the complexity and the vast dynamic range of biological samples. Since this issue is a big obstacle in most proteomics investigations, great interest has been paid recently to various techniques, such as multi-dimensional analysis, specific peptide selection, high-abundance protein depletion, ligand library treatment, to address this challenge. Therefore, here, the author reviews recent nano liquid chromatography coupled with tandem mass spectrometry-based studies on the deep proteome, mainly focusing on their methods and perspectives.
Collapse
Affiliation(s)
- Yong Seok Choi
- College of Pharmacy, Dankook University, Cheonan 330-714, Korea.
| |
Collapse
|