1
|
Di Rocco G, Trivisonno A, Trivisonno G, Toietta G. Dissecting human adipose tissue heterogeneity using single-cell omics technologies. Stem Cell Res Ther 2024; 15:322. [PMID: 39334440 PMCID: PMC11437900 DOI: 10.1186/s13287-024-03931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Single-cell omics technologies that profile genes (genomic and epigenomic) and determine the abundance of mRNA (transcriptomic), protein (proteomic and secretomic), lipids (lipidomic), and extracellular matrix (matrisomic) support the dissection of adipose tissue heterogeneity at unprecedented resolution in a temporally and spatially defined manner. In particular, cell omics technologies may provide innovative biomarkers for the identification of rare specific progenitor cell subpopulations, assess transcriptional and proteomic changes affecting cell proliferation and immunomodulatory potential, and accurately define the lineage hierarchy and differentiation status of progenitor cells. Unraveling adipose tissue complexity may also provide for the precise assessment of a dysfunctional state, which has been associated with cancer, as cancer-associated adipocytes play an important role in shaping the tumor microenvironment supporting tumor progression and metastasis, obesity, metabolic syndrome, and type 2 diabetes mellitus. The information collected by single-cell omics has relevant implications for regenerative medicine because adipose tissue is an accessible source of multipotent cells; alternative cell-free approaches, including the use of adipose tissue stromal cell-conditioned medium, extracellular vesicles, or decellularized extracellular matrix, are clinically valid options. Subcutaneous white adipose tissue, which is generally harvested via liposuction, is highly heterogeneous because of intrinsic biological variability and extrinsic inconsistencies in the harvesting and processing procedures. The current limited understanding of adipose tissue heterogeneity impinges on the definition of quality standards appropriate for clinical translation, which requires consistency and uniformity of the administered product. We review the methods used for dissecting adipose tissue heterogeneity and provide an overview of advances in omics technology that may contribute to the exploration of heterogeneity and dynamics of adipose tissue at the single-cell level.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Angelo Trivisonno
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | | | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
2
|
Frazier TP, Hamel K, Wu X, Rogers E, Lassiter H, Robinson J, Mohiuddin O, Henderson M, Gimble JM. Adipose-derived cells: building blocks of three-dimensional microphysiological systems. BIOMATERIALS TRANSLATIONAL 2021; 2:301-306. [PMID: 35837416 PMCID: PMC9255798 DOI: 10.12336/biomatertransl.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
Microphysiological systems (MPS) created with human-derived cells and biomaterial scaffolds offer a potential in vitro alternative to in vivo animal models. The adoption of three-dimensional MPS models has economic, ethical, regulatory, and scientific implications for the fields of regenerative medicine, metabolism/obesity, oncology, and pharmaceutical drug discovery. Key opinion leaders acknowledge that MPS tools are uniquely positioned to aid in the objective to reduce, refine, and eventually replace animal experimentation while improving the accuracy of the finding's clinical translation. Adipose tissue has proven to be an accessible and available source of human-derived stromal vascular fraction (SVF) cells, a heterogeneous population available at point of care, and adipose-derived stromal/stem cells, a relatively homogeneous population requiring plastic adherence and culture expansion of the SVF cells. The adipose-derived stromal/stem cells or SVF cells, in combination with human tissue or synthetic biomaterial scaffolds, can be maintained for extended culture periods as three-dimensional MPS models under angiogenic, stromal, adipogenic, or osteogenic conditions. This review highlights recent literature relating to the versatile use of adipose-derived cells as fundamental components of three-dimensional MPS models for discovery research and development. In this context, it compares the merits and limitations of the adipose-derived stromal/stem cells relative to SVF cell models and considers the likely directions that this emerging field of scientific discovery will take in the near future.
Collapse
Affiliation(s)
- Trivia P. Frazier
- Obatala Sciences Inc., New Orleans, LA, USA,Corresponding author: Trivia Frazier,
| | | | - Xiying Wu
- Obatala Sciences Inc., New Orleans, LA, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Human adipocytes and CD34 + cells from the stromal vascular fraction of the same adipose tissue differ in their energy metabolic enzyme configuration. Exp Cell Res 2019; 380:47-54. [PMID: 31002814 DOI: 10.1016/j.yexcr.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 01/24/2023]
Abstract
Adipose tissue plays a role in energy storage and metabolic balance and is composed of different cell types. The metabolic activity of the tissue itself has been a matter of research for a long time, but comparative data about the energy metabolism of different cell types of human subcutaneous adipose tissue are sparse. Therefore, we compared the activity of major energy metabolic pathways of adipocytes and CD34+ cells from the stromal vascular fraction (SVF) separated from the same tissue. This CD34+ cell fraction is enriched with adipose tissue-derived mesenchymal progenitors, as they account for the largest proportion of CD34+ cells of the SVF. Adipocytes displayed significantly higher mitochondrial enzyme capacities compared to CD34+ SVF-cells, as shown by the higher activities of isocitrate dehydrogenase and ß-hydroxyacyl-CoA dehydrogenase. Inversely, the CD34+ SVF-cells showed higher capacities for cytosolic carbohydrate metabolism, represented by the activity of glycolysis and the pentose phosphate pathway. Thus, the CD34+ SVF-cells may ensure the provision of pentose phosphates and reduction equivalents for the replication of DNA during proliferation. The data indicate that these two cell fractions of the human adipose tissue vary in their metabolic configuration adapted to their physiological demands regarding proliferation and differentiation in vivo.
Collapse
|
4
|
Panina YA, Yakimov AS, Komleva YK, Morgun AV, Lopatina OL, Malinovskaya NA, Shuvaev AN, Salmin VV, Taranushenko TE, Salmina AB. Plasticity of Adipose Tissue-Derived Stem Cells and Regulation of Angiogenesis. Front Physiol 2018; 9:1656. [PMID: 30534080 PMCID: PMC6275221 DOI: 10.3389/fphys.2018.01656] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue is recognized as an important organ with metabolic, regulatory, and plastic roles. Adipose tissue-derived stem cells (ASCs) with self-renewal properties localize in the stromal vascular fraction (SVF) being present in a vascular niche, thereby, contributing to local regulation of angiogenesis and vessel remodeling. In the past decades, ASCs have attracted much attention from biologists and bioengineers, particularly, because of their multilineage differentiation potential, strong proliferation, and migration abilities in vitro and high resistance to oxidative stress and senescence. Current data suggest that the SVF serves as an important source of endothelial progenitors, endothelial cells, and pericytes, thereby, contributing to vessel remodeling and growth. In addition, ASCs demonstrate intriguing metabolic and interlineage plasticity, which makes them good candidates for creating regenerative therapeutic protocols, in vitro tissue models and microphysiological systems, and tissue-on-chip devices for diagnostic and regeneration-supporting purposes. This review covers recent achievements in understanding the metabolic activity within the SVF niches (lactate and NAD+ metabolism), which is critical for maintaining the pool of ASCs, and discloses their pro-angiogenic potential, particularly, in the complex therapy of cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Yulia A Panina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Anton S Yakimov
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V Morgun
- Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Tatiana E Taranushenko
- Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
5
|
Masood A, Benabdelkamel H, Alfadda AA. Obesity Proteomics: An Update on the Strategies and Tools Employed in the Study of Human Obesity. High Throughput 2018; 7:ht7030027. [PMID: 30213114 PMCID: PMC6164994 DOI: 10.3390/ht7030027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Proteomics has become one of the most important disciplines for characterizing cellular protein composition, building functional linkages between protein molecules, and providing insight into the mechanisms of biological processes in a high-throughput manner. Mass spectrometry-based proteomic advances have made it possible to study human diseases, including obesity, through the identification and biochemical characterization of alterations in proteins that are associated with it and its comorbidities. A sizeable number of proteomic studies have used the combination of large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography in combination with mass spectrometry, for high-throughput protein identification. These studies have applied proteomics to comprehensive biochemical profiling and comparison studies while using different tissues and biological fluids from patients to demonstrate the physiological or pathological adaptations within their proteomes. Further investigations into these proteome-wide alterations will enable us to not only understand the disease pathophysiology, but also to determine signature proteins that can serve as biomarkers for obesity and related diseases. This review examines the different proteomic techniques used to study human obesity and discusses its successful applications along with its technical limitations.
Collapse
Affiliation(s)
- Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
6
|
Frazier T, Lee S, Bowles A, Semon J, Bunnell B, Wu X, Gimble J. Gender and age-related cell compositional differences in C57BL/6 murine adipose tissue stromal vascular fraction. Adipocyte 2018; 7:183-189. [PMID: 29882687 PMCID: PMC6224190 DOI: 10.1080/21623945.2018.1460009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 02/09/2023] Open
Abstract
Adipose tissue is now recognized as a functional organ that contains cellular heterogeneity and diversity within anatomical depots. The stromal vascular fraction (SVF) of adipose contains endothelial progenitors, fibroblasts, lymphocytes, monocyte/macrophages, pericytes, pre-adipocytes, and stromal/stem cells, among others. In recent years, there has been a growing appreciation of the influence of age and gender in the field of stem cell biology. Yet few studies have evaluated the influence of biological age or sex on either SVF cell heterogeneity or immunophenotype. To address this issue, the current study has compared the flow cytometric characteristics between murine SVF of inguinal (iWAT), epidydimal (eWAT), and brown (BAT) adipose tissue of male and female, as well as young (6-8 week) and middle-aged (8-12 month) male C57BL/6 mice. Murine gender comparisons revealed male iWAT expressed higher percentages of leukocyte and CD34+ ASC-like sub-populations than female iWAT. Murine age comparisons revealed younger male iWAT, eWAT, and BAT SVF all contained a significantly higher percentage of pre-adipocytes, HSC-like cells, CD25-, and FoxP3+ T-regulatory cells compared to SVF from middle-aged male mice. These findings highlight the potential contribution of biological variables on adipose-derived cell applications and experimental outcomes.
Collapse
Affiliation(s)
- Trivia Frazier
- LaCell, LLC, New Orleans Bio Innovation Center, New Orleans, LA
- Obatala Sciences, Inc, New Orleans Bio Innovation Center, New Orleans, LA
| | - Stephen Lee
- Tulane University Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA
| | - Annie Bowles
- Tulane University Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA
| | - Julie Semon
- Biological Sciences, Missouri University of Science and Technology, Rolla, MO
| | - Bruce Bunnell
- Tulane University Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA
| | - Xiying Wu
- LaCell, LLC, New Orleans Bio Innovation Center, New Orleans, LA
| | - Jeffrey Gimble
- LaCell, LLC, New Orleans Bio Innovation Center, New Orleans, LA
| |
Collapse
|
7
|
Lapeire L, Hendrix A, Lecoutere E, Van Bockstal M, Vandesompele J, Maynard D, Braems G, Van Den Broecke R, Müller C, Bracke M, Cocquyt V, Denys H, De Wever O. Secretome analysis of breast cancer-associated adipose tissue to identify paracrine regulators of breast cancer growth. Oncotarget 2018; 8:47239-47249. [PMID: 28525384 PMCID: PMC5564561 DOI: 10.18632/oncotarget.17592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/17/2017] [Indexed: 11/25/2022] Open
Abstract
Adipose tissue secretes a plethora of adipokines as evidenced by characterization of subcutaneous and visceral adipose tissue secretomes. However, adipose tissue composition and secretion pattern is depot and disease dependent, influencing the adipose tissue secretome. We investigated the secretome of cancer-associated adipose tissue (CAAT) explants from breast cancer patients and explored its role in breast cancer proliferation. CAAT proteins were identified by LC-MS/MS and human protein antibody arrays and stimulated proliferation of three breast cancer cell lines. Kinomics and transcriptomics of MCF-7 breast cancer cells treated with the secretome of CAAT revealed activation of Akt-, ERK- and JNK-pathways and differential expression of activator protein 1 (AP-1) and cAMP responsive element-binding protein (CREB) target genes. The cyclin-dependent kinase (CDK)4/6-inhibitor palbociclib significantly abrogated CAAT-enhanced breast cancer cell proliferation. Our work characterizes the specific breast CAAT protein secretome and reveals its pro-proliferative potency in breast cancer.
Collapse
Affiliation(s)
- Lore Lapeire
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.,Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | | | | | - Jo Vandesompele
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dawn Maynard
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Geert Braems
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | | | - Cathérine Müller
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, UPS, Toulouse, France
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Véronique Cocquyt
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.,Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
Caira S, Iannelli A, Sciarrillo R, Picariello G, Renzone G, Scaloni A, Addeo P. Differential representation of liver proteins in obese human subjects suggests novel biomarkers and promising targets for drug development in obesity. J Enzyme Inhib Med Chem 2017; 32:672-682. [PMID: 28274171 PMCID: PMC6009959 DOI: 10.1080/14756366.2017.1292262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proteome of liver biopsies from human obese (O) subjects has been compared to those of nonobese (NO) subjects using two-dimensional gel electrophoresis (2-DE). Differentially represented proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based peptide mass fingerprinting (PMF) and nanoflow-liquid chromatography coupled to electrospray-tandem mass spectrometry (nLC-ESI-MS/MS). Overall, 61 gene products common to all of the liver biopsies were identified within 65 spots, among which 25 ones were differently represented between O and NO subjects. In particular, over-representation of short-chain acyl-CoA dehydrogenase, Δ(3,5)-Δ(2,4)dienoyl-CoA isomerase, acetyl-CoA acetyltransferase, glyoxylate reductase/hydroxypyruvate reductase, fructose-biphosphate aldolase B, peroxiredoxin I, protein DJ-1, catalase, α- and β-hemoglobin subunits, 3-mercaptopyruvate S-transferase, calreticulin, aminoacylase 1, phenazine biosynthesis-like domain-containing protein and a form of fatty acid-binding protein, together with downrepresentation of glutamate dehydrogenase, glutathione S-transferase A1, S-adenosylmethionine synthase 1A and a form of apolipoprotein A-I, was associated with the obesity condition. Some of these metabolic enzymes and antioxidant proteins have already been identified as putative diagnostic markers of liver dysfunction in animal models of steatosis or obesity, suggesting additional investigations on their role in these syndromes. Their differential representation in human liver was suggestive of their consideration as obesity human biomarkers and for the development of novel antiobesity drugs.
Collapse
Affiliation(s)
- Simonetta Caira
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Antonio Iannelli
- b Département de Chirurgie Digestive , Centre Hospitalier Universitarie de Nice , Nice , France
| | - Rosaria Sciarrillo
- c Dipartimento di Scienze e Tecnologie , Università degli Studi del Sannio , Benevento , Italy
| | | | - Giovanni Renzone
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Andrea Scaloni
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Pietro Addeo
- e Service de Chirurgie Hépatique, Pancréatique, Biliaire et Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre , Université de Strasbourg, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| |
Collapse
|
9
|
Inserra I, Martelli C, Cipollina M, Cicione C, Iavarone F, Taranto GD, Barba M, Castagnola M, Desiderio C, Lattanzi W. Lipoaspirate fluid proteome: A preliminary investigation by LC-MS top-down/bottom-up integrated platform of a high potential biofluid in regenerative medicine. Electrophoresis 2016; 37:1015-26. [PMID: 26719138 DOI: 10.1002/elps.201500504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
The lipoaspirate fluid (LAF) is emerging as a potentially valuable source in regenerative medicine. In particular, our group recently demonstrated that it is able to exert osteoinductive properties in vitro. This original observation stimulated the investigation of the proteomic component of LAF, by means of LC-ESI-LTQ-Orbitrap-MS top-down/bottom-up integrated approach, which represents the object of the present study. Top-down analyses required the optimization of sample pretreatment procedures to enable the correct investigation of the intact proteome. Bottom-up analyses have been directly applied to untreated samples after monodimensional SDS-PAGE separation. The analysis of the acid-soluble fraction of LAF by top-down approach allowed demonstrating the presence of albumin and hemoglobin fragments (i.e. VV- and LVV-hemorphin-7), thymosins β4 and β10 peptides, ubiquitin and acyl-CoA binding protein; adipogenesis regulatory factor, perilipin-1 fragments, and S100A6, along with their PTMs. Part of the bottom-up proteomic profile was reproducibly found in both tested samples. The bottom-up approach allowed demonstrating the presence of proteins, listed among the components of adipose tissue and/or comprised within the ASCs intracellular content and secreted proteome. Our data provide a first glance on the LAF molecular profile, which is consistent with its tissue environment. LAF appeared to contain bioactive proteins, peptides and paracrine factors, suggesting its potential translational exploitation.
Collapse
Affiliation(s)
- Ilaria Inserra
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Martelli
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mara Cipollina
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.,Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Claudia Cicione
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Di Taranto
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Barba
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy.,Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Wanda Lattanzi
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy.,Banca del Tessuto Muscolo-Scheletrico della Regione Lazio, Università Cattolica del, Sacro Cuore, Roma, Italy
| |
Collapse
|
10
|
Sajic T, Varesio E, Szanto I, Hopfgartner G. Comparison of fractionation strategies for offline two-dimensional liquid chromatography tandem mass spectrometry analysis of proteins from mouse adipose tissue. Anal Biochem 2015; 484:122-32. [DOI: 10.1016/j.ab.2015.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/26/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
|
11
|
Fang L, Kojima K, Zhou L, Crossman DK, Mobley JA, Grams J. Analysis of the Human Proteome in Subcutaneous and Visceral Fat Depots in Diabetic and Non-diabetic Patients with Morbid Obesity. ACTA ACUST UNITED AC 2015; 8:133-141. [PMID: 26472921 PMCID: PMC4603752 DOI: 10.4172/jpb.1000361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
No longer regarded as simply a storage depot, fat is a dynamic organ acting locally and systemically to modulate energy homeostasis, glucose sensitivity, insulin resistance, and inflammatory pathways. Here, mass spectrometry was used to survey the proteome of patient matched subcutaneous fat and visceral fat in 20 diabetic vs 22 nondiabetic patients with morbid obesity. A similar number of proteins (~600) were identified in each tissue type. When stratified by diabetic status, 19 and 41 proteins were found to be differentially abundant in subcutaneous fat and omentum, respectively. These proteins represent pathways known to be involved in metabolism. Five of these proteins were differentially abundant in both fat depots: moesin, 78 kDa glucose-regulated protein, protein cordon-bleu, zinc finger protein 611, and cytochrome c oxidase subunit 6B1. Three proteins, decorin, cytochrome c oxidase subunit 6B1, and 78 kDa glucose-regulated protein, were further tested for validation by western blot analysis. Investigation of the proteins reported here is expected to expand on the current knowledge of adipose tissue driven biochemistry in diabetes and obesity, with the ultimate goal of identifying clinical targets for the development of novel therapeutic interventions in the treatment of type 2 diabetes mellitus. To our knowledge, this study is the first to survey the global proteome derived from each subcutaneous and visceral adipose tissue obtained from the same patient in the clinical setting of morbid obesity, with and without diabetes. It is also the largest study of diabetic vs nondiabetic patients with 42 patients surveyed.
Collapse
Affiliation(s)
- Lingling Fang
- Ningbo Lihuili Hospital; Ningbo, Zhejiang, China ; Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Kyoko Kojima
- Comprehensive Cancer Center, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Lihua Zhou
- Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA
| | - David K Crossman
- Heflin Center for Genomic Science, University of Alabama at Birmingham; Birmingham, AL, USA ; Department of Genetics, University of Alabama at Birmingham; Birmingham, AL, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA ; Comprehensive Cancer Center, University of Alabama at Birmingham; Birmingham, AL, USA ; Heflin Center for Genomic Science, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Jayleen Grams
- Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA ; Department of Surgery, Birmingham Veterans Administration Medical Center, Birmingham, AL, USA
| |
Collapse
|
12
|
Kim EY, Kim WK, Oh KJ, Han BS, Lee SC, Bae KH. Recent advances in proteomic studies of adipose tissues and adipocytes. Int J Mol Sci 2015; 16:4581-99. [PMID: 25734986 PMCID: PMC4394436 DOI: 10.3390/ijms16034581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/29/2014] [Accepted: 02/16/2015] [Indexed: 12/27/2022] Open
Abstract
Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Eun Young Kim
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
| | - Won Kon Kim
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Kyoung-Jin Oh
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
| | - Baek Soo Han
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Kwang-Hee Bae
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| |
Collapse
|
13
|
Diet-induced obesity suppresses expression of many proteins at the blood-brain barrier. J Cereb Blood Flow Metab 2014; 34:43-51. [PMID: 24064496 PMCID: PMC3887347 DOI: 10.1038/jcbfm.2013.166] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 01/22/2023]
Abstract
The blood-brain barrier (BBB) is a regulatory interface between the central nervous system and the rest of the body. However, BBB changes in obesity and metabolic syndrome have not been fully elucidated. We hypothesized that obesity reduces energy metabolism in the cerebral microvessels composing the BBB, reflected by downregulation of protein expression and function. We performed comparative proteomic analyses in enriched microvessels from the cerebral cortex of mice 2 months after ingestion of a high-fat diet or regular rodent chow. In mice with diet-induced obesity (DIO), there was downregulation of 47 proteins in the cerebral microvessels, including cytoskeletal proteins, chaperons, enzymes, transport-related proteins, and regulators for transcriptional and translational activities. Only two proteins, involved in messenger RNA (mRNA) transport and processing, were upregulated. The changes of these proteins were further validated by quantitative polymerase chain reaction (qPCR), western blotting, and immunofluorescent staining of freshly isolated microvessels, in samples obtained from different batches of mice. The predominant downregulation suggests that DIO suppresses metabolic activity of BBB microvessels. The finding of a hypometabolic state of the BBB in mice at the chronic stage of DIO is unexpected and unprecedented; it may provide novel mechanistic insight into how obesity influences CNS function via regulatory changes of the BBB.
Collapse
|
14
|
Murri M, Insenser M, Bernal-Lopez MR, Perez-Martinez P, Escobar-Morreale HF, Tinahones FJ. Proteomic analysis of visceral adipose tissue in pre-obese patients with type 2 diabetes. Mol Cell Endocrinol 2013; 376:99-106. [PMID: 23791845 DOI: 10.1016/j.mce.2013.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 01/04/2023]
Abstract
The mechanisms involved in the progression to overt diabetes in pre-obese subjects remain unclear. Therefore, a nontargeted evaluation of differences in the protein abundance of visceral adipose tissue (VAT) obtained from pre-obese diabetic subjects and pre-obese subjects showing normal glucose tolerance may provide novel insights on the molecular processes involved in the progression to overt diabetes in pre-obesity. Diabetic patients showed increased VAT abundance of glutathione S-transferase Mu 2, peroxiredoxin-2, antithrombin-III, apolipoprotein A-IV, Ig κ chain C region, mitochondrial aldehyde dehydrogenase and actin, and decreased abundance of annexin-A1, retinaldehyde dehydrogenase-1, and vinculin, compared with their non-diabetic counterparts. These proteins are involved in cytoskeleton function and structure, oxidative stress, inflammation and retinoid metabolism. The presence of diabetes influences the VAT abundance of several proteins. Hence, the proteins identified here could be considered candidate molecules in future studies addressing the role that VAT dysfunction plays in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Mora Murri
- Diabetes, Obesity and Human Reproduction Group, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Alfadda AA, Benabdelkamel H, Masood A, Moustafa A, Sallam R, Bassas A, Duncan M. Proteomic analysis of mature adipocytes from obese patients in relation to aging. Exp Gerontol 2013; 48:1196-203. [PMID: 23886751 DOI: 10.1016/j.exger.2013.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023]
Abstract
Obesity and aging are interrelated conditions that both cause changes in adipocyte metabolism and affect the distribution of fat in both subcutaneous and visceral depots. In addition, both weight gain and aging can lead to similar clinical outcomes such as insulin resistance, cardiovascular disease, type 2 diabetes mellitus, atherosclerosis and stroke. Our objective was to examine the changes in protein expression within the subcutaneous adipose tissue of obese patients, matched for BMI, in relation to age. Mature adipocytes were isolated from liposuction samples of abdominal subcutaneous adipose tissue collected from both young (26.2±4.3 (mean age±SD); n=7) and old (52.2±4.7 (mean age±SD); n=7) obese individuals. Total protein extracts were then compared by two-dimensional difference in gel electrophoresis (2D DIGE). Thirty differentially expressed protein spots (ANOVA test, p≤0.05; fold-change ≥1.8) were detected, of which, 15 were identified by MALDI-TOF mass spectrometry. These were comprised of a total of thirteen unique protein sequences. Nine proteins were more abundant in the adipocytes isolated from old vs. young individuals. These proteins included prohibitin 1, protein disulphide isomerase A3, beta actin, profilin, aldo-ketoreductase 1 C2, alpha crystallin B and the annexins A1, A5 and A6. Four other proteins were less abundant in the adipocytes from old, obese subjects and these included keratin type 2 cytoskeletal 1, keratin type 2 cytoskeletal 10 and hemoglobins A and B. The differentially abundant proteins were investigated by Ingenuity Pathway Analysis (IPA) to reveal their associations with known biological functions. This analysis identified signal transducer and activator of transcription 3 as the central molecule in the connectivity map and the apoptotic pathway as the pathway with the highest score. Differences in the abundances of several proteins were confirmed by immunoblotting: i.e., prohibitin 1, protein disulphide isomerase A3, beta actin, profilin and signal transducer and activator of transcription 3 proteins. In conclusion, proteomic analysis of subcutaneous adipose tissue reveals differences in the abundance of proteins in adipocytes isolated from young vs. old individuals. These differentially abundant proteins are involved in the regulation of apoptosis, cellular senescence and inflammatory response. All these are common pathologic events in both obesity and aging.
Collapse
Affiliation(s)
- Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Spangenberg L, Shigunov P, Abud APR, Cofré AR, Stimamiglio MA, Kuligovski C, Zych J, Schittini AV, Costa ADT, Rebelatto CK, Brofman PRS, Goldenberg S, Correa A, Naya H, Dallagiovanna B. Polysome profiling shows extensive posttranscriptional regulation during human adipocyte stem cell differentiation into adipocytes. Stem Cell Res 2013; 11:902-12. [PMID: 23845413 DOI: 10.1016/j.scr.2013.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/29/2013] [Accepted: 06/02/2013] [Indexed: 12/31/2022] Open
Abstract
Adipocyte stem cells (hASCs) can proliferate and self-renew and, due to their multipotent nature, they can differentiate into several tissue-specific lineages, making them ideal candidates for use in cell therapy. Most attempts to determine the mRNA profile of self-renewing or differentiating stem cells have made use of total RNA for gene expression analysis. Several lines of evidence suggest that self-renewal and differentiation are also dependent on the control of protein synthesis by posttranscriptional mechanisms. We used adipogenic differentiation as a model, to investigate the extent to which posttranscriptional regulation controlled gene expression in hASCs. We focused on the initial steps of differentiation and isolated both the total mRNA fraction and the subpopulation of mRNAs associated with translating ribosomes. We observed that adipogenesis is committed in the first days of induction and three days appears as the minimum time of induction necessary for efficient differentiation. RNA-seq analysis showed that a significant percentage of regulated mRNAs were posttranscriptionally controlled. Part of this regulation involves massive changes in transcript untranslated regions (UTR) length, with differential extension/reduction of the 3'UTR after induction. A slight correlation can be observed between the expression levels of differentially expressed genes and the 3'UTR length. When we considered association to polysomes, this correlation values increased. Changes in the half lives were related to the extension of the 3'UTR, with longer UTRs mainly stabilizing the transcripts. Thus, changes in the length of these extensions may be associated with changes in the ability to associate with polysomes or in half-life.
Collapse
Affiliation(s)
- Lucia Spangenberg
- Unidad de Bioinformática, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ukisu R, Kawahara Y, Hashizume N, Kushihashi T, Yamada Y, Kadokura Y. MR imaging of cheek lesions of Kimura’s disease: Focusing on the signal abnormalities and the relationship with superficial musculoaponeurotic systems. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/mri.2013.24009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Martos-Moreno GA, Sackmann-Sala L, Berryman DE, Blome DW, Argente J, Kopchick JJ. [Anatomical heterogeneity in the proteome of human subcutaneous adipose tissue]. An Pediatr (Barc) 2012; 78:140-8. [PMID: 23228439 DOI: 10.1016/j.anpedi.2012.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human subcutaneous (SQ) white adipose tissue (WAT) can vary according to its anatomical location, with subsequent differences in its proteomic profile. PATIENTS AND METHODS SQ-WAT aspirates were obtained from six overweight (BMI>25kg/m(2)) women who underwent extensive liposuction. SQ-WAT was removed from six different locations (upper abdominal, lower abdominal, thigh, back, flank, and hip), and the protein profiles were determined by two-dimensional gel electrophoresis. In addition, the proteomic profiles of upper abdominal and hip SQ-WAT were subjected to further analysis, comparing samples obtained from two layers of WAT (deep and superficial). RESULTS Twenty one protein spots showed differential intensities among the six defined anatomical locations, and 14 between the superficial and the deep layer. Among the proteins identified were, vimentin (structural protein), heat-shock proteins (HSPs), superoxide-dismutase (stress-resistance/chaperones), fatty-acid-binding protein (FABP) 4, and alpha-enolase (lipid and carbohydrate metabolism), and ATP-synthase (energy production). Among the WAT samples analyzed, the back sub-depot showed significant differences in the levels of selected proteins when compared to the other locations, with lower level of expression of several proteins involved in energy production and metabolism (ATP-synthase, alpha-enolase, HSPs and FABP-4). CONCLUSIONS The levels of several proteins in human SQ-WAT are not homogeneous between different WAT depots. These changes suggest the existence of inherent functional differences in subcutaneous fat depending upon its anatomical location. Thus, caution must be used when extrapolating data from one subcutaneous WAT region to other depots.
Collapse
Affiliation(s)
- G A Martos-Moreno
- Edison Biotechnology Institute, Konneker Research Laboratories, Ohio University, The Ridges, Athens, Ohio, Estados Unidos
| | | | | | | | | | | |
Collapse
|
19
|
Insenser M, Montes-Nieto R, Vilarrasa N, Lecube A, Simó R, Vendrell J, Escobar-Morreale HF. A nontargeted proteomic approach to the study of visceral and subcutaneous adipose tissue in human obesity. Mol Cell Endocrinol 2012; 363:10-9. [PMID: 22796336 DOI: 10.1016/j.mce.2012.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/08/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
Abstract
Subcutaneous (SAT) and visceral adipose tissue (VAT) differ in biochemical and metabolic properties, especially when obesity is present. We submitted paired SAT and VAT samples from six morbidly obese patients and six non-obese persons to two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight mass spectrometry. Compared with non-obese subjects, obese patients presented with increased carboxylesterase-1, zinc finger protein 324A, annexin A5, ubiquitin carboxyl-terminal hydrolase, α-crystallin B chain, osteoglycin, retinal dehydrogenase-1 and 14-3-3 protein γ, and decreased transferrin, complement C3, fibrinogen γ chain, albumin, α1-antitrypsin and peroxiredoxin-6, irrespective of the adipose tissue depot studied. SAT and VAT differed in protein species of fibrinogen and osteoglycin, whereas adipose tissue depot and obesity interacted on the protein abundance of actin, α-actinin 1, one protein species of carboxylesterase-1, retinal dehydrogenase-1 and 14-3-3 protein γ. Our nontargeted proteomic approach identified novel protein species that may be involved in the development of obesity in humans.
Collapse
Affiliation(s)
- María Insenser
- Diabetes, Obesity and Human Reproduction Group, Universidad de Alcalá & Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Schittmayer M, Birner-Gruenberger R. Lipolytic proteomics. MASS SPECTROMETRY REVIEWS 2012; 31:570-582. [PMID: 22392637 DOI: 10.1002/mas.20355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 05/31/2023]
Abstract
Activity-based proteomics (ABP) employs small molecular probes to specifically label sets of enzymes based on their shared catalytic mechanism. Given that the vast majority of lipases belong to the family of serine hydrolases and share a nucleophilic active-site serine as part of a catalytic triad, activity-based probes are ideal tools to study lipases and lipolysis. Moreover, the ability of ABP to highlight or isolate specific subproteomes results in a massive decrease of sample complexity. Thereby, in-depth analysis of enzymes of interest with mass spectrometry becomes feasible. In this review, we cover probe design, technological developments, and applications of ABP of lipases, as well as give an overview of relevant identified proteins.
Collapse
Affiliation(s)
- Matthias Schittmayer
- Research Group Functional Proteomics, Institute of Pathology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
21
|
Scherp P, Putluri N, LeBlanc GJ, Wang ZQ, Zhang XH, Yu Y, Ribnicky D, Cefalu WT, Kheterpal I. Proteomic analysis reveals cellular pathways regulating carbohydrate metabolism that are modulated in primary human skeletal muscle culture due to treatment with bioactives from Artemisia dracunculus L. J Proteomics 2012; 75:3199-210. [PMID: 22480907 DOI: 10.1016/j.jprot.2012.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/25/2022]
Abstract
Insulin resistance is a major pathophysiologic abnormality that characterizes metabolic syndrome and type 2 diabetes. A well characterized ethanolic extract of Artemisia dracunculus L., termed PMI 5011, has been shown to improve insulin action in vitro and in vivo, but the cellular mechanisms remain elusive. Using differential proteomics, we have studied mechanisms by which PMI 5011 enhances insulin action in primary human skeletal muscle culture obtained by biopsy from obese, insulin-resistant individuals. Using iTRAQ™ labeling and LC-MS/MS, we have identified over 200 differentially regulated proteins due to treatment with PMI 5011 and insulin stimulation. Bioinformatics analyses determined that several metabolic pathways related to glycolysis, glucose transport and cell signaling were highly represented and differentially regulated in the presence of PMI 5011 indicating that this extract affects several pathways modulating carbohydrate metabolism, including translocation of GLUT4 to the plasma membrane. These findings provide a molecular mechanism by which a botanical extract improves insulin stimulated glucose uptake, transport and metabolism at the cellular level resulting in enhanced whole body insulin sensitivity.
Collapse
Affiliation(s)
- Peter Scherp
- Protein Structural Biology, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fromm-Dornieden C, von der Heyde S, Lytovchenko O, Salinas-Riester G, Brenig B, Beissbarth T, Baumgartner BG. Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells. BMC Mol Biol 2012; 13:9. [PMID: 22436005 PMCID: PMC3347988 DOI: 10.1186/1471-2199-13-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/21/2012] [Indexed: 01/06/2023] Open
Abstract
Background Control of translation allows for rapid adaptation of the cell to stimuli, rather than the slower transcriptional control. We presume that translational control is an essential process in the control of adipogenesis, especially in the first hours after hormonal stimulation. 3T3-L1 preadipocytes were cultured to confluency and adipogenesis was induced by standard protocols using a hormonal cocktail. Cells were harvested before and 6 hours after hormonal induction. mRNAs attached to ribosomes (polysomal mRNAs) were separated from unbound mRNAs by velocity sedimentation. Pools of polysomal and unbound mRNA fractions were analyzed by microarray analysis. Changes in relative abundance in unbound and polysomal mRNA pools were calculated to detect putative changes in translational activity. Changes of expression levels of selected genes were verified by qPCR and Western blotting. Results We identified 43 genes that shifted towards the polysomal fraction (up-regulated) and 2 genes that shifted towards free mRNA fraction (down-regulated). Interestingly, we found Ghrelin to be down-regulated. Up-regulated genes comprise factors that are nucleic acid binding (eIF4B, HSF1, IRF6, MYC, POLR2a, RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, TSC22d3), form part of ribosomes (RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa), act on the regulation of translation (eIF4B) or transcription (HSF1, IRF6, MYC, TSC22d3). Others act as chaperones (BAG3, HSPA8, HSP90ab1) or in other metabolic or signals transducing processes. Conclusions We conclude that a moderate reorganisation of the functionality of the ribosomal machinery and translational activity are very important steps for growth and gene expression control in the initial phase of adipogenesis.
Collapse
|
23
|
Peinado JR, Pardo M, de la Rosa O, Malagón MM. Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity. Proteomics 2012; 12:607-20. [PMID: 22246603 DOI: 10.1002/pmic.201100355] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/17/2011] [Accepted: 08/30/2011] [Indexed: 01/03/2023]
Abstract
The original concept of adipose tissue as an inert storage depot for the excess of energy has evolved over the last years and it is now considered as one of the most important organs regulating body homeostasis. This conceptual change has been supported by the demonstration that adipose tissue serves as a major endocrine organ, producing a wide variety of bioactive molecules, collectively termed adipokines, with endocrine, paracrine and autocrine activities. Adipose tissue is indeed a complex organ wherein mature adipocytes coexist with the various cell types comprising the stromal-vascular fraction (SVF), including preadipocytes, adipose-derived stem cells, perivascular cells, and blood cells. It is known that not only mature adipocytes but also the components of SVF produce adipokines. Furthermore, adipokine production, proliferative and metabolic activities and response to regulatory signals (i.e. insulin, catecholamines) differ between the different fat depots, which have been proposed to underlie their distinct association to specific diseases. Herein, we discuss the recent proteomic studies on adipose tissue focused on the analysis of the separate cellular components and their secretory products, with the aim of identifying the basic features and the contribution of each component to different adipose tissue-associated pathologies.
Collapse
Affiliation(s)
- Juan R Peinado
- Faculty of Medicine, Departament of Medical Sciences, Ciudad Real, Spain.
| | | | | | | |
Collapse
|
24
|
Abstract
Adipose tissue plays a central role in body weight homeostasis, inflammation, and insulin resistance via serving as a fat-buffering system, regulating lipid storage and mobilization and releasing a large range of adipokines and cytokines. Adipose tissue is also the major inflammation-initiated site in obesity. Adipose-derived adipokines and cytokines are known to be involved in the modulation of a wide range of important physiological processes, particularly immune response, glucose and lipid homeostasis and insulin resistance. Adipose tissue dysfunction, characterized by an imbalanced secretion of pro- and anti-inflammatory adipokines and cytokines, decreased insulin-stimulated glucose uptake, dysregulation of lipid storage and release and mitochondrial dysfunction, has been linked to obesity and its associated metabolic disorders. Proteomic technology has been a powerful tool for identifying key components of the adipose proteome, which may contribute to the pathogenesis of adipose tissue dysfunction in obesity. In this review, we summarized the recent advances in the proteomic characterization of adipose tissue and discussed the identified proteins that potentially play important roles in insulin resistance and lipid homeostasis.
Collapse
|
25
|
Pérez-Pérez R, García-Santos E, Ortega-Delgado FJ, López JA, Camafeita E, Ricart W, Fernández-Real JM, Peral B. Attenuated metabolism is a hallmark of obesity as revealed by comparative proteomic analysis of human omental adipose tissue. J Proteomics 2012; 75:783-95. [DOI: 10.1016/j.jprot.2011.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 01/11/2023]
|
26
|
Peinado JR, Quirós PM, Pulido MR, Mariño G, Martínez-Chantar ML, Vázquez-Martínez R, Freije JMP, López-Otín C, Malagón MM. Proteomic profiling of adipose tissue from Zmpste24-/- mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Mol Cell Proteomics 2011; 10:M111.008094. [PMID: 21828285 DOI: 10.1074/mcp.m111.008094] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lipodystrophy is a major disease involving severe alterations of adipose tissue distribution and metabolism. Mutations in genes encoding the nuclear envelope protein lamin A or its processing enzyme, the metalloproteinase Zmpste24, cause diverse human progeroid syndromes that are commonly characterized by a selective loss of adipose tissue. Similarly to humans, mice deficient in Zmpste24 accumulate prelamin A and display phenotypic features of accelerated aging, including lipodystrophy. Herein, we report the proteome and phosphoproteome of adipose tissue as well as serum metabolome in lipodystrophy by using Zmpste24(-/-) mice as experimental model. We show that Zmpste24 deficiency enhanced lipolysis, fatty acid biogenesis and β-oxidation as well as decreased fatty acid re-esterification, thus pointing to an increased partitioning of fatty acid toward β-oxidation and away from storage that likely underlies the observed size reduction of Zmpste24-null adipocytes. Besides the mitochondrial proteins related to lipid metabolism, other protein networks related to mitochondrial function, including those involved in tricarboxylic acid cycle and oxidative phosphorylation, were up-regulated in Zmpste24(-/-) mice. These results, together with the observation of an increased mitochondrial response to oxidative stress, support the relationship between defective prelamin A processing and mitochondrial dysfunction and highlight the relevance of oxidative damage in lipoatrophy and aging. We also show that absence of Zmpste24 profoundly alters the processing of the cytoskeletal protein vimentin and identify a novel protein dysregulated in lipodystrophy, High-Mobility Group Box-1 Protein. Finally, we found several lipid derivates with important roles in energy balance, such as Lysophosphatidylcholine or 2-arachidonoylglycerol, to be dysregulated in Zmpste24(-/-) serum. Together, our findings in Zmpste24(-/-) mice may be useful to unveil the mechanisms underlying adipose tissue dysfunction and its overall contribution to body homeostasis in progeria and other lipodystrophy syndromes as well as to develop novel strategies to prevent or ameliorate these diseases.
Collapse
Affiliation(s)
- Juan R Peinado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|