1
|
3D culture of the spinal cord with roots as an ex vivo model for comparative studies of motor and sensory nerve regeneration. Exp Neurol 2023; 362:114322. [PMID: 36652972 DOI: 10.1016/j.expneurol.2023.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Motor and sensory nerves exhibit tissue-specific structural and functional features. However, in vitro models designed to reflect tissue-specific differences between motor and sensory nerve regeneration have rarely been reported. Here, by embedding the spinal cord with roots (SCWR) in a 3D hydrogel environment, we compared the nerve regeneration processes between the ventral and dorsal roots. The 3D hydrogel environment induced an outward migration of neurons in the gray matter of the spinal cord, which allowed the long-term survival of motor neurons. Tuj1 immunofluorescence labeling confirmed the regeneration of neurites from both the ventral and dorsal roots. Next, we detected asymmetric ventral and dorsal root regeneration in response to nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF), and we observed motor and sensory Schwann cell phenotypes in the regenerated ventral and dorsal roots, respectively. Moreover, based on the SCWR model, we identified a targeted effect of collagen VI on sensory nerve fasciculation and characterized the protein expression profiles correlating to motor/sensory-specific nerve regeneration. These results suggest that the SCWR model can serve as a valuable ex vivo model for comparative study of motor and sensory nerve regeneration and for pharmacodynamic evaluations.
Collapse
|
2
|
Tomljanović I, Petrović A, Ban J, Mladinic M. Proteomic analysis of opossum Monodelphis domestica spinal cord reveals the changes of proteins related to neurodegenerative diseases during developmental period when neuroregeneration stops being possible. Biochem Biophys Res Commun 2022; 587:85-91. [PMID: 34864550 DOI: 10.1016/j.bbrc.2021.11.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
One of the major challenges of modern neurobiology concerns the inability of the adult mammalian central nervous system (CNS) to regenerate and repair itself after injury. It is still unclear why the ability to regenerate CNS is lost during evolution and development and why it becomes very limited in adult mammals. A convenient model to study cellular and molecular basis of this loss is neonatal opossum (Monodelphis domestica). Opossums are marsupials that are born very immature with the unique possibility to successfully regenerate postnatal spinal cord after injury in the first two weeks of their life, after which this ability abbruptly stops. Using comparative proteomic approach we identified the proteins that are differentially distributed in opossum spinal tissue that can and cannot regenerate after injury, among which stand out the proteins related to neurodegenerative diseases (NDD), such as Huntington, Parkinson and Alzheimer's disease, previously detected by comparative transcriptomics on the analog tissue. The different distribution of the selected proteins detected by comparative proteomics was further confirmed by Western blot (WB), and the changes in the expression of related genes were analysed by quantitative reverse transcription PCR (qRT-PCR). Furthermore, we explored the cellular localization of the selected proteins using immunofluorescent microscopy. To our knowledge, this is the first report on proteins differentially present in developing, non-injured mammalian spinal cord tissue with different regenerative capacities. The results of this study indicate that the proteins known to have an important role in the pathophysiology of neurodegeneration in aged CNS, could also have an important phyisological role during CNS postnatal development and in neuroregeneration process.
Collapse
Affiliation(s)
- Ivana Tomljanović
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Antonela Petrović
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Jelena Ban
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Miranda Mladinic
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia.
| |
Collapse
|
3
|
He Q, Yu F, Cong M, Ji Y, Zhang Q, Ding F. Comparative Proteomic Analysis of Differentially Expressed Proteins between Injured Sensory and Motor Nerves after Peripheral Nerve Transection. J Proteome Res 2020; 20:1488-1508. [PMID: 33284006 DOI: 10.1021/acs.jproteome.0c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peripheral nerve repair and functional recovery depend on the rate of nerve regeneration and the quality of target reinnervation. It is important to fully understand the cellular and molecular basis underlying the specificity of peripheral nerve regeneration, which means achieving corresponding correct pathfinding and accurate target reinnervation for regrowing motor and sensory axons. In this study, a quantitative proteomic technique, based on isobaric tags for relative and absolute quantitation (iTRAQ), was used to profile the protein expression pattern between single motor and sensory nerves at 14 days after peripheral nerve transection. Among a total of 1259 proteins identified, 176 proteins showed the differential expressions between injured motor and sensory nerves. Quantitative RT-PCR and western blot analysis were applied to validate the proteomic data on representative differentially expressed proteins. Functional categorization indicated that differentially expressed proteins were linked to a diverse array of molecular functions, including axonogenesis, response to axon injury, tissue remodeling, axon ensheathment, cell proliferation and adhesion, vesicle-mediated transport, response to oxidative stress, internal signal cascade, and macromolecular complex assembly, which might play an essential role in peripheral motor and sensory nerve regeneration. Overall, we hope that the proteomic database obtained in this study could serve as a solid foundation for the comprehensive investigation of differentially expressed proteins between injured motor and sensory nerves and for the mechanism elucidation of the specificity of peripheral nerve regeneration. Data are available via ProteomeXchange with identifier PXD022097.
Collapse
Affiliation(s)
- Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| | - Fanhui Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, PR China
| |
Collapse
|
4
|
Shen M, Tang W, Cheng Z, Zhang Q, Chen Z, Tian Y, Zhang Y, He Q, Shi H, Zhu H, Wu H, Ji Y, Ding F. A proteomic view on the differential phenotype of Schwann cells derived from mouse sensory and motor nerves. J Comp Neurol 2020; 529:1240-1254. [DOI: 10.1002/cne.25018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University Nantong China
| | - Wei Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Zhenghui Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Zixin Chen
- Department of Immunobiology, College of Life Science and Technology Jinan University Guangzhou China
| | - Yingchao Tian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Yawen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Haiyan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University Nantong China
| | - Han Wu
- Department of General Surgery Affiliated Hospital of Nantong University Nantong China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
- Department of Immunobiology, College of Life Science and Technology Jinan University Guangzhou China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University Nantong China
| |
Collapse
|
5
|
Wei S, Liang XZ, Hu Q, Wang WS, Xu WJ, Cheng XQ, Peng J, Guo QY, Liu SY, Jiang W, Ding X, Han GH, Liu P, Shi CH, Wang Y. Different protein expression patterns in rat spinal nerves during Wallerian degeneration assessed using isobaric tags for relative and absolute quantitation proteomics profiling. Neural Regen Res 2020; 15:315-323. [PMID: 31552905 PMCID: PMC6905349 DOI: 10.4103/1673-5374.265556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Sensory and motor nerve fibers of peripheral nerves have different anatomies and regeneration functions after injury. To gain a clear understanding of the biological processes behind these differences, we used a labeling technique termed isobaric tags for relative and absolute quantitation to investigate the protein profiles of spinal nerve tissues from Sprague-Dawley rats. In response to Wallerian degeneration, a total of 626 proteins were screened in sensory nerves, of which 368 were upregulated and 258 were downregulated. In addition, 637 proteins were screened in motor nerves, of which 372 were upregulated and 265 were downregulated. All identified proteins were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of bioinformatics, and the presence of several key proteins closely related to Wallerian degeneration were tested and verified using quantitative real-time polymerase chain reaction analyses. The differentially expressed proteins only identified in the sensory nerves were mainly relevant to various biological processes that included cell-cell adhesion, carbohydrate metabolic processes and cell adhesion, whereas differentially expressed proteins only identified in the motor nerves were mainly relevant to biological processes associated with the glycolytic process, cell redox homeostasis, and protein folding. In the aspect of the cellular component, the differentially expressed proteins in the sensory and motor nerves were commonly related to extracellular exosomes, the myelin sheath, and focal adhesion. According to the Kyoto Encyclopedia of Genes and Genomes, the differentially expressed proteins identified are primarily related to various types of metabolic pathways. In conclusion, the present study screened differentially expressed proteins to reveal more about the differences and similarities between sensory and motor nerves during Wallerian degeneration. The present findings could provide a reference point for a future investigation into the differences between sensory and motor nerves in Wallerian degeneration and the characteristics of peripheral nerve regeneration. The study was approved by the Ethics Committee of the Chinese PLA General Hospital, China (approval No. 2016-x9-07) in September 2016.
Collapse
Affiliation(s)
- Shuai Wei
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xue-Zhen Liang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Qian Hu
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Wei-Shan Wang
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Wen-Jing Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Qing Cheng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Quan-Yi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Shu-Yun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Wen Jiang
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao Ding
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region; Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Gong-Hai Han
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Kunming Medical University, Kunming, Yunnan Province, China
| | - Ping Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Chen-Hui Shi
- The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Barks AK, Beeson MM, Matveeva T, Gale JJ, Rao R, Tran PV. Perinatal Ischemia Alters Global Expression of Synaptosomal Proteins Critical for Neural Plasticity in the Developing Mouse Brain. Dev Neurosci 2019; 40:1-13. [PMID: 31207599 DOI: 10.1159/000499126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022] Open
Abstract
Ischemic perinatal stroke (IPS) affects 1 in 2,300-5,000 live births. Despite a survival rate >95%, approximately 60% of IPS infants develop motor and cognitive impairments. Given the importance of axonal growth and synaptic plasticity in neurocognitive development, our objective was to identify the molecular pathways underlying IPS-associated synaptic dysfunction using a mouse model. IPS was induced by unilateral ligation of the common carotid artery of postnatal day 10 (P10) mice. Five days after ischemia, sensorimotor and motor functions were assessed by vibrissae-evoked forepaw placement and the tail suspension test respectively, showing evidence of greater impairments in male pups than in female pups. Twenty-four hours after ischemia, both hemispheres were collected and synaptosomal proteins then prepared for quantification, using isobaric tags for relative and absolute quantitation. Seventy-two of 1,498 qualified proteins were altered in the ischemic hemisphere. Ingenuity Pathway Analysis was used to map these proteins onto molecular networks indicative of reduced neuronal proliferation, survival, and synaptic plasticity, accompanied by reduced PKCα signaling in male, but not female, pups. These effects also occurred in the non-ischemic hemisphere when compared with sham controls. The altered signaling effects may contribute to the sex-specific neurodevelopmental dysfunction following IPS, highlighting potential pathways for targeting during treatment.
Collapse
Affiliation(s)
- Amanda K Barks
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Montana M Beeson
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tatyana Matveeva
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan J Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Raghavendra Rao
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA,
| |
Collapse
|
7
|
Hercher D, Kerbl M, Schuh CMAP, Heinzel J, Gal L, Stainer M, Schmidhammer R, Hausner T, Redl H, Nógrádi A, Hacobian A. Spatiotemporal Differences in Gene Expression Between Motor and Sensory Autografts and Their Effect on Femoral Nerve Regeneration in the Rat. Front Cell Neurosci 2019; 13:182. [PMID: 31139050 PMCID: PMC6519304 DOI: 10.3389/fncel.2019.00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
To improve the outcome after autologous nerve grafting in the clinic, it is important to understand the limiting variables such as distinct phenotypes of motor and sensory Schwann cells. This study investigated the properties of phenotypically different autografts in a 6 mm femoral nerve defect model in the rat, where the respective femoral branches distally of the inguinal bifurcation served as homotopic, or heterotopic autografts. Axonal regeneration and target reinnervation was analyzed by gait analysis, electrophysiology, and wet muscle mass analysis. We evaluated regeneration-associated gene expression between 5 days and 10 weeks after repair, in the autografts as well as the proximal, and distal segments of the femoral nerve using qRT-PCR. Furthermore we investigated expression patterns of phenotypically pure ventral and dorsal roots. We identified highly significant differences in gene expression of a variety of regeneration-associated genes along the central – peripheral axis in healthy femoral nerves. Phenotypically mismatched grafting resulted in altered spatiotemporal expression of neurotrophic factor BDNF, GDNF receptor GFRα1, cell adhesion molecules Cadm3, Cadm4, L1CAM, and proliferation associated Ki67. Although significantly higher quadriceps muscle mass following homotopic nerve grafting was measured, we did not observe differences in gait analysis, and electrophysiological parameters between treatment paradigms. Our study provides evidence for phenotypic commitment of autologous nerve grafts after injury and gives a conclusive overview of temporal expression of several important regeneration-associated genes after repair with sensory or motor graft.
Collapse
Affiliation(s)
- David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Markus Kerbl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christina M A P Schuh
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Johannes Heinzel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - László Gal
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
| | - Michaela Stainer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Robert Schmidhammer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Thomas Hausner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Antal Nógrádi
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
8
|
Yu Z, Xu N, Zhang N, Xiong Y, Wang Z, Liang S, Zhao D, Huang F, Zhang C. Repair of Peripheral Nerve Sensory Impairments via the Transplantation of Bone Marrow Neural Tissue-Committed Stem Cell-Derived Sensory Neurons. Cell Mol Neurobiol 2019; 39:341-353. [PMID: 30684112 DOI: 10.1007/s10571-019-00650-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/04/2019] [Indexed: 01/20/2023]
Abstract
The present study aimed to investigate the efficacy of transplantation of bone marrow neural tissue-committed stem cell-derived sensory neuron-like cells for the repair of peripheral nerve sensory impairments in rats. Bone marrow was isolated and cultured to obtain the neural tissue-committed stem cells (NTCSCs), and the differentiation of these cells into sensory neuron-like cells was induced. Bone marrow mesenchymal stem cells (BMSCs), bone marrow NTCSCs, and bone marrow NTCSC-derived sensory neurons (NTCSC-SNs) were transplanted by microinjection into the L4 and L5 dorsal root ganglions (DRGs) in an animal model of sensory defect. On the 2nd, 4th, 8th, and 12th week after the transplantation, the effects of the three types of stem cells on the repair of the sensory functional defect were analyzed via behavioral observation, sensory function evaluation, electrophysiological examination of the sciatic nerve, and morphological observation of the DRGs. The results revealed that the transplanted BMSCs, NTCSCs, and NTCSC-SNs were all able to repair the sensory nerves. In addition, the effect of the NTCSC-SNs was significantly better than that of the other two types of stem cells. The general posture and gait of the animals in the sensory defect model exhibited evident improvement over time. Plantar temperature sensitivity and pain sensitivity gradually recovered, and the sensation latency was reduced, with faster sensory nerve conduction velocity. Transplantation of NTCSC-SNs can improve the repair of peripheral nerve sensory defects in rats.
Collapse
Affiliation(s)
- Zhenhai Yu
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
- Department of Human Anatomy, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Naili Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yanlian Xiong
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Zhiqiang Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Shaohua Liang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Dongmei Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Fei Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Chuansen Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
- Department of Human Anatomy, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
9
|
He Q, Shen M, Tong F, Cong M, Zhang S, Gong Y, Ding F. Differential Gene Expression in Primary Cultured Sensory and Motor Nerve Fibroblasts. Front Neurosci 2019; 12:1016. [PMID: 30686982 PMCID: PMC6333708 DOI: 10.3389/fnins.2018.01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Fibroblasts (Fbs) effectively promote Schwann cells (SCs) migration, proliferation, and neurite regeneration. Whether Fbs express different motor and sensory phenotypes that regulate the cell behavior and peripheral nerve function has not been elucidated. The present study utilized the whole rat genome microarray analysis and identified a total of 121 differentially expressed genes between the primary cultured motor and sensory Fbs. The genes with high expression in sensory Fbs were related to proliferation, migration, chemotaxis, motility activation, protein maturation, defense response, immune system, taxis, and regionalization, while those with high expression in motor Fbs were related to neuron differentiation, segmentation, and pattern specification. Thus, the significant difference in the expression of some key genes was found to be associated with cell migration and proliferation, which was further validated by quantitative real-time PCR (qPCR). The cell proliferation or migration analysis revealed a higher rate of cell migration and proliferation of sensory Fbs than motor Fbs. Moreover, the downregulated expression of chemokine (C-X-C motif) ligand 10 (CXCL10) and chemokine (C-X-C motif) ligand 3 (CXCL3) suppressed the proliferation rate of sensory Fbs, while it enhanced that of the motor Fbs. However, the migration rate of both Fbs was suppressed by the downregulated expression of CXCL10 or CXCL3. Furthermore, a higher proportion of motor or sensory SCs migrated toward their respective (motor or sensory) Fbs; however, few motor or sensory SCs co-cultured with the other type of Fbs (sensory or motor, respectively), migrated toward the Fbs. The current findings indicated that Fbs expressed the distinct motor and sensory phenotypes involved in different patterns of gene expression, biological processes, and effects on SCs. Thus, this study would provide insights into the biological differences between motor and sensory Fbs, including the role in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Fang Tong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Shibo Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yanpei Gong
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
10
|
A Subpopulation of Foxj1-Expressing, Nonmyelinating Schwann Cells of the Peripheral Nervous System Contribute to Schwann Cell Remyelination in the Central Nervous System. J Neurosci 2018; 38:9228-9239. [PMID: 30228229 PMCID: PMC6199410 DOI: 10.1523/jneurosci.0585-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
New myelin sheaths can be restored to demyelinated axons in a spontaneous regenerative process called remyelination. In general, new myelin sheaths are made by oligodendrocytes newly generated from a widespread population of adult CNS progenitors called oligodendrocyte progenitor cells (OPCs). New myelin in CNS remyelination in both experimental models and clinical diseases can also be generated by Schwann cells (SCs), the myelin-forming cells of the PNS. Fate-mapping studies have shown that SCs contributing to remyelination in the CNS are often derived from OPCs and appear not to be derived from myelinating SCs from the PNS. In this study, we address whether CNS remyelinating SCs can also be generated from PNS-derived cells other than myelinating SCs. Using a genetic fate-mapping approach, we have found that a subpopulation of nonmyelinating SCs identified by the expression of the transcription factor Foxj1 also contribute to CNS SC remyelination, as well as to remyelination in the PNS. We also find that the ependymal cells lining the central canal of the spinal cord, which also express Foxj1, do not generate cells that contribute to CNS remyelination. These findings therefore identify a previously unrecognized population of PNS glia that can participate in the regeneration of new myelin sheaths following CNS demyelination.SIGNIFICANCE STATEMENT Remyelination failure in chronic demyelinating diseases such as multiple sclerosis drives the current quest for developing means by which remyelination in CNS can be enhanced therapeutically. Critical to this endeavor is the need to understand the mechanisms of remyelination, including the nature and identity of the cells capable of generating new myelin sheath-forming cells. Here, we report a previously unrecognized subpopulation of nonmyelinating Schwann cells (SCs) in the PNS, identified by the expression of the transcription factor Foxj1, which can give rise to SCs that are capable of remyelinating both PNS and CNS axons. These cells therefore represent a new cellular target for myelin regenerative strategies for the treatment of CNS disorders characterized by persistent demyelination.
Collapse
|
11
|
Wang H, Zhou Y, Cong M, Zhang L, Gu X, Tang X. Comparative transcriptomic profiling of peripheral efferent and afferent nerve fibres at different developmental stages in mice. Sci Rep 2018; 8:11990. [PMID: 30097601 PMCID: PMC6086926 DOI: 10.1038/s41598-018-30463-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injury impairs motor and sensory function in humans, and its functional recovery largely depends on the axonal outgrowth required for the accurate reinnervation of appropriate targets. To better understand how motor and sensory nerve fibres select their terminal pathways, an unbiased cDNA microarray analysis was conducted to examine differential gene expression patterns in peripheral efferent and afferent fibres at different developmental stages in mice. Gene ontology (GO) and Kyoto Enrichment of Genes and Genomes (KEGG) analyses revealed common and distinct features of enrichment for differentially expressed genes during motor and sensory nerve fibre development. Ingenuity Pathway Analysis (IPA) further indicated that the key differentially expressed genes were associated with trans-synaptic neurexin-neuroligin signalling components and a variety of gamma-aminobutyric acid (GABA) receptors. The aim of this study was to generate a framework of gene networks regulated during motor and sensory neuron differentiation/maturation. These data may provide new clues regarding the underlying cellular and molecular mechanisms that determine the intrinsic capacity of neurons to regenerate after peripheral nerve injury. Our findings may thus facilitate further development of a potential intervention to manipulate the therapeutic efficiency of peripheral nerve repair in the clinic.
Collapse
Affiliation(s)
- Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Youlang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, JS, 226001, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Li Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| |
Collapse
|
12
|
Li H, Wu M, Shi Y, Javid B. Over-Expression of the Mycobacterial Trehalose-Phosphate Phosphatase OtsB2 Results in a Defect in Macrophage Phagocytosis Associated with Increased Mycobacterial-Macrophage Adhesion. Front Microbiol 2016; 7:1754. [PMID: 27867377 PMCID: PMC5095139 DOI: 10.3389/fmicb.2016.01754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/19/2016] [Indexed: 01/31/2023] Open
Abstract
Trehalose-6-phosphate phosphatase (OtsB2) is involved in the OtsAB trehalose synthesis pathway to produce free trehalose and is strictly essential for mycobacterial growth. We wished to determine the effects of OtsB2 expression on mycobacterial phenotypes such as growth, phagocytosis and survival in macrophages. Mycobacterium bovis-bacillus calmette-guerin (BCG) over-expressing OtsB2 were able to better survive in stationary phase. Over-expression of OtsB2 led to a decrease in phagocytosis but not survival in THP-1 macrophage-like cells, and this was not due to a decrease in general macrophage phagocytic activity. Surprisingly, when we investigated macrophage-mycobacterial interactions by flow cytometry and atomic force microscopy, we discovered that BCG over-expressing OtsB2 have stronger binding to THP-1 cells than wild-type BCG. These results suggest that altering OtsB2 expression has implications for mycobacterial host-pathogen interactions. Macrophage-mycobacteria phagocytic interactions are complex and merit further study.
Collapse
Affiliation(s)
- Hao Li
- Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| | - Mei Wu
- Tsinghua Immunology Institute, School of Medicine, Tsinghua University Beijing, China
| | - Yan Shi
- Tsinghua Immunology Institute, School of Medicine, Tsinghua University Beijing, China
| | - Babak Javid
- Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| |
Collapse
|
13
|
He QR, Cong M, Chen QZ, Sheng YF, Li J, Zhang Q, Ding F, Gong YP. Expression changes of nerve cell adhesion molecules L1 and semaphorin 3A after peripheral nerve injury. Neural Regen Res 2016; 11:2025-2030. [PMID: 28197202 PMCID: PMC5270444 DOI: 10.4103/1673-5374.197148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A mRNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration.
Collapse
Affiliation(s)
- Qian-Ru He
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Meng Cong
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Qing-Zhong Chen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Feng Sheng
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Li
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qi Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yan-Pei Gong
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
14
|
Expression and identification of olfactory receptors in sciatic nerve and dorsal root ganglia of rats. Neurosci Lett 2015; 600:171-5. [DOI: 10.1016/j.neulet.2015.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/27/2022]
|
15
|
Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods 2013; 61:186-218. [PMID: 23623823 PMCID: PMC3891841 DOI: 10.1016/j.ymeth.2013.04.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/29/2013] [Accepted: 04/13/2013] [Indexed: 01/07/2023] Open
Abstract
The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- George E Craft
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Anshu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
- Yale/NIDA Neuroproteomics Center, Yale University School of Medicine, New Haven, CT, 06508
| |
Collapse
|
16
|
Sui P, Watanabe H, Ossipov MH, Porreca F, Bakalkin G, Bergquist J, Artemenko K. Dimethyl-Labeling-Based Protein Quantification and Pathway Search: A Novel Method of Spinal Cord Analysis Applicable for Neurological Studies. J Proteome Res 2013; 12:2245-52. [DOI: 10.1021/pr4001064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Michael H. Ossipov
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson,
Arizona 85724, United States
| | - Frank Porreca
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson,
Arizona 85724, United States
| | | | | | | |
Collapse
|
17
|
Vincenti DC, Murray GI. The proteomics of formalin-fixed wax-embedded tissue. Clin Biochem 2013; 46:546-51. [DOI: 10.1016/j.clinbiochem.2012.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/06/2012] [Accepted: 10/01/2012] [Indexed: 01/16/2023]
|
18
|
Franco C, Soares R, Pires E, Koci K, Almeida AM, Santos R, Coelho AV. Understanding regeneration through proteomics. Proteomics 2013; 13:686-709. [DOI: 10.1002/pmic.201200397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Catarina Franco
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Kamila Koci
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - André M. Almeida
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
- Instituto de Investigação Científica Tropical; Lisboa Portugal
| | - Romana Santos
- Unidade de Investigação em Ciências Orais e Biomédicas, Faculdade de Medicina Dentária; Universidade de Lisboa; Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|