1
|
Liu Y, Liu Y, Hao L, Cao J, Jiang L, Yi H. Metabolomic Approaches to Study the Potential Inhibitory Effects of Plantaricin Q7 against Listeria monocytogenes Biofilm. Foods 2024; 13:2573. [PMID: 39200500 PMCID: PMC11353926 DOI: 10.3390/foods13162573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Listeria monocytogenes is a serious pathogen and can exacerbate harmful effects through the formation of biofilm. Inhibition of or reduction in L. monocytogenes biofilm is a promising strategy to control L. monocytogenes in the food industry. In our previous study, it was found that plantaricin Q7 produced by Lactiplantibacillus plantarum Q7 could inhibit and reduce L. monocytogenes biofilm, but the specific mechanism remains unclear. In this study, the inhibitive and reduced activity of plantaricin Q7 on L. monocytogenes biofilm was investigated by metabolomics. The results showed that plantaricin Q7 inhibited the synthesis of L. monocytogenes biofilm mainly through purine metabolism and glycerol phospholipid metabolism, and the key differential metabolites included acetylcholine and hypoxanthine with a decrease in abundance from 5.80 to 4.85. In addition, plantaricin Q7 reduced the formed L. monocytogenes biofilm by purine metabolism and arginine biosynthesis, and the main differential metabolites were N-acetylglutamate and D-ribose-1-phosphate with a decrease in abundance from 6.21 to 4.73. It was the first report that purine metabolism and amino acid metabolism were the common metabolic pathway for plantaricin Q7 to inhibit and reduce L. monocytogenes biofilm, which could be potential targets to control L. monocytogenes biofilm. A putative metabolic pathway for L. monocytogenes biofilm inhibition and reduction by plantaricin Q7 was proposed. These findings provided a novel strategy to control L. monocytogenes biofilm in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.L.); (Y.L.); (L.H.); (J.C.); (L.J.)
| |
Collapse
|
2
|
Folorunso OS, Sebolai OM. A Limited Number of Amino Acid Permeases Are Crucial for Cryptococcus neoformans Survival and Virulence. Int J Microbiol 2024; 2024:5566438. [PMID: 39148675 PMCID: PMC11326883 DOI: 10.1155/2024/5566438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
One unique attribute of Cryptococcus neoformans is its ability to procure essential monomers from its surroundings to survive in diverse environments. Preferentially, sugars are the energy sources for this opportunistic pathogenic fungus under the carbon catabolite repression (CCR); however, sugar restriction induces alternative use of low molecular weight alcohol, organic acids, and amino acids. The expression of transmembrane amino acid permeases (Aaps) allows C. neoformans to utilize different amino acids and their conjugates, notwithstanding under the nitrogen catabolite repression (NCR). Being referred to as global permeases, there is a notion that all cryptococcal Aaps are important to survival and virulence. This functional divergence makes alternative drug targeting against Cryptococcus a challenge. We examine the functions and regulations of C. neoformans Aap variants with the aim of rationalizing their relevance to cryptococcal cell survival and virulence. Based on nutrient bioavailability, we linked the Cac1 pathway to Ras1 activation for thermotolerance that provides a temperature cushion for Aap activity under physiological conditions. Lastly, mutants of Aaps are examined for significant phenotypic deficiencies/advantages, which buttress the specific importance of limited numbers of Aaps involved in cryptococcal infections.
Collapse
Affiliation(s)
- Olufemi S Folorunso
- Department of Microbiology and Biochemistry University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa
| |
Collapse
|
3
|
Agrawal R, de Castro RJA, Sturny-Leclère A, Alanio A. Population heterogeneity in Cryptococcus neoformans: Impact on pathogenesis. PLoS Pathog 2024; 20:e1012332. [PMID: 38990818 PMCID: PMC11239025 DOI: 10.1371/journal.ppat.1012332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Affiliation(s)
- Ruchi Agrawal
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Group, Mycology Department, Paris, France
| | - Raffael J Araújo de Castro
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Group, Mycology Department, Paris, France
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Aude Sturny-Leclère
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Group, Mycology Department, Paris, France
| | - Alexandre Alanio
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Group, Mycology Department, Paris, France
- Mycology-parasitology Laboratory, Hôpital Saint-Louis AP-HP, Paris, France
| |
Collapse
|
4
|
Cho JA, Jeon S, Kwon Y, Roh YJ, Lee CH, Kim SJ. Comparative proteomics analysis of biofilms and planktonic cells of Enterococcus faecalis and Staphylococcus lugdunensis with contrasting biofilm-forming ability. PLoS One 2024; 19:e0298283. [PMID: 38809833 PMCID: PMC11135667 DOI: 10.1371/journal.pone.0298283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 05/31/2024] Open
Abstract
Biofilms make it difficult to eradicate bacterial infections through antibiotic treatments and lead to numerous complications. Previously, two periprosthetic infection-related pathogens, Enterococcus faecalis and Staphylococcus lugdunensis were reported to have relatively contrasting biofilm-forming abilities. In this study, we examined the proteomics of the two microorganisms' biofilms using LC-MS/MS. The results showed that each microbe exhibited an overall different profile for differential gene expressions between biofilm and planktonic cells as well as between each other. Of a total of 929 proteins identified in the biofilms of E. faecalis, 870 proteins were shared in biofilm and planktonic cells, and 59 proteins were found only in the biofilm. In S. lugdunensis, a total of 1125 proteins were identified, of which 1072 proteins were found in common in the biofilm and planktonic cells, and 53 proteins were present only in the biofilms. The functional analysis for the proteins identified only in the biofilms using UniProt keywords demonstrated that they were mostly assigned to membrane, transmembrane, and transmembrane helix in both microorganisms, while hydrolase and transferase were found only in E. faecalis. Protein-protein interaction analysis using STRING-db indicated that the resulting networks did not have significantly more interactions than expected. GO term analysis exhibited that the highest number of proteins were assigned to cellular process, catalytic activity, and cellular anatomical entity. KEGG pathway analysis revealed that microbial metabolism in diverse environments was notable for both microorganisms. Taken together, proteomics data discovered in this study present a unique set of biofilm-embedded proteins of each microorganism, providing useful information for diagnostic purposes and the establishment of appropriately tailored treatment strategies. Furthermore, this study has significance in discovering the target candidate molecules to control the biofilm-associated infections of E. faecalis and S. lugdunensis.
Collapse
Affiliation(s)
- Jung-Ah Cho
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sangsoo Jeon
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Youngmin Kwon
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| | - Yoo Jin Roh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sung Jae Kim
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| |
Collapse
|
5
|
Gutierrez-Gongora D, Woods M, Prosser RS, Geddes-McAlister J. Natural compounds from freshwater mussels disrupt fungal virulence determinants and influence fluconazole susceptibility in the presence of macrophages in Cryptococcus neoformans. Microbiol Spectr 2024; 12:e0284123. [PMID: 38329361 PMCID: PMC10913472 DOI: 10.1128/spectrum.02841-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen responsible for fatal infections, especially in patients with a depressed immune system. Overexposure to antifungal drugs due to prolonged treatment regimens and structure-similar applications in agriculture have weakened the efficacy of current antifungals in the clinic. The rapid evolution of antifungal resistance urges the discovery of new compounds that inhibit fungal virulence determinants, rather than directly killing the pathogen, as alternative strategies to overcome disease and reduce selective pressure toward resistance. Here, we evaluated the efficacy of freshwater mussel extracts (crude and clarified) against the production of well-defined virulence determinants (i.e., thermotolerance, melanin, capsule, and biofilm) and fluconazole resistance in C. neoformans. We demonstrated the extracts' influence on fungal thermotolerance, capsule production, and biofilm formation, as well as susceptibility to fluconazole in the presence of macrophages. Additionally, we measured the inhibitory activity of extracts against commercial peptidases (family representatives of cryptococcal orthologs) related to fungal virulence determinants and fluconazole resistance, and integrated these phenotypic findings with quantitative proteomics profiling. Our approach defined distinct signatures of each treatment and validated a new mechanism of anti-virulence action toward the polysaccharide capsule from a selected extract following fractionation. By understanding the mechanisms driving the antifungal activity of mussels, we may develop innovative treatment options to overcome fungal infections and promote susceptibility to fluconazole in resistant strains. IMPORTANCE As the prevalence and severity of global fungal infections rise, along with an increasing incidence of antifungal resistance, new strategies to combat fungal pathogens and overcome resistance are urgently needed. Critically, our current methods to overcome fungal infections are limited and drive the evolution of resistance forward; however, an anti-virulence approach to disarm virulence factors of the pathogen and promote host cell clearance is promising. Here, we explore the efficacy of natural compounds derived from freshwater mussels against classical fungal virulence determinants, including thermotolerance, capsule production, stress response, and biofilm formation. We integrate our phenotypic discoveries with state-of-the-art mass spectrometry-based proteomics to identify mechanistic drivers of these antifungal properties and propose innovative avenues to reduce infection and support the treatment of resistant strains.
Collapse
Affiliation(s)
| | - Michael Woods
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S. Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
6
|
Santi L, Berger M, Guimarães JA, Calegari-Alves YP, Vainstein MH, Yates JR, Beys-da-Silva WO. Proteomic profile of Cryptococcus gattii biofilm: Metabolic shift and the potential activation of electron chain transport. J Proteomics 2024; 290:105022. [PMID: 37838096 DOI: 10.1016/j.jprot.2023.105022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Cryptococcus gattii is a primary pathogenic fungus that causes pneumonia. This species is also responsible for an outbreak in Vancouver, Canada, and spreading to the mainland and United States. The use of medical devices is often complicated by infections with biofilm-forming microbes with increased resistance to antimicrobial agents and host defense mechanisms. This study investigated the comparative proteome of C. gattii R265 (VGIIa) grown under planktonic and biofilm conditions. A brief comparison with C. neoformans H99 biofilm and the use of different culture medium and surface were also evaluated. Using Multidimensional Protein Identification Technology (MudPIT), 1819 proteins were identified for both conditions, where 150 (8.2%) were considered differentially regulated (up- or down-regulated and unique in biofilm cells). Overall, the proteomic approach suggests that C. gattii R265 biofilm cells are maintained by the induction of electron transport chain for reoxidation, and by alternative energy metabolites, such as succinate and acetate. SIGNIFICANCE: Since C. gattii is considered a primary pathogen and is one of the most virulent and less susceptible to antifungals, understanding how biofilms are maintained is fundamental to search for new targets to control this important mode of growth that is difficult to eradicate.
Collapse
Affiliation(s)
- Lucélia Santi
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil; Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Jorge A Guimarães
- Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| | - Yohana Porto Calegari-Alves
- Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marilene H Vainstein
- Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | - Walter O Beys-da-Silva
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduation Program of Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Experimental Research, Clinical Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Andreu C, Del Olmo ML. Biotechnological applications of biofilms formed by osmotolerant and halotolerant yeasts. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12589-y. [PMID: 37233754 DOI: 10.1007/s00253-023-12589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Many microorganisms are capable of developing biofilms under adverse conditions usually related to nutrient limitation. They are complex structures in which cells (in many cases of different species) are embedded in the material that they secrete, the extracellular matrix (ECM), which is composed of proteins, carbohydrates, lipids, and nucleic acids. The ECM has several functions including adhesion, cellular communication, nutrient distribution, and increased community resistance, this being the main drawback when these microorganisms are pathogenic. However, these structures have also proven useful in many biotechnological applications. Until now, the most interest shown in these regards has focused on bacterial biofilms, and the literature describing yeast biofilms is scarce, except for pathological strains. Oceans and other saline reservoirs are full of microorganisms adapted to extreme conditions, and the discovery and knowledge of their properties can be very interesting to explore new uses. Halotolerant and osmotolerant biofilm-forming yeasts have been employed for many years in the food and wine industry, with very few applications in other areas. The experience gained in bioremediation, food production and biocatalysis with bacterial biofilms can be inspiring to find new uses for halotolerant yeast biofilms. In this review, we focus on the biofilms formed by halotolerant and osmotolerant yeasts such as those belonging to Candida, Saccharomyces flor yeasts, Schwannyomyces or Debaryomyces, and their actual or potential biotechnological applications. KEY POINTS: • Biofilm formation by halotolerant and osmotolerant yeasts is reviewed. • Yeasts biofilms have been widely used in food and wine production. • The use of bacterial biofilms in bioremediation can be expanded to halotolerant yeast counterparts.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés S/N, 46100, València, Burjassot, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, 46100, València, Burjassot, Spain.
| |
Collapse
|
8
|
Gutierrez-Gongora D, Raouf-Alkadhimi F, Prosser RS, Geddes-McAlister J. Differentiated extracts from freshwater and terrestrial mollusks inhibit virulence factor production in Cryptococcus neoformans. Sci Rep 2023; 13:4928. [PMID: 36967422 PMCID: PMC10040410 DOI: 10.1038/s41598-023-32140-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The human fungal pathogen, Cryptococcus neoformans, is responsible for deadly infections among immunocompromised individuals with the evolution of antifungal resistance driving the solution to discover new compounds that inhibit fungal virulence factors rather than kill the pathogen. Recently, exploration into natural sources (e.g., plants, invertebrates, microbes) of antifungal agents has garnered attention by integrating a One Health approach for new compound discovery. Here, we explore extracts from three mollusk species (freshwater and terrestrial) and evaluate effects against the growth and virulence factor production (i.e., thermotolerance, melanin, capsule, and biofilm) in C. neoformans. We demonstrate that clarified extracts of Planorbella pilsbryi have a fungicidal effect on cryptococcal cells comparable to fluconazole. Similarly, all extracts of Cipangopaludina chinensis affect cryptococcal thermotolerance and impair biofilm and capsule production, with clarified extracts of Cepaea nemoralis also conveying the latter effect. Next, inhibitory activity of extracts against peptidases related to specific virulence factors, combined with stress assays and quantitative proteomics, defined distinct proteome signatures and proposed proteins driving the observed anti-virulence properties. Overall, this work highlights the potential of compounds derived from natural sources to inhibit virulence factor production in a clinically important fungal pathogen.
Collapse
Affiliation(s)
| | | | - Ryan S Prosser
- Department of Environmental Toxicology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
9
|
Aguiar TKB, Mesquita FP, Neto NAS, Gomes FÍR, Freitas CDT, Carneiro RF, Nagano CS, Alencar LMR, Santos-Oliveira R, Oliveira JTA, Souza PFN. No Chance to Survive: Mo-CBP 3-PepII Synthetic Peptide Acts on Cryptococcus neoformans by Multiple Mechanisms of Action. Antibiotics (Basel) 2023; 12:antibiotics12020378. [PMID: 36830289 PMCID: PMC9952340 DOI: 10.3390/antibiotics12020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Multidrug-resistant Cryptococcus neoformans is an encapsulated yeast causing a high mortality rate in immunocompromised patients. Recently, the synthetic peptide Mo-CBP3-PepII emerged as a potent anticryptococcal molecule with an MIC50 at low concentration. Here, the mechanisms of action of Mo-CBP3-PepII were deeply analyzed to provide new information about how it led C. neoformans cells to death. Light and fluorescence microscopies, analysis of enzymatic activities, and proteomic analysis were employed to understand the effect of Mo-CBP3-PepII on C. neoformans cells. Light and fluorescence microscopies revealed Mo-CBP3-PepII induced the accumulation of anion superoxide and hydrogen peroxide in C. neoformans cells, in addition to a reduction in the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) in the cells treated with Mo-CBP3-PepII. In the presence of ascorbic acid (AsA), no reactive oxygen species (ROS) were detected, and Mo-CBP3-PepII lost the inhibitory activity against C. neoformans. However, Mo-CBP3-PepII inhibited the activity of lactate dehydrogenase (LDH) ergosterol biosynthesis and induced the decoupling of cytochrome c (Cyt c) from the mitochondrial membrane. Proteomic analysis revealed a reduction in the abundance of proteins related to energetic metabolism, DNA and RNA metabolism, pathogenicity, protein metabolism, cytoskeleton, and cell wall organization and division. Our findings indicated that Mo-CBP3-PepII might have multiple mechanisms of action against C. neoformans cells, mitigating the development of resistance and thus being a potent molecule to be employed in the production of new drugs against C. neoformans infections.
Collapse
Affiliation(s)
- Tawanny K. B. Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Felipe P. Mesquita
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Nilton A. S. Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Francisco Í. R. Gomes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Rômulo F. Carneiro
- Department of Fisheries Engineering, Federal University of Ceará (UFC), Fortaleza 60451-970, CE, Brazil
| | - Celso S. Nagano
- Department of Fisheries Engineering, Federal University of Ceará (UFC), Fortaleza 60451-970, CE, Brazil
| | - Luciana M. R. Alencar
- Laboratory of Biophysics and Nanosystems, Physics Department, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941-906, RJ, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070-200, RJ, Brazil
| | - Jose T. A. Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451-970, CE, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Correspondence: or
| |
Collapse
|
10
|
Wei T, Zheng N, Zheng H, Chen Y, Hong P, Liu W, Liu M. Proteomic Perspective of Azole Resistance in Aspergillus fumigatus Biofilm Extracellular Matrix in Response to Itraconazole. Med Mycol 2022; 60:myac084. [PMID: 36243954 DOI: 10.1093/mmy/myac084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Azole-resistant Aspergillus fumigatus makes a major challenge to the chemotherapy for invasive aspergillosis, whereas cyp51A gene mutation is the most dominant mechanism for azole resistance. Moreover, biofilm contributes to drug resistance for A. fumigatus, and extracellular matrix (ECM) is essential to protect live cells from antifungal drugs. Therefore, we performed a comparative proteomic study on the biofilm ECM of both the wild-type and azole-resistant strains of A. fumigatus under azole pressure. In total, 2377 proteins were identified, of which 480 and 604 proteins with differential expression were obtained from the wild-type and azole-resistant A. fumigatus in exposure to itraconazole respectively (fold change > 2 or < 0.5, P-value < 0.05). We found that a high proportion of regulated proteins were located in cytoplasm, nucleus, and mitochondria. Meanwhile, GO and KEGG analyses revealed that metabolic process and ribosome pathway were significantly enriched. Particularly, differentially expressed proteins in response to azole pressure of both the wild-type and resistant strains were further analyzed. Our results indicated that these changes in biofilm ECM proteins were related to ergosterol synthesis, oxidative stress, efflux pumps, DNA repair, DNA replication, and transcription.
Collapse
Affiliation(s)
- Tianqi Wei
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Nan Zheng
- Medical School, Nanjing University, Nanjing, China
| | - Hailin Zheng
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Yuping Chen
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Pianpian Hong
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Musang Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
11
|
Wang WJ, Liu CC, Li YT, Li MQ, Fu YT, Li XC, Jie-Kang, Qian WD. Antifungal and Antibiofilm In Vitro Activities of Ursolic Acid on Cryptococcus neoformans. Curr Microbiol 2022; 79:293. [PMID: 35972650 DOI: 10.1007/s00284-022-02992-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Ursolic acid (UA) exists in a variety of medicinal plants. UA exhibits antimicrobial activity against several microorganisms; however, little is known regarding the potential antifungal effect of UA on Cryptococcus neoformans (C. neoformans). The antifungal and antibiofilm activities of UA on C. neoformans H99 were evaluated in this study. Minimum inhibitory concentration (MIC) of UA against C. neoformans H99 was determined by microdilution technique, and its action mode was elucidated by clarifying the variations in cell membrane integrity, capsule, and melanin production. Moreover, the inhibition and dispersal effects of UA on biofilm formation and mature biofilms by C. neoformans H99 were evaluated using crystal violet (CV) assay, optical microscopy, field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that the MIC value of UA against C. neoformans H99 was 0.25 mg/mL. UA disrupted the cell membrane integrity, inhibited the capsule and melanin production of C. neoformans H99 in a concentration-dependent manner. Further, UA presented the inhibitory effect on biofilm formation and dispersed mature biofilms, as well as compromised the cell membrane integrity of C. neoformans H99 cells within biofilms. Together, these results indicate that UA might be a potential therapeutic option for the treatment of C. neoformans-related infections.
Collapse
Affiliation(s)
- Wen-Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Chan-Chan Liu
- Xi'an Medical College, Xi'an, 710309, People's Republic of China
| | - Yan-Tong Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Miao-Qian Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yu-Ting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Xin-Chen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Jie-Kang
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, 710048, People's Republic of China
| | - Wei-Dong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China. .,Department of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
12
|
Gu M, Jiang S, Xu X, Wu M, Chen C, Yuan Y, Chen Q, Sun Y, Chen L, Shen C, Guo P, Liu S, Zhao E, Chen S, Chen S. Simultaneous Photodynamic Eradication of Tooth Biofilm and Tooth Whitening with an Aggregation-Induced Emission Luminogen. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106071. [PMID: 35524635 PMCID: PMC9284169 DOI: 10.1002/advs.202106071] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/13/2022] [Indexed: 05/28/2023]
Abstract
Dental caries is among the most prevalent dental diseases globally, which arises from the formation of microbial biofilm on teeth. Besides, tooth whitening represents one of the fastest-growing areas of cosmetic dentistry. It will thus be great if tooth biofilm eradication can be combined with tooth whitening. Herein, a highly efficient photodynamic dental therapy strategy is reported for tooth biofilm eradication and tooth discoloration by employing a photosensitizer (DTTPB) with aggregation-induced emission characteristics. DTTPB can efficiently inactivate S. mutans, and inhibit biofilm formation by suppressing the expression of genes associated with extracellular polymeric substance synthesis, bacterial adhesion, and superoxide reduction. Its inhibition performance can be further enhanced through combined treatment with chlorhexidine. Besides, DTTPB exhibits an excellent tooth-discoloration effect on both colored saliva-coated hydroxyapatite and clinical teeth, with short treatment time (less than 1 h), better tooth-whitening performance than 30% hydrogen peroxide, and almost no damage to the teeth. DTTPB also demonstrates excellent biocompatibility with neglectable hemolysis effect on mouse red blood cells and almost no killing effect on mammalian cells, which enables its potential applications for simultaneous tooth biofilm eradication and tooth whitening in clinical dentistry.
Collapse
Affiliation(s)
- Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationDepartment of GastroenterologyZhongnan Hospital of Wuhan Universityand School of Pharmaceutical SciencesWuhan UniversityWuhanHubei430079China
| | - Susu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationDepartment of GastroenterologyZhongnan Hospital of Wuhan Universityand School of Pharmaceutical SciencesWuhan UniversityWuhanHubei430079China
| | - Xiaoyu Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationDepartment of GastroenterologyZhongnan Hospital of Wuhan Universityand School of Pharmaceutical SciencesWuhan UniversityWuhanHubei430079China
| | - Ming‐Yu Wu
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong Kong999077China
| | - Chao Chen
- Department of Burn and Plastic SurgeryBiomedical Research CenterShenzhen Institute of Translational MedicineHealth Science CenterShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Yuncong Yuan
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationDepartment of GastroenterologyZhongnan Hospital of Wuhan Universityand School of Pharmaceutical SciencesWuhan UniversityWuhanHubei430079China
| | - Qingrong Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationDepartment of GastroenterologyZhongnan Hospital of Wuhan Universityand School of Pharmaceutical SciencesWuhan UniversityWuhanHubei430079China
| | - Yidan Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationDepartment of GastroenterologyZhongnan Hospital of Wuhan Universityand School of Pharmaceutical SciencesWuhan UniversityWuhanHubei430079China
| | - Luojia Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationDepartment of GastroenterologyZhongnan Hospital of Wuhan Universityand School of Pharmaceutical SciencesWuhan UniversityWuhanHubei430079China
| | - Chao Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationDepartment of GastroenterologyZhongnan Hospital of Wuhan Universityand School of Pharmaceutical SciencesWuhan UniversityWuhanHubei430079China
| | - Peng Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationDepartment of GastroenterologyZhongnan Hospital of Wuhan Universityand School of Pharmaceutical SciencesWuhan UniversityWuhanHubei430079China
| | - Shujie Liu
- Yanling Taocheng health centerXuchang461226China
| | - Engui Zhao
- School of ScienceHarbin Institute of Technology, ShenzhenHIT Campus of University TownShenzhen518055China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationDepartment of GastroenterologyZhongnan Hospital of Wuhan Universityand School of Pharmaceutical SciencesWuhan UniversityWuhanHubei430079China
- Department of Burn and Plastic SurgeryBiomedical Research CenterShenzhen Institute of Translational MedicineHealth Science CenterShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong Kong999077China
| |
Collapse
|
13
|
Rahman MA, Amirkhani A, Chowdhury D, Mempin M, Molloy MP, Deva AK, Vickery K, Hu H. Proteome of Staphylococcus aureus Biofilm Changes Significantly with Aging. Int J Mol Sci 2022; 23:6415. [PMID: 35742863 PMCID: PMC9223533 DOI: 10.3390/ijms23126415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a notorious biofilm-producing pathogen that is frequently isolated from implantable medical device infections. As biofilm ages, it becomes more tolerant to antimicrobial treatment leading to treatment failure and necessitating the costly removal of infected devices. In this study, we performed in-solution digestion followed by TMT-based high-throughput mass spectrometry and investigated what changes occur in the proteome of S. aureus biofilm grown for 3-days and 12-days in comparison with 24 h planktonic. It showed that proteins associated with biosynthetic processes, ABC transporter pathway, virulence proteins, and shikimate kinase pathway were significantly upregulated in a 3-day biofilm, while proteins associated with sugar transporter, degradation, and stress response were downregulated. Interestingly, in a 3-day biofilm, we observed numerous proteins involved in the central metabolism pathways which could lead to biofilm growth under diverse environments by providing an alternative metabolic route to utilize energy. In 12-day biofilms, proteins associated with peptidoglycan biosynthesis, sugar transporters, and stress responses were upregulated, whereas proteins associated with ABC transporters, DNA replication, and adhesion proteins were downregulated. Gene Ontology analysis revealed that more proteins are involved in metabolic processes in 3dwb compared with 12dwb. Furthermore, we observed significant variations in the formation of biofilms resulting from changes in the level of metabolic activity in the different growth modes of biofilms that could be a significant factor in S. aureus biofilm maturation and persistence. Collectively, potential marker proteins were identified and further characterized to understand their exact role in S. aureus biofilm development, which may shed light on possible new therapeutic regimes in the treatment of biofilm-related implant-associated infections.
Collapse
Affiliation(s)
- Md. Arifur Rahman
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia; (A.A.); (M.P.M.)
| | - Durdana Chowdhury
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| | - Maria Mempin
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| | - Mark P. Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia; (A.A.); (M.P.M.)
| | - Anand Kumar Deva
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| | - Karen Vickery
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| | - Honghua Hu
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| |
Collapse
|
14
|
Gutierrez-Gongora D, Geddes-McAlister J. Peptidases: promising antifungal targets of the human fungal pathogen, Cryptococcus neoformans. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans is a globally important fungal pathogen, primarily inflicting disease on immunocompromised individuals. The widespread use of antifungal agents in medicine and agriculture supports the development of antifungal resistance through evolution, and the emergence of new strains with intrinsic resistance drives the need for new therapeutics. For C. neoformans, the production of virulence factors, including extracellular peptidases (e.g., CnMpr-1 and May1) with mechanistic roles in tissue invasion and fungal survival, constitute approximately 2% of the fungal proteome and cover five classes of enzymes. Given their role in fungal virulence, peptidases represent promising targets for anti-virulence discovery in the development of new approaches against C. neoformans. Additionally, intracellular peptidases, which are involved in resistance mechanisms against current treatment options (e.g., azole drugs), as well as capsule biosynthesis and elaboration of virulence factors, present additional opportunities to combat the pathogen. In this review, we highlight key cryptococcal peptidases with defined or predicted roles in fungal virulence and assess sequence alignments against their human homologs. With this information, we define the feasibility of the select peptidases as “druggable” targets for inhibition, representing prospective therapeutic options against the deadly fungus.
Collapse
Affiliation(s)
- Davier Gutierrez-Gongora
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Jennifer Geddes-McAlister
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Canadian Proteomics and Artificial Intelligence Research and Training Consortium
| |
Collapse
|
15
|
Li Y, Li H, Sun T, Ding C. Pathogen-Host Interaction Repertoire at Proteome and Posttranslational Modification Levels During Fungal Infections. Front Cell Infect Microbiol 2021; 11:774340. [PMID: 34926320 PMCID: PMC8674643 DOI: 10.3389/fcimb.2021.774340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Prevalence of fungal diseases has increased globally in recent years, which often associated with increased immunocompromised patients, aging populations, and the novel Coronavirus pandemic. Furthermore, due to the limitation of available antifungal agents mortality and morbidity rates of invasion fungal disease remain stubbornly high, and the emergence of multidrug-resistant fungi exacerbates the problem. Fungal pathogenicity and interactions between fungi and host have been the focus of many studies, as a result, lots of pathogenic mechanisms and fungal virulence factors have been identified. Mass spectrometry (MS)-based proteomics is a novel approach to better understand fungal pathogenicities and host–pathogen interactions at protein and protein posttranslational modification (PTM) levels. The approach has successfully elucidated interactions between pathogens and hosts by examining, for example, samples of fungal cells under different conditions, body fluids from infected patients, and exosomes. Many studies conclude that protein and PTM levels in both pathogens and hosts play important roles in progression of fungal diseases. This review summarizes mass spectrometry studies of protein and PTM levels from perspectives of both pathogens and hosts and provides an integrative conceptual outlook on fungal pathogenesis, antifungal agents development, and host–pathogen interactions.
Collapse
Affiliation(s)
- Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
16
|
Furquim Dos Santos Cardoso V, Amaral Roppa RH, Antunes C, Silva Moraes AN, Santi L, Konrath EL. Efficacy of medicinal plant extracts as dental and periodontal antibiofilm agents: A systematic review of randomized clinical trials. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114541. [PMID: 34416298 DOI: 10.1016/j.jep.2021.114541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The presence of biofilm in oral cavity is associated with dental plaque and related diseases, including gingivitis, periodontitis and inflammatory responses. Some medicinal plants traditionally used for biofilm-associated pathologies such as Camellia sinensis (L.) Kuntze, Punica granatum L. and Lippia sidoides Cham. are currently incorporated into dosage forms as antiplaque agents. AIMS OF THE STUDY To present the current application of medicinal plant extracts associated in drug dosages to control microbial biofilms, with emphasis on those present in the oral cavity, especially to treat dental plaque. MATERIALS AND METHODS A PRISMA-compliant systematic search was conducted using the PubMed, Web of Science and Scopus databases. After the abstract and full-text analysis, the Cochrane Collaboration's tools for clinical studies was applied to assess the methodological quality of randomized clinical trials. RESULTS Of 964 potentially eligible studies, 47 studies met the inclusion criteria and were included in the systematic review. Camellia sinensis was the most commonly used species (8 studies), with positive results in reducing both the PI and GI in the form of mouthwash, toothpaste and gel. The Melaleuca alternifolia oil (5 studies) demonstrated low reduction in PI but important effects on GI scores. Azadirachta indica (4 studies) extracts presented efficacy similar to CHX to improve the periodontal parameters, including PI and GI. Ricinus communis oil (3 studies), despite reducing microbiological counts and GI, did not prove to be better than the hypochlorite solution, used as an alternative treatment for dentures. The main bioactive compounds described for the plant species are polyphenols, essential oils and alkaloids, most of them with identified antibiofilm activities. CONCLUSIONS These active species could lead to future development of safer and newer treatments for oral biofilm-associated infections. However, more studies are needed to further understand the clinical relevance of their application.
Collapse
Affiliation(s)
| | - Ricardo Haack Amaral Roppa
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Antunes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Naiara Silva Moraes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Luis Konrath
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Muselius B, Durand SL, Geddes-McAlister J. Proteomics of Cryptococcus neoformans: From the Lab to the Clinic. Int J Mol Sci 2021; 22:12390. [PMID: 34830272 PMCID: PMC8618913 DOI: 10.3390/ijms222212390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fungal pathogens cause an array of diseases by targeting both immunocompromised and immunocompetent hosts. Fungi overcome our current arsenal of antifungals through the emergence and evolution of resistance. In particular, the human fungal pathogen, Cryptococcus neoformans is found ubiquitously within the environment and causes severe disease in immunocompromised individuals around the globe with limited treatment options available. To uncover fundamental knowledge about this fungal pathogen, as well as investigate new detection and treatment strategies, mass spectrometry-based proteomics provides a plethora of tools and applications, as well as bioinformatics platforms. In this review, we highlight proteomics approaches within the laboratory to investigate changes in the cellular proteome, secretome, and extracellular vesicles. We also explore regulation by post-translational modifications and the impact of protein-protein interactions. Further, we present the development and comprehensive assessment of murine models of cryptococcal infection, which provide valuable tools to define the dynamic relationship between the host and pathogen during disease. Finally, we explore recent quantitative proteomics studies that begin to extrapolate the findings from the bench to the clinic for improved methods of fungal detection and monitoring. Such studies support a framework for personalized medical approaches to eradicate diseases caused by C. neoformans.
Collapse
Affiliation(s)
| | | | - Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.M.); (S.-L.D.)
| |
Collapse
|
18
|
Alves PGV, de Paula Menezes R, de Oliveira Brito M, de Oliveira Faria G, Silva NBS, Cruvinel RS, Penatti MPA, Dos Santos Pedroso R, de Brito Röder DVD. Cryptococcus liquefaciens isolated from the hand of a healthcare professional in a neonatal intensive care unit. Braz J Microbiol 2021; 52:2085-2089. [PMID: 34545554 DOI: 10.1007/s42770-021-00601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Fungal infections are responsible for high morbidity and mortality in neonatal patients, especially in premature newborns. Infections in neonates caused by Cryptococcus spp. are rare, but it has occurred in an immunocompromised population. This study aims to describe the isolation of Cryptococcus liquefaciens from the hands of a health professional in a neonatal intensive care unit, and to evaluate the production of biofilm and virulence factors and susceptibility to antifungals. Antifungal susceptibility tests were performed according to Clinical and Laboratory Standard Institute document M27-A3. Thermotolerance virulence factors and DNase, phospholipase, proteinase, and hemolytic activities were verified through phenotypic tests; biofilm was evaluated by determining the metabolic activity and biomass. The isolate did not produce any of the tested enzymes and was susceptible to all antifungals (amphotericin B, fluconazole, and micafungin). The growth at 37 °C was very weak; however, the isolate showed a strong biomass production and low metabolic activity. This is the first report of C. liquefaciens isolated from the hands of a health professional. The isolate did not express any of the studied virulence factors in vitro, except for the low growth at 37 °C in the first 48 h, and the strong production of biofilm biomass. Cryptococcus liquefaciens can remain in the environment for a long time and is a human pathogen because it tolerates temperature variations. This report draws attention to the circulation of rare species in critical locations, information that may help in a fast and correct diagnosis and, consequently, implementation of an appropriate treatment.
Collapse
Affiliation(s)
- Priscila Guerino Vilela Alves
- Faculty of Medicine, Federal University of Uberlândia, Umuarama Campus, 111 Ave. Amazonas, Uberlândia, Minas Gerais, CEP 38400-902, Brazil
| | | | | | - Gabriel de Oliveira Faria
- Faculty of Medicine, Federal University of Uberlândia, Umuarama Campus, 111 Ave. Amazonas, Uberlândia, Minas Gerais, CEP 38400-902, Brazil.,Nurse in Neonatology, Hospital Santa Clara, Uberlândia, Minas Gerais, Brazil
| | | | - Renner Soares Cruvinel
- Institute of Biology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Reginaldo Dos Santos Pedroso
- Faculty of Medicine, Federal University of Uberlândia, Umuarama Campus, 111 Ave. Amazonas, Uberlândia, Minas Gerais, CEP 38400-902, Brazil. .,Technical School of Health, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | | |
Collapse
|
19
|
Pham DQ, Bryant SJ, Cheeseman S, Huang LZY, Bryant G, Dupont MF, Chapman J, Berndt CC, Vongsvivut JP, Crawford RJ, Truong VK, Ang ASM, Elbourne A. Micro- to nano-scale chemical and mechanical mapping of antimicrobial-resistant fungal biofilms. NANOSCALE 2020; 12:19888-19904. [PMID: 32985644 DOI: 10.1039/d0nr05617k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fungal biofilm refers to the agglomeration of fungal cells surrounded by a polymeric extracellular matrix (ECM). The ECM is composed primarily of polysaccharides that facilitate strong surface adhesion, proliferation, and cellular protection from the surrounding environment. Biofilms represent the majority of known microbial communities, are ubiquitous, and are found on a multitude of natural and synthetic surfaces. The compositions, and in-turn nanomechanical properties, of fungal biofilms remain poorly understood, because these systems are complex, composed of anisotropic cellular and extracellular material, and importantly are species and environment dependent. Therefore, genomic variation, and/or mutations, as well as environmental and growth factors can change the composition of a fungal cell's biofilm. In this work, we probe the physico-mechanical and biochemical properties of two fungal species, Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans), as well as two antifungal resistant sub-species of C. neoformans, fluconazole-resistant C. neoformans (FlucRC. neoformans) and amphotericin B-resistant C. neoformans (AmBRC. neoformans). A new experimental methodology of characterization is proposed, employing a combination of atomic force microscopy (AFM), instrumented nanoindentation, and Synchrotron ATR-FTIR measurements. This allowed the nano-mechanical and chemical characterisation of each fungal biofilm.
Collapse
Affiliation(s)
- Duy Quang Pham
- Surface Engineering for Advanced Materials (SEAM), Department of Mechanical and Production Design Engineering, Swinburne University of Technology, Hawthorn, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Santi L, Beys-da-Silva WO, Berger M, Yates JR, Brandelli A, Vainstein MH. Penicillium oxalicum secretomic analysis identify plant cell wall degrading enzymes important for fruit juice extraction. Journal of Food Science and Technology 2020; 58:1764-1775. [PMID: 33897014 DOI: 10.1007/s13197-020-04688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
Abstract
Pectinases and other carbohydrate-active enzymes are important for the food industry, mainly for juice processing. In addition, the use of peels to produce enzymes can aggregate value to these agro-industrial residues and at the end of the process enhance qualitatively and quantitatively the juice production. In this work, three different extracts produced by Penicillium oxalicum LS09 using agro-industrial residues were optimized and analyzed by mass spectrometry. It was observed an increased production of pectinases in the medium containing orange peel and optimized for production of pectin lyase and pectinesterase (PE). Interestingly, not only pectinases, but also different plant cell wall degrading enzymes (i.e. glucanases, xylanases, arabinases), with a higher ratio (42/73) was identified in the medium optimized for PE. The crude extracts produced by P. oxalicum also reveal the potential for application in the fruit juice industry, showing an increased yield and qualitative characteristics of extracted juices. The presence of other cell wall-degrading enzymes identified by proteomics, reinforce the combination for obtaining clarified and depectinized juice in a single step.
Collapse
Affiliation(s)
- Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul., Av. Ipiranga, 2752, suit 508, Porto Alegre, RS 90610-000 Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul., Av. Ipiranga, 2752, suit 508, Porto Alegre, RS 90610-000 Brazil
| | - Markus Berger
- Hospital de Clínicas de Porto Alegre., Porto Alegre, RS Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research., La Jolla, CA USA
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene H Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| |
Collapse
|
21
|
Souza APB, Lopes TN, da Silva AFT, Santi L, Beys-da-Silva WO, Yates JR, Bustamante-Filho IC. Changes in porcine cauda epididymal fluid proteome by disrupting the HPT axis: Unveiling potential mechanisms of male infertility. Mol Reprod Dev 2020; 87:952-965. [PMID: 32749760 DOI: 10.1002/mrd.23408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/23/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Male infertility or subfertility is frequently associated with disruption of the hypothalamic-pituitary-testis axis events, like secondary hypogonadism. However, little is known how this condition affects the proteomic composition of the epididymal fluid. In the present study, we evaluated the proteomic changes in the cauda epididymal fluid (CEF) in a swine model of secondary hypogonadism induced by anti-GnRH immunization using multidimensional protein identification technology. Seven hundred and eighteen proteins were identified in both GnRH-immunized and control groups. GnRH immunization doubled the number of proteins in the CEF, with 417 proteins being found exclusively in samples from GnRH-immunized boars. CEF from GnRH-immunized boars presented an increase in the number of proteins related to cellular and metabolic processes, with affinity to organic cyclic compounds, small molecules, and heterocyclic compounds, as well changed the enzymatic profile of the CEF. Also, a significant increase in the number of proteins associated to the ubiquitin-proteasome system was identified in CEF from GnRH-immunized animals. These results bring strong evidence of the impact of secondary hypogonadism on the epididymal environment, which is responsible for sperm maturation and storage prior ejaculation. Finally, the differently expressed proteins in the CEF are putative seminal biomarkers for testicular and epididymal disorders caused by secondary hypogonadism.
Collapse
Affiliation(s)
- Ana P B Souza
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Tayná N Lopes
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Anna F T da Silva
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Ivan C Bustamante-Filho
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Variation in Cell Surface Hydrophobicity among Cryptococcus neoformans Strains Influences Interactions with Amoebas. mSphere 2020; 5:5/2/e00310-20. [PMID: 32350094 PMCID: PMC7193044 DOI: 10.1128/msphere.00310-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are pathogenic fungi that cause significant morbidity and mortality. Cell surface hydrophobicity (CSH) is a biophysical parameter that influences the adhesion of fungal cells or spores to biotic and abiotic surfaces. C. neoformans is encased by polysaccharide capsule that is highly hydrophilic and is a critical determinant of virulence. In this study, we report large differences in the CSH of some C. neoformans and C. gattii strains. The capsular polysaccharides of C. neoformans strains differ in repeating motifs and therefore vary in the number of hydroxyl groups, which, along with higher-order structure of the capsule, may contribute to the variation in hydrophobicity that we observed. We found that cell wall composition, in the context of chitin-chitosan content, does not influence CSH. For C. neoformans, CSH correlated with phagocytosis by natural soil predator Acanthamoeba castellanii Furthermore, capsular binding of the protective antibody (18B7), but not the nonprotective antibody (13F1), altered the CSH of C. neoformans strains. Variability in CSH could be an important characteristic in comparing the biological properties of cryptococcal strains.IMPORTANCE The interaction of a microbial cell with its environment is influenced by the biophysical properties of a cell. The affinity of the cell surface for water, defined by the cell surface hydrophobicity (CSH), is a biophysical parameter that varies among different strains of Cryptococcus neoformans The CSH influences the phagocytosis of the yeast by its natural predator in the soil, the amoeba. Studying variation in biophysical properties like CSH gives us insight into the dynamic host-predator interaction and host-pathogen interaction in a damage-response framework.
Collapse
|
23
|
Bacteriophages Promote Metabolic Changes in Bacteria Biofilm. Microorganisms 2020; 8:microorganisms8040480. [PMID: 32231093 DOI: 10.3390/microorganisms8040480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial biofilm provides bacteria with resistance and protection against conventional antimicrobial agents and the host immune system. Bacteriophages are known to move across the biofilm to make it permeable to antimicrobials. Mineral hydroxyapatite (HA) can improve the lytic activity of bacteriophages, and, together with eicosanoic acid (C20:0), can destroy the biofilm structure. Here, we demonstrate the efficacy of the combined use of phage, HA and C20:0 against Xanthomonas campestris pv campestris (Xcc) biofilm. We used nuclear magnetic resonance (NMR)-based metabolomics to investigate the molecular determinants related to the lytic action, aiming at identifying the metabolic pathways dysregulated by phage treatment. Furthermore, we identified specific markers (amino acids, lactate and galactomannan) which are involved in the control of biofilm stability. Our data show that Xccφ1, alone or in combination with HA and C20:0, interferes with the metabolic pathways involved in biofilm formation. The approach described here might be extended to other biofilm-producing bacteria.
Collapse
|
24
|
de Castro Spadari C, da Silva de Bastiani FWM, Pisani PBB, de Azevedo Melo AS, Ishida K. Efficacy of voriconazole in vitro and in invertebrate model of cryptococcosis. Arch Microbiol 2019; 202:773-784. [PMID: 31832690 DOI: 10.1007/s00203-019-01789-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/11/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
Abstract
Cryptococcosis is a common opportunistic infection in patients with advanced HIV infection and may also affect immunocompetent patients. The available antifungal agents are few and other options are needed for the cryptococcosis treatment. In this work, we first analyzed the virulence of twelve C. neoformans and C. gattii strains assessing capsule thickness, biofilms formation, and survival and morbidity in the invertebrate model of Galleria mellonella and then we evaluated the antifungal activity of voriconazole (VRC) in vitro and in vivo also using G. mellonella. Our results showed that all Cryptococcus spp. isolates were able to produce capsule and biofilms, and were virulent using G. mellonella model. The VRC has inhibitory activity on planktonic cells with MIC values ranging from 0.03 to 0.25 μg/mL on Cryptococcus spp.; and these isolates were more tolerant to fluconazole (ranging from 0.25 to 16 μg/mL), the triazol agent often recommended alone or in combination with amphotericin B in the cryptococcosis therapy. In contrast, mature biofilms were less susceptible to the VRC treatment. The VRC (10 or 20 mg/kg) treatment of infected G. mellonella larvae significantly increased the larval survival when compared to the untreated group for the both Cryptococcus species and significantly decreased the fungal burden and dissemination in the larval tissue. Our findings corroborate with the literature data, supporting the potential use of VRC as an alternative for cryptococcosis treatment. Here, we emphasize the use of G. mellonella larval model as an alternative animal model for studies of antifungal efficacy on mycosis, including cryptococcosis.
Collapse
Affiliation(s)
- Cristina de Castro Spadari
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, ICB II, Lab 150, São Paulo, SP, 05508-000, Brazil
| | - Fernanda Walt Mendes da Silva de Bastiani
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, ICB II, Lab 150, São Paulo, SP, 05508-000, Brazil
| | - Pietro Bruno Bautista Pisani
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, ICB II, Lab 150, São Paulo, SP, 05508-000, Brazil
| | | | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, ICB II, Lab 150, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
25
|
Domingo G, Villa F, Vannini C, Garuglieri E, Onelli E, Bracale M, Cappitelli F. Label-Free Proteomic Approach to Study the Non-lethal Effects of Silver Nanoparticles on a Gut Bacterium. Front Microbiol 2019; 10:2709. [PMID: 31866956 PMCID: PMC6906586 DOI: 10.3389/fmicb.2019.02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/08/2019] [Indexed: 01/14/2023] Open
Abstract
Among all the food-related nanoparticles consumed every day, silver nanoparticles (AgNPs) have become one of the most commonly utilized because of their antimicrobial properties. Despite their common use, the effects of sublethal concentrations of AgNPs, especially on gut biofilms, have been poorly investigated. To address this issue, we investigated in vitro the proteomic response of a monospecies Escherichia coli gut biofilm to chronic and acute exposures in sublethal concentrations of AgNPs. We used a new gel- and label-free proteomic approach based on shotgun nanoflow liquid chromatography-tandem mass spectrometry. This approach allows a quantification of the whole proteome at a dynamic range that is higher than the traditional proteomic investigation. To assess all different possible exposure scenarios, we compared the biofilm proteome of four treatments: (i) untreated cells for the control treatment, (ii) cells treated with 1 μg/ml AgNPs for 24 h for the acute treatment, (iii) cells grown with 1 μg/ml AgNPs for 96 h for the chronic treatment, and (iv) cells grown in the presence of 1 μg/ml AgNPs for 72 h and then further treated for 24 h with 10 μg/ml AgNPs for the chronic + acute treatment. Among the 1,917 proteins identified, 212 were significantly differentially expressed proteins. Several pathways were altered including biofilm formation, bacterial adhesion, stress response to reactive oxygen species, and glucose utilization.
Collapse
Affiliation(s)
- Guido Domingo
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Candida Vannini
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Elisa Garuglieri
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Onelli
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Marcella Bracale
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Weber A, Argenti LE, de Souza APB, Santi L, Beys-da-Silva WO, Yates JR, Bustamante-Filho IC. Ready for the journey: a comparative proteome profiling of porcine cauda epididymal fluid and spermatozoa. Cell Tissue Res 2019; 379:389-405. [DOI: 10.1007/s00441-019-03080-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/24/2019] [Indexed: 11/30/2022]
|
27
|
Lacerda MPF, Marcelino MY, Lourencetti NMS, Neto ÁB, Gattas EA, Mendes-Giannini MJS, Fusco-Almeida AM. Methodologies and Applications of Proteomics for Study of Yeast Strains: An Update. Curr Protein Pept Sci 2019; 20:893-906. [PMID: 31322071 DOI: 10.2174/1389203720666190715145131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022]
Abstract
Yeasts are one of the mostly used microorganisms as models in several studies. A wide range of applications in different processes can be attributed to their intrinsic characteristics. They are eukaryotes and therefore valuable expression hosts that require elaborate post-translational modifications. Their arsenal of proteins has become a valuable biochemical tool for the catalysis of several reactions of great value to the food (beverages), pharmaceutical and energy industries. Currently, the main challenge in systemic yeast biology is the understanding of the expression, function and regulation of the protein pool encoded by such microorganisms. In this review, we will provide an overview of the proteomic methodologies used in the analysis of yeasts. This research focuses on the advantages and improvements in their most recent applications with an understanding of the functionality of the proteins of these microorganisms, as well as an update of the advances of methodologies employed in mass spectrometry.
Collapse
Affiliation(s)
- Maria Priscila F Lacerda
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Mônica Yonashiro Marcelino
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Natália M S Lourencetti
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Álvaro Baptista Neto
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | - Edwil A Gattas
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | | | - Ana Marisa Fusco-Almeida
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| |
Collapse
|
28
|
Mass Spectrometry-Based Proteomics of Fungal Pathogenesis, Host-Fungal Interactions, and Antifungal Development. J Fungi (Basel) 2019; 5:jof5020052. [PMID: 31212923 PMCID: PMC6616953 DOI: 10.3390/jof5020052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
The prevalence of fungal diseases is increasing on a global scale, ranging from acute to systemic infections caused by commensal or pathogenic microorganisms, often associated with the immune status of the host. Morbidity and mortality rates remain high and our ability to treat fungal infections is challenged by a limited arsenal of antifungal agents and the emergence of drug resistant pathogens. There is a high demand for new approaches to elucidate the fungal mechanisms of pathogenesis and the interplay between host and pathogen to discover novel treatment options. Moreover, the need for improved drug efficacy and reduced host toxicity requires the identification and characterization of antifungal biological targets and molecular mechanisms of action. Mass spectrometry (MS)-based proteomics is a rapidly advancing field capable of addressing these priorities by providing comprehensive information on the dynamics of cellular processes, modifications, and interactions. In this Review, we focus on applications of MS-based proteomics in a diverse array of fungal pathogens and host systems to define and distinguish the molecular details of fungal pathogenesis and host–fungal interactions. We also explore the emerging role of MS-based proteomics in the discovery and development of novel antifungal therapies and provide insight into the future of MS-based proteomics in fungal biology.
Collapse
|
29
|
Phenotypic characteristics and transcriptome profile of Cryptococcus gattii biofilm. Sci Rep 2019; 9:6438. [PMID: 31015652 PMCID: PMC6478838 DOI: 10.1038/s41598-019-42896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we characterized Cryptococcus gattii biofilm formation in vitro. There was an increase in the density of metabolically active sessile cells up to 72 h of biofilm formation on polystyrene and glass surfaces. Scanning electron microscopy and confocal laser scanning microscopy analysis revealed that in the early stage of biofilm formation, yeast cells adhered to the abiotic surface as a monolayer. After 12 h, extracellular fibrils were observed projecting from C. gattii cells, connecting the yeast cells to each other and to the abiotic surface; mature biofilm consisted of a dense network of cells deeply encased in an extracellular polymeric matrix. These features were also observed in biofilms formed on polyvinyl chloride and silicone catheter surfaces. We used RNA-Seq-based transcriptome analysis to identify changes in gene expression associated with C. gattii biofilm at 48 h compared to the free-floating planktonic cells. Differential expression analysis showed that 97 and 224 transcripts were up-regulated and down-regulated in biofilm, respectively. Among the biological processes, the highest enriched term showed that the transcripts were associated with cellular metabolic processes, macromolecule biosynthetic processes and translation.
Collapse
|
30
|
Cho Y, Tachibana S, Hazen BC, Moresco JJ, Yates JR, Kok B, Saez E, Ross RS, Russell AP, Kralli A. Perm1 regulates CaMKII activation and shapes skeletal muscle responses to endurance exercise training. Mol Metab 2019; 23:88-97. [PMID: 30862473 PMCID: PMC6480336 DOI: 10.1016/j.molmet.2019.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Endurance exercise training remodels skeletal muscle, leading to increased mitochondrial content and oxidative capacity. How exercise entrains skeletal muscle signaling pathways to induce adaptive responses remains unclear. In past studies, we identified Perm1 (PGC-1 and ERR induced regulator, muscle 1) as an exercise-induced gene and showed that Perm1 overexpression elicits similar muscle adaptations as endurance exercise training. The mechanism of action and the role of Perm1 in exercise-induced responses are not known. In this study, we aimed to determine the pathway by which Perm1 acts as well as the importance of Perm1 for acute and long-term responses to exercise. Methods We performed immunoprecipitation and mass spectrometry to identify Perm1 associated proteins, and validated Perm1 interactions with the Ca2+/calmodulin-dependent protein kinase II (CaMKII). We also knocked down Perm1 expression in gastrocnemius muscles of mice via AAV-mediated delivery of shRNA and assessed the impact of reduced Perm1 expression on both acute molecular responses to a single treadmill exercise bout and long-term adaptive responses to four weeks of voluntary wheel running training. Finally, we asked whether Perm1 levels are modulated by diet or diseases affecting skeletal muscle function. Results We show that Perm1 associates with skeletal muscle CaMKII and promotes CaMKII activation. In response to an acute exercise bout, muscles with a knock down of Perm1 showed defects in the activation of CaMKII and p38 MAPK and blunted induction of regulators of oxidative metabolism. Following four weeks of voluntary training, Perm1 knockdown muscles had attenuated mitochondrial biogenesis. Finally, we found that Perm1 expression is reduced in diet-induced obese mice and in muscular dystrophy patients and mouse models. Conclusions Our findings identify Perm1 as a muscle-specific regulator of exercise-induced signaling and Perm1 levels as tuners of the skeletal muscle response to exercise. The decreased Perm1 levels in states of obesity or muscle disease suggest that Perm1 may link pathological states to inefficient exercise responses. Perm1 interacts with CaMKII and activates the CaMKII-MEF2 pathway. Perm1 is important for CaMKII activation and PGC-1α induction by an exercise bout. In endurance training, Perm1 impacts muscle oxidative metabolism pathway responses. Skeletal muscle levels of Perm1 are reduced in obesity and muscular dystrophy.
Collapse
Affiliation(s)
- Yoshitake Cho
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA; Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Shizuko Tachibana
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA; Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bethany C Hazen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bernard Kok
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Enrique Saez
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Robert S Ross
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Anastasia Kralli
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
31
|
Ritter AC, Santi L, Vannini L, Beys-da-Silva WO, Gozzi G, Yates J, Ragni L, Brandelli A. Comparative proteomic analysis of foodborne Salmonella Enteritidis SE86 subjected to cold plasma treatment. Food Microbiol 2018; 76:310-318. [DOI: 10.1016/j.fm.2018.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
|
32
|
Mayer FL, Sánchez-León E, Kronstad JW. A chemical genetic screen reveals a role for proteostasis in capsule and biofilm formation by Cryptococcus neoformans. MICROBIAL CELL 2018; 5:495-510. [PMID: 30483521 PMCID: PMC6244295 DOI: 10.15698/mic2018.11.656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pathogenic microorganisms employ specialized virulence factors to cause disease. Biofilm formation and the production of a polysaccharide capsule are two important virulence factors in Cryptococcus neoformans, the fungal pathogen that causes meningoencephalitis. Here, we show that the bipolar disorder drug lithium inhibits formation of both virulence factors by a mechanism involving dysregulation of the ubiquitin/proteasome system. By using a chemical genetics approach and bioinformatic analyses, we describe the cellular landscape affected by lithium treatment. We demonstrate that lithium affects many different pathways in C. neoformans, including the cAMP/protein kinase A, inositol biosynthesis, and ubiquitin/proteasome pathways. By analyzing mutants with defects in the ubiquitin/proteasome system, we uncover a role for proteostasis in both capsule and biofilm formation. Moreover, we demonstrate an additive influence of lithium and the proteasome inhibitor bortezomib in inhibiting capsule production, thus establishing a link between lithium activity and the proteasome system. Finally, we show that the lithium-mimetic drug ebselen potently blocks capsule and biofilm formation, and has additive activity with lithium or bortezomib. In summary, our results illuminate the impact of lithium on C. neoformans, and link dysregulation of the proteasome to capsule and biofilm inhibition in this important fungal pathogen.
Collapse
Affiliation(s)
- François L Mayer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez-León
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Zika Virus Infection of Human Mesenchymal Stem Cells Promotes Differential Expression of Proteins Linked to Several Neurological Diseases. Mol Neurobiol 2018; 56:4708-4717. [PMID: 30377986 DOI: 10.1007/s12035-018-1417-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
The recent microcephaly outbreak in Brazil has been associated with Zika virus (ZIKV) infection. The current understanding of damage caused by ZIKV infection is still unclear, since it has been implicated in other neurodegenerative and developmental complications. Here, the differential proteome analysis of human mesenchymal stem cells (hMSC) infected with a Brazilian strain of ZIKV was identified by shotgun proteomics (MudPIT). Our results indicate that ZIKV induces a potential reprogramming of the metabolic machinery in nucleotide metabolism, changes in the energy production via glycolysis and other metabolic pathways, and potentially inhibits autophagy, neurogenesis, and immune response by downregulation of signaling pathways. In addition, proteins previously described in several brain pathologies, such as Alzheimer's disease, autism spectrum disorder, amyotrophic lateral sclerosis, and Parkinson's disease, were found with altered expression due to ZIKV infection in hMSC. This potential link between ZIKV and several neuropathologies beyond microcephaly is being described here for the first time and can be used to guide specific follow-up studies concerning these specific diseases and ZIKV infection.
Collapse
|
34
|
Camacho E, Casadevall A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J Fungi (Basel) 2018; 4:jof4030088. [PMID: 30060601 PMCID: PMC6162697 DOI: 10.3390/jof4030088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023] Open
Abstract
Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| |
Collapse
|
35
|
Nagar SD, Aggarwal B, Joon S, Bhatnagar R, Bhatnagar S. A Network Biology Approach to Decipher Stress Response in Bacteria Using Escherichia coli As a Model. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 20:310-24. [PMID: 27195968 DOI: 10.1089/omi.2016.0028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of drug-resistant pathogenic bacteria poses challenges to global health for their treatment and control. In this context, stress response enables bacterial populations to survive extreme perturbations in the environment but remains poorly understood. Specific modules are activated for unique stressors with few recognized global regulators. The phenomenon of cross-stress protection strongly suggests the presence of central proteins that control the diverse stress responses. In this work, Escherichia coli was used to model the bacterial stress response. A Protein-Protein Interaction Network was generated by integrating differentially expressed genes in eight stress conditions of pH, temperature, and antibiotics with relevant gene ontology terms. Topological analysis identified 24 central proteins. The well-documented role of 16 central proteins in stress indicates central control of the response, while the remaining eight proteins may have a novel role in stress response. Cluster analysis of the generated network implicated RNA binding, flagellar assembly, ABC transporters, and DNA repair as important processes during response to stress. Pathway analysis showed crosstalk of Two Component Systems with metabolic processes, oxidative phosphorylation, and ABC transporters. The results were further validated by analysis of an independent cross-stress protection dataset. This study also reports on the ways in which bacterial stress response can progress to biofilm formation. In conclusion, we suggest that drug targets or pathways disrupting bacterial stress responses can potentially be exploited to combat antibiotic tolerance and multidrug resistance in the future.
Collapse
Affiliation(s)
- Shashwat Deepali Nagar
- 1 Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , New Delhi, India
| | - Bhavye Aggarwal
- 1 Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , New Delhi, India
| | - Shikha Joon
- 1 Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , New Delhi, India .,2 Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University , New Delhi, India
| | - Rakesh Bhatnagar
- 2 Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University , New Delhi, India
| | - Sonika Bhatnagar
- 1 Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , New Delhi, India
| |
Collapse
|
36
|
Costa-Orlandi CB, Sardi JCO, Pitangui NS, de Oliveira HC, Scorzoni L, Galeane MC, Medina-Alarcón KP, Melo WCMA, Marcelino MY, Braz JD, Fusco-Almeida AM, Mendes-Giannini MJS. Fungal Biofilms and Polymicrobial Diseases. J Fungi (Basel) 2017; 3:jof3020022. [PMID: 29371540 PMCID: PMC5715925 DOI: 10.3390/jof3020022] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/19/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
Biofilm formation is an important virulence factor for pathogenic fungi. Both yeasts and filamentous fungi can adhere to biotic and abiotic surfaces, developing into highly organized communities that are resistant to antimicrobials and environmental conditions. In recent years, new genera of fungi have been correlated with biofilm formation. However, Candida biofilms remain the most widely studied from the morphological and molecular perspectives. Biofilms formed by yeast and filamentous fungi present differences, and studies of polymicrobial communities have become increasingly important. A key feature of resistance is the extracellular matrix, which covers and protects biofilm cells from the surrounding environment. Furthermore, to achieve cell–cell communication, microorganisms secrete quorum-sensing molecules that control their biological activities and behaviors and play a role in fungal resistance and pathogenicity. Several in vitro techniques have been developed to study fungal biofilms, from colorimetric methods to omics approaches that aim to identify new therapeutic strategies by developing new compounds to combat these microbial communities as well as new diagnostic tools to identify these complex formations in vivo. In this review, recent advances related to pathogenic fungal biofilms are addressed.
Collapse
Affiliation(s)
- Caroline B Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Janaina C O Sardi
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba SP 13414-018, Brazil.
| | - Nayla S Pitangui
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Haroldo C de Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Liliana Scorzoni
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Mariana C Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Kaila P Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Wanessa C M A Melo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Mônica Y Marcelino
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Jaqueline D Braz
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Maria José S Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| |
Collapse
|
37
|
Aslanyan L, Sanchez DA, Valdebenito S, Eugenin EA, Ramos RL, Martinez LR. The Crucial Role of Biofilms in Cryptococcus neoformans Survival within Macrophages and Colonization of the Central Nervous System. J Fungi (Basel) 2017; 3:E10. [PMID: 29371529 PMCID: PMC5715963 DOI: 10.3390/jof3010010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated yeast-like fungus capable of causing life threatening meningoencephalitis in patients with impaired immunity. This microbe primarily infects the host via inhalation but has the ability to disseminate to the central nervous system (CNS) either as a single cell or inside of macrophages. Upon traversing the blood brain barrier, C. neoformans has the capacity to form biofilm-like structures known as cryptococcomas. Hence, we will discuss the C. neoformans elements contributing to biofilm formation including the fungus' ability to survive in the acidic environment of a macrophage phagosome and inside of the CNS. The purpose of this mini-review is to instill fresh interest in understanding the importance of biofilms on fungal pathogenesis.
Collapse
Affiliation(s)
- Lilit Aslanyan
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| | - David A Sanchez
- Howard University College of Medicine, Washington, DC 20059-1027, USA.
| | - Silvana Valdebenito
- Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103-9998, USA.
| | - Eliseo A Eugenin
- Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103-9998, USA.
| | - Raddy L Ramos
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| | - Luis R Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| |
Collapse
|
38
|
Sun L, Chen H, Lin W, Lin X. Quantitative proteomic analysis of Edwardsiella tarda in response to oxytetracycline stress in biofilm. J Proteomics 2017; 150:141-148. [DOI: 10.1016/j.jprot.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 01/23/2023]
|
39
|
Losensky G, Jung K, Urlaub H, Pfeifer F, Fröls S, Lenz C. Shedding light on biofilm formation ofHalobacterium salinarumR1 by SWATH-LC/MS/MS analysis of planktonic and sessile cells. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/30/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Gerald Losensky
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics; University of Veterinary Medicine Foundation; Hannover Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group; Max Planck Institute for Biophysical Chemistry; Göttingen Germany
- Institute of Clinical Chemistry; Bioanalytics; University Medical Center Göttingen; Göttingen Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Sabrina Fröls
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group; Max Planck Institute for Biophysical Chemistry; Göttingen Germany
- Institute of Clinical Chemistry; Bioanalytics; University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
40
|
Li W, Yao Z, Sun L, Hu W, Cao J, Lin W, Lin X. Proteomics Analysis Reveals a Potential Antibiotic Cocktail Therapy Strategy for Aeromonas hydrophila Infection in Biofilm. J Proteome Res 2016; 15:1810-20. [DOI: 10.1021/acs.jproteome.5b01127] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | - Jijuan Cao
- Liaoning Entry−Exit Inspection and Quarantine Bureau, Dalian 116000, PR China
| | | | | |
Collapse
|
41
|
Abstract
The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, C. neoformans biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into C. neoformans biology.
Collapse
|
42
|
Abstract
Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level.
Collapse
|
43
|
Abstract
We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry-Elevated Collision Energy). Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4), Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here.
Collapse
|
44
|
Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation. mBio 2016; 7:e01862-15. [PMID: 26758180 PMCID: PMC4725006 DOI: 10.1128/mbio.01862-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA) signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway in C. neoformans showed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis. Fungi cause life-threatening diseases, but very few drugs are available to effectively treat fungal infections. The pathogenic fungus Cryptococcus neoformans causes a substantial global burden of life-threatening meningitis in patients suffering from HIV/AIDS. An understanding of the mechanisms by which fungi deploy virulence factors to cause disease is critical for developing new therapeutic approaches. We employed a quantitative proteomic approach to define the changes in the protein complement that occur upon modulating the cAMP signaling pathway that regulates virulence in C. neoformans. This approach identified a conserved role for cAMP signaling in the regulation of the ubiquitin-proteasome pathway and revealed a link between this pathway and elaboration of a major virulence determinant, the polysaccharide capsule. Targeting the ubiquitin-proteasome pathway opens new therapeutic options for the treatment of cryptococcosis.
Collapse
|
45
|
Buffon G, Blasi ÉAR, Adamski JM, Ferla NJ, Berger M, Santi L, Lavallée-Adam M, Yates JR, Beys-da-Silva WO, Sperotto RA. Physiological and Molecular Alterations Promoted by Schizotetranychus oryzae Mite Infestation in Rice Leaves. J Proteome Res 2015; 15:431-46. [PMID: 26667653 DOI: 10.1021/acs.jproteome.5b00729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infestation of phytophagous mite Schizotetranychus oryzae in rice causes critical yield losses. To better understand this interaction, we employed Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We detected 18 and 872 unique proteins in control and infested leaves, respectively, along with 32 proteins more abundant in control leaves. S. oryzae infestation caused decreased abundance of proteins related to photosynthesis (mostly photosystem II-related), carbon assimilation and energy production, chloroplast detoxification, defense, and fatty acid and gibberellin synthesis. On the contrary, infestation caused increased abundance of proteins involved in protein modification and degradation, gene expression at the translation level, protein partitioning to different organelles, lipid metabolism, actin cytoskeleton remodeling, and synthesis of jasmonate, amino acid, and molecular chaperones. Our results also suggest that S. oryzae infestation promotes cell-wall remodeling and interferes with ethylene biosynthesis in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of infested rice leaves and suggest that the acceptor side of PSII is probably the major damaged target in the photosynthetic apparatus. These data will be useful in future biotechnological approaches aiming to induce phytophagous mite resistance in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mathieu Lavallée-Adam
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | |
Collapse
|
46
|
Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus. PLoS Genet 2015; 11:e1005490. [PMID: 26313153 PMCID: PMC4551743 DOI: 10.1371/journal.pgen.1005490] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022] Open
Abstract
Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote.
Collapse
|
47
|
Zhang N, Park YD, Williamson PR. New technology and resources for cryptococcal research. Fungal Genet Biol 2015; 78:99-107. [PMID: 25460849 PMCID: PMC4433448 DOI: 10.1016/j.fgb.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 11/26/2022]
Abstract
Rapid advances in molecular biology and genome sequencing have enabled the generation of new technology and resources for cryptococcal research. RNAi-mediated specific gene knock down has become routine and more efficient by utilizing modified shRNA plasmids and convergent promoter RNAi constructs. This system was recently applied in a high-throughput screen to identify genes involved in host-pathogen interactions. Gene deletion efficiencies have also been improved by increasing rates of homologous recombination through a number of approaches, including a combination of double-joint PCR with split-marker transformation, the use of dominant selectable markers and the introduction of Cre-Loxp systems into Cryptococcus. Moreover, visualization of cryptococcal proteins has become more facile using fusions with codon-optimized fluorescent tags, such as green or red fluorescent proteins or, mCherry. Using recent genome-wide analytical tools, new transcriptional factors and regulatory proteins have been identified in novel virulence-related signaling pathways by employing microarray analysis, RNA-sequencing and proteomic analysis.
Collapse
Affiliation(s)
- Nannan Zhang
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States
| | - Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States.
| |
Collapse
|
48
|
Beardsley J, Thanh LT, Day J. A Model CNS Fungal Infection: Cryptococcal Meningitis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-015-0016-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
de Brito Ximenes P, Beltrão EIC, Macêdo DPC, Buonafina MDS, de Lima-Neto RG, Neves RP. Targeting the Cryptococcus neoformans var. grubii cell wall using lectins: study of the carbohydrate-binding domain. Molecules 2015; 20:3776-82. [PMID: 25723851 PMCID: PMC6272190 DOI: 10.3390/molecules20033776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/21/2023] Open
Abstract
Cryptococcus neoformans var. grubii is considered to be the major cause of cryptococcosis in immunosuppressed patients. Understanding cell wall glycoproteins using lectins is of medical interest and can contribute to specific therapy. The aim of this study was to evaluate the carbohydrates on the cell wall of Cryptococcus neoformans var. grubii clinical isolates, using a fluorescein isothiocyanate-lectin binding protocol. Thirty yeast strains stocked in the culture collection were cultivated for 2 days at 30 °C with shaking. Cells were obtained by centrifugation, washed in phosphate-buffered saline, and a suspension of 107 cells/mL was obtained. To determine the binding profile of lectins, concanavalin A (Con A), wheat germ agglutinin (WGA), Ulex europaeus agglutinin I (UEA-I), and peanut agglutinin (PNA) conjugated to fluorescein were used. All the tested clinical isolates of Cryptococcus neoformans var. grubii were intensely stained by WGA, moderately stained by Con A, and weakly stained by PNA and UEA-I. Thus, Cryptococcus can be detected in clinical specimens such as blood and cerebrospinal fluid using the fluorescent lectin WGA, which may be considered as an option for detection in cases of suspected cryptococcosis with low laboratory sensitivity. Future applications may be developed using this basic tool.
Collapse
Affiliation(s)
- Pamella de Brito Ximenes
- Department of Mycology, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| | - Eduardo Isidoro Carneiro Beltrão
- Department of Biochemistry, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| | - Danielle Patrícia Cerqueira Macêdo
- Department of Pharmaceutical Sciences, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| | - Maria Daniela Silva Buonafina
- Department of Mycology, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| | - Reginaldo Gonçalves de Lima-Neto
- Department of Tropical Medicine, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| | - Rejane Pereira Neves
- Department of Mycology, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| |
Collapse
|