1
|
Harding MA, Yavuz H, Gathmann A, Upson S, Swiatecka‐Urban A, Erdbrügger U. Uromodulin and the study of urinary extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70022. [PMID: 39582686 PMCID: PMC11583080 DOI: 10.1002/jex2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/05/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Urinary extracellular vesicles (uEVs) are a promising substrate for discovering new biomarkers. In order to investigate the origin of uEVs and the cargo they carry, some types of downstream analysis of uEVs may require concentration and enrichment as well as removal of contaminating substances. Co-isolation of the abundant urinary protein uromodulin with uEVs can be a problem, and may interfere with some techniques, in particular with proteomic analysis tools. Methods of separating out uromodulin and its removal have also not been standardized. This review highlights aspects of uromodulin structure that makes it recalcitrant to separation from uEVs, summarizes frequently used techniques for uEV enrichment and how they affect uromodulin separation, and specific methods for uromodulin removal during preparation of uEVs. The necessity of uromodulin removal for various study endpoints is also examined.
Collapse
Affiliation(s)
- Michael A. Harding
- Division of Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Hayrettin Yavuz
- Division of Pediatric Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Samantha Upson
- Division of Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Agnieszka Swiatecka‐Urban
- Division of Pediatric Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Uta Erdbrügger
- Division of Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
2
|
Harita Y. Urinary extracellular vesicles in childhood kidney diseases. Pediatr Nephrol 2024; 39:2293-2300. [PMID: 38093081 PMCID: PMC11199279 DOI: 10.1007/s00467-023-06243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 06/26/2024]
Abstract
Most biological fluids contain extracellular vesicles (EVs). EVs are surrounded by a lipid bilayer and contain biological macromolecules such as proteins, lipids, RNA, and DNA. They lack a functioning nucleus and are incapable of replicating. The physiological characteristics and molecular composition of EVs in body fluids provide valuable information about the status of originating cells. Consequently, they could be effectively utilized for diagnostic and prognostic applications. Urine contains a heterogeneous population of EVs. To date, these urinary extracellular vesicles (uEVs) have been ignored in the standard urinalysis. In recent years, knowledge has accumulated on how uEVs should be separated and analyzed. It has become clear how uEVs reflect the expression of each molecule in cells in nephron segments and how they are altered in disease states such as glomerular/tubular disorders, rare congenital diseases, acute kidney injury (AKI), and chronic kidney disease (CKD). Significant promise exists for the molecular expression signature of uEVs detected by simple techniques such as enzyme-linked immunosorbent assay (ELISA), making them more applicable in clinical settings. This review presents the current understanding regarding uEVs, emphasizing the potential for non-invasive diagnostics, especially for childhood kidney diseases.
Collapse
Affiliation(s)
- Yutaka Harita
- Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
3
|
Filipović L, Spasojević Savković M, Prodanović R, Matijašević Joković S, Stevanović S, de Marco A, Kosanović M, Brajušković G, Popović M. Urinary Extracellular Vesicles as a Readily Available Biomarker Source: A Simplified Stratification Method. Int J Mol Sci 2024; 25:8004. [PMID: 39125575 PMCID: PMC11311997 DOI: 10.3390/ijms25158004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
Urine, a common source of biological markers in biomedical research and clinical diagnosis, has recently generated a new wave of interest. It has recently become a focus of study due to the presence of its content of extracellular vesicles (EVs). These uEVs have been found to reflect physiological and pathological conditions in kidney, urothelial, and prostate tissue and can illustrate further molecular processes, leading to a rapid expansion of research in this field In this work, we present the advantages of an immunoaffinity-based method for uEVs' isolation with respect to the gold standard purification approach performed by differential ultracentrifugation [in terms of purity and antigen presence. The immunoaffinity method was made feasible by combining specific antibodies with a functionalized polymethacrylate polymer. Flow cytometry indicated a significant fluorescence shift, validating the presence of the markers (CD9, CD63, CD81) and confirming the effectiveness of the isolation method. Microscopy evaluations have shown that the morphology of the vesicles remained intact and corresponded to the expected shapes and dimensions of uEVs. The described protocol is inexpensive, fast, easy to process, has good reproducibility, and can be applied to further biological samples.
Collapse
Affiliation(s)
- Lidija Filipović
- Innovative Centre of the Faculty of Chemistry, 11158 Belgrade, Serbia; (L.F.); (M.S.S.)
| | | | | | | | - Sanja Stevanović
- Center for Chemistry, Institute for Chemistry, Technology, and Metallurgy, National Institute of Republic of Serbia, 11000 Belgrade, Serbia;
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, 5000 Nova Gorica, Slovenia;
| | - Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Goran Brajušković
- Faculty of Biology, University of Belgrade, 11158 Belgrade, Serbia; (S.M.J.); (G.B.)
| | - Milica Popović
- Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| |
Collapse
|
4
|
Prot-Bertoye C, Jung V, Tostivint I, Roger K, Benoist JF, Jannot AS, Van Straaten A, Knebelmann B, Guerrera IC, Courbebaisse M. Effect of urine alkalization on urinary inflammatory markers in cystinuric patients. Clin Kidney J 2024; 17:sfae040. [PMID: 38510798 PMCID: PMC10953617 DOI: 10.1093/ckj/sfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 03/22/2024] Open
Abstract
Background Cystinuria is associated with a high prevalence of chronic kidney disease (CKD). We previously described a urinary inflammatory-protein signature (UIS), including 38 upregulated proteins, in cystinuric patients (Cys-patients), compared with healthy controls (HC). This UIS was higher in Cys-patients with CKD. In the present observational study, we aimed to investigate the UIS in Cys-patients without CKD and patients with calcium nephrolithiasis (Lith-patients), versus HC and the effect of urine alkalization on the UIS of Cys-patients. Methods UIS was evaluated by nano-liquid chromatography coupled to high-resolution mass spectrometry in adult HC, Lith-patients and non-treated Cys-patients with an estimated glomerular filtration rate >60 mL/min/1.73 m2, and after a 3-month conventional alkalizing treatment in Cys-patients. Results Twenty-one Cys-patients [12 men, median age (interquartile range) 30.0 (25.0-44.0) years], 12 Lith-patients [8 men, 46.2 (39.5-54.2) years] and 7 HC [2 men, 43.1 (31.0-53.9) years] were included. Among the 38 proteins upregulated in our previous work, 11 proteins were also upregulated in Cys-patients compared with HC in this study (5 circulating inflammatory proteins and 6 neutrophil-derived proteins). This UIS was also found in some Lith-patients. Using this UIS, we identified two subclusters of Cys-patients (5 with a very high/high UIS and 16 with a moderate/low UIS). In the Cys-patients with very high/high UIS, urine alkalization induced a significant decrease in urinary neutrophil-derived proteins. Conclusion A high UIS is present in some Cys-patients without CKD and decreases under alkalizing treatment. This UIS could be a prognostic marker to predict the evolution towards CKD in cystinuria.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie – Explorations fonctionnelles, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 – Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
- Association LUNNE Lithiases UriNaires Network, Paris, France
| | - Vincent Jung
- Proteomics Platform Necker, Université Paris Cité – Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Isabelle Tostivint
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Association LUNNE Lithiases UriNaires Network, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Service de Néphrologie, Paris, France
- GRC 20 ARDELURO groupe de recherche clinique Analyse, Recherche, Développement et Evaluation en Endourologie et Lithiase Urinaire, Médecine Sorbonne Université, Paris, France
| | - Kevin Roger
- Proteomics Platform Necker, Université Paris Cité – Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Jean-François Benoist
- Faculté de pharmacie, Université Paris Saclay, Orsay, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Service de Biochimie métabolique, Paris, France
| | - Anne-Sophie Jannot
- Assistance Publique-Hôpitaux de Paris – Centre, Université Paris Cité, Hôpital Européen Georges Pompidou, Service d'informatique Médicale, Santé Publique et Biostatistiques, Paris, France. HeKA, Centre de recherche des Cordeliers, INSERM, INRIA, Paris, France
| | - Alexis Van Straaten
- Assistance Publique-Hôpitaux de Paris – Centre, Université Paris Cité, Hôpital Européen Georges Pompidou, Service d'informatique Médicale, Santé Publique et Biostatistiques, Paris, France. HeKA, Centre de recherche des Cordeliers, INSERM, INRIA, Paris, France
| | - Bertrand Knebelmann
- Faculté de médecine, Université Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Service de Néphrologie, Paris, France
- INEM Unité Inserm U1151, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université Paris Cité – Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Marie Courbebaisse
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie – Explorations fonctionnelles, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
- Association LUNNE Lithiases UriNaires Network, Paris, France
- Faculté de médecine, Université Paris Cité, Paris, France
- INEM Unité Inserm U1151, Paris, France
| |
Collapse
|
5
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Chhuon C, Herrera-Marcos LV, Zhang SY, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, Audard V, Sahali D, Guerrera IC, Ollero M. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:12124. [PMID: 37569500 PMCID: PMC10418338 DOI: 10.3390/ijms241512124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Luis Vicente Herrera-Marcos
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Shao-Yu Zhang
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Cécile Charrière-Bertrand
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Jung
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Joanna Lipecka
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Berkan Savas
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Nour Nasser
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - André Pawlak
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Hocine Boulmerka
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Audard
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| |
Collapse
|
7
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Exosomes in metastasis of colorectal cancers: Friends or foes? World J Gastrointest Oncol 2023; 15:731-756. [PMID: 37275444 PMCID: PMC10237026 DOI: 10.4251/wjgo.v15.i5.731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer worldwide, threaten human health and quality of life. With multidisciplinary, including surgery, chemotherapy and/or radiotherapy, patients with an early diagnosis of CRC can have a good prognosis. However, metastasis in CRC patients is the main risk factor causing cancer-related death. To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism. On the other hand, the tumor microenvironment (TME) has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies, including CRCs. Among the different factors in the TME, exosomes as extracellular vesicles, function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC. MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly. This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC, especially through the packaging of miRNAs, to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
8
|
Chantada-Vázquez MDP, Bravo SB, Barbosa-Gouveia S, Alvarez JV, Couce ML. Proteomics in Inherited Metabolic Disorders. Int J Mol Sci 2022; 23:14744. [PMID: 36499071 PMCID: PMC9740208 DOI: 10.3390/ijms232314744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Inherited metabolic disorders (IMD) are rare medical conditions caused by genetic defects that interfere with the body's metabolism. The clinical phenotype is highly variable and can present at any age, although it more often manifests in childhood. The number of treatable IMDs has increased in recent years, making early diagnosis and a better understanding of the natural history of the disease more important than ever. In this review, we discuss the main challenges faced in applying proteomics to the study of IMDs, and the key advances achieved in this field using tandem mass spectrometry (MS/MS). This technology enables the analysis of large numbers of proteins in different body fluids (serum, plasma, urine, saliva, tears) with a single analysis of each sample, and can even be applied to dried samples. MS/MS has thus emerged as the tool of choice for proteome characterization and has provided new insights into many diseases and biological systems. In the last 10 years, sequential window acquisition of all theoretical fragmentation spectra mass spectrometry (SWATH-MS) has emerged as an accurate, high-resolution technique for the identification and quantification of proteins differentially expressed between healthy controls and IMD patients. Proteomics is a particularly promising approach to help obtain more information on rare genetic diseases, including identification of biomarkers to aid early diagnosis and better understanding of the underlying pathophysiology to guide the development of new therapies. Here, we summarize new and emerging proteomic technologies and discuss current uses and limitations of this approach to identify and quantify proteins. Moreover, we describe the use of proteomics to identify the mechanisms regulating complex IMD phenotypes; an area of research essential to better understand these rare disorders and many other human diseases.
Collapse
Affiliation(s)
- Maria del Pilar Chantada-Vázquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Sofía Barbosa-Gouveia
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - José V. Alvarez
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - María L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Exosome based analysis for Space Associated Neuro-Ocular Syndrome and health risks in space exploration. NPJ Microgravity 2022; 8:40. [PMID: 36104352 PMCID: PMC9474550 DOI: 10.1038/s41526-022-00225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractMolecular profiling to characterize the effects of environmental exposures is important from the human health and performance as well as the occupational medicine perspective in space exploration. We have developed a novel exosome-based platform that allows profiling of biological processes in the body from a variety of body fluids. The technology is suitable for diagnostic applications as well as studying the pathophysiology of the Space Associated Neuro-Ocular Syndrome in astronauts and monitoring patients with chronically impaired cerebrospinal fluid drainage or elevated intracranial pressure. In this proof-of-concept, we demonstrate that: (a) exosomes from different biofluids contain a specific population of RNA transcripts; (b) urine collection hardware aboard the ISS is compatible with exosome gene expression technology; (c) cDNA libraries from exosomal RNA can be stored in dry form and at room temperature, representing an interesting option for the creation of longitudinal molecular catalogs that can be stored as a repository for retrospective analysis.
Collapse
|
10
|
Rose J, Basisty N, Zee T, Wehrfritz C, Bose N, Desprez PY, Kapahi P, Stoller M, Schilling B. Comprehensive proteomic quantification of bladder stone progression in a cystinuric mouse model using data-independent acquisitions. PLoS One 2022; 17:e0250137. [PMID: 35771811 PMCID: PMC9246204 DOI: 10.1371/journal.pone.0250137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
Cystinuria is one of various disorders that cause biomineralization in the urinary system, including bladder stone formation in humans. It is most prevalent in children and adolescents and more aggressive in males. There is no cure, and only limited disease management techniques help to solubilize the stones. Recurrence, even after treatment, occurs frequently. Other than a buildup of cystine, little is known about factors involved in the formation, expansion, and recurrence of these stones. This study sought to define the growth of bladder stones, guided by micro-computed tomography imaging, and to profile dynamic stone proteome changes in a cystinuria mouse model. After bladder stones developed in vivo, they were harvested and separated into four developmental stages (sand, small, medium and large stone), based on their size. Data-dependent and data-independent acquisitions allowed deep profiling of stone proteomics. The proteomic signatures and pathways illustrated major changes as the stones grew. Stones initiate from a small nidus, grow outward, and show major enrichment in ribosomal proteins and factors related to coagulation and platelet degranulation, suggesting a major dysregulation in specific pathways that can be targeted for new therapeutic options.
Collapse
Affiliation(s)
- Jacob Rose
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Tiffany Zee
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Cameron Wehrfritz
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Neelanjan Bose
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Marshall Stoller
- University of California San Francisco, San Francisco, CA, United States of America
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Mardi A, Heidary H, Mousavi SM, Khazaei G, Taghizadeh E. A Novel Variant in Iranian Patient with Cystinuria: A Case Report. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1897-1901. [PMID: 34722386 PMCID: PMC8542809 DOI: 10.18502/ijph.v50i9.7063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/14/2021] [Indexed: 11/24/2022]
Abstract
Cystinuria is an autosomal recessive disorder in which the renal reabsorption of cystine, arginine, lysine and ornithine are disturbed. The two genes, the pathogenic forms of which are responsible for the disorder, are SLC7A9 and SLC3A1. In this study, we describe a disease that has a new c.916A> T variant (p. K306 *) in exon 5 of the SLC3A1 gene. This variant results in the NMD phenomenon in which the protein product is not produced because of mRNA destruction. In 2020, blood sample of a 41-yr-old man from east Azerbaijan, Iran together with his parents were collected to be studied. PCR and direct sequencing were performed to detect the possible SLC3A1 variant. Whole-gene sequence analysis done by Mutation surveyor Software revealed a novel nonsense homozygous variant in exon 5 of the gene. Parental Sequence Analysis shows that they are heterozygous. According to ACMG guideline, this variant is considered as pathogen. Finding serious mutations can allow rapid screening for cystinuria by analyzing common mutations. It should also be considered as a pathogenic variant in patients' cystinuria.
Collapse
Affiliation(s)
- Ali Mardi
- Department of Medical Genetics, Ali Asghar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Heidary
- Department of Medical Genetics, Ali Asghar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Department of Medical Genetics, Ali Asghar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Khazaei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Eskandar Taghizadeh
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, Bussolati B, Byrd JB, Clayton A, Dear JW, Falcón‐Pérez JM, Grange C, Hill AF, Holthöfer H, Hoorn EJ, Jenster G, Jimenez CR, Junker K, Klein J, Knepper MA, Koritzinsky EH, Luther JM, Lenassi M, Leivo J, Mertens I, Musante L, Oeyen E, Puhka M, van Royen ME, Sánchez C, Soekmadji C, Thongboonkerd V, van Steijn V, Verhaegh G, Webber JP, Witwer K, Yuen PS, Zheng L, Llorente A, Martens‐Uzunova ES. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J Extracell Vesicles 2021; 10:e12093. [PMID: 34035881 PMCID: PMC8138533 DOI: 10.1002/jev2.12093] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field.
Collapse
|
13
|
Panfoli I, Granata S, Candiano G, Verlato A, Lombardi G, Bruschi M, Zaza G. Analysis of urinary exosomes applications for rare kidney disorders. Expert Rev Proteomics 2021; 17:735-749. [PMID: 33395324 DOI: 10.1080/14789450.2020.1866993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Exosomes are nanovesicles that play important functions in a variety of physiological and pathological conditions. They are powerful cell-to-cell communication tool thanks to the protein, mRNA, miRNA, and lipid cargoes they carry. They are also emerging as valuable diagnostic and prognostic biomarker sources. Urinary exosomes carry information from all the cells of the urinary tract, downstream of the podocyte. Rare kidney diseases are a subset of an inherited diseases whose genetic diagnosis can be unclear, and presentation can vary due to genetic, epigenetic, and environmental factors. Areas covered: In this review, we focus on a group of rare and often neglected kidney diseases, for which we have sufficient available literature data on urinary exosomes. The analysis of their content can help to comprehend pathological mechanisms and to identify biomarkers for diagnosis, prognosis, and therapeutic targets. Expert opinion: The foreseeable large-scale application of system biology approach to the profiling of exosomal proteins as a source of renal disease biomarkers will be also useful to stratify patients with rare kidney diseases whose penetrance, phenotypic presentation, and age of onset vary sensibly. This can ameliorate the clinical management.
Collapse
Affiliation(s)
- Isabella Panfoli
- Department of Pharmacy-DIFAR, University of Genoa , Genoa, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini , Genoa, Italy
| | - Alberto Verlato
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Gianmarco Lombardi
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini , Genoa, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| |
Collapse
|
14
|
Gauthier S, Pranke I, Jung V, Martignetti L, Stoven V, Nguyen-Khoa T, Semeraro M, Hinzpeter A, Edelman A, Guerrera IC, Sermet-Gaudelus I. Urinary Exosomes of Patients with Cystic Fibrosis Unravel CFTR-Related Renal Disease. Int J Mol Sci 2020; 21:ijms21186625. [PMID: 32927759 PMCID: PMC7554933 DOI: 10.3390/ijms21186625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 01/12/2023] Open
Abstract
Background: The prevalence of chronic kidney disease is increased in patients with cystic fibrosis (CF). The study of urinary exosomal proteins might provide insight into the pathophysiology of CF kidney disease. Methods: Urine samples were collected from 19 CF patients (among those 7 were treated by cystic fibrosis transmembrane conductance regulator (CFTR) modulators), and 8 healthy subjects. Urine exosomal protein content was determined by high resolution mass spectrometry. Results: A heatmap of the differentially expressed proteins in urinary exosomes showed a clear separation between control and CF patients. Seventeen proteins were upregulated in CF patients (including epidermal growth factor receptor (EGFR); proteasome subunit beta type-6, transglutaminases, caspase 14) and 118 were downregulated (including glutathione S-transferases, superoxide dismutase, klotho, endosomal sorting complex required for transport, and matrisome proteins). Gene set enrichment analysis revealed 20 gene sets upregulated and 74 downregulated. Treatment with CFTR modulators yielded no significant modification of the proteomic content. These results highlight that CF kidney cells adapt to the CFTR defect by upregulating proteasome activity and that autophagy and endosomal targeting are impaired. Increased expression of EGFR and decreased expression of klotho and matrisome might play a central role in this CF kidney signature by inducing oxidation, inflammation, accelerated senescence, and abnormal tissue repair. Conclusions: Our study unravels novel insights into consequences of CFTR dysfunction in the urinary tract, some of which may have clinical and therapeutic implications.
Collapse
Affiliation(s)
- Sebastien Gauthier
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
| | - Iwona Pranke
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
| | - Vincent Jung
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
- Proteomics Platform Necker, Structure Fédérative de Recherche Necker, 75015 Paris, France
- INSERM US24/CNRS UMS3633, 75015 Paris, France
- Faculté de Médecine, Paris Descartes, Université de Paris, 75015 Paris, France
| | - Loredana Martignetti
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems, Institut Curie, 75005 Paris, France; (L.M.); (V.S.)
- INSERM U900, 75005 Paris, France
- CBIO Mines-ParisTech, 75005 Paris, France
| | - Véronique Stoven
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems, Institut Curie, 75005 Paris, France; (L.M.); (V.S.)
- INSERM U900, 75005 Paris, France
- CBIO Mines-ParisTech, 75005 Paris, France
| | - Thao Nguyen-Khoa
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
- Laboratoire de Biochimie Générale, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France
- Centre de Référence Maladies Rares, Mucoviscidose et maladies de CFTR, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France;
| | - Michaela Semeraro
- Centre de Référence Maladies Rares, Mucoviscidose et maladies de CFTR, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France;
- Centre d’Investigation Clinique, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France
| | - Alexandre Hinzpeter
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
| | - Aleksander Edelman
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
| | - Ida Chiara Guerrera
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
- Proteomics Platform Necker, Structure Fédérative de Recherche Necker, 75015 Paris, France
- INSERM US24/CNRS UMS3633, 75015 Paris, France
- Faculté de Médecine, Paris Descartes, Université de Paris, 75015 Paris, France
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
- Laboratoire de Biochimie Générale, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France
- Centre de Référence Maladies Rares, Mucoviscidose et maladies de CFTR, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France;
- Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France
- European Respiratory Network, ERN Lung, 75015 Paris, France
- Correspondence: ; Tel.: +33-1-44-49-48-87
| |
Collapse
|
15
|
Servais A, Thomas K, Dello Strologo L, Sayer JA, Bekri S, Bertholet-Thomas A, Bultitude M, Capolongo G, Cerkauskiene R, Daudon M, Doizi S, Gillion V, Gràcia-Garcia S, Halbritter J, Heidet L, van den Heijkant M, Lemoine S, Knebelmann B, Emma F, Levtchenko E. Cystinuria: clinical practice recommendation. Kidney Int 2020; 99:48-58. [PMID: 32918941 DOI: 10.1016/j.kint.2020.06.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Cystinuria (OMIM 220100) is an autosomal recessive hereditary disorder in which high urinary cystine excretion leads to the formation of cystine stones because of the low solubility of cystine at normal urinary pH. We developed clinical practice recommendation for diagnosis, surgical and medical treatment, and follow-up of patients with cystinuria. Elaboration of these clinical practice recommendations spanned from June 2018 to December 2019 with a consensus conference in January 2019. Selected topic areas were chosen by the co-chairs of the conference. Working groups focusing on specific topics were formed. Group members performed systematic literature review using MEDLINE, drafted the statements, and discussed them. They included geneticists, medical biochemists, pediatric and adult nephrologists, pediatric and adult urologists experts in cystinuria, and the Metabolic Nephropathy Joint Working Group of the European Reference Network for Rare Kidney Diseases (ERKNet) and eUROGEN members. Overall 20 statements were produced to provide guidance on diagnosis, genetic analysis, imaging techniques, surgical treatment (indication and modalities), conservative treatment (hydration, dietetic, alkalinization, and cystine-binding drugs), follow-up, self-monitoring, complications (renal failure and hypertension), and impact on quality of life. Because of the rarity of the disease and the poor level of evidence in the literature, these statements could not be graded. This clinical practice recommendation provides guidance on all aspects of the management of both adults and children with cystinuria, including diagnosis, surgery, and medical treatment.
Collapse
Affiliation(s)
- Aude Servais
- Nephrology and Transplantation Department, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Université de Paris, Paris, France.
| | - Kay Thomas
- Stone Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Luca Dello Strologo
- Renal Transplant Clinic, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, UK; The Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Aurelia Bertholet-Thomas
- Centre de Référence des Maladies Rénales Rares, Filière ORKID, Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Université Claude-Bernard Lyon 1, Lyon, France
| | | | - Giovanna Capolongo
- Unit of Nephrology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Michel Daudon
- UMR S 1155 and Physiology Unit, AP-HP, Hôpital Tenon, Sorbonne Université and INSERM, Paris, France
| | - Steeve Doizi
- Sorbonne Université, GRC n°20, Groupe de Recherche Clinique sur la Lithiase Urinaire, Service d'Urologie, Hôpital Tenon, AP-HP, Paris, France
| | - Valentine Gillion
- Département de Néphrologie adulte, Cliniques universitaires Saint Luc, Bruxelles, Belgium
| | - Silvia Gràcia-Garcia
- Laboratory of Renal Lithiasis, Clinical Laboratories, Fundació Puigvert, Barcelona, Spain
| | - Jan Halbritter
- Division of Nephrology, Department of Endocrinology, Nephrology, and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Laurence Heidet
- Néphrologie Pédiatrique, Centre de Référence MARHEA, Hôpital universitaire Necker-Enfants Malades, Paris, France
| | - Marleen van den Heijkant
- Pediatric Renal Center, University Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandrine Lemoine
- Nephrology and Renal Function Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France; University of Lyon, Lyon, France
| | - Bertrand Knebelmann
- Nephrology and Transplantation Department, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Necker Hospital, APHP, Université de Paris, Paris, France
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Elena Levtchenko
- Division of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
16
|
Masaoutis C, Al Besher S, Koutroulis I, Theocharis S. Exosomes in Nephropathies: A Rich Source of Novel Biomarkers. DISEASE MARKERS 2020; 2020:8897833. [PMID: 32849923 PMCID: PMC7441435 DOI: 10.1155/2020/8897833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The biomarkers commonly utilized in diagnostic evaluations of kidney disease suffer from low sensitivity, especially in the early stages of renal damage. On the other hand, obtaining a renal biopsy to augment clinical decision making can lead to potentially serious complications. In order to overcome the shortcomings of currently available diagnostic tools, recent studies suggest that exosomes, cell-secreted extracellular vesicles containing a large array of active molecules to facilitate cell-to-cell communication, may represent a rich source of novel disease biomarkers. Because of their endocytic origin, exosomes carry markers typical for their parent cells, which could permit the localization of biochemical cellular alterations in specific kidney compartments. Different types of exosomes can be isolated from noninvasively obtained biofluids; however, in the context of kidney disease, evidence has emerged on the role of urinary exosomes in the diagnostic and predictive modeling of renal pathology. The current review summarizes the potential application of exosomes in the detection of acute and chronic inflammatory, metabolic, degenerative, and genetic renal diseases.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias street, Bld 10, Goudi, 11527 Athens, Greece
| | - Samer Al Besher
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias street, Bld 10, Goudi, 11527 Athens, Greece
| | - Ioannis Koutroulis
- Children's National Hospital, Division of Emergency Medicine and Center for Genetic Medicine, George Washington University School of Medicine and Health Sciences, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
17
|
Vidal M. Exosomes: Revisiting their role as "garbage bags". Traffic 2019; 20:815-828. [PMID: 31418976 DOI: 10.1111/tra.12687] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
In recent years, the term "extracellular vesicle" (EV) has been used to define different types of vesicles released by various cells. It includes plasma membrane-derived vesicles (ectosomes/microvesicles) and endosome-derived vesicles (exosomes). Although it remains difficult to evaluate the compartment of origin of the two kinds of vesicles once released, it is critical to discriminate these vesicles because their mode of biogenesis is probably directly related to their physiologic function and/or to the physio-pathologic state of the producing cell. The purpose of this review is to specifically consider exosome secretion and its consequences in terms of a material loss for producing cells, rather than on the effects of exosomes once they are taken up by recipient cells. I especially describe one putative basic function of exosomes, that is, to convey material out of cells for off-site degradation by recipient cells. As illustrated by some examples, these components could be evacuated from cells for various reasons, for example, to promote "differentiation" or enhance homeostatic responses. This basic function might explain why so many diseases have made use of the exosomal pathway during pathogenesis.
Collapse
Affiliation(s)
- Michel Vidal
- LPHI - Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
18
|
Biological surface properties in extracellular vesicles and their effect on cargo proteins. Sci Rep 2019; 9:13048. [PMID: 31506490 PMCID: PMC6736982 DOI: 10.1038/s41598-019-47598-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Ultracentrifugationon sucrose density gradientappears to be the best purification protocol for extracellular vesicle (EVs) purification. After this step, to reduce disulfide bridges linking exogenous proteins to the vesicles, the collected samples are routinely washed and treated with dithiothreitol (DTT). Such incubations are performed at temperatures ranging from room temperature up to 95 °C, with either Tris or PBS as buffers. We re-investigated these steps on both exosomes and microvesicles purified from blood (serum) and urine by electrophoretic separation, silver staining and western blots analysis. Data confirm that an extra centrifugation on a sucrose cushion can effectively eliminate contaminants. Tris buffer (50 Mm) and β-mercaptoethanol as a reducing agent at room temperature dramatically improved either sample cleaning. By contrast, especially for exosomes PBS buffer and DTT, above 37 °C, caused massive protein aggregations, yielding blurred SDS-PAGE gels in both samples. Immuno-blot analyses demonstrated that in PBS-DTT contamination with albumin (in serum) or with uromodulin (in urine) occurs. DTT, likely due to its two–SH groups, might form scrambled SS-bonds promoting EVs interaction with environmental macromolecules via disulphide bridges. Therefore, to obtain maximum vesicle purity for biomarker investigations and to maximize both presence of EVs proteins and their accessibility, use of DTT is not recommended.
Collapse
|
19
|
Oniszczuk J, Sendeyo K, Chhuon C, Savas B, Cogné E, Vachin P, Henique C, Guerrera IC, Astarita G, Frontera V, Pawlak A, Audard V, Sahali D, Ollero M. CMIP is a negative regulator of T cell signaling. Cell Mol Immunol 2019; 17:1026-1041. [PMID: 31395948 PMCID: PMC7609264 DOI: 10.1038/s41423-019-0266-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/10/2019] [Indexed: 11/24/2022] Open
Abstract
Upon their interaction with cognate antigen, T cells integrate different extracellular and intracellular signals involving basal and induced protein–protein interactions, as well as the binding of proteins to lipids, which can lead to either cell activation or inhibition. Here, we show that the selective T cell expression of CMIP, a new adapter protein, by targeted transgenesis drives T cells toward a naïve phenotype. We found that CMIP inhibits activation of the Src kinases Fyn and Lck after CD3/CD28 costimulation and the subsequent localization of Fyn and Lck to LRs. Video microscopy analysis showed that CMIP blocks the recruitment of LAT and the lipid raft marker cholera toxin B at the site of TCR engagement. Proteomic analysis identified several protein clusters differentially modulated by CMIP and, notably, Cofilin-1, which is inactivated in CMIP-expressing T cells. Moreover, transgenic T cells exhibited the downregulation of GM3 synthase, a key enzyme involved in the biosynthesis of gangliosides. These results suggest that CMIP negatively impacts proximal signaling and cytoskeletal rearrangement and defines a new mechanism for the negative regulation of T cells that could be a therapeutic target.
Collapse
Affiliation(s)
- Julie Oniszczuk
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Kelhia Sendeyo
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Cerina Chhuon
- Proteomic Platform Necker, PPN-3P5, Structure Fédérative de Recherche SFR Necker US24, 75015, Paris, France
| | - Berkan Savas
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Etienne Cogné
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Pauline Vachin
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Carole Henique
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, PPN-3P5, Structure Fédérative de Recherche SFR Necker US24, 75015, Paris, France
| | - Giuseppe Astarita
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Vincent Frontera
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Andre Pawlak
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| | - Vincent Audard
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France.,AP-HP, Groupe Henri-Mondor Albert-Chenevier, Service de Néphrologie, F-94010, Créteil, France.,Institut Francilien De Recherche En Néphrologie Et Transplantation, F-94010, Créteil, France
| | - Dil Sahali
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France. .,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France. .,AP-HP, Groupe Henri-Mondor Albert-Chenevier, Service de Néphrologie, F-94010, Créteil, France. .,Institut Francilien De Recherche En Néphrologie Et Transplantation, F-94010, Créteil, France.
| | - Mario Ollero
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 955, Equipe 21, F-94010, Créteil, France.,Faculté de Médecine, Université Paris Est, UMRS 955, Equipe 21, F-94010, Créteil, France
| |
Collapse
|
20
|
Wang S, Kojima K, Mobley JA, West AB. Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine 2019; 45:351-361. [PMID: 31229437 PMCID: PMC6642358 DOI: 10.1016/j.ebiom.2019.06.021] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
Background Extracellular vesicles (EVs) harbor thousands of proteins that hold promise for biomarker development. Usually difficult to purify, EVs in urine are relatively easily obtained and have demonstrated efficacy for kidney disease prediction. Herein, we further characterize the proteome of urinary EVs to explore the potential for biomarkers unrelated to kidney dysfunction, focusing on Parkinson's disease (PD). Methods Using a quantitative mass spectrometry approach, we measured urinary EV proteins from a discovery cohort of 50 subjects. EVs in urine were classified into subgroups and EV proteins were ranked by abundance and variability over time. Enriched pathways and ontologies in stable EV proteins were identified and proteins that predict PD were further measured in a cohort of 108 subjects. Findings Hundreds of commonly expressed urinary EV proteins with stable expression over time were distinguished from proteins with high variability. Bioinformatic analyses reveal a striking enrichment of endolysosomal proteins linked to Parkinson's, Alzheimer's, and Huntington's disease. Tissue and biofluid enrichment analyses show broad representation of EVs from across the body without bias towards kidney or urine proteins. Among the proteins linked to neurological diseases, SNAP23 and calbindin were the most elevated in PD cases with 86% prediction success for disease diagnosis in the discovery cohort and 76% prediction success in the replication cohort. Interpretation Urinary EVs are an underutilized but highly accessible resource for biomarker discovery with particular promise for neurological diseases like PD.
Collapse
Affiliation(s)
- Shijie Wang
- Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Kyoko Kojima
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew B West
- Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
Braun F, Müller RU. Urinary extracellular vesicles as a source of biomarkers reflecting renal cellular biology in human disease. Methods Cell Biol 2019; 154:43-65. [PMID: 31493821 DOI: 10.1016/bs.mcb.2019.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For more than a decade, extracellular vesicles (EVs) have been the focus of extensive research efforts attempting to uncover their biological function in health and disease. Likewise, numerous studies have investigated them as a source of potential biomarkers to complement or replace the routine diagnostic procedures. Urinary extracellular vesicles take a distinct place among these studies, as they hold the promise to reflect changes in the cellular biology of the nephron and can be isolated without any invasive procedure. However, their potential has been insufficiently exploited since both their biological function and their use for diagnostic purposes in human disease have only gained increasing attention in the last years. This review aims to give an overview of the present knowledge about urinary extracellular vesicles with a special focus on novel nomenclature recommendations, current techniques for urinary EV separation and potential biomarkers that have emerged from the analysis of urinary EVs.
Collapse
Affiliation(s)
- Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
22
|
Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer 2019; 1871:455-468. [PMID: 31047959 DOI: 10.1016/j.bbcan.2019.04.004] [Citation(s) in RCA: 582] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/18/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
Exosomes play essential roles in intercellular communications. The exosome was discovered in 1983, when it was found that reticulocytes release 50-nm small vesicles carrying transferrin receptors into the extracellular space. Since then, our understanding of the mechanism and function of the exosome has expanded exponentially that has transformed our perspective of inter-cellular exchanges and the molecular mechanisms that underlie disease progression. Cancer cells generally produce more exosomes than normal cells, and exosomes derived from cancer cells have a strong capacity to modify both local and distant microenvironments. In this review, we summarize the functions of exosomes in cancer development, metastasis, and anti-tumor or pro-tumor immunity, plus their application in cancer treatment and diagnosis/prognosis. Although the exosome field has rapidly advanced, we still do not fully understand the regulation and function of exosomes in detail and still face many challenges in their clinical application. Continued discoveries in this field will bring novel insights on intercellular communications involved in various biological functions and disease progression, thus empowering us to effectively tackle accompanying clinical challenges.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Gézsi A, Kovács Á, Visnovitz T, Buzás EI. Systems biology approaches to investigating the roles of extracellular vesicles in human diseases. Exp Mol Med 2019; 51:1-11. [PMID: 30872567 PMCID: PMC6418293 DOI: 10.1038/s12276-019-0226-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed structures secreted by cells. In the past decade, EVs have attracted substantial attention as carriers of complex intercellular information. They have been implicated in a wide variety of biological processes in health and disease. They are also considered to hold promise for future diagnostics and therapy. EVs are characterized by a previously underappreciated heterogeneity. The heterogeneity and molecular complexity of EVs necessitates high-throughput analytical platforms for detailed analysis. Recently, mass spectrometry, next-generation sequencing and bioinformatics tools have enabled detailed proteomic, transcriptomic, glycomic, lipidomic, metabolomic, and genomic analyses of EVs. Here, we provide an overview of systems biology experiments performed in the field of EVs. Furthermore, we provide examples of how in silico systems biology approaches can be used to identify correlations between genes involved in EV biogenesis and human diseases. Using a knowledge fusion system, we investigated whether certain groups of proteins implicated in the biogenesis/release of EVs were associated with diseases and phenotypes. Furthermore, we investigated whether these proteins were enriched in publicly available transcriptomic datasets using gene set enrichment analysis methods. We found associations between key EV biogenesis proteins and numerous diseases, which further emphasizes the key role of EVs in human health and disease.
Collapse
Affiliation(s)
- András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Árpád Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary.
| |
Collapse
|
24
|
Urinary proteome in inherited nephrolithiasis. Urolithiasis 2018; 47:91-98. [DOI: 10.1007/s00240-018-01104-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/08/2018] [Indexed: 12/18/2022]
|
25
|
Kovacevic L, Caruso JA, Lu H, Kovacevic N, Lakshmanan Y, Carruthers NJ, Goldfarb DS. Urine proteomic profiling in patients with nephrolithiasis and cystinuria. Int Urol Nephrol 2018; 51:593-599. [PMID: 30519981 DOI: 10.1007/s11255-018-2044-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE The purpose of the study was to assess the differences in the concentration and function of urinary proteins between patients with cystine stones (CYS) and healthy controls (HC). We postulated that CYS and HC groups would demonstrate different proteomic profiles. METHODS A pilot study was performed comparing urinary proteomes of 10 patients with CYS and 10 age- and gender-matched HC, using liquid chromatography-mass spectrometry. Proteins which met the selection criteria (i) ≥ 2 unique peptide identifications; (ii) ≥ twofold difference in protein abundance; and (iii) ≤ 0.05 p value for the Fisher's Exact Test were analyzed using Gene Ontology classifications. RESULTS Of the 2097 proteins identified by proteomic analysis, 398 proteins were significantly different between CYS and HC. Of those, 191 were involved in transport processes and 61 in inflammatory responses. The majority were vesicle-mediated transport proteins (78.5%), and 1/3 of them were down-regulated; of those, 12 proteins were involved in endosomal transport (including 6 charged multivesicular body proteins (CHMP) and 3 vacuolar sorting-associated proteins) and 9 in transmembrane transport. Myosin-2 and two actin-related proteins were significantly up-regulated in the vesicle-mediated transport group. CONCLUSION We provide proteomic evidence of impaired endocytosis, dysregulation of actin and myosin cytoskeleton, and inflammation in CYS. Endosomal transport proteins were down-regulated mainly through defective CHMP. These findings may contribute to further understanding of the pathogenesis of CYS, potentially affecting its management.
Collapse
Affiliation(s)
- Larisa Kovacevic
- Department of Pediatric Urology, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI, 48201, USA.
| | - Joseph A Caruso
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hong Lu
- Department of Pediatric Urology, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI, 48201, USA
| | - Natalija Kovacevic
- Department of Pediatric Urology, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI, 48201, USA
- Vattikuti Urology Institute, Henri Ford Hospital, Detroit, MI, USA
| | - Yegappan Lakshmanan
- Department of Pediatric Urology, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI, 48201, USA
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - David S Goldfarb
- Nephrology Division, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
26
|
Yao ZY, Chen WB, Shao SS, Ma SZ, Yang CB, Li MZ, Zhao JJ, Gao L. Role of exosome-associated microRNA in diagnostic and therapeutic applications to metabolic disorders. J Zhejiang Univ Sci B 2018; 19:183-198. [PMID: 29504312 DOI: 10.1631/jzus.b1600490] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolic disorders are classified clinically as a complex and varied group of diseases including metabolic syndrome, obesity, and diabetes mellitus. Fat toxicity, chronic inflammation, and oxidative stress, which may change cellular functions, are considered to play an essential role in the pathogenetic progress of metabolic disorders. Recent studies have found that cells secrete nanoscale vesicles containing proteins, lipids, nucleic acids, and membrane receptors, which mediate signal transduction and material transport to neighboring and distant cells. Exosomes, one type of such vesicles, are reported to participate in multiple pathological processes including tumor metastasis, atherosclerosis, chronic inflammation, and insulin resistance. Research on exosomes has focused mainly on the proteins they contain, but recently the function of exosome-associated microRNA has drawn a lot of attention. Exosome-associated microRNAs regulate the physiological function and pathological processes of metabolic disorders. They may also be useful as novel diagnostics and therapeutics given their special features of non-immunogenicity and quick extraction. In this paper, we summarize the structure, content, and functions of exosomes and the potential diagnostic and therapeutic applications of exosome-associated microRNAs in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Zhen-Yu Yao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Wen-Bin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Shan-Shan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Shi-Zhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Chong-Bo Yang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Meng-Zhu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Jia-Jun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University / Shandong Key Laboratory of Endocrinology and Lipid Metabolism / Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
27
|
Rollet-Cohen V, Bourderioux M, Lipecka J, Chhuon C, Jung VA, Mesbahi M, Nguyen-Khoa T, Guérin-Pfyffer S, Schmitt A, Edelman A, Sermet-Gaudelus I, Guerrera IC. Comparative proteomics of respiratory exosomes in cystic fibrosis, primary ciliary dyskinesia and asthma. J Proteomics 2018; 185:1-7. [PMID: 30032860 DOI: 10.1016/j.jprot.2018.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/18/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023]
Abstract
Cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) are pulmonary genetic disorders associated with inflammation and heterogeneous progression of the lung disease. We hypothesized that respiratory exosomes, nanovesicles circulating in the respiratory tract, may be involved in the progression of inflammation-related lung damage. We compared proteomic content of respiratory exosomes isolated from bronchoalveolar lavage fluid in CF and PCD to asthma (A), a condition also associated with inflammation but with less severe lung damage. BALF were obtained from 3 CF, 3 PCD and 6 A patients. Exosomes were isolated from BALF by ultracentrifugations and characterized using immunoelectron microscopy and western-blot. Exosomal protein analysis was performed by high-resolution mass spectrometry using label-free quantification. Exosome enrichment was validated by electron microscopy and immunodetection of CD9, CD63 and ALIX. Mass spectrometry analysis allowed the quantification of 665 proteins, of which 14 were statistically differential according to the disease. PCD and CF exosomes contained higher levels of antioxidant proteins (Superoxide-dismutase, Glutathione peroxidase-3, Peroxiredoxin-5) and proteins involved in leukocyte chemotaxis. All these proteins are known activators of the NF-KappaB pathway. Our results suggest that respiratory exosomes are involved in the pro-inflammatory propagation during the extension of CF or PCD lung diseases. SIGNIFICANCE The mechanism of local propagation of lung disease in cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) is not clearly understood. Differential Proteomic profiles of exosomes isolated from BAL from CF, PCD and asthmatic patients suggest that they carry pro-inflammatory proteins that may be involved in the progression of lung damage.
Collapse
Affiliation(s)
- Virginie Rollet-Cohen
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Cystic Fibrosis Center, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Matthieu Bourderioux
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Joanna Lipecka
- Inserm U894, Center of Psychiatry and Neurosciences, Paris, France
| | - Cerina Chhuon
- Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent A Jung
- Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Myriam Mesbahi
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Thao Nguyen-Khoa
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Laboratory of General Biochemistry, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Sophie Guérin-Pfyffer
- Cystic Fibrosis Center, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Alain Schmitt
- Electron Microscopy Platform, Inserm U1016, Institut Cochin, CNRS UMR 81044, Université Paris Descartes, Paris, France
| | - Aleksander Edelman
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Sermet-Gaudelus
- Inserm U1151, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Cystic Fibrosis Center, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France.
| |
Collapse
|
28
|
Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 2017; 13:731-749. [PMID: 29081510 DOI: 10.1038/nrneph.2017.148] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.
Collapse
|
29
|
Yu Y, Sikorski P, Smith M, Bowman-Gholston C, Cacciabeve N, Nelson KE, Pieper R. Comprehensive Metaproteomic Analyses of Urine in the Presence and Absence of Neutrophil-Associated Inflammation in the Urinary Tract. Theranostics 2017; 7:238-252. [PMID: 28042331 PMCID: PMC5197061 DOI: 10.7150/thno.16086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/28/2016] [Indexed: 12/17/2022] Open
Abstract
Inflammation in the urinary tract results in a urinary proteome characterized by a high dynamic range of protein concentrations and high variability in protein content. This proteome encompasses plasma proteins not resorbed by renal tubular uptake, renal secretion products, proteins of immune cells and erythrocytes derived from trans-urothelial migration and vascular leakage, respectively, and exfoliating urothelial and squamous epithelial cells. We examined how such proteins partition into soluble urine (SU) and urinary pellet (UP) fractions by analyzing 33 urine specimens 12 of which were associated with a urinary tract infection (UTI). Using mass spectrometry-based metaproteomic approaches, we identified 5,327 non-redundant human proteins, 2,638 and 4,379 of which were associated with SU and UP fractions, respectively, and 1,206 non-redundant protein orthology groups derived from pathogenic and commensal organisms of the urogenital tract. Differences between the SU and UP proteomes were influenced by local inflammation, supported by respective comparisons with 12 healthy control urine proteomes. Clustering analyses showed that SU and UP fractions had proteomic signatures discerning UTIs, vascular injury, and epithelial cell exfoliation from the control group to varying degrees. Cases of UTI revealed clusters of proteins produced by activated neutrophils. Network analysis supported the central role of neutrophil effector proteins in the defense against invading pathogens associated with subsequent coagulation and wound repair processes. Our study expands the existing knowledge of the urinary proteome under perturbed conditions, and should be useful as reference dataset in the search of biomarkers.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850
| | - Patricia Sikorski
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850
| | - Madeline Smith
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850
| | - Cynthia Bowman-Gholston
- Quest Diagnostics at Shady Grove Adventist Hospital, 9901 Medical Center Drive, Rockville 20850, MD
| | - Nicolas Cacciabeve
- Advanced Pathology Associates LLC at Shady Grove Adventist Hospital, 9901 Medical Center Drive, Rockville 20850, MD
| | - Karen E. Nelson
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850
| | - Rembert Pieper
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850
| |
Collapse
|
30
|
Lipecka J, Chhuon C, Bourderioux M, Bessard MA, van Endert P, Edelman A, Guerrera IC. Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP). Proteomics 2016; 16:1852-7. [DOI: 10.1002/pmic.201600103] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Joanna Lipecka
- The CPN Proteomics Facility - 3P5; Center of Psychiatry and Neuroscience; UMR INSERM 894 Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Cerina Chhuon
- Proteomic Platform Necker, PPN-3P5; Structure Fédérative de Recherche SFR Necker US24; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Matthieu Bourderioux
- Proteomic Platform Necker, PPN-3P5; Structure Fédérative de Recherche SFR Necker US24; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Marie-Andrée Bessard
- Institut National de la Santé et de la Recherche Médicale; Unité 1151 Paris France
- Centre National de la Recherche Scientifique; Unité 8253 Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale; Unité 1151 Paris France
- Centre National de la Recherche Scientifique; Unité 8253 Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Aleksander Edelman
- Institut National de la Santé et de la Recherche Médicale; Unité 1151 Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, PPN-3P5; Structure Fédérative de Recherche SFR Necker US24; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| |
Collapse
|
31
|
Thomas S, Hao L, Ricke WA, Li L. Biomarker discovery in mass spectrometry-based urinary proteomics. Proteomics Clin Appl 2016; 10:358-70. [PMID: 26703953 DOI: 10.1002/prca.201500102] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/05/2015] [Accepted: 12/21/2015] [Indexed: 01/03/2023]
Abstract
Urinary proteomics has become one of the most attractive topics in disease biomarker discovery. MS-based proteomic analysis has advanced continuously and emerged as a prominent tool in the field of clinical bioanalysis. However, only few protein biomarkers have made their way to validation and clinical practice. Biomarker discovery is challenged by many clinical and analytical factors including, but not limited to, the complexity of urine and the wide dynamic range of endogenous proteins in the sample. This article highlights promising technologies and strategies in the MS-based biomarker discovery process, including study design, sample preparation, protein quantification, instrumental platforms, and bioinformatics. Different proteomics approaches are discussed, and progresses in maximizing urinary proteome coverage and standardization are emphasized in this review. MS-based urinary proteomics has great potential in the development of noninvasive diagnostic assays in the future, which will require collaborative efforts between analytical scientists, systems biologists, and clinicians.
Collapse
Affiliation(s)
- Samuel Thomas
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ling Hao
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - William A Ricke
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
32
|
Bruschi M, Santucci L, Ravera S, Candiano G, Bartolucci M, Calzia D, Lavarello C, Inglese E, Ramenghi LA, Petretto A, Ghiggeri GM, Panfoli I. Human urinary exosome proteome unveils its aerobic respiratory ability. J Proteomics 2016; 136:25-34. [PMID: 26850698 DOI: 10.1016/j.jprot.2016.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Exosomes are 40-100-nm vesicles released by most cell types after fusion of multivesicular endosomes with the plasma membrane. Exosomes, ubiquitary in body fluids including urines, contain proteins and RNA species specific of the tissue of origin. Exosomes from urine have been extensively studied as a promising reservoir for disease biomarkers. Here, we report the proteome analysis of urinary exosomes compared to urinoma, studied by Orbitrap mass spectrometry. A discovery approach was utilized on the sample. 3429 proteins were present, with minimal overlapping among exosome and urinoma. 959 proteins (28%) in exosome and 1478 proteins (43%) in urinoma were exclusively present in only one group. By cytoscape analysis, the biological process gene ontology was correlated to their probability (P ≤ 0.05) to be functional. This was never studied before and showed a significant clustering around metabolic functions, in particular to aerobic ATP production. Urinary exosomes carry out oxidative phosphorylation, being able to synthesize ATP and consume oxygen. A previously unsuspected function emerges for human urinary exosomes as bioactive vesicles that consume oxygen to aerobically synthesize ATP. Determination of normal human urine proteome can help generate the healthy urinary protein database for comparison, useful for various renal diseases. BIOLOGICAL SIGNIFICANCE The findings reported represent a significant advance in the understanding of the healthy human urinary proteome. The methodology utilized to analyze the collection of proteomic data allowed the assessment of the unique composition of urinary exosomes with respect to urinoma and to elucidate the presence in the former of molecular pathways previously unknown. The paper has the potential to impact its field of research, due to the biological relevance of the metabolic capacity of urinary exosomes, which may represent their important general feature.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Division of Nephrology, Dialysis, and Transplantation and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa, Italy
| | - Laura Santucci
- Division of Nephrology, Dialysis, and Transplantation and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Ravera
- Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy
| | - Giovanni Candiano
- Division of Nephrology, Dialysis, and Transplantation and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Bartolucci
- Laboratory of Mass Spectrometry - Core Facilities, Istituto Giannina Gaslini, Genova, Italy
| | - Daniela Calzia
- Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy
| | - Chiara Lavarello
- Laboratory of Mass Spectrometry - Core Facilities, Istituto Giannina Gaslini, Genova, Italy
| | - Elvira Inglese
- Laboratory of Mass Spectrometry - Core Facilities, Istituto Giannina Gaslini, Genova, Italy
| | - Luca A Ramenghi
- Neonatal Intensive Care Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Petretto
- Laboratory of Mass Spectrometry - Core Facilities, Istituto Giannina Gaslini, Genova, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, and Transplantation and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Panfoli
- Dipartimento di Farmacia, Laboratorio di Biochimica, Università di Genova, Genoa, Italy.
| |
Collapse
|
33
|
Raimondo F, Cerra D, Magni F, Pitto M. Urinary proteomics for the study of genetic kidney diseases. Expert Rev Proteomics 2016; 13:309-24. [DOI: 10.1586/14789450.2016.1136218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Cantley LG, Colangelo CM, Stone KL, Chung L, Belcher J, Abbott T, Cantley JL, Williams KR, Parikh CR. Development of a Targeted Urine Proteome Assay for kidney diseases. Proteomics Clin Appl 2015. [PMID: 26220717 DOI: 10.1002/prca.201500020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Since human urine is the most readily available biofluid whose proteome changes in response to disease, it is a logical sample for identifying protein biomarkers for kidney diseases. EXPERIMENTAL DESIGN Potential biomarkers were identified by using a multiproteomics workflow to compare urine proteomes of kidney transplant patients with immediate and delayed graft function. Differentially expressed proteins were identified, and corresponding stable isotope labeled internal peptide standards were synthesized for scheduled MRM. RESULTS The Targeted Urine Proteome Assay (TUPA) was then developed by identifying those peptides for which there were at least two transitions for which interference in a urine matrix across 156 MRM runs was <30%. This resulted in an assay that monitors 224 peptides from 167 quantifiable proteins. CONCLUSIONS AND CLINICAL RELEVANCE TUPA opens the way for using a robust mass spectrometric technology, MRM, for quantifying and validating biomarkers from among 167 urinary proteins. This approach, while developed using differentially expressed urinary proteins from patients with delayed versus immediate graft function after kidney transplant, can be expanded to include differentially expressed urinary proteins in multiple kidney diseases. Thus, TUPA could provide a single assay to help diagnose, prognose, and manage many kidney diseases.
Collapse
Affiliation(s)
- Lloyd G Cantley
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | | | - Kathryn L Stone
- W.M. Keck Foundation Biotechnology Laboratory, School of Medicine, Yale University, New Haven, CT, USA
| | - Lisa Chung
- W.M. Keck Foundation Biotechnology Laboratory, School of Medicine, Yale University, New Haven, CT, USA
| | - Justin Belcher
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Thomas Abbott
- W.M. Keck Foundation Biotechnology Laboratory, School of Medicine, Yale University, New Haven, CT, USA
| | - Jennifer L Cantley
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Kenneth R Williams
- W.M. Keck Foundation Biotechnology Laboratory, School of Medicine, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, CT, USA
| | - Chirag R Parikh
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.,Program of Applied Translational Research, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Kovacevic L, Lu H, Goldfarb DS, Lakshmanan Y, Caruso JA. Urine proteomic analysis in cystinuric children with renal stones. J Pediatr Urol 2015; 11:217.e1-6. [PMID: 26076823 PMCID: PMC4540695 DOI: 10.1016/j.jpurol.2015.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/25/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The gene mutations responsible for cystinuria do not fully explain kidney stone activity, suggesting that specific proteins may serve as promoters of cystine precipitation, aggregation or epithelial adherence. In this study we assessed (1) the differences in the urinary proteins between children with cystinuria and kidney stones (CYS) and healthy controls (HC), with particular attention to the fibrosis-related proteins, and (2) the presence of diagnostic biomarkers for CYS. MATERIAL AND METHODS We conducted a pilot study comparing individual urinary proteomes of 2 newly diagnosed children with CYS and 2 age- and gender-matched HC, using liquid chromatography-mass spectrometry. Relative protein abundance was estimated using spectral counting. Proteins of interest in both CYS and HC were selected using the following criteria: i) ≥5 spectral counts; ii) ≥2-fold difference in spectral counts; and iii) ≤0.05 p-value for the Fisher's Exact Test. DISCUSSION This study demonstrates a different urinary polypeptide profile in two children with CYS compared to two HC. Of the 623 proteins identified by proteomic analysis, 180 exhibited at least a 2-fold increased relative abundance in CYS compared to HC. Of these, 39 were involved in response to stress, 26 in response to wounding, 21 in inflammatory response, 18 in immune response, and 4 in cellular response to oxidative stress. 133 proteins were found only in children with CYS, 33 of which met the selection criteria. Of these 33 unique proteins, six are known to be associated with fibrosis pathways (Table). The major limitation of this study is the small number of samples that were analyzed. Validation using highly specific methods such as ELISA is needed. CONCLUSION We provide proteomic evidence of oxidative injury, inflammation, wound healing and fibrosis in two children with CYS. We speculate that oxidative stress and inflammation may cause remodeling via actin and vimentin pathways, leading to fibrosis. Additionally, we identified ITIH and MMP-9 as potential diagnostic biomarkers and novel therapeutic targets in CYS. These proteins merit further investigation.
Collapse
Affiliation(s)
- Larisa Kovacevic
- Department of Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA.
| | - Hong Lu
- Department of Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA
| | - David S Goldfarb
- Nephrology Division, NYU Langone Medical Center, New York, NY, USA
| | - Yegappan Lakshmanan
- Department of Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Joseph A Caruso
- Proteomic Facility, Wayne State University, Detroit, MI, USA
| |
Collapse
|
36
|
Bruschi M, Ravera S, Santucci L, Candiano G, Bartolucci M, Calzia D, Lavarello C, Inglese E, Petretto A, Ghiggeri G, Panfoli I. The human urinary exosome as a potential metabolic effector cargo. Expert Rev Proteomics 2015; 12:425-32. [DOI: 10.1586/14789450.2015.1055324] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR. Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res 2015; 14:2367-84. [PMID: 25927954 DOI: 10.1021/pr501279t] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review discusses extracellular vesicles (EVs), which are submicron-scale, anuclear, phospholipid bilayer membrane enclosed vesicles that contain lipids, metabolites, proteins, and RNA (micro and messenger). They are shed from many, if not all, cell types and are present in biological fluids and conditioned cell culture media. The term EV, as coined by the International Society of Extracellular Vesicles (ISEV), encompasses exosomes (30-100 nm in diameter), microparticles (100-1000 nm), apoptotic blebs, and other EV subsets. EVs have been implicated in cell-cell communication, coagulation, inflammation, immune response modulation, and disease progression. Multiple studies report that EV secretion from disease-affected cells contributes to disease progression, e.g., tumor niche formation and cancer metastasis. EVs are attractive sources of biomarkers due to their biological relevance and relatively noninvasive accessibility from a range of physiological fluids. This review is focused on the molecular profiling of the protein and lipid constituents of EVs, with emphasis on mass-spectrometry-based "omic" analytical techniques. The challenges in the purification and molecular characterization of EVs, including contamination of isolates and limitations in sample quantities, are discussed along with possible solutions. Finally, the review discusses the limited but growing investigation of post-translational modifications of EV proteins and potential strategies for future in-depth molecular characterization of EVs.
Collapse
Affiliation(s)
| | | | - Ionita Ghiran
- ∥Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | | | - David A Frank
- ⊥Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States.,#Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
38
|
Halden RU, Hartmann EM, Denslow ND, Haynes PA, LaBaer J. Recent advances in proteomics applied to elucidate the role of environmental impacts on human health and organismal function. J Proteome Res 2015; 14:1-4. [PMID: 25751307 DOI: 10.1021/pr501224f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rolf U Halden
- Center for Environmental Security, Biodesign Institute, Arizona State University , 781 East Terrace Mall, Tempe, Arizona 85287, United States
| | | | | | | | | |
Collapse
|