1
|
Reckelkamm SL, Baumeister SE, Hagenfeld D, Alayash Z, Nolde M. Population Proteomics: A Tool to Gain Insights Into the Inflamed Periodontium. Proteomics 2024:e202400055. [PMID: 39740164 DOI: 10.1002/pmic.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025]
Abstract
Periodontitis, characterized by inflammatory loss of tooth-supporting tissues associated with biofilm, is among the most prevalent chronic diseases globally, affecting approximately 50% of the adult population to a moderate extent and cases of severe periodontitis surpassing the one billion mark. Proteomics analyses of blood, serum, and oral fluids have provided valuable insights into the complex processes occurring in the inflamed periodontium. However, until now, proteome analyses have been primarily limited to small groups of diseased versus healthy individuals. The emergence of population-scale analysis of proteomic data offers opportunities to uncover disease-associated pathways, identify potential drug targets, and discover biomarkers. In this review, we will explore the applications of proteomics in population-based studies and discuss the advancements it brings to our understanding of periodontal inflammation. Additionally, we highlight the challenges posed by currently available data and offer perspectives for future applications in periodontal research. This review aims to explain the ongoing efforts in leveraging proteomics for elucidating the complexities of periodontal diseases and paving the way for clinical strategies.
Collapse
Affiliation(s)
- Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
- Policlinic for Periodontology and Operative Dentistry, University of Münster, Münster, Germany
| | | | - Daniel Hagenfeld
- Policlinic for Periodontology and Operative Dentistry, University of Münster, Münster, Germany
| | - Zoheir Alayash
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| |
Collapse
|
2
|
López-Juan AL, Moreno-Calleja LM, Benedé JL, Chisvert A. Dispersive microextraction techniques as efficient strategies for the analysis of saliva: A comprehensive review. J Pharm Biomed Anal 2024; 255:116644. [PMID: 39708481 DOI: 10.1016/j.jpba.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
This review article brings together two of the current hot-spots in the field of analytical chemistry, and more specifically in the sample preparation stage: the use of dispersive microextraction techniques, and the analysis of saliva. Due to saliva collection is minimally invasive, it is increasingly being considered in bioanalysis. Moreover, bioanalysis is routine and agglutinates a high number of samples demanding for fast results, thus high-throughput assays are highly required. On the other hand, if something characterizes biological matrices, including saliva, is their complex composition. To adapt the matrix to the analytical method to be applied and to avoid as far as possible the matrix effect, an efficient sample preparation stage is required. To this regard dispersive microextraction techniques, as rapid, efficient and sustainable sample preparation approaches, play a crucial role. In the first part of the review, different workflows for the collection and pretreatment will be briefly described, placing special emphasis on advice to follow. Then, a compilation of the different applications of dispersive techniques for the analysis of saliva is presented, in which the trends observed in both specific analytes and microextraction approaches used are discussed.
Collapse
Affiliation(s)
- Andreu L López-Juan
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Luis Miguel Moreno-Calleja
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain.
| |
Collapse
|
3
|
Li Y, Ou Y, Fan K, Liu G. Salivary diagnostics: opportunities and challenges. Theranostics 2024; 14:6969-6990. [PMID: 39629130 PMCID: PMC11610148 DOI: 10.7150/thno.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/29/2024] [Indexed: 12/06/2024] Open
Abstract
Saliva contains a diverse array of biomarkers indicative of various diseases. Saliva testing has been a major advancement towards non-invasive point-of-care diagnosis with clinical significance. However, there are challenges associated with salivary diagnosis from sample treatment and standardization. This review highlights the biomarkers in saliva and their role in identifying relevant diseases. It provides an overview and discussion about the current practice of saliva collection and processing, and advancements in saliva detection systems from in vitro methods to wearable oral devices. The review also addresses challenges in saliva diagnostics and proposes solutions, aiming to offer a comprehensive understanding and practical guidance for improving saliva-based detection in clinical diagnosis. Saliva diagnosis provides a rapid, effective, and safe alternative to traditional blood and urine tests for screening large populations and enhancing infectious disease diagnosis and surveillance. It meets the needs of various fields such as disease management, drug screening, and personalized healthcare with advances in saliva detection systems offering high sensitivity, fast response times, portability, and automation. Standardization of saliva collection, treatment, biomarker discovery, and detection between different laboratories needs to be implemented to obtain reliable salivary diagnosis in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
4
|
Dyachenko EI, Bel’skaya LV. Salivary Transmembrane Mucins of the MUC1 Family (CA 15-3, CA 27.29, MCA) in Breast Cancer: The Effect of Human Epidermal Growth Factor Receptor 2 (HER2). Cancers (Basel) 2024; 16:3461. [PMID: 39456554 PMCID: PMC11506585 DOI: 10.3390/cancers16203461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The MUC1 family of transmembrane glycoproteins (CA 15-3, CA 27.29, MCA) is aberrantly expressed among patients with breast cancer. Objectives: to measure the level of degradation products of MUC1, including CA 15-3, CA 27.29, and MCA, in the saliva of breast cancer patients and to describe the biochemical processes that influence their expression and the regulation of their biological functions. Methods: The case-control study included three groups (breast cancer, fibroadenomas, and healthy controls). All study participants provided saliva samples strictly before starting treatment. The levels of MUC1, including CA 15-3, CA 27.29, and MCA, free progesterone and estradiol, cytokines (MCP-1, VEGF, TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18), and amino acids (Asp, Gln, Gly, His, Leu + Ile, Orn, Phe, Pro, Tyr) were determined. Results: It was shown that the levels of the MUC1 family in the saliva of patients with HER2-positive breast cancer were significantly lower compared to the control group. The level of pro-inflammatory cytokines and the level of free estradiol affected the expression of MUC1. We obtained a reliable relationship between the aggressive nature of tumor growth, an increased level of pro-inflammatory cytokines, a low level of free estradiol, and the suppressed expression of salivary MUC1. Conclusions: Among patients with aggressive breast cancer, a high level of pro-inflammatory cytokines, and a low level of free estradiol, there was an inhibition of the expression of pathologically unchanged glycoprotein MUC1 in saliva.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
5
|
Júnior CMO, Júnior HNDA, Tertulino MD, Guerra RR, Rola LD, da Silva AR, de Moura CEB, de Oliveira MF. Morphology of Larger Salivary Glands in Peccaries ( Pecari tajacu Linnaeus, 1758). Animals (Basel) 2024; 14:2891. [PMID: 39409840 PMCID: PMC11475750 DOI: 10.3390/ani14192891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
This work aims to study the major salivary gland morphology of peccaries during their growth. The glands were analyzed using macroscopic description, light microscopy, electron microscopy, histochemistry, and immunohistochemistry. Topographically, the salivary glands resemble other animals, including domestic animals and pigs. During growth, the parotid enlarges and mandibular gland loses weight. Histologically, the parotid has serous production, and sublingual has mucous production, resembles most species, however, mandibular gland produces mucous, unlike other animals, including pigs, which produce seromucous secretion. Histochemically, parotid produces more acidic mucins than pigs and it undergoes maturation during development; mandibular, and especially the sublingual gland, produce more acidic and basic mucopolysaccharides than pigs. The results found with transmission and scanning electron microscopy techniques corroborate the histological and histochemistry findings. The major salivary glands were positive to different lecithins (Com-A, BSA-I-B4, WGA and PNA), which were also more positive than in pigs and sheep. We conclude that collared peccaries have a salivary secretion that facilitates the digestion of carbohydrates, and biometric characteristics and positivity to lecithins that facilitate adaptation to foods with antinutritional factors.
Collapse
Affiliation(s)
- Carlos Magno Oliveira Júnior
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Campus Fortaleza, Fortaleza 60115-222, Brazil; (C.M.O.J.); (M.D.T.)
| | | | - Moisés Dantas Tertulino
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Campus Fortaleza, Fortaleza 60115-222, Brazil; (C.M.O.J.); (M.D.T.)
| | - Ricardo Romão Guerra
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Campus II, Areia 58397-000, Brazil;
| | - Luciana Diniz Rola
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Campus II, Areia 58397-000, Brazil;
| | - Alexandre Rodrigues da Silva
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, Brazil; (A.R.d.S.); (C.E.B.d.M.); (M.F.d.O.)
| | - Carlos Eduardo Bezerra de Moura
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, Brazil; (A.R.d.S.); (C.E.B.d.M.); (M.F.d.O.)
| | - Moacir Franco de Oliveira
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, Brazil; (A.R.d.S.); (C.E.B.d.M.); (M.F.d.O.)
| |
Collapse
|
6
|
Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, Darban-Sarokhalil D. Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies. Front Microbiol 2024; 15:1431785. [PMID: 39228377 PMCID: PMC11368800 DOI: 10.3389/fmicb.2024.1431785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Kouhzad
- Department of Genetics, Faculty of Science, Islamic Azad University North Tehran Branch, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lavoisier A, Jamme T, Rousseau F, Morzel M. Impact of saliva incorporation on the rheological properties of in vitro gastric contents formulated from sour cream. J Texture Stud 2024; 55:e12851. [PMID: 38952153 DOI: 10.1111/jtxs.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Rheological properties of gastric contents depend on the food ingested, and on the volume and composition of secretions from the host, which may vary. This study investigates the impact of saliva regular incorporation in the stomach after a meal on the rheological properties of gastric contents, considering two levels of salivary flow (low = 0.5 and high = 1.5 mL/min). In vitro chymes were obtained by mixing sour cream, simulated gastric fluid, two different volumes of oral fluid (at-rest human saliva, SSF for Simulated Salivary Fluid or water) and adjusting pH at 3. Chymes samples were characterized at 37°C for their particle size and rheological properties. Overall, particle size distribution was not different between samples: incorporating a larger volume of saliva resulted in more heterogeneity, but the surface area moment D[3,2] and volume moment D[4,3] did not differ significantly with the oral fluid type. Shear viscosity of chyme samples was higher when saliva was incorporated, in comparison with water or SSF. In addition, as shown from data extracted atγ ̇ $$ \dot{\gamma} $$ = 20 s-1 the higher the fluid volume the lower the shear viscosity, which is attributed to a dilution effect. However, this dilution effect was attenuated in the case of saliva, most likely due to its composition in organic compounds (e.g., mucins) contributing to the rheological properties of this biological fluid. In these in vitro conditions, both saliva and the salivation rate had a significant but slight impact on the rheological properties of gastric contents (of the order of 1-5 mPa s atγ ̇ $$ \dot{\gamma} $$ = 20 s-1).
Collapse
Affiliation(s)
| | - Tino Jamme
- INRAE, Institut Agro, STLO, Rennes, France
| | | | | |
Collapse
|
8
|
Ahmad P, Hussain A, Siqueira WL. Mass spectrometry-based proteomic approaches for salivary protein biomarkers discovery and dental caries diagnosis: A critical review. MASS SPECTROMETRY REVIEWS 2024; 43:826-856. [PMID: 36444686 DOI: 10.1002/mas.21822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dental caries is a multifactorial chronic disease resulting from the intricate interplay among acid-generating bacteria, fermentable carbohydrates, and several host factors such as saliva. Saliva comprises several proteins which could be utilized as biomarkers for caries prevention, diagnosis, and prognosis. Mass spectrometry-based salivary proteomics approaches, owing to their sensitivity, provide the opportunity to investigate and unveil crucial cariogenic pathogen activity and host indicators and may demonstrate clinically relevant biomarkers to improve caries diagnosis and management. The present review outlines the published literature of human clinical proteomics investigations on caries and extensively elucidates frequently reported salivary proteins as biomarkers. This review also discusses important aspects while designing an experimental proteomics workflow. The protein-protein interactions and the clinical relevance of salivary proteins as biomarkers for caries, together with uninvestigated domains of the discipline are also discussed critically.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ahmed Hussain
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
9
|
Ashford JR. Impaired oral health: a required companion of bacterial aspiration pneumonia. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1337920. [PMID: 38894716 PMCID: PMC11183832 DOI: 10.3389/fresc.2024.1337920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Laryngotracheal aspiration has a widely-held reputation as a primary cause of lower respiratory infections, such as pneumonia, and is a major concern of care providers of the seriously ill orelderly frail patient. Laryngeal mechanical inefficiency resulting in aspiration into the lower respiratory tract, by itself, is not the cause of pneumonia. It is but one of several factors that must be present simultaneously for pneumonia to develop. Aspiration of oral and gastric contentsoccurs often in healthy people of all ages and without significant pulmonary consequences. Inthe seriously ill or elderly frail patient, higher concentrations of pathogens in the contents of theaspirate are the primary catalyst for pulmonary infection development if in an immunocompromised lower respiratory system. The oral cavity is a complex and ever changing eco-environment striving to maintain homogeneity among the numerous microbial communities inhabiting its surfaces. Poor maintenance of these surfaces to prevent infection can result inpathogenic changes to these microbial communities and, with subsequent proliferation, can altermicrobial communities in the tracheal and bronchial passages. Higher bacterial pathogen concentrations mixing with oral secretions, or with foods, when aspirated into an immunecompromised lower respiratory complex, may result in bacterial aspiration pneumonia development, or other respiratory or systemic diseases. A large volume of clinical evidence makes it clear that oral cleaning regimens, when used in caring for ill or frail patients in hospitals and long-term care facilities, drastically reduce the incidence of respiratory infection and death. The purpose of this narrative review is to examine oral health as a required causative companionin bacterial aspiration pneumonia development, and the effectiveness of oral infection control inthe prevention of this disease.
Collapse
|
10
|
Berkel Kasikci M, Guilois-Dubois S, Billet K, Jardin J, Guyot S, Morzel M. Interactions between Salivary Proteins and Apple Polyphenols and the Fate of Complexes during Gastric Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38603459 DOI: 10.1021/acs.jafc.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Beneficial polyphenols in apples can reach the stomach as complexes formed with salivary proteins. The present study aimed at documenting the interactions between salivary proteins and cider apple polyphenols and the fate of complexes during gastric digestion. A polyphenolic extract was mixed with human saliva, and interactions were characterized by analyzing proteins and polyphenols in the insoluble and soluble fractions of the mixtures, before and after in vitro gastric digestion. Results confirmed that proline-rich proteins can efficiently precipitate polyphenols and suggested that two zinc-binding proteins can also form insoluble complexes with polyphenols. The classes of polyphenols involved in such complexes depended on the polyphenol-to-protein ratio. In vitro gastric digestion led to extensive proteolysis of salivary proteins, and we formulate the hypothesis that the resulting peptides can interact with and precipitate some procyanidins. Saliva may therefore partly modulate the bioaccessibility of at least procyanidins in the gastric compartment.
Collapse
Affiliation(s)
- Müzeyyen Berkel Kasikci
- INRAE, Institut Agro, STLO, 35042 Rennes, France
- Department of Food Engineering, Manisa Celal Bayar University, 45140 Manisa, Turkey
| | | | | | | | | | | |
Collapse
|
11
|
Poirier N, Ménétrier F, Moreno J, Boichot V, Heydel JM, Didierjean C, Canivenc-Lavier MC, Canon F, Neiers F, Schwartz M. Rattus norvegicus Glutathione Transferase Omega 1 Localization in Oral Tissues and Interactions with Food Phytochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5887-5897. [PMID: 38441878 DOI: 10.1021/acs.jafc.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glutathione transferases are xenobiotic-metabolizing enzymes with both glutathione-conjugation and ligandin roles. GSTs are present in chemosensory tissues and fluids of the nasal/oral cavities where they protect tissues from exogenous compounds, including food molecules. In the present study, we explored the presence of the omega-class glutathione transferase (GSTO1) in the rat oral cavity. Using immunohistochemistry, GSTO1 expression was found in taste bud cells of the tongue epithelium and buccal cells of the oral epithelium. Buccal and lingual extracts exhibited thiol-transferase activity (4.9 ± 0.1 and 1.8 ± 0.1 μM/s/mg, respectively). A slight reduction from 4.9 ± 0.1 to 4.2 ± 0.1 μM/s/mg (p < 0.05; Student's t test) was observed in the buccal extract with 100 μM GSTO1-IN-1, a specific inhibitor of GSTO1. RnGSTO1 exhibited the usual activities of omega GSTs, i.e., thiol-transferase (catalytic efficiency of 8.9 × 104 M-1·s-1), and phenacyl-glutathione reductase (catalytic efficiency of 8.9 × 105 M-1·s-1) activities, similar to human GSTO1. RnGSTO1 interacts with food phytochemicals, including bitter compounds such as luteolin (Ki = 3.3 ± 1.9 μM). Crystal structure analysis suggests that luteolin most probably binds to RnGSTO1 ligandin site. Our results suggest that GSTO1 could interact with food phytochemicals in the oral cavity.
Collapse
Affiliation(s)
- Nicolas Poirier
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Franck Ménétrier
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Jade Moreno
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Valentin Boichot
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Jean-Marie Heydel
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | | | | | - Francis Canon
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Fabrice Neiers
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Mathieu Schwartz
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| |
Collapse
|
12
|
Göritzer K, Groppelli E, Grünwald-Gruber C, Figl R, Ni F, Hu H, Li Y, Liu Y, Hu Q, Puligedda RD, Jung JW, Strasser R, Dessain S, Ma JKC. Recombinant neutralizing secretory IgA antibodies for preventing mucosal acquisition and transmission of SARS-CoV-2. Mol Ther 2024; 32:689-703. [PMID: 38268188 PMCID: PMC10928148 DOI: 10.1016/j.ymthe.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Passive delivery of antibodies to mucosal sites may be a valuable adjunct to COVID-19 vaccination to prevent infection, treat viral carriage, or block transmission. Neutralizing monoclonal IgG antibodies are already approved for systemic delivery, and several clinical trials have been reported for delivery to mucosal sites where SARS-CoV-2 resides and replicates in early infection. However, secretory IgA may be preferred because the polymeric complex is adapted for the harsh, unstable external mucosal environment. Here, we investigated the feasibility of producing neutralizing monoclonal IgA antibodies against SARS-CoV-2. We engineered two class-switched mAbs that express well as monomeric and secretory IgA (SIgA) variants with high antigen-binding affinities and increased stability in mucosal secretions compared to their IgG counterparts. SIgAs had stronger virus neutralization activities than IgG mAbs and were protective against SARS-CoV-2 infection in an in vivo murine model. Furthermore, SIgA1 can be aerosolized for topical delivery using a mesh nebulizer. Our findings provide a persuasive case for developing recombinant SIgAs for mucosal application as a new tool in the fight against COVID-19.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| | - Elisabetta Groppelli
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Rudolf Figl
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Jae-Wan Jung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Scott Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| |
Collapse
|
13
|
Chen Q, Guan X, Zhang Z, Ma X, Guo T, Song H. In Situ Oral Metabolism Analysis of Astringent Compounds in Tea by Paper Spray Mass Spectrometry, Electrospray Mass Spectrometry, Turbidimetry, and Sensory Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3654-3663. [PMID: 38329502 DOI: 10.1021/acs.jafc.3c09258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The phenolic compounds (PCs) are the primary components responsible for the astringency of tea infusions, and this astringency is intricately linked to the in situ oral metabolism of PCs in saliva. Initially, a total of 54 PCs were identified in tea infusions by electrospray mass spectrometry (ESI-MS). Subsequently, an in vivo metabolism analysis of PCs during varying drinking times and oral locations was conducted by both paper spray mass spectrometry (PS-MS) and sensory evaluation. The metabolism of PCs within oral saliva was a prolonged process, the residual PCs were distributed across diverse oral regions after drinking tea infusion, and the higher residual PC content reflected the stronger astringency intensity. Furthermore, an in vitro metabolism analysis of PCs under varied reaction temperatures and durations was performed by ESI-MS and turbidimetry. As the reaction time extended, more PCs in tea was interacting with saliva. Moreover, the higher temperatures facilitated this interaction between PCs and saliva. Therefore, this investigation establishes a foundation for further elucidating the mechanisms underlying astringency formation.
Collapse
Affiliation(s)
- Qiong Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Guan
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhibin Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoduo Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tianyang Guo
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huanlu Song
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
14
|
Martin FL, Morais CLM, Dickinson AW, Saba T, Bongers T, Singh MN, Bury D. Point-of-Care Disease Screening in Primary Care Using Saliva: A Biospectroscopy Approach for Lung Cancer and Prostate Cancer. J Pers Med 2023; 13:1533. [PMID: 38003848 PMCID: PMC10672293 DOI: 10.3390/jpm13111533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Saliva is a largely unexplored liquid biopsy that can be readily obtained noninvasively. Not dissimilar to blood plasma or serum, it contains a vast array of bioconstituents that may be associated with the absence or presence of a disease condition. Given its ease of access, the use of saliva is potentially ideal in a point-of-care screening or diagnostic test. Herein, we developed a swab "dip" test in saliva obtained from consenting patients participating in a lung cancer-screening programme being undertaken in north-west England. A total of 998 saliva samples (31 designated as lung-cancer positive and 17 as prostate-cancer positive) were taken in the order in which they entered the clinic (i.e., there was no selection of participants) during the course of this prospective screening programme. Samples (sterile Copan blue rayon swabs dipped in saliva) were analysed using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. In addition to unsupervised classification on resultant infrared (IR) spectra using principal component analysis (PCA), a range of feature selection/extraction algorithms were tested. Following preprocessing, the data were split between training (70% of samples, 22 lung-cancer positive versus 664 other) and test (30% of samples, 9 lung-cancer positive versus 284 other) sets. The training set was used for model construction and the test set was used for validation. The best model was the PCA-quadratic discriminant analysis (QDA) algorithm. This PCA-QDA model was built using 8 PCs (90.4% of explained variance) and resulted in 93% accuracy for training and 91% for testing, with clinical sensitivity at 100% and specificity at 91%. Additionally, for prostate cancer patients amongst the male cohort (n = 585), following preprocessing, the data were split between training (70% of samples, 12 prostate-cancer positive versus 399 other) and test (30% of samples, 5 prostate-cancer positive versus 171 other) sets. A PCA-QDA model, again the best model, was built using 5 PCs (84.2% of explained variance) and resulted in 97% accuracy for training and 93% for testing, with clinical sensitivity at 100% and specificity at 92%. These results point to a powerful new approach towards the capability to screen large cohorts of individuals in primary care settings for underlying malignant disease.
Collapse
Affiliation(s)
- Francis L. Martin
- Biocel UK Ltd., Hull HU10 6TS, UK;
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK; (A.W.D.); (T.S.); (T.B.)
| | - Camilo L. M. Morais
- Center for Education, Science and Technology of the Inhamuns Region, State University of Ceará, Tauá 63660-000, Brazil;
| | - Andrew W. Dickinson
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK; (A.W.D.); (T.S.); (T.B.)
| | - Tarek Saba
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK; (A.W.D.); (T.S.); (T.B.)
| | - Thomas Bongers
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK; (A.W.D.); (T.S.); (T.B.)
| | - Maneesh N. Singh
- Biocel UK Ltd., Hull HU10 6TS, UK;
- Chesterfield Royal Hospital, Chesterfield Road, Calow, Chesterfield S44 5BL, UK
| | | |
Collapse
|
15
|
Nonaka T, Wong DTW. Saliva diagnostics: Salivaomics, saliva exosomics, and saliva liquid biopsy. J Am Dent Assoc 2023; 154:696-704. [PMID: 37500232 PMCID: PMC11390004 DOI: 10.1016/j.adaj.2023.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Each day, humans produce approximately 0.5 through 1.5 liters of saliva, a biofluid that is rich in biological omic constituents. Our lack of understanding how omic biomarkers migrate from diseased tissue to the saliva has impeded the clinical translation of saliva testing. Although such biomarkers must be conveyed via the vascular and lymphatic systems to the salivary glands, the molecular mechanisms that underlie this transport remain unclear. Although COVID-19 highlighted the need for rapid and reliable testing for infectious diseases, it represents only one of the many health conditions that potentially can be diagnosed using a saliva sample. TYPES OF STUDIES REVIEWED The authors discuss salivaomics, saliva exosomics, and the mechanisms on which saliva diagnostics are based and introduce a novel electrochemical sensing technology that may be exploited for saliva liquid biopsy. RESULTS The utility of saliva for screening for lung cancer is under investigation. Saliva testing may be used to stratify patients, monitor treatment response, and detect disease recurrence. The authors also highlight the landscapes of saliva-based SARS-CoV-2 testing and ultrashort cell-free DNA and outline how these fields are likely to evolve in the near future. PRACTICAL IMPLICATIONS Breakthroughs in the study of saliva research, therefore, will facilitate clinical deployment of saliva-based testing.
Collapse
|
16
|
Umapathy VR, Natarajan PM, Swamikannu B. Review Insights on Salivary Proteomics Biomarkers in Oral Cancer Detection and Diagnosis. Molecules 2023; 28:5283. [PMID: 37446943 PMCID: PMC10343386 DOI: 10.3390/molecules28135283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Early detection is crucial for the treatment and prognosis of oral cancer, a potentially lethal condition. Tumor markers are abnormal biological byproducts produced by malignant cells that may be found and analyzed in a variety of bodily fluids, including saliva. Early detection and appropriate treatment can increase cure rates to 80-90% and considerably improve quality of life by reducing the need for costly, incapacitating medicines. Salivary diagnostics has drawn the interest of many researchers and has been proven to be an effective tool for both medication monitoring and the diagnosis of several systemic diseases. Since researchers are now searching for biomarkers in saliva, an accessible bodily fluid, for noninvasive diagnosis of oral cancer, measuring tumor markers in saliva is an interesting alternative to blood testing for early identification, post-treatment monitoring, and monitoring high-risk lesions. New molecular markers for oral cancer detection, treatment, and prognosis have been found as a result of developments in the fields of molecular biology and salivary proteomics. The numerous salivary tumor biomarkers and how they relate to oral cancer and pre-cancer are covered in this article. We are optimistic that salivary protein biomarkers may one day be discovered for the clinical detection of oral cancer because of the rapid advancement of proteomic technology.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER University, Pallikaranai, Chennai 600100, Tamil Nadu, India;
| |
Collapse
|
17
|
Casarin RCV, Salmon CR, Stolf CS, Paz HES, Rangel TP, Domingues RR, Pauletti BA, Paes-Leme AF, Araújo C, Santamaria MP, Ruiz KS, Monteiro MF. Salivary annexin A1: A candidate biomarker for periodontitis. J Clin Periodontol 2023; 50:942-951. [PMID: 36935103 DOI: 10.1111/jcpe.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 03/20/2023]
Abstract
AIM To compare the salivary proteomic profile of periodontitis-affected (PA) parents and their offspring to periodontally healthy (PH) dyads in the pursuit of possible biomarkers for early diagnosis of this disease. MATERIALS AND METHODS Unstimulated saliva samples collected from 17 pairs of PA or PH individuals and their children were submitted to mass spectrometric analyses followed by proteomic analyses. Primary PA fibroblasts were triggered towards having an inflammatory response, and an immunoenzymatic assay of its supernatant was performed to validate the obtained data. RESULTS ANXA1, KRT4, GSTP1, HPX, A2M and KRT13 were lower in PA parents and their children, and IGHG1, CSTB, KRT9, SMR3B, IGHG4 and SERPINA1 were higher. ANXA1 presented the highest fold change, 7.1 times less produced in children of PA parents, and was selected as a potential biomarker for periodontitis. The in vitro assay also showed lower ANXA1 production by cells of PA patients. CONCLUSION Before any clinical sign of periodontal loss, descendants of PA patients have an altered proteomic profile compared to PH individuals, presenting a lower abundance of ANXA1. This protein is suggested as a potential biomarker for periodontitis.
Collapse
Affiliation(s)
- Renato C V Casarin
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Cristiane R Salmon
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Camila S Stolf
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Hélvis E S Paz
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Thiago P Rangel
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Romênia R Domingues
- Laboratory of Mass Spectrometry, Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Bianca A Pauletti
- Laboratory of Mass Spectrometry, Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Adriana F Paes-Leme
- Laboratory of Mass Spectrometry, Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Cassia Araújo
- Periodontics Division, Department of Diagnosis and Surgery, São José dos Campos School of Dentistry, São Paulo State University, São Paulo, Brazil
| | - Mauro P Santamaria
- Periodontics Division, Department of Diagnosis and Surgery, São José dos Campos School of Dentistry, São Paulo State University, São Paulo, Brazil
| | - Karina S Ruiz
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Mabelle F Monteiro
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| |
Collapse
|
18
|
Prims S, Van Ostade X, Ayuso M, Dom M, Van Raemdonck G, Van Cruchten S, Casteleyn C, Van Ginneken C. Chronic exposure to multiple stressors alters the salivary proteome of piglets. PLoS One 2023; 18:e0286455. [PMID: 37235602 DOI: 10.1371/journal.pone.0286455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Monitoring chronic stress in pigs is not only essential in view of animal welfare but is also important for the farmer, given that stress influences the zootechnical performance of the pigs and increases their susceptibility to infectious diseases. To investigate the use of saliva as a non-invasive, objective chronic stress monitoring tool, twenty-four 4-day-old piglets were transferred to artificial brooders. At the age of 7 days, they were assigned to either the control or the stressed group and reared for three weeks. Piglets in the stressed group were exposed to overcrowding, absence of cage enrichment, and frequent mixing of animals between pens. Shotgun analysis using an isobaric labelling method (iTRAQ) for tandem mass spectrometry performed on saliva samples taken after three weeks of chronic stress identified 392 proteins, of which 20 proteins displayed significantly altered concentrations. From these 20 proteins, eight were selected for further validation using parallel reaction monitoring (PRM). For this validation, saliva samples that were taken one week after the start of the experiment and samples that were taken at the end of the experiment were analysed to verify the profile over time. We wanted to investigate whether the candidate biomarkers responded fast or rather slowly to the onset of chronic exposure to multiple stressors. Furthermore, this validation could indicate whether age influenced the baseline concentrations of these salivary proteins, both in healthy and stressed animals. This targeted PRM analysis confirmed that alpha-2-HS-glycoprotein was upregulated in the stressed group after one and three weeks, while odorant-binding protein, chitinase, long palate lung and nasal epithelium protein 5, lipocalin-1, and vomeromodulin-like protein were present in lower concentrations in the saliva of the stressed pigs, albeit only after three weeks. These results indicate that the porcine salivary proteome is altered by chronic exposure to multiple stressors. The affected proteins could be used as salivary biomarkers to identify welfare problems at the farm and facilitate research to optimise rearing conditions.
Collapse
Affiliation(s)
- Sara Prims
- Laboratory of Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Xaveer Van Ostade
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Center for Proteomics (CfP), University of Antwerp, Antwerp, Belgium
| | - Miriam Ayuso
- Laboratory of Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Martin Dom
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Geert Van Raemdonck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Center for Proteomics (CfP), University of Antwerp, Antwerp, Belgium
| | - Steven Van Cruchten
- Laboratory of Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Christophe Casteleyn
- Laboratory of Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Chris Van Ginneken
- Laboratory of Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Martin LE, Gutierrez VA, Torregrossa AM. The role of saliva in taste and food intake. Physiol Behav 2023; 262:114109. [PMID: 36740133 PMCID: PMC10246345 DOI: 10.1016/j.physbeh.2023.114109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Saliva is well-described in oral food processing, but its role in taste responsiveness remains understudied. Taste stimuli must dissolve in saliva to reach their receptor targets. This allows the constituents of saliva the opportunity to interact with taste stimuli and their receptors at the most fundamental level. Yet, despite years of correlational data suggesting a role for salivary proteins in food preference, there were few experimental models to test the role of salivary proteins in taste-driven behaviors. Here we review our experimental contributions to the hypothesis that salivary proteins can alter taste function. We have developed a rodent model to test how diet alters salivary protein expression, and how salivary proteins alter diet acceptance and taste. We have found that salivary protein expression is modified by diet, and these diet-induced proteins can, in turn, increase the acceptance of a bitter diet. The change in acceptance is in part mediated by a change in taste signaling. Critically, we have documented increased detection threshold, decreased taste nerve signaling, and decreased oromotor responding to quinine when animals have increases in a subset of salivary proteins compared to control conditions.
Collapse
Affiliation(s)
- Laura E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Ann-Marie Torregrossa
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, 14216, USA; University at Buffalo Center for Ingestive Behavior Research, Buffalo, New York, 14216, USA.
| |
Collapse
|
20
|
Sales-Peres SHDC, Houghton J, Meira GDF, de Moura-Grec PG, Brienze SLA, Karim BA, Carpenter GH. Salivary Adiponectin and Albumin Levels on the Gingival Conditions of Patients Undergoing Bariatric Surgery: A Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5261. [PMID: 37047877 PMCID: PMC10094151 DOI: 10.3390/ijerph20075261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
This study analyzed the salivary proteomics, adiponectin and albumin, related to weight loss and periodontitis in patients undergoing bariatric surgery. This study included fourteen patients with morbid obesity (body mass index, BMI > 40 kg/m2) who underwent bariatric surgery Roux-en-Y gastric bypass (RYGB) in System Health Public in Brazil. Data on demographic and anthropometric measures were extracted from medical records preoperatively and 6 and 12 months post-surgery. The variables assessed were: probing pocket depth (PPD), clinical attachment loss (CAL), bleeding on probing (BOP), and stimulated whole-mouth saliva. In this study, saliva samples were analyzed by electrophoresis and immunoblotting. The ELISA kit was used to measure the MMP8 levels to determine potential markers for obesity. Adiponectin and albumin levels were also evaluated. Weight loss was associated with significant changes in patients' periodontal clinical data. Although 7 out of 10 periodontal patients showed an increase in salivary adiponectin levels after root planning treatment, when analyzed by Western blotting, the increase was not statistically significant (21.1 ± 4.8 to 26.3 ± 9.4 arbitrary units, p > 0.99). There was no correlation between albumin levels and salivary adiponectin pre-surgery, nor 6 months or 12 months after surgery. Weight loss was not improved by low-grade inflammation in bariatric patients, since albumin levels were similar between periods. Periodontitis is an inflammatory disease that is modulated by several factors, among which adiponectin plays an important role for the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Jack Houghton
- Department of Surgery, Faculty of Medicine of Sao Jose do Rio Preto, São José do Rio Preto 15090-000, Brazil
| | - Gabriela de Figueiredo Meira
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Patrícia Garcia de Moura-Grec
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | | | - Belkais Abuuasha Karim
- Center for Host-Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Guy Howard Carpenter
- Center for Host-Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
21
|
Peroxisomes Are Highly Abundant and Heterogeneous in Human Parotid Glands. Int J Mol Sci 2023; 24:ijms24054783. [PMID: 36902220 PMCID: PMC10003153 DOI: 10.3390/ijms24054783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The parotid gland is one of the major salivary glands producing a serous secretion, and it plays an essential role in the digestive and immune systems. Knowledge of peroxisomes in the human parotid gland is minimal; furthermore, the peroxisomal compartment and its enzyme composition in the different cell types of the human parotid gland have never been subjected to a detailed investigation. Therefore, we performed a comprehensive analysis of peroxisomes in the human parotid gland's striated duct and acinar cells. We combined biochemical techniques with various light and electron microscopy techniques to determine the localization of parotid secretory proteins and different peroxisomal marker proteins in parotid gland tissue. Moreover, we analyzed the mRNA of numerous gene encoding proteins localized in peroxisomes using real-time quantitative PCR. The results confirm the presence of peroxisomes in all striated duct and acinar cells of the human parotid gland. Immunofluorescence analyses for various peroxisomal proteins showed a higher abundance and more intense staining in striated duct cells compared to acinar cells. Moreover, human parotid glands comprise high quantities of catalase and other antioxidative enzymes in discrete subcellular regions, suggesting their role in protection against oxidative stress. This study provides the first thorough description of parotid peroxisomes in different parotid cell types of healthy human tissue.
Collapse
|
22
|
Jasim H. Topical review - salivary biomarkers in chronic muscle pain. Scand J Pain 2023; 23:3-13. [PMID: 36228098 DOI: 10.1515/sjpain-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Muscle related temporomandibular disorders (myogenous TMD), one of the most common orofacial pain conditions, is characterized by facial pain and often accompanied by jaw movement limitations. Although the underlying biological mechanisms are still unclear, a cluster of proteins and peptides is assumed to be involved in the pathophysiology. These proteins and peptides may be measured in a simple non-invasive saliva sample. This work investigated whether saliva can be used to sample algogenic substances that can serve as molecular biomarkers for TMD myalgia. METHODS Saliva and blood samples were collected from healthy individuals (n=69) and patients diagnosed with TMD myalgia (n=39) according to the Diagnostic Criteria for TMD. Unstimulated and stimulated whole, parotid, and sublingual saliva were analysed. The protein profiles were investigated using two-dimensional gel electrophoresis followed by identification with liquid chromatography tandem mass spectrometry. Levels of nerve growth factor (NGF), calcitonin gene-related peptide (CGRP), and brain derived neuro-tropic factor (BDNF) were determined using western blotting based technology and multiplex electro-chemiluminescence assay panel. Glutamate, serotonin, and substance p (SP) were determined using commercially available methods. RESULTS Different saliva collection approaches resulted in significant differences in the protein profile as well as in the expression of NGF, BDNF, CGRP, SP, and glutamate. Stimulated whole saliva showed least variability in protein concentration (35%) and was correlated to plasma levels of glutamate. Unlike SP and glutamate, NGF and BDNF expressed a rhythmic variation in salivary expression with higher levels in the morning (p<0.05). Patients with a diagnosis of TMD myalgia had significantly higher levels of salivary glutamate but lower salivary NGF and BDNF compared to controls; in addition, the lower NGF and BDNF levels correlated to psychological dysfunction. The quantitative proteomics data revealed 20 proteins that were significantly altered in patients compared to controls. The identified proteins are involved in metabolic processes, immune response, and stress response. Dissimilarities in protein profile and clinical variables were observed between TMD myalgia and myofascial pain. CONCLUSIONS The work highlights the importance of consistency in saliva collection approaches, including the timing of the collection. It displayed significant changes in pain specific mediators and protein profile in TMD myalgia and furthermore dissimilarities between subclasses indicating different pathophysiology. After extensive validation, potential salivary biomarkers can be combined with clinical features to better understand and diagnose TMD myalgia.
Collapse
Affiliation(s)
- Hajer Jasim
- Eastman Institutet, Folktandvården Stockholms Län AB, Stockholm, Sweden
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial Neuroscience (SCON), Huddinge, Sweden
| |
Collapse
|
23
|
Eltit F, Robinson N, Yu PLI, Pandey M, Lozada J, Guo Y, Sharma M, Ozturan D, Ganier L, Belanger E, Lack NA, Perrin DM, Cox ME, Goldenberg SL. The "Ins and Outs" of Prostate Specific Membrane Antigen (PSMA) as Specific Target in Prostate Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:291-308. [PMID: 37093434 DOI: 10.1007/978-3-031-26163-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is expressed in epithelial cells of the prostate gland and is strongly upregulated in prostatic adenocarcinoma, with elevated expression correlating with metastasis, progression, and androgen independence. Because of its specificity, PSMA is a major target of prostate cancer therapy; however, detectable levels of PSMA are also found in other tissues, especially in salivary glands and kidney, generating bystander damage of these tissues. Antibody target therapy has been used with relative success in reducing tumor growth and prostate specific antigen (PSA) levels. However, since antibodies are highly stable in plasma, they have prolonged time in circulation and accumulate in organs with an affinity for antibodies such as bone marrow. For that reason, a second generation of PSMA targeted therapeutic agents has been developed. Small molecules and minibodies have had promising clinical trial results, but concerns about their specificity had arisen with side effects due to accumulation in salivary glands and kidneys. Herein we study the specificity of small molecules and minibodies that are currently being clinically tested. We observed a high affinity of these molecules for PSMA in prostate, kidney and salivary gland, suggesting that their effect is not prostate specific. The search for specific prostate target agents must continue so as to optimally treat patients with prostate cancer, while minimizing deleterious effects in other PSMA expressing tissues.
Collapse
Affiliation(s)
- Felipe Eltit
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Nicole Robinson
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Pak Lok Ivan Yu
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Mitali Pandey
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Jerome Lozada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Yubin Guo
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Manju Sharma
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Dogancan Ozturan
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Laetitia Ganier
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Eric Belanger
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Nathan A Lack
- Vancouver Prostate Centre, Vancouver, Canada
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - David M Perrin
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Michael E Cox
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - S Larry Goldenberg
- Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.
- Vancouver Prostate Centre, Vancouver, Canada.
| |
Collapse
|
24
|
Yamamoto K, Yamamoto S. Comparison of proteins with anti-influenza virus effects in parotid and submandibular-sublingual saliva in humans. BMC Oral Health 2022; 22:639. [PMID: 36566172 PMCID: PMC9789508 DOI: 10.1186/s12903-022-02686-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Saliva possesses antiviral activity, with submandibular-sublingual (SMSL) saliva having higher antiviral activity than parotid saliva. Various salivary proteins have inactivating effects on influenza A virus (IAV), but the detailed relationship between antiviral proteins and salivary anti-IAV activities in the parotid and SMSL glands is unknown. Here, to identify salivary proteins with anti-IAV activity, salivary proteins from parotid and SMSL glands were identified, quantified, and compared using liquid chromatography-mass spectrometry. METHODS Twelve healthy male volunteers participated in the study. Parotid and SMSL saliva was collected by suction and collection devices. We assessed anti-IAV activities, protein concentrations, and protein-bound sialic acid concentrations in parotid and SMSL saliva. RESULTS SMSL had significantly higher anti-IAV activity than parotid saliva. SMSL also had higher concentrations of glycoproteins, such as mucin 5B and mucin 7, protein-bound sialic acid, cystatins, and lysozyme C, compared with parotid saliva. Salivary mucin 5B and mucin 7 concentrations significantly positively correlated with the salivary protein-bound sialic acid concentration. Salivary anti-IAV activity significantly positively correlated with protein-bound sialic acid, mucin 5B, mucin 7, cystatin-C, -S, and -SN concentrations. CONCLUSION Salivary mucins, cystatins, and lysozyme C contribute to the high anti-IAV activity of SMSL saliva.
Collapse
Affiliation(s)
- Kenkichi Yamamoto
- grid.419719.30000 0001 0816 944XPersonal Health Care Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, 131-8501 Tokyo, Japan
| | - Shinji Yamamoto
- grid.419719.30000 0001 0816 944XPersonal Health Care Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, 131-8501 Tokyo, Japan
| |
Collapse
|
25
|
Lenčo J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholouš P, Urban J, Broeckhoven K, Nováková L, Švec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J Proteome Res 2022; 21:2846-2892. [PMID: 36355445 DOI: 10.1021/acs.jproteome.2c00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.
Collapse
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Denis K Naplekov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Oleg V Krokhin
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, WinnipegR3E 3P4, Manitoba, Canada
| | - Maria A Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Ken Broeckhoven
- Department of Chemical Engineering (CHIS), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050Brussel, Belgium
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
26
|
Correlation Depending on Age Between Saliva and Plasma Parameters. Intern Med 2022. [DOI: 10.2478/inmed-2022-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Introduction. Because of the increasing interest in the study of saliva, many methods have become available that can allow us to perform multiple and rapid analyzes of the composition of salivary secretion using advanced techniques of nanotechnology and fluid micro- engineering. The objectives of our study were to identify immunoglobulin levels variations with age.
Materials and methods. We conducted an analysis to check the correlation between saliva and plasma parameters on 24 patients. The study population was divided into 2 groups based on age, with a cut-off at 35 years. The differences on the variables between two groups were evaluated by TTEST and CORREL.
Results. Total plasma calcium, as well as ionic calcium have increased values in group 2, the increase being statistically significant (p =0.04) only for ionic calcium. Significant correlation of plasma and salivary values in the case of IgA / IgG ratio, and also a significant correlation of salivary and plasma concentrations for IgG were identified in our study.
Conclusions. The correlation between plasma and salivary parameters is closely related to age and these can be used as markers for diagnosis and evaluation of various pathologies. Also, regarding women, salivary calcium and phosphate concentrations increase with age showing peak values around menopause.
Collapse
|
27
|
McNicholas K, François M, Liu JW, Doecke JD, Hecker J, Faunt J, Maddison J, Johns S, Pukala TL, Rush RA, Leifert WR. Salivary inflammatory biomarkers are predictive of mild cognitive impairment and Alzheimer's disease in a feasibility study. Front Aging Neurosci 2022; 14:1019296. [PMID: 36438010 PMCID: PMC9685799 DOI: 10.3389/fnagi.2022.1019296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is an insidious disease. Its distinctive pathology forms over a considerable length of time without symptoms. There is a need to detect this disease, before even subtle changes occur in cognition. Hallmark AD biomarkers, tau and amyloid-β, have shown promising results in CSF and blood. However, detecting early changes in these biomarkers and others will involve screening a wide group of healthy, asymptomatic individuals. Saliva is a feasible alternative. Sample collection is economical, non-invasive and saliva is an abundant source of proteins including tau and amyloid-β. This work sought to extend an earlier promising untargeted mass spectrometry study in saliva from individuals with mild cognitive impairment (MCI) or AD with age- and gender-matched cognitively normal from the South Australian Neurodegenerative Disease cohort. Five proteins, with key roles in inflammation, were chosen from this study and measured by ELISA from individuals with AD (n = 16), MCI (n = 15) and cognitively normal (n = 29). The concentrations of Cystatin-C, Interleukin-1 receptor antagonist, Stratifin, Matrix metalloproteinase 9 and Haptoglobin proteins had altered abundance in saliva from AD and MCI, consistent with the earlier study. Receiver operating characteristic analysis showed that combinations of these proteins demonstrated excellent diagnostic accuracy for distinguishing both MCI (area under curve = 0.97) and AD (area under curve = 0.97) from cognitively normal. These results provide evidence for saliva being a valuable source of biomarkers for early detection of cognitive impairment in individuals on the AD continuum and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kym McNicholas
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Maxime François
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jian-Wei Liu
- CSIRO Land and Water, Black Mountain Research and Innovation Park, Canberra, ACT, Australia
| | - James D. Doecke
- Australian e-Health Research Centre, CSIRO, Herston, QLD, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Jeff Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - John Maddison
- Aged Care Rehabilitation and Palliative Care, SA Health, Modbury Hospital, Modbury, SA, Australia
| | - Sally Johns
- Aged Care Rehabilitation and Palliative Care, SA Health, Modbury Hospital, Modbury, SA, Australia
| | - Tara L. Pukala
- School of Physical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Wayne R. Leifert
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
28
|
Jesuthasan A, Ali A, Lee JKW, Rutherfurd-Markwick K. Assessment of Changes in Physiological Markers in Different Body Fluids at Rest and after Exercise. Nutrients 2022; 14:nu14214685. [PMID: 36364948 PMCID: PMC9654217 DOI: 10.3390/nu14214685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Physiological and biological markers in different body fluids are used to measure the body’s physiological or pathological status. In the field of sports and exercise medicine, the use of these markers has recently become more popular for monitoring an athlete’s training response and assessing the immediate or long-term effects of exercise. Although the effect of exercise on different physiological markers using various body fluids is well substantiated, no article has undertaken a review across multiple body fluids such as blood, saliva, urine and sweat. This narrative review aims to assess various physiological markers in blood, urine and saliva, at rest and after exercise and examines physiological marker levels obtained across similar studies, with a focus on the population and study methodology used. Literature searches were conducted using PRISMA guidelines for keywords such as exercise, physical activity, serum, sweat, urine, and biomarkers, resulting in an analysis of 15 studies for this review paper. When comparing the effects of exercise on physiological markers across different body fluids (blood, urine, and saliva), the changes detected were generally in the same direction. However, the extent of the change varied, potentially as a result of the type and duration of exercise, the sample population and subject numbers, fitness levels, and/or dietary intake. In addition, none of the studies used solely female participants; instead, including males only or both male and female subjects together. The results of some physiological markers are sex-dependent. Therefore, to better understand how the levels of these biomarkers change in relation to exercise and performance, the sex of the participants should also be taken into consideration.
Collapse
Affiliation(s)
- Amalini Jesuthasan
- School of Health Sciences, Massey University, Auckland 0745, New Zealand
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0745, New Zealand
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
| | - Jason Kai Wei Lee
- Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Kay Rutherfurd-Markwick
- School of Health Sciences, Massey University, Auckland 0745, New Zealand
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
- Correspondence: ; Tel.: +64-9-213-6646
| |
Collapse
|
29
|
Balachander K, Vijayashree Priyadharsini J, Paramasivam A. Advances in oral cancer early diagnosis and treatment strategies with liquid biopsy-based approaches. Oral Oncol 2022; 134:106108. [PMID: 36081306 DOI: 10.1016/j.oraloncology.2022.106108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Kannan Balachander
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Jayaseelan Vijayashree Priyadharsini
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Arumugam Paramasivam
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
30
|
Identification of Estrus in Sows Based on Salivary Proteomics. Animals (Basel) 2022; 12:ani12131656. [PMID: 35804555 PMCID: PMC9264986 DOI: 10.3390/ani12131656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The estrus cycle of multiparous Large White sows was divided into three stages to solve the problems of heavy workload and low accuracy of the traditional estrus identification method in pig production. Saliva protein was extracted from the oral saliva of multiparous sows. Label-free quantitative proteomics was used to detect salivary proteome, and MaxQuant software was used for quality control. Results showed that 246 proteins were identified in the three stages, where 40 proteins were significantly different (p < 0.05). The total proteins identified were enriched by STEM software and the protein function was annotated by using the ClueGO plug-in in the Cytoscape software. The results were enriched to eight different trends. The annotated items were related to protein synthesis and processing and estrogen response. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differential proteins involved in the pathways and entries included oocyte meiosis, response to estradiol, and oogenesis. Further interaction analysis showed that an interaction occurred between P00355, F1SHL9, P28491, F1SDR7, F2Z558, F1RYY6, and F2Z5G3 proteins. The findings served as a basis for revealing the changes in salivary protein content in the sow estrus cycle and provided a reference for the development of an estrus identification kit/test strip in the next step.
Collapse
|
31
|
Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol 2022; 12:887907. [PMID: 35782115 PMCID: PMC9247192 DOI: 10.3389/fcimb.2022.887907] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Despite significant healthcare advances in the 21st century, the exact etiology of dental caries remains unsolved. The past two decades have witnessed a tremendous growth in our understanding of dental caries amid the advent of revolutionary omics technologies. Accordingly, a consensus has been reached that dental caries is a community-scale metabolic disorder, and its etiology is beyond a single causative organism. This conclusion was based on a variety of microbiome studies following the flow of information along the central dogma of biology from genomic data to the end products of metabolism. These studies were facilitated by the unprecedented growth of the next- generation sequencing tools and omics techniques, such as metagenomics and metatranscriptomics, to estimate the community composition of oral microbiome and its functional potential. Furthermore, the rapidly evolving proteomics and metabolomics platforms, including nuclear magnetic resonance spectroscopy and/or mass spectrometry coupled with chromatography, have enabled precise quantification of the translational outcomes. Although the majority supports 'conserved functional changes' as indicators of dysbiosis, it remains unclear how caries dynamics impact the microbiota functions and vice versa, over the course of disease onset and progression. What compounds the situation is the host-microbiota crosstalk. Genome-wide association studies have been undertaken to elucidate the interaction of host genetic variation with the microbiome. However, these studies are challenged by the complex interaction of host genetics and environmental factors. All these complementary approaches need to be orchestrated to capture the key players in this multifactorial disease. Herein, we critically review the milestones in caries research focusing on the state-of-art singular and integrative omics studies, supplemented with a bibliographic network analysis to address the oral microbiome, the host factors, and their interactions. Additionally, we highlight gaps in the dental literature and shed light on critical future research questions and study designs that could unravel the complexities of dental caries, the most globally widespread disease.
Collapse
Affiliation(s)
- Dina G. Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
32
|
Abstract
Cancer remains one of the leading causes of death, and early detection of this disease is crucial for increasing survival rates. Although cancer can be diagnosed following tissue biopsy, the biopsy procedure is invasive; liquid biopsy provides an alternative that is more comfortable for the patient. While blood, urine, and cerebral spinal fluid can all be used as a source of liquid biopsy, saliva is an ideal source of body fluid that is readily available and easily collected in the most noninvasive manner. Characterization of salivary constituents in the disease setting provides critical data for understanding pathophysiology and the evaluation of diagnostic potential. The aim of saliva diagnostics is therefore to develop a rapid and noninvasive detection of oral and systemic diseases that could be used together with compact analysis systems in the clinic to facilitate point-of-care diagnostics.
Collapse
Affiliation(s)
- Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA;
| | - David T W Wong
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California;
| |
Collapse
|
33
|
Lin YH, Yang YF, Shiue YL. Multi-Omics Analyses to Identify FCGBP as a Potential Predictor in Head and Neck Squamous Cell Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12051178. [PMID: 35626334 PMCID: PMC9140089 DOI: 10.3390/diagnostics12051178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
(Purpose) Previous studies have pointed out the significance of IgG Fc binding protein (FCGBP) in carcinogenesis, cancer progression, and tumor immunity in certain malignancies. However, its prognostic values, molecular interaction, and immune characteristics in the head and neck squamous cell carcinoma (HNSC) remained unclear. (Methods) To evaluate the potential role of the FCGBP gene, we used GEPIA2 and UALCAN platforms to explore the differential levels, survivals, and genetic alteration through cBioPortal (based on The Cancer Genome Atlas dataset). STRING, GeneMania, and TIMER2.0 identified the interacting networks. LinkedOmics performed Gene enrichment analysis, and TISIDB and TIMER2.0 evaluated the role of FCGBP in the tumor microenvironment. (Results) The expression level of FCGBP is lower in cancer tissues. A high FCGBP level is significantly associated with better overall- and disease-specific-survivals, regardless of human papillomavirus infection. Low FCGBP levels correlated to a higher tumor protein p53 (TP53) mutation rate (p = 0.018). FCGBP alteration significantly co-occurred with that of TP53 (q = 0.037). Interacting networks revealed a significant association between FGFBP and trefoil factor 3 (TFF3), a novel prognostic marker in various cancers, at transcriptional and translational levels. Enrichment analyses identified that the top gene sets predominantly related to immune and inflammatory responses. Further investigation found that the FCGBP mRNA level positively correlated to the infiltration rates of B cells, Th17/CD8+ T lymphocytes, T helper follicular cells, mast cells, and expression levels of various immune molecules and immune checkpoints in HNSC. (Conclusions) We found that the FCGBP mRNA level negatively correlated to TP53 mutation status while positively correlated to the TFF3 level. Additionally, FCGBP may regulate the tumor microenvironment. These findings support the FCGBP as a potential biomarker to estimate HNSC prognoses.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-7-525-2000; Fax: +886-7-525-0197
| |
Collapse
|
34
|
He G, Dong T, Yang Z, Branstad A, Huang L, Jiang Z. Point-of-care COPD diagnostics: biomarkers, sampling, paper-based analytical devices, and perspectives. Analyst 2022; 147:1273-1293. [PMID: 35113085 DOI: 10.1039/d1an01702k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has become the third leading cause of global death. Insufficiency in early diagnosis and treatment of COPD, especially COPD exacerbations, leads to a tremendous economic burden and medical costs. A cost-effective and timely prevention requires decentralized point-of-care diagnostics at patients' residences at affordable prices. Advances in point-of-care (POC) diagnostics may offer new solutions to reduce medical expenditures by measuring salivary and blood biomarkers. Among them, paper-based analytical devices have been the most promising candidates due to their advantages of being affordable, biocompatible, disposable, scalable, and easy to modify. In this review, we present salivary and blood biomarkers related to COPD endotypes and exacerbations, summarize current technologies to collect human whole saliva and whole blood samples, evaluate state-of-the-art paper-based analytical devices that detect COPD biomarkers in saliva and blood, and discuss existing challenges with outlooks on future paper-based POC systems for COPD diagnosis and management.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.,Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Tao Dong
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Are Branstad
- University of Southeast Norway (USN), School of Business, Box 235, 3603 Kongsberg, Norway
| | - Lan Huang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| |
Collapse
|
35
|
Uchida H, Ovitt CE. Novel impacts of saliva with regard to oral health. J Prosthet Dent 2022; 127:383-391. [PMID: 34140141 PMCID: PMC8669010 DOI: 10.1016/j.prosdent.2021.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
The maintenance of balanced oral homeostasis depends on saliva. A readily available and molecularly rich source of biological fluid, saliva fulfills many functions in the oral cavity, including lubrication, pH buffering, and tooth mineralization. Saliva composition and flow can be modulated by different factors, including circadian rhythm, diet, age, drugs, and disease. Recent events have revealed that saliva plays a central role in the dissemination and detection of the SARS-CoV-2 coronavirus. A working knowledge of saliva function and physiology is essential for dental health professionals.
Collapse
Affiliation(s)
- Hitoshi Uchida
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Catherine E. Ovitt
- Department of Biomedical Genetics, Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
36
|
Wu G, Mao R, Zhang Y, Zhu L, Karrar E, Zhang H, Jin Q, Wang X. Study on the interaction mechanism of virgin olive oil polyphenols with mucin and α-amylase. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Eldem E, Barve A, Sallin O, Foucras S, Annoni JM, Schmid AW, Alberi Auber L. Salivary Proteomics Identifies Transthyretin as a Biomarker of Early Dementia Conversion. J Alzheimers Dis Rep 2022; 6:31-41. [PMID: 35360272 PMCID: PMC8925122 DOI: 10.3233/adr-210056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Alzheimer’s disease (AD) remains to date an incurable disease with a long asymptomatic phase. Early diagnosis in peripheral biofluids has emerged as key for identifying subjects at risk and developing therapeutics and preventative approaches. Objective: We apply proteomics discovery to identify salivary diagnostic biomarkers for AD, which are suitable for self-sampling and longitudinal biomonitoring during aging. Methods: 57 participants were recruited for the study and were categorized into Cognitively normal (CNh) (n = 19), mild cognitive impaired (MCI) (n = 21), and Alzheimer’s disease (AD) (n = 17). On a subset of subjects, 3 CNh and 3 mild AD, shot-gun filter aided sample preparation (FASP) proteomics and liquid chromatography mass spectroscopy (LC-MS/MS) was employed in saliva and cerebrospinal fluid (CSF) to identify neural-derived proteins. The protein level of salivary Transthyretin (TTR) was validated using western blot analysis across groups. Results: We found that 19.8% of the proteins in saliva are shared with CSF. When we compared the saliva and CSF proteome, 24 hits were decreased with only one protein expressed more. Among the differentially expressed proteins, TTR with reported function in amyloid misfolding, shows a significant drop in AD samples, confirmed by western blot showing a 0.5-fold reduction in MCI and AD compared to CNh. Conclusion: A reduction in salivary TTR appears with the onset of cognitive symptoms. More in general, the proteomic profiling of saliva shows a plethora of biomarkers worth pursuing as non-invasive hallmarks of dementia in the preclinical stage.
Collapse
Affiliation(s)
- Ece Eldem
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
- Swiss Integrative Center for Human Health, Fribourg, Switzerland
| | - Aatmika Barve
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
- Swiss Integrative Center for Human Health, Fribourg, Switzerland
| | - Olivier Sallin
- Swiss Integrative Center for Human Health, Fribourg, Switzerland
| | | | - Jean-Marie Annoni
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
- Hôpital Cantonal Fribourgeois, Fribourg, Switzerland
| | | | - Lavinia Alberi Auber
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
- Swiss Integrative Center for Human Health, Fribourg, Switzerland
| |
Collapse
|
38
|
Endoplasmic reticulum stress affects mouse salivary protein secretion induced by chronic administration of an α 1-adrenergic agonist. Histochem Cell Biol 2022; 157:443-457. [PMID: 35037129 DOI: 10.1007/s00418-021-02047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 11/04/2022]
Abstract
Stress stimulates both the sympathetic-adrenomedullary and hypothalamus-pituitary-adrenal axes. Activation of these axes results in the release of catecholamines, which in turn affects salivary secretion. Thus, repetitive stimulation of the α1-adrenergic receptor could be useful for studying the effects of chronic stress on the salivary gland. Salivary protein concentration and kallikrein activity were significantly lower in mice following chronic phenylephrine (PHE) administration. Chronic PHE administration led to significantly increased expression of the 78-kDa glucose-regulated protein, activating transcription factor 4, and activating transcription factor 6. Histological analyses revealed a decrease in the size of the serous cell and apical cytoplasm. These results suggest that repetitive pharmacological stimulation of the sympathetic nervous system elicits ER stress and translational suppression. In addition, PHE-treated mice exhibited a decrease in intracellular Ca2+ influx elicited by carbachol, a muscarine receptor agonist in the submandibular gland. The present findings suggest that chronic psychological, social, and physical stress could adversely affect Ca2+ regulation.
Collapse
|
39
|
Trevisan França de Lima L, Müller Bark J, Rasheduzzaman M, Ekanayake Weeramange C, Punyadeera C. Saliva as a matrix for measurement of cancer biomarkers. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Salivary Trefoil Factor Family (TFF) Peptides and Their Roles in Oral and Esophageal Protection: Therapeutic Potential. Int J Mol Sci 2021; 22:ijms222212221. [PMID: 34830103 PMCID: PMC8624312 DOI: 10.3390/ijms222212221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Human saliva is a complex body fluid with more than 3000 different identified proteins. Besides rheological and lubricating properties, saliva supports wound healing and acts as an antimicrobial barrier. TFF peptides are secreted from the mucous acini of the major and minor salivary glands and are typical constituents of normal saliva; TFF3 being the predominant peptide compared with TFF1 and TFF2. Only TFF3 is easily detectable by Western blotting. It occurs in two forms, a disulfide-linked homodimer (Mr: 13k) and a high-molecular-mass heterodimer with IgG Fc binding protein (FCGBP). TFF peptides are secretory lectins known for their protective effects in mucous epithelia; the TFF3 dimer probably has wound-healing properties due to its weak motogenic effect. There are multiple indications that FCGBP and TFF3-FCGBP play a key role in the innate immune defense of mucous epithelia. In addition, homodimeric TFF3 interacts in vitro with the salivary agglutinin DMBT1gp340. Here, the protective roles of TFF peptides, FCGBP, and DMBT1gp340 in saliva are discussed. TFF peptides are also used to reduce radiotherapy- or chemotherapy-induced oral mucositis. Thus, TFF peptides, FCGBP, and DMBT1gp340 are promising candidates for better formulations of artificial saliva, particularly improving wound healing and antimicrobial effects even in the esophagus.
Collapse
|
41
|
Qi X, Wang XQ, Jin L, Gao LX, Guo HF. Uncovering potential single nucleotide polymorphisms, copy number variations and related signaling pathways in primary Sjogren's syndrome. Bioengineered 2021; 12:9313-9331. [PMID: 34723755 PMCID: PMC8809958 DOI: 10.1080/21655979.2021.2000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary Sjogren’s syndrome (pSS) is a complex systemic autoimmune disease, which is difficult to accurately diagnose due to symptom diversity in patients, especially at earlier stages. We tried to find potential single nucleotide polymorphisms (SNPs), copy number variations (CNVs) and related signaling pathways. Genomic DNA was extracted from peripheral blood of 12 individuals (7 individuals from 3 pSS pedigrees and 5 sporadic cases) for whole-exome sequencing (WES) analysis. SNPs and CNVs were identified, followed by functional annotation of genes with SNPs and CNVs. Gene expression profile (involving 64 normal controls and 166 cases) was downloaded from the Gene Expression Omnibus database (GEO) dataset for differentially expression analysis. Sanger sequencing and in vitro validation was used to validate the identified SNPs and differentially expressed genes, respectively. A total of 5 SNPs were identified in both pedigrees and sporadic cases, such as FES, PPM1J, and TRAPPC9. A total of 3402 and 19 CNVs were identified in pedigrees and sporadic cases, respectively. Fifty-one differentially expressed genes were associated with immunity, such as BATF3, LAP3, BATF2, PARP9, and IL15RA. AMPK signaling pathway and cell adhesion molecules (CAMs) were the most significantly enriched signaling pathways of identified SNPs. Identified CNVs were associated with systemic lupus erythematosus, mineral absorption, and HTLV-I infection. IL2-STAT5 signaling, interferon-gamma response, and interferon-alpha response were significantly enriched immune related signaling pathways of identified differentially expressed genes. In conclusion, our study found some potential SNPs, CNVs, and related signaling pathways, which could be useful in understanding the pathological mechanism of pSS.
Collapse
Affiliation(s)
- Xuan Qi
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xi-Qin Wang
- Internal Medicine, Yuhua Yunfang Integrated Traditional Chinese and Western Medicine Clinic, Shijiazhuang, Hebei, China
| | - Lu Jin
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Xia Gao
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui-Fang Guo
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
42
|
Abstract
Wound healing is a complex and energy-demanding process. The relationship between nutrition and wound healing has been recognized for many centuries. Several studies have indicated that nutritional deficiencies are more prevalent among patients with chronic wounds. Malnutrition may alter the inflammatory response, collagen synthesis, and wound tensile strength, all of which are crucial for wound healing. Although the specific role of nutrition and supplementation in wound care remains uncertain, it is necessary to identify and correct nutritional imbalances to avoid any potential deterioration of the healing process. It is also important to recognize the differences in pathophysiology between acute and chronic wounds. A burn, surgical, or a traumatic wound is different from a diabetic foot ulcer, which is different from a pressure ulcer. Chronic wounds are more prevalent in the aging population, and patients often have underlying comorbidities, such as diabetes mellitus, peripheral vascular disease, connective tissue disease, or other systemic illnesses that may alter energy metabolism and contribute to impaired healing. Management approaches to acute wound care may not apply universally to chronic wounds. In this review, we discuss the available data and possible roles for nutrition in wound healing.
Collapse
|
43
|
Schwartz M, Neiers F, Charles JP, Heydel JM, Muñoz-González C, Feron G, Canon F. Oral enzymatic detoxification system: Insights obtained from proteome analysis to understand its potential impact on aroma metabolization. Compr Rev Food Sci Food Saf 2021; 20:5516-5547. [PMID: 34653315 DOI: 10.1111/1541-4337.12857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
The oral cavity is an entry path into the body, enabling the intake of nutrients but also leading to the ingestion of harmful substances. Thus, saliva and oral tissues contain enzyme systems that enable the early neutralization of xenobiotics as soon as they enter the body. Based on recently published oral proteomic data from several research groups, this review identifies and compiles the primary detoxification enzymes (also known as xenobiotic-metabolizing enzymes) present in saliva and the oral epithelium. The functions and the metabolic activity of these enzymes are presented. Then, the activity of these enzymes in saliva, which is an extracellular fluid, is discussed with regard to the salivary parameters. The next part of the review presents research evidencing oral metabolization of aroma compounds and the putative involved enzymes. The last part discusses the potential role of these enzymatic reactions on the perception of aroma compounds in light of recent pieces of evidence of in vivo oral metabolization of aroma compounds affecting their release in mouth and their perception. Thus, this review highlights different enzymes appearing as relevant to explain aroma metabolism in the oral cavity. It also points out that further works are needed to unravel the effect of the oral enzymatic detoxification system on the perception of food flavor in the context of the consumption of complex food matrices, while considering the impact of food oral processing. Thus, it constitutes a basis to explore these biochemical mechanisms and their impact on flavor perception.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Philippe Charles
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Carolina Muñoz-González
- Instituto de investigación en Ciencias de la Alimentación (CIAL), (CSIC-UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - Gilles Feron
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
44
|
Goldoni R, Scolaro A, Boccalari E, Dolci C, Scarano A, Inchingolo F, Ravazzani P, Muti P, Tartaglia G. Malignancies and Biosensors: A Focus on Oral Cancer Detection through Salivary Biomarkers. BIOSENSORS-BASEL 2021; 11:bios11100396. [PMID: 34677352 PMCID: PMC8533918 DOI: 10.3390/bios11100396] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Oral cancer is among the deadliest types of malignancy due to the late stage at which it is usually diagnosed, leaving the patient with an average five-year survival rate of less than 50%. The booming field of biosensing and point of care diagnostics can, in this regard, play a major role in the early detection of oral cancer. Saliva is gaining interest as an alternative biofluid for non-invasive diagnostics, and many salivary biomarkers of oral cancer have been proposed. While these findings are promising for the application of salivaomics tools in routine practice, studies on larger cohorts are still needed for clinical validation. This review aims to summarize the most recent development in the field of biosensing related to the detection of salivary biomarkers commonly associated with oral cancer. An introduction to oral cancer diagnosis, prognosis and treatment is given to define the clinical problem clearly, then saliva as an alternative biofluid is presented, along with its advantages, disadvantages, and collection procedures. Finally, a brief paragraph on the most promising salivary biomarkers introduces the sensing technologies commonly exploited to detect oral cancer markers in saliva. Hence this review provides a comprehensive overview of both the clinical and technological advantages and challenges associated with oral cancer detection through salivary biomarkers.
Collapse
Affiliation(s)
- Riccardo Goldoni
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Alessandra Scolaro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Elisa Boccalari
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Carolina Dolci
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy;
| | - Paolo Ravazzani
- National Research Council, Institute of Electronics, Computer and Telecommunication Engineering (CNR IEIIT), 20133 Milano, Italy;
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Gianluca Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20100 Milano, Italy
- Correspondence:
| |
Collapse
|
45
|
SecProCT: In Silico Prediction of Human Secretory Proteins Based on Capsule Network and Transformer. Int J Mol Sci 2021; 22:ijms22169054. [PMID: 34445760 PMCID: PMC8396571 DOI: 10.3390/ijms22169054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Identifying secretory proteins from blood, saliva or other body fluids has become an effective method of diagnosing diseases. Existing secretory protein prediction methods are mainly based on conventional machine learning algorithms and are highly dependent on the feature set from the protein. In this article, we propose a deep learning model based on the capsule network and transformer architecture, SecProCT, to predict secretory proteins using only amino acid sequences. The proposed model was validated using cross-validation and achieved 0.921 and 0.892 accuracy for predicting blood-secretory proteins and saliva-secretory proteins, respectively. Meanwhile, the proposed model was validated on an independent test set and achieved 0.917 and 0.905 accuracy for predicting blood-secretory proteins and saliva-secretory proteins, respectively, which are better than conventional machine learning methods and other deep learning methods for biological sequence analysis. The main contributions of this article are as follows: (1) a deep learning model based on a capsule network and transformer architecture is proposed for predicting secretory proteins. The results of this model are better than the those of existing conventional machine learning methods and deep learning methods for biological sequence analysis; (2) only amino acid sequences are used in the proposed model, which overcomes the high dependence of existing methods on the annotated protein features; (3) the proposed model can accurately predict most experimentally verified secretory proteins and cancer protein biomarkers in blood and saliva.
Collapse
|
46
|
Dunphy K, O’Mahoney K, Dowling P, O’Gorman P, Bazou D. Clinical Proteomics of Biofluids in Haematological Malignancies. Int J Mol Sci 2021; 22:ijms22158021. [PMID: 34360786 PMCID: PMC8348619 DOI: 10.3390/ijms22158021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Since the emergence of high-throughput proteomic techniques and advances in clinical technologies, there has been a steady rise in the number of cancer-associated diagnostic, prognostic, and predictive biomarkers being identified and translated into clinical use. The characterisation of biofluids has become a core objective for many proteomic researchers in order to detect disease-associated protein biomarkers in a minimally invasive manner. The proteomes of biofluids, including serum, saliva, cerebrospinal fluid, and urine, are highly dynamic with protein abundance fluctuating depending on the physiological and/or pathophysiological context. Improvements in mass-spectrometric technologies have facilitated the in-depth characterisation of biofluid proteomes which are now considered hosts of a wide array of clinically relevant biomarkers. Promising efforts are being made in the field of biomarker diagnostics for haematologic malignancies. Several serum and urine-based biomarkers such as free light chains, β-microglobulin, and lactate dehydrogenase are quantified as part of the clinical assessment of haematological malignancies. However, novel, minimally invasive proteomic markers are required to aid diagnosis and prognosis and to monitor therapeutic response and minimal residual disease. This review focuses on biofluids as a promising source of proteomic biomarkers in haematologic malignancies and a key component of future diagnostic, prognostic, and disease-monitoring applications.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Kelly O’Mahoney
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
- Correspondence:
| |
Collapse
|
47
|
Barbour A, Elebyary O, Fine N, Oveisi M, Glogauer M. Metabolites of the Oral Microbiome: Important Mediators of Multi-Kingdom Interactions. FEMS Microbiol Rev 2021; 46:6316110. [PMID: 34227664 DOI: 10.1093/femsre/fuab039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The oral cavity hosts over 700 different microbial species that produce a rich reservoir of bioactive metabolites critical to oral health maintenance. Over the last two decades, new insights into the oral microbiome and its importance in health and disease have emerged mainly due to the discovery of new oral microbial species using next-generation sequencing (NGS). This advancement has revolutionized the documentation of unique microbial profiles associated with different niches and health/disease states within the oral cavity and the relation of the oral bacteria to systemic diseases. However, less work has been done to identify and characterize the unique oral microbial metabolites that play critical roles in maintaining equilibrium between the various oral microbial species and their human hosts. This article discusses the most significant microbial metabolites produced by these diverse communities of oral bacteria that can either foster health or contribute to disease. Finally, we shed light on how advances in genomics and genome mining can provide a high throughput platform for discovering novel bioactive metabolites derived from the human oral microbiome to tackle emerging human infections and systemic diseases.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada, M5G 2M9, Canada
| |
Collapse
|
48
|
Salivary biochemical indices related to early childhood caries. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:300-305. [PMID: 34041879 PMCID: PMC8218263 DOI: 10.7518/hxkq.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES This study aimed to compare the salivary biochemical indices between caries-free individuals and those with early childhood caries (ECC), and construct a saliva-based caries diagnostic model by analyzing the correlation between salivary biochemical indices and caries severity. METHODS A total of 120 children aged 4-6 years were selected and divided into two groups: individuals with ECC (C group, n=60) and healthy children (H group, n=60). Salivary samples were collected to compare the pH, total protein, and ion concentrations between the two groups. The correlation between the salivary biochemical indices and caries severity was examined, and an ECC diagnostic model was established. RESULTS The NO3- concentration significantly decreased in the C group, whereas the Cl-, Br-, NH4+, and Mg2+ concentrations significantly increased in the C group (P<0.05). In addition, the salivary caries severity had a significantly negative correlation with the NO3- concentration but had a positive correlation with Br-, Cl-, and NH4+ concentrations (P<0.05). The ECC diagnostic model based on salivary biochemical indices could yield satisfactory results in terms of distinguishing the C and H groups with over 85% accuracy. CONCLUSIONS Salivary biochemical indices can contribute to the diagnosis and risk assessment of ECC.
Collapse
|
49
|
Lau WW, Hardt M, Zhang YH, Freire M, Ruhl S. The Human Salivary Proteome Wiki: A Community-Driven Research Platform. J Dent Res 2021; 100:1510-1519. [PMID: 34032471 DOI: 10.1177/00220345211014432] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Saliva has become an attractive body fluid for on-site, remote, and real-time monitoring of oral and systemic health. At the same time, the scientific community needs a saliva-centered information platform that keeps pace with the rapid accumulation of new data and knowledge by annotating, refining, and updating the salivary proteome catalog. We developed the Human Salivary Proteome (HSP) Wiki as a public data platform for researching and retrieving custom-curated data and knowledge on the saliva proteome. The HSP Wiki is dynamically compiled and updated based on published saliva proteome studies and up-to-date protein reference records. It integrates a wide range of available information by funneling in data from established external protein, genome, transcriptome, and glycome databases. In addition, the HSP Wiki incorporates data from human disease-related studies. Users can explore the proteome of saliva simply by browsing the database, querying the available data, performing comparisons of data sets, and annotating existing protein entries using a simple, intuitive interface. The annotation process includes both user feedback and curator committee review to ensure the quality and validity of each entry. Here, we present the first overview of features and functions the HSP Wiki offers. As a saliva proteome-centric, publicly accessible database, the HSP Wiki will advance the knowledge of saliva composition and function in health and disease for users across a wide range of disciplines. As a community-based data- and knowledgebase, the HSP Wiki will serve as a worldwide platform to exchange salivary proteome information, inspire novel research ideas, and foster cross-discipline collaborations. The HSP Wiki will pave the way for harnessing the full potential of the salivary proteome for diagnosis, risk prediction, therapy of oral and systemic diseases, and preparedness for emerging infectious diseases.Database URL: https://salivaryproteome.nidcr.nih.gov/.
Collapse
Affiliation(s)
- W W Lau
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Hardt
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Y H Zhang
- Department of Bioscience Research, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - M Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA.,Department of Infectious Diseases and Global Health, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - S Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
50
|
Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. J Clin Med 2021; 10:jcm10071488. [PMID: 33916672 PMCID: PMC8038382 DOI: 10.3390/jcm10071488] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
The primary cause of tooth loss in the industrialized world is periodontitis, a bacterial anaerobic infection whose pathogenesis is characterized by composite immune response. At present, the diagnose of periodontitis is made by a complete status check of the patient’s periodontal health; full-mouth plaque score, full-mouth bleeding score, probing depth, clinical attachment level, bleeding on probing, recessions, mobility, and migration are evaluated in order to provides a clear picture of the periodontal conditions of a single patient. Chair-side diagnostic tests based on whole saliva could be routinely used by periodontists for a very early diagnosis of periodontitis, monitoring, prognosis, and management of periodontal patients by biomarker detection, whose diagnostic validity is related to sensitivity and specificity. Recent paper reviews and meta-analyses have focused on five promising host derived biomarkers as candidate for early diagnosis of periodontitis: MMP-8 (Metalloproteinase-8), MIP-1α (Macrophage inflammatory protein-1 alpha), IL-1 β (Interleukin-1 beta), IL-6 (Interleukin-6), and HB (Hemoglobin), and their combinations. Chair-side Lab-on-a-chip (LOC) technology may soon become an important part of efforts to detect such biomarkers in saliva medium to improve worldwide periodontal health in developed nations as well as in underserved communities and poor countries. Their applications in preventive and predictive medicine is now fundamental, and is aimed at the early detection of risk factors or the presence or evolution of the disease, and in personalized medicine, which aims to identify tailor-made treatments for individual patients. The aim of the present paper is to be informative about host derived periodontal biomarkers and, in particular, we intend to report information about the most important immune response derived biomarkers and Hemoglobin as candidates to be routinely utilized in order to obtain a chair-side early diagnosis of periodontal disease.
Collapse
|