1
|
Xu W, Liu Z, Wang J, Jin K, Yue L, Yu L, Niu L, Dou Q, Liu J, Zhang Y, Zhu X, Wu Y. Extending visual range of bacteria with upconversion nanoparticles and constructing NIR-responsive bio-microrobots. J Colloid Interface Sci 2025; 682:608-618. [PMID: 39642547 DOI: 10.1016/j.jcis.2024.11.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
The motility of bacteria is crucial for navigating competitive environments and is closely linked to physiological activities essential for their survival, such as biofilm development. Precise regulation of bacterial motility enhances our understanding of these complex processes. While optogenetic tools have been used to control and investigate bacterial motility, the excitation light in most existing systems are limited to the visible light spectrum. Here, we introduce a new type of bio-microrobot comprising genetically engineered E. coli cells and orthogonally emissive upconversion nanoparticles that can respond to both 980 nm and 808 nm NIR light. This system allows toggling of bacterial states between tumbling and swimming via simply alternating the NIR light between different wavelengths. It is believed that the use of NIR light with deeper tissue penetration suggests potential applications for these bio-microrobots in areas like targeted drug delivery.
Collapse
Affiliation(s)
- Wei Xu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Zhen Liu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Jing Wang
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Kai Jin
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Lulu Yue
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Lin Yu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; School of Medicine, Shanghai University, Shanghai, China
| | - Luqi Niu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Qingqing Dou
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Jinliang Liu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, China
| | - Xiaohui Zhu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| | - Yihan Wu
- Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| |
Collapse
|
2
|
Ranzani AT, Buchholz K, Blackholm M, Kopkin H, Möglich A. Induction of bacterial expression at the mRNA level by light. Nucleic Acids Res 2024; 52:10017-10028. [PMID: 39126322 PMCID: PMC11381354 DOI: 10.1093/nar/gkae678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Vital organismal processes, including development, differentiation and adaptation, involve altered gene expression. Although expression is frequently controlled at the transcriptional stage, various regulation mechanisms operate at downstream levels. Here, we leverage the photoreceptor NmPAL to optogenetically induce RNA refolding and the translation of bacterial mRNAs. Blue-light-triggered NmPAL binding disrupts a cis-repressed mRNA state, thereby relieves obstruction of translation initiation, and upregulates gene expression. Iterative probing and optimization of the circuit, dubbed riboptoregulator, enhanced induction to 30-fold. Given action at the mRNA level, the riboptoregulator can differentially regulate individual structural genes within polycistronic operons. Moreover, it is orthogonal to and can be wed with other gene-regulatory circuits for nuanced and more stringent gene-expression control. We thus advance the pAurora2 circuit that combines transcriptional and translational mechanisms to optogenetically increase bacterial gene expression by >1000-fold. The riboptoregulator strategy stands to upgrade numerous regulatory circuits and widely applies to expression control in microbial biotechnology, synthetic biology and materials science.
Collapse
Affiliation(s)
- Américo T Ranzani
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Konrad Buchholz
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Marius Blackholm
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Hayat Kopkin
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447 Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
3
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
4
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
5
|
Xu Q, Vogt A, Frechen F, Yi C, Küçükerden M, Ngum N, Sitjà-Roqueta L, Greiner A, Parri R, Masana M, Wenger N, Wachten D, Möglich A. Engineering Bacteriophytochrome-coupled Photoactivated Adenylyl Cyclases for Enhanced Optogenetic cAMP Modulation. J Mol Biol 2024; 436:168257. [PMID: 37657609 DOI: 10.1016/j.jmb.2023.168257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Sensory photoreceptors abound in nature and enable organisms to adapt behavior, development, and physiology to environmental light. In optogenetics, photoreceptors allow spatiotemporally precise, reversible, and non-invasive control by light of cellular processes. Notwithstanding the development of numerous optogenetic circuits, an unmet demand exists for efficient systems sensitive to red light, given its superior penetration of biological tissue. Bacteriophytochrome photoreceptors sense the ratio of red and far-red light to regulate the activity of enzymatic effector modules. The recombination of bacteriophytochrome photosensor modules with cyclase effectors underlies photoactivated adenylyl cyclases (PAC) that catalyze the synthesis of the ubiquitous second messenger 3', 5'-cyclic adenosine monophosphate (cAMP). Via homologous exchanges of the photosensor unit, we devised novel PACs, with the variant DmPAC exhibiting 40-fold activation of cyclase activity under red light, thus surpassing previous red-light-responsive PACs. Modifications of the PHY tongue modulated the responses to red and far-red light. Exchanges of the cyclase effector offer an avenue to further enhancing PACs but require optimization of the linker to the photosensor. DmPAC and a derivative for 3', 5'-cyclic guanosine monophosphate allow the manipulation of cyclic-nucleotide-dependent processes in mammalian cells by red light. Taken together, we advance the optogenetic control of second-messenger signaling and provide insight into the signaling and design of bacteriophytochrome receptors.
Collapse
Affiliation(s)
- Qianzhao Xu
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Arend Vogt
- Charité - University Medicine Berlin, Department of Neurology with Experimental Neurology, 10117 Berlin, Germany. https://twitter.com/ArendVogt
| | - Fabian Frechen
- Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
| | - Chengwei Yi
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Melike Küçükerden
- Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Neville Ngum
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Laia Sitjà-Roqueta
- Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95440, Germany
| | - Rhein Parri
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Mercè Masana
- Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain. https://twitter.com/mercemasana
| | - Nikolaus Wenger
- Charité - University Medicine Berlin, Department of Neurology with Experimental Neurology, 10117 Berlin, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany. https://twitter.com/DagmarWachten
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany; Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447 Bayreuth, Germany; North-Bavarian NMR Center, Universität Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
6
|
Ramírez Martínez C, Gómez-Pérez LS, Ordaz A, Torres-Huerta AL, Antonio-Perez A. Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications. Int J Mol Sci 2023; 24:14741. [PMID: 37834188 PMCID: PMC10572898 DOI: 10.3390/ijms241914741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
Collapse
Affiliation(s)
| | | | | | | | - Aurora Antonio-Perez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Ciudad López Mateos, Atizapán de Zaragoza 52926, Estado de México, Mexico; (C.R.M.); (L.S.G.-P.); (A.O.); (A.L.T.-H.)
| |
Collapse
|
7
|
Gao Y, Wei J, Pu L, Fu S, Xing X, Zhang R, Jin F. Remotely Controllable Engineered Bacteria for Targeted Therapy of Pseudomonas aeruginosa Infection. ACS Synth Biol 2023. [PMID: 37418677 DOI: 10.1021/acssynbio.2c00655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infection has become an intractable problem worldwide due to the decreasing efficacy of the mainstay therapy, antibiotic treatment. Hence, exploring new drugs and therapies to address this issue is crucial. Here, we construct a chimeric pyocin (ChPy) to specifically kill P. aeruginosa and engineer a near-infrared (NIR) light-responsive strain to produce and deliver this drug. Our engineered bacterial strain can continuously produce ChPy in the absence of light and release it to kill P. aeruginosa via remotely and precisely controlled bacterial lysis induced by NIR light. We demonstrate that our engineered bacterial strain is effective in P. aeruginosa-infected wound therapy in the mouse model, as it eradicated PAO1 in mouse wounds and shortened the wound healing time. Our work presents a potentially spatiotemporal and noninvasively controlled therapeutic strategy of engineered bacteria for the targeted treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Yanmei Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jingjing Wei
- Department of Fine Chemical Engineering, Shenzhen Polytechnic, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Lu Pu
- West China School of Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610065, China
| | - Shengwei Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Xiaochen Xing
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Rongrong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
8
|
Gao TT, Oh T, Mehta K, Huang YA, Camp T, Fan H, Han JW, Barnes CM, Zhang K. The clinical potential of optogenetic interrogation of pathogenesis. Clin Transl Med 2023; 13:e1243. [PMID: 37132114 PMCID: PMC10154842 DOI: 10.1002/ctm2.1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye. AIMS AND METHODS This work summarizes the progress of current clinical trials and provides a brief overview of basic structures and photophysics of commonly used photoactivable proteins. We highlight recent achievements such as optogenetic control of the chimeric antigen receptor, CRISPR-Cas system, gene expression, and organelle dynamics. We discuss conceptual innovation and technical challenges faced by current optogenetic research. CONCLUSION In doing so, we provide a framework that showcases ever-growing applications of optogenetics in biomedical research and may inform novel precise medicine strategies based on this enabling technology.
Collapse
Affiliation(s)
- Tianyu Terry Gao
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Teak‐Jung Oh
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kritika Mehta
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Yu‐En Andrew Huang
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
| | - Tyler Camp
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Huaxun Fan
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Jeong Won Han
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Collin Michael Barnes
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kai Zhang
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
9
|
Lan TH, He L, Huang Y, Zhou Y. Optogenetics for transcriptional programming and genetic engineering. Trends Genet 2022; 38:1253-1270. [PMID: 35738948 PMCID: PMC10484296 DOI: 10.1016/j.tig.2022.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
Collapse
Affiliation(s)
- Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Audouard E, Michel F, Pierroz V, Kim T, Rousselot L, Gillet-Legrand B, Dufayet-Chauffaut G, Buchmann P, Florea M, Khel A, Altynbekova K, Delgaldo C, Escudero E, Soler ABA, Cartier N, Piguet F, Folcher M. Bioelectronic cell-based device provides a strategy for the treatment of the experimental model of multiple sclerosis. J Control Release 2022; 352:994-1008. [PMID: 36370877 PMCID: PMC9733677 DOI: 10.1016/j.jconrel.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Wireless powered optogenetic cell-based implant provides a strategy to deliver subcutaneously therapeutic proteins. Immortalize Human Mesenchymal Stem Cells (hMSC-TERT) expressing the bacteriophytochrome diguanylate cyclase (DGCL) were validated for optogenetic controlled interferon-β delivery (Optoferon cells) in a bioelectronic cell-based implant. Optoferon cells transcriptomic profiling was used to elaborate an in-silico model of the recombinant interferon-β production. Wireless optoelectronic device integration was developed using additive manufacturing and injection molding. Implant cell-based optoelectronic interface manufacturing was established to integrate industrial flexible compact low-resistance screen-printed Near Field Communication (NFC) coil antenna. Optogenetic cell-based implant biocompatibility, and device performances were evaluated in the Experimental Autoimmune Encephalomyelitis (EAE) mouse model of multiple sclerosis.
Collapse
Affiliation(s)
- Emilie Audouard
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Fanny Michel
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland
| | - Vanessa Pierroz
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland
| | - Taeuk Kim
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland
| | - Lisa Rousselot
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Béatrix Gillet-Legrand
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Gaëlle Dufayet-Chauffaut
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland
| | - Michael Florea
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland
| | | | | | - Claudia Delgaldo
- Eurecat, Centre Tecnològic de Catalunya, Functional Printing and Embedded Devices Unit, Mataró, Spain
| | - Encarna Escudero
- Eurecat, Centre Tecnològic de Catalunya, Functional Printing and Embedded Devices Unit, Mataró, Spain
| | - Alejandra Ben Aissa Soler
- Eurecat, Centre Tecnològic de Catalunya, Functional Printing and Embedded Devices Unit, Mataró, Spain
| | - Nathalie Cartier
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Francoise Piguet
- NeuroGenCell, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Sorbonne Université; Hôpital de la Pitié Salpêtrière, Paris, France
| | - Marc Folcher
- Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland,Institute of Molecular and Clinical Ophthalmology, IOB, Basel, Switzerland,Corresponding author at: Department of Biosystems Science and Engineering, D-BSSE, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
11
|
Ranzani AT, Wehrmann M, Kaiser J, Juraschitz M, Weber AM, Pietruschka G, Gerken U, Mayer G, Möglich A. Light-Dependent Control of Bacterial Expression at the mRNA Level. ACS Synth Biol 2022; 11:3482-3492. [PMID: 36129831 DOI: 10.1021/acssynbio.2c00365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sensory photoreceptors mediate numerous light-dependent adaptations across organisms. In optogenetics, photoreceptors achieve the reversible, non-invasive, and spatiotemporally precise control by light of gene expression and other cellular processes. The light-oxygen-voltage receptor PAL binds to small RNA aptamers with sequence specificity upon blue-light illumination. By embedding the responsive aptamer in the ribosome-binding sequence of genes of interest, their expression can be downregulated by light. We developed the pCrepusculo and pAurora optogenetic systems that are based on PAL and allow to down- and upregulate, respectively, bacterial gene expression using blue light. Both systems are realized as compact, single plasmids that exhibit stringent blue-light responses with low basal activity and up to several 10-fold dynamic range. As PAL exerts light-dependent control at the RNA level, it can be combined with other optogenetic circuits that control transcription initiation. By integrating regulatory mechanisms operating at the DNA and mRNA levels, optogenetic circuits with emergent properties can thus be devised. As a case in point, the pEnumbra setup permits to upregulate gene expression under moderate blue light whereas strong blue light shuts off expression again. Beyond providing novel signal-responsive expression systems for diverse applications in biotechnology and synthetic biology, our work also illustrates how the light-dependent PAL-aptamer interaction can be harnessed for the control and interrogation of RNA-based processes.
Collapse
Affiliation(s)
- Américo T Ranzani
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Markus Wehrmann
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Jennifer Kaiser
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Marc Juraschitz
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Anna M Weber
- Life and Medical Sciences (LIMES), University of Bonn, 53121 Bonn, Germany
| | - Georg Pietruschka
- Life and Medical Sciences (LIMES), University of Bonn, 53121 Bonn, Germany
| | - Uwe Gerken
- Lehrstuhl für Spektroskopie weicher Materie, University of Bayreuth, 95447 Bayreuth, Germany
| | - Günter Mayer
- Life and Medical Sciences (LIMES), University of Bonn, 53121 Bonn, Germany.,Center of Aptamer Research & Development, University of Bonn, 53121 Bonn, Germany
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.,Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447 Bayreuth, Germany.,North-Bavarian NMR Center, Universität Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
12
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
13
|
An adaptive tracking illumination system for optogenetic control of single bacterial cells. Appl Microbiol Biotechnol 2022; 106:6775-6784. [PMID: 36129484 DOI: 10.1007/s00253-022-12177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Single-cell behaviors are essential during early-stage biofilm formation. In this study, we aimed to evaluate whether single-cell behaviors could be precisely and continuously manipulated by optogenetics. We thus established adaptive tracking illumination (ATI), a novel illumination method to precisely manipulate the gene expression and bacterial behavior of Pseudomonas aeruginosa on the surface at the single-cell level by using the combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation, and adaptive microscopy. ATI enables precise gene expression control by manipulating the optogenetic module gene expression and type IV pili (TFP)-mediated motility and microcolony formation during biofilm formation through bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) level modifications in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms could be controlled using ATI. Therefore, this novel method we established might markedly answer various questions or resolve problems in microbiology. KEY POINTS: • High-resolution spatial and continuous optogenetic control of individual bacteria. • Phenotype-specific optogenetic control of individual bacteria. • Capacity to control biologically relevant processes in engineered single cells.
Collapse
|
14
|
Guan N, Gao X, Ye H. Engineering of optogenetic devices for biomedical applications in mammalian synthetic biology. ENGINEERING BIOLOGY 2022; 6:35-49. [PMID: 36969102 PMCID: PMC9996731 DOI: 10.1049/enb2.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Gene- and cell-based therapies are the next frontiers in the field of medicine. Both are transformative and innovative therapies; however, a lack of safety data limits the translation of such promising technologies to the clinic. Improving the safety and promoting the clinical translation of these therapies can be achieved by tightly regulating the release and delivery of therapeutic outputs. In recent years, the rapid development of optogenetic technology has provided opportunities to develop precision-controlled gene- and cell-based therapies, in which light is introduced to precisely and spatiotemporally manipulate the behaviour of genes and cells. This review focuses on the development of optogenetic tools and their applications in biomedicine, including photoactivated genome engineering and phototherapy for diabetes and tumours. The prospects and challenges of optogenetic tools for future clinical applications are also discussed.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xianyun Gao
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
15
|
Optogenetic tools for microbial synthetic biology. Biotechnol Adv 2022; 59:107953. [DOI: 10.1016/j.biotechadv.2022.107953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 12/22/2022]
|
16
|
Hoffman SM, Tang AY, Avalos JL. Optogenetics Illuminates Applications in Microbial Engineering. Annu Rev Chem Biomol Eng 2022; 13:373-403. [PMID: 35320696 DOI: 10.1146/annurev-chembioeng-092120-092340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optogenetics has been used in a variety of microbial engineering applications, such as chemical and protein production, studies of cell physiology, and engineered microbe-host interactions. These diverse applications benefit from the precise spatiotemporal control that light affords, as well as its tunability, reversibility, and orthogonality. This combination of unique capabilities has enabled a surge of studies in recent years investigating complex biological systems with completely new approaches. We briefly describe the optogenetic tools that have been developed for microbial engineering, emphasizing the scientific advancements that they have enabled. In particular, we focus on the unique benefits and applications of implementing optogenetic control, from bacterial therapeutics to cybergenetics. Finally, we discuss future research directions, with special attention given to the development of orthogonal multichromatic controls. With an abundance of advantages offered by optogenetics, the future is bright in microbial engineering. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon M Hoffman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , ,
| | - Allison Y Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , ,
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , , .,The Andlinger Center for Energy and the Environment, Department of Molecular Biology, and High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
17
|
Zhang C, Shi Y, Wu L, Wang C, Liao N, Wang F, Zhao B, Wang Y, Liu X. Far-Red Light Triggered Production of Bispecific T Cell Engagers (BiTEs) from Engineered Cells for Antitumor Application. ACS Synth Biol 2022; 11:888-899. [PMID: 35113526 DOI: 10.1021/acssynbio.1c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bispecific T-cell engagers (BiTEs), which have shown potent antitumor activity in humans, are emerging as one of the most promising immunotherapeutic strategies for cancer treatment in recent years. However, the clinical application of BiTEs nowadays has been hampered by their short half-life in the circulatory system due to their low molecular weight and rapid renal clearance. Inevitable continuous infusion of BiTEs has become a routine operation in order to achieve effective treatment, although it is costly, inconvenient, time-consuming, and even painful for patients in some cases. To develop an on-demand, tunable, and reversible approach to overcome these limitations, we assembled a transcription-control device into mammalian cells based on a bacterial far-red light (FRL) responsive signaling pathway to drive the expression of a BiTE against Glypican 3 (GPC3), which is a highly tumor-specific antigen expressed in most hepatocellular carcinomas (HCC). As demonstrated in in vitro experiments, we proved that the FRL sensitive device spatiotemporally responded to the control of FRL illumination and produced a therapeutic level of BiTEs that recruited and activated human T cells to eliminate GPC3 positive tumor cells. By functionally harnessing the power of optogenetics to remotely regulate the production of BiTEs from bioengineered cells and demonstrating its effectiveness in treating tumor cells, this study provides a novel approach to achieve an in vivo supply of BiTEs, which could be potentially applied to other formats of bispecific antibodies and facilitate their clinical applications.
Collapse
Affiliation(s)
- Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Yingjun Shi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Lingjie Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Chenyi Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| |
Collapse
|
18
|
Dwijayanti A, Zhang C, Poh CL, Lautier T. Toward Multiplexed Optogenetic Circuits. Front Bioeng Biotechnol 2022; 9:804563. [PMID: 35071213 PMCID: PMC8766309 DOI: 10.3389/fbioe.2021.804563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Owing to its ubiquity and easy availability in nature, light has been widely employed to control complex cellular behaviors. Light-sensitive proteins are the foundation to such diverse and multilevel adaptive regulations in a large range of organisms. Due to their remarkable properties and potential applications in engineered systems, exploration and engineering of natural light-sensitive proteins have significantly contributed to expand optogenetic toolboxes with tailor-made performances in synthetic genetic circuits. Progressively, more complex systems have been designed in which multiple photoreceptors, each sensing its dedicated wavelength, are combined to simultaneously coordinate cellular responses in a single cell. In this review, we highlight recent works and challenges on multiplexed optogenetic circuits in natural and engineered systems for a dynamic regulation breakthrough in biotechnological applications.
Collapse
Affiliation(s)
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Lautier
- CNRS@CREATE, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
19
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Wang X, Dong K, Kong D, Zhou Y, Yin J, Cai F, Wang M, Ye H. A far-red light-inducible CRISPR-Cas12a platform for remote-controlled genome editing and gene activation. SCIENCE ADVANCES 2021; 7:eabh2358. [PMID: 34890237 PMCID: PMC8664267 DOI: 10.1126/sciadv.abh2358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The CRISPR-Cas12a has been harnessed as a powerful tool for manipulating targeted gene expression. The possibility to manipulate the activity of CRISPR-Cas12a with a more precise spatiotemporal resolution and deep tissue permeability will enable targeted genome engineering and deepen our understanding of the gene functions underlying complex cellular behaviors. However, currently available inducible CRISPR-Cas12a systems are limited by diffusion, cytotoxicity, and poor tissue permeability. Here, we developed a far-red light (FRL)–inducible CRISPR-Cas12a (FICA) system that can robustly induce gene editing in mammalian cells, and an FRL-inducible CRISPR-dCas12a (FIdCA) system based on the protein-tagging system SUperNova (SunTag) that can be used for gene activation under light-emitting diode–based FRL. Moreover, we show that the FIdCA system can be deployed to activate target genes in mouse livers. These results demonstrate that these systems developed here provide robust and efficient platforms for programmable genome manipulation in a noninvasive and spatiotemporal fashion.
Collapse
Affiliation(s)
- Xinyi Wang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Kaili Dong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Zhou
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jianli Yin
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, 450 Tengyue Road, Shanghai 200090, China
| | - Meiyan Wang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- Corresponding author. (M.W.); (H.Y.)
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- Corresponding author. (M.W.); (H.Y.)
| |
Collapse
|
21
|
Reprogramming microbial populations using a programmed lysis system to improve chemical production. Nat Commun 2021; 12:6886. [PMID: 34824227 PMCID: PMC8617184 DOI: 10.1038/s41467-021-27226-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
Microbial populations are a promising model for achieving microbial cooperation to produce valuable chemicals. However, regulating the phenotypic structure of microbial populations remains challenging. In this study, a programmed lysis system (PLS) is developed to reprogram microbial cooperation to enhance chemical production. First, a colicin M -based lysis unit is constructed to lyse Escherichia coli. Then, a programmed switch, based on proteases, is designed to regulate the effective lysis unit time. Next, a PLS is constructed for chemical production by combining the lysis unit with a programmed switch. As a result, poly (lactate-co-3-hydroxybutyrate) production is switched from PLH synthesis to PLH release, and the content of free PLH is increased by 283%. Furthermore, butyrate production with E. coli consortia is switched from E. coli BUT003 to E. coli BUT004, thereby increasing butyrate production to 41.61 g/L. These results indicate the applicability of engineered microbial populations for improving the metabolic division of labor to increase the efficiency of microbial cell factories.
Collapse
|
22
|
Nakanishi H. Protein-Based Systems for Translational Regulation of Synthetic mRNAs in Mammalian Cells. Life (Basel) 2021; 11:life11111192. [PMID: 34833067 PMCID: PMC8621430 DOI: 10.3390/life11111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic mRNAs, which are produced by in vitro transcription, have been recently attracting attention because they can express any transgenes without the risk of insertional mutagenesis. Although current synthetic mRNA medicine is not designed for spatiotemporal or cell-selective regulation, many preclinical studies have developed the systems for the translational regulation of synthetic mRNAs. Such translational regulation systems will cope with high efficacy and low adverse effects by producing the appropriate amount of therapeutic proteins, depending on the context. Protein-based regulation is one of the most promising approaches for the translational regulation of synthetic mRNAs. As synthetic mRNAs can encode not only output proteins but also regulator proteins, all components of protein-based regulation systems can be delivered as synthetic mRNAs. In addition, in the protein-based regulation systems, the output protein can be utilized as the input for the subsequent regulation to construct multi-layered gene circuits, which enable complex and sophisticated regulation. In this review, I introduce what types of proteins have been used for translational regulation, how to combine them, and how to design effective gene circuits.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
23
|
Blain-Hartung M, Rockwell NC, Lagarias JC. Natural diversity provides a broad spectrum of cyanobacteriochrome-based diguanylate cyclases. PLANT PHYSIOLOGY 2021; 187:632-645. [PMID: 34608946 PMCID: PMC8491021 DOI: 10.1093/plphys/kiab240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/02/2021] [Indexed: 05/03/2023]
Abstract
Cyanobacteriochromes (CBCRs) are spectrally diverse photosensors from cyanobacteria distantly related to phytochromes that exploit photoisomerization of linear tetrapyrrole (bilin) chromophores to regulate associated signaling output domains. Unlike phytochromes, a single CBCR domain is sufficient for photoperception. CBCR domains that regulate the production or degradation of cyclic nucleotide second messengers are becoming increasingly well characterized. Cyclic di-guanosine monophosphate (c-di-GMP) is a widespread small-molecule regulator of bacterial motility, developmental transitions, and biofilm formation whose biosynthesis is regulated by CBCRs coupled to GGDEF (diguanylate cyclase) output domains. In this study, we compare the properties of diverse CBCR-GGDEF proteins with those of synthetic CBCR-GGDEF chimeras. Our investigation shows that natural diversity generates promising candidates for robust, broad spectrum optogenetic applications in live cells. Since light quality is constantly changing during plant development as upper leaves begin to shade lower leaves-affecting elongation growth, initiation of flowering, and responses to pathogens, these studies presage application of CBCR-GGDEF sensors to regulate orthogonal, c-di-GMP-regulated circuits in agronomically important plants for robust mitigation of such deleterious responses under natural growing conditions in the field.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Nathan C. Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
- Author for communication:
| |
Collapse
|
24
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
25
|
Manoilov KY, Verkhusha VV, Shcherbakova DM. A guide to the optogenetic regulation of endogenous molecules. Nat Methods 2021; 18:1027-1037. [PMID: 34446923 DOI: 10.1038/s41592-021-01240-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.
Collapse
Affiliation(s)
- Kyrylo Yu Manoilov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
26
|
Constructing Smartphone-Controlled Optogenetic Switches in Mammalian Cells. Methods Mol Biol 2021. [PMID: 34228288 DOI: 10.1007/978-1-0716-1441-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
With the increasing indispensable role of smartphones in our daily lives, the mobile health care system coupled with embedded physical sensors and modern communication technologies make it an attractive technology for enabling the remote monitoring of an individual's health. Using a multidisciplinary design principle coupled with smart electronics, software, and optogenetics, the investigators constructed smartphone-controlled optogenetic switches to enable the ultraremote-control transgene expression. A custom-designed SmartController system was programmed to process wireless signals from smartphones, enabling the regulation of therapeutic outputs production by optically engineered cells via a far-red light (FRL)-responsive optogenetic interface. In the present study, the investigators describe the details of the protocols for constructing smartphone-controlled optogenetic switches, including the rational design of an FRL-triggered transgene expression circuit, the procedure for cell culture and transfection, the implementation of the smartphone-controlled far-red light-emitting diode (LED) module, and the reporter detection assay.
Collapse
|
27
|
Wong GCL, Antani JD, Lele PP, Chen J, Nan B, Kühn MJ, Persat A, Bru JL, Høyland-Kroghsbo NM, Siryaporn A, Conrad JC, Carrara F, Yawata Y, Stocker R, Brun YV, Whitfield GB, Lee CK, de Anda J, Schmidt WC, Golestanian R, O’Toole GA, Floyd KA, Yildiz FH, Yang S, Jin F, Toyofuku M, Eberl L, Nomura N, Zacharoff LA, El-Naggar MY, Yalcin SE, Malvankar NS, Rojas-Andrade MD, Hochbaum AI, Yan J, Stone HA, Wingreen NS, Bassler BL, Wu Y, Xu H, Drescher K, Dunkel J. Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Phys Biol 2021; 18:10.1088/1478-3975/abdc0e. [PMID: 33462162 PMCID: PMC8506656 DOI: 10.1088/1478-3975/abdc0e] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor.
Collapse
Affiliation(s)
- Gerard C L Wong
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - Jyot D Antani
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX 77843, United States of America
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX 77843, United States of America
| | - Jing Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, United States of America
| | - Beiyan Nan
- Department of Biology, Texas A & M University, College Station, Texas, TX 77845, United States of America
| | - Marco J Kühn
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Louis Bru
- Department of Molecular Biology & Biochemistry, University of California—Irvine, California, CA 92697, United States of America
| | | | - Albert Siryaporn
- Department of Molecular Biology & Biochemistry, University of California—Irvine, California, CA 92697, United States of America
- Department of Physics & Astronomy, University of California—Irvine, California, CA 92697, United States of America
| | - Jacinta C Conrad
- William A Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, TX 77204, United States of America
| | - Francesco Carrara
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Yutaka Yawata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Yves V Brun
- University of Montreal, Faculty of Medicine, Montreal, Quebec, H3C 3J7, Canada
| | - Gregory B Whitfield
- University of Montreal, Faculty of Medicine, Montreal, Quebec, H3C 3J7, Canada
| | - Calvin K Lee
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - Jaime de Anda
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - William C Schmidt
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
- California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California, CA 90095, United States of America
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - George A O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States of America
| | - Kyle A Floyd
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, CA 95060, United States of America
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, CA 95060, United States of America
| | - Shuai Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
| | - Fan Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, CA 90089, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, CA 90089, United States of America
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, CA 90089, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, CA 90089, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, CA 90089, United States of America
| | - Sibel Ebru Yalcin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, CT 06516, United States of America
- Microbial Sciences Institute, Yale University, New Haven, Connecticut, CT 06516, United States of America
| | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, CT 06516, United States of America
- Microbial Sciences Institute, Yale University, New Haven, Connecticut, CT 06516, United States of America
| | - Mauricio D Rojas-Andrade
- Department of Materials Science and Engineering, University of California—Irvine, Irvine, California CA 92697, United States of America
| | - Allon I Hochbaum
- Department of Molecular Biology & Biochemistry, University of California—Irvine, California, CA 92697, United States of America
- Department of Materials Science and Engineering, University of California—Irvine, Irvine, California CA 92697, United States of America
- Department of Chemistry, University of California—Irvine, Irvine, California, CA 92697, United States of America
- Department of Chemical and Biomolecular Engineering, University of California—Irvine, Irvine, California, CA 92697, United States of America
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, CT 06511, United States of America
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, NJ 08544, United States of America
- The Howard Hughes Medical Institute, Chevy Chase, Maryland MD 20815, United States of America
| | - Yilin Wu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People’s Republic of China
| | - Haoran Xu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People’s Republic of China
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139-4307, United States of America
| |
Collapse
|
28
|
Kaberniuk AA, Baloban M, Monakhov MV, Shcherbakova DM, Verkhusha VV. Single-component near-infrared optogenetic systems for gene transcription regulation. Nat Commun 2021; 12:3859. [PMID: 34162879 PMCID: PMC8222386 DOI: 10.1038/s41467-021-24212-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
Near-infrared (NIR) optogenetic systems for transcription regulation are in high demand because NIR light exhibits low phototoxicity, low scattering, and allows combining with probes of visible range. However, available NIR optogenetic systems consist of several protein components of large size and multidomain structure. Here, we engineer single-component NIR systems consisting of evolved photosensory core module of Idiomarina sp. bacterial phytochrome, named iLight, which are smaller and packable in adeno-associated virus. We characterize iLight in vitro and in gene transcription repression in bacterial and gene transcription activation in mammalian cells. Bacterial iLight system shows 115-fold repression of protein production. Comparing to multi-component NIR systems, mammalian iLight system exhibits higher activation of 65-fold in cells and faster 6-fold activation in deep tissues of mice. Neurons transduced with viral-encoded iLight system exhibit 50-fold induction of fluorescent reporter. NIR light-induced neuronal expression of green-light-activatable CheRiff channelrhodopsin causes 20-fold increase of photocurrent and demonstrates efficient spectral multiplexing. Current near-IR optogenetic systems to regulate transcription consist of a number of large protein components. Here the authors report a smaller single-component near-IR system, iLight, developed from a bacterial phytochrome that they use to control gene transcription in bacterial and mammalian cells.
Collapse
Affiliation(s)
- Andrii A Kaberniuk
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mikhail V Monakhov
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.
| |
Collapse
|
29
|
An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway. Int J Mol Sci 2021; 22:ijms22105252. [PMID: 34065754 PMCID: PMC8156171 DOI: 10.3390/ijms22105252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.
Collapse
|
30
|
Khan FI, Song H, Hassan F, Tian J, Tang L, Lai D, Juan F. Impact of amino acid substitutions on the behavior of a photoactivatable near infrared fluorescent protein PAiRFP1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119572. [PMID: 33631627 DOI: 10.1016/j.saa.2021.119572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
A photoactivatable near-infrared fluorescent protein (NIR-FP) PAiRFP1 has been developed by 15 amino acid substitutions in its nonfluorescent template Agp2. In our previous communication, we investigated the role of three amino acids in PHY domain distal from BV molecule. The impact of the twelve amino acids in GAF domain, especially five residues near BV-binding pocket is unclear. In this paper, PCR based reverse mutagenesis, spectroscopic methods, molecular modelling and simulations have been employed to explore the roles of these substitutions during the molecular evolution of PAiRFP1. It was found that the residue L163 is important for protein folding in PAiRFP1. The residues F244 and C280 exerted remarkable effects on molar extinction coefficient, NIR fluorescence quantum yield, molecular brightness, fluorescence fold, and dark recovery rate. The residues F244 and V276 modulate the maximum absorption and emission peak position. The reverse mutant L168M exhibited a higher fluorescence fold than PAiRFP1. Additionally, the reverse mutants V203A, V294E, S218G and D127G possessed better spectral properties than PAiRFP1. This study is important for the rational design of a better BphP-based photoactivatable NIR-FPs.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Honghong Song
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fakhrul Hassan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Tian
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Feng Juan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
31
|
Oh TJ, Fan H, Skeeters SS, Zhang K. Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives. Adv Biol (Weinh) 2021; 5:e2000180. [PMID: 34028216 PMCID: PMC8218620 DOI: 10.1002/adbi.202000180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Indexed: 12/24/2022]
Abstract
Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub-micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever-increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
Collapse
Affiliation(s)
- Teak-Jung Oh
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Huaxun Fan
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Savanna S Skeeters
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Kai Zhang
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| |
Collapse
|
32
|
Tachibana SR, Tang L, Chen C, Zhu L, Takeda Y, Fushimi K, Seevers TK, Narikawa R, Sato M, Fang C. Transient electronic and vibrational signatures during reversible photoswitching of a cyanobacteriochrome photoreceptor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119379. [PMID: 33401182 DOI: 10.1016/j.saa.2020.119379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteriochromes (CBCRs) are an emerging class of photoreceptors that are distant relatives of the phytochromes family. Unlike phytochromes, CBCRs have gained popularity in optogenetics due to their highly diverse spectral properties spanning the UV to near-IR region and only needing a single compact binding domain. AnPixJg2 is a CBCR that can reversibly photoswitch between its red-absorbing (15ZPr) and green-absorbing (15EPg) forms of the phycocyanobilin (PCB) cofactor. To reveal primary events of photoconversion, we implemented femtosecond transient absorption spectroscopy with a homemade LED box and a miniature peristaltic pump flow cell to track transient electronic responses of the photoexcited AnPixJg2 on molecular time scales. The 525 nm laser-induced Pg-to-Pr reverse conversion exhibits a ~3 ps excited-state lifetime before reaching the conical intersection (CI) and undergoing further relaxation on the 30 ps time scale to generate a long-lived Lumi-G ground state intermediate en route to Pr. The 650 nm laser-induced Pr-to-Pg forward conversion is less efficient than reverse conversion, showing a longer-lived excited state which requires two steps with ~13 and 217 ps time constants to enter the CI region. Furthermore, using a tunable ps Raman pump with broadband Raman probe on both the Stokes and anti-Stokes sides, we collected the pre-resonance ground-state femtosecond stimulated Raman spectroscopy (GS-FSRS) data with mode assignments aided by quantum calculations. Key vibrational marker bands at ~850, 1050, 1615, and 1649 cm-1 of the Pr conformer exhibit a notable blueshift to those of the Pg conformer inside AnPixJg2, reflecting the PCB chromophore terminal D (major) and A (minor) ring twist along the primary photoswitching reaction coordinate. This integrated ultrafast spectroscopy and computational platform has the potential to elucidate photochemistry and photophysics of more CBCRs and photoactive proteins in general, providing the highly desirable mechanistic insights to facilitate the rational design of functional molecular sensors and devices.
Collapse
Affiliation(s)
- Sean R Tachibana
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Yuka Takeda
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan
| | - Travis K Seevers
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 422-8529 Shizuoka, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, University of Tokyo, 153-8902 Tokyo, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, United States.
| |
Collapse
|
33
|
Chuang YF, Phipps AJ, Lin FL, Hecht V, Hewitt AW, Wang PY, Liu GS. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cell Mol Life Sci 2021; 78:2683-2708. [PMID: 33388855 PMCID: PMC11072787 DOI: 10.1007/s00018-020-03725-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system provides a groundbreaking genetic technology that allows scientists to modify genes by targeting specific genomic sites. Due to the relative simplicity and versatility of the CRISPR/Cas system, it has been extensively applied in human genetic research as well as in agricultural applications, such as improving crops. Since the gene editing activity of the CRISPR/Cas system largely depends on the efficiency of introducing the system into cells or tissues, an efficient and specific delivery system is critical for applying CRISPR/Cas technology. However, there are still some hurdles remaining for the translatability of CRISPR/Cas system. In this review, we summarized the approaches used for the delivery of the CRISPR/Cas system in mammals, plants, and aquacultures. We further discussed the aspects of delivery that can be improved to elevate the potential for CRISPR/Cas translatability.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Valerie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
34
|
An SQ, Lopes BS, Connolly JPR, Sharp C, Nguyen TKL, Kirkpatrick CL. Going virtual: a report from the sixth Young Microbiologists Symposium on 'Microbe Signalling, Organisation and Pathogenesis'. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 33529149 DOI: 10.1099/mic.0.001024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sixth Young Microbiologists Symposium on 'Microbe Signalling, Organisation and Pathogenesis' was scheduled to be held at the University of Southampton, UK, in late August 2020. However, due to the health and safety guidelines and travel restrictions as a response to the COVID-19 pandemic, the symposium was transitioned to a virtual format, a change embraced enthusiastically as the meeting attracted over 200 microbiologists from 40 countries. The event allowed junior scientists to present their work to a broad audience and was supported by the European Molecular Biology Organization, the Federation of European Microbiological Societies, the Society of Applied Microbiology, the Biochemical Society, the Microbiology Society and the National Biofilms Innovation Centre. Sessions covered recent advances in all areas of microbiology including: Secretion and transport across membranes, Gene regulation and signalling, Host-microbe interactions, and Microbial communities and biofilm formation. This report focuses on several of the highlights and exciting developments communicated during the talks and poster presentations.
Collapse
Affiliation(s)
- Shi-Qi An
- School of Biological Sciences, National Biofilms Innovation Centre, University of Southampton, Southampton, UK
| | | | | | - Connor Sharp
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Clare Louise Kirkpatrick
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Baumschlager A, Khammash M. Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-Control in Bacteria. Adv Biol (Weinh) 2021; 5:e2000256. [PMID: 34028214 DOI: 10.1002/adbi.202000256] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Light has become established as a tool not only to visualize and investigate but also to steer biological systems. This review starts by discussing the unique features that make light such an effective control input in biology. It then gives an overview of how light-control came to progress, starting with photoactivatable compounds and leading up to current genetic implementations using optogenetic approaches. The review then zooms in on optogenetics, focusing on photosensitive proteins, which form the basis for optogenetic engineering using synthetic biological approaches. As the regulation of transcription provides a highly versatile means for steering diverse biological functions, the focus of this review then shifts to transcriptional light regulators, which are presented in the biotechnologically highly relevant model organism Escherichia coli.
Collapse
Affiliation(s)
- Armin Baumschlager
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
36
|
Sokolovski SG, Zherebtsov EA, Kar RK, Golonka D, Stabel R, Chichkov NB, Gorodetsky A, Schapiro I, Möglich A, Rafailov EU. Two-photon conversion of a bacterial phytochrome. Biophys J 2021; 120:964-974. [PMID: 33545103 DOI: 10.1016/j.bpj.2021.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
In nature, sensory photoreceptors underlie diverse spatiotemporally precise and generally reversible biological responses to light. Photoreceptors also serve as genetically encoded agents in optogenetics to control by light organismal state and behavior. Phytochromes represent a superfamily of photoreceptors that transition between states absorbing red light (Pr) and far-red light (Pfr), thus expanding the spectral range of optogenetics to the near-infrared range. Although light of these colors exhibits superior penetration of soft tissue, the transmission through bone and skull is poor. To overcome this fundamental challenge, we explore the activation of a bacterial phytochrome by a femtosecond laser emitting in the 1 μm wavelength range. Quantum chemical calculations predict that bacterial phytochromes possess substantial two-photon absorption cross sections. In line with this notion, we demonstrate that the photoreversible Pr ↔ Pfr conversion is driven by two-photon absorption at wavelengths between 1170 and 1450 nm. The Pfr yield was highest for wavelengths between 1170 and 1280 nm and rapidly plummeted beyond 1300 nm. By combining two-photon activation with bacterial phytochromes, we lay the foundation for enhanced spatial resolution in optogenetics and unprecedented penetration through bone, skull, and soft tissue.
Collapse
Affiliation(s)
- Serge G Sokolovski
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom
| | - Evgeny A Zherebtsov
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland; Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Golonka
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany
| | - Robert Stabel
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany
| | - Nikolai B Chichkov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom
| | - Andrei Gorodetsky
- ITMO University, St. Petersburg, Russia; Department of Chemistry, Imperial College London, London, United Kingdom; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andreas Möglich
- Photobiochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Edik U Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham, United Kingdom.
| |
Collapse
|
37
|
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:167-187. [PMID: 33398813 DOI: 10.1007/978-981-15-8763-4_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
Collapse
|
38
|
Hartsough LA, Park M, Kotlajich MV, Lazar JT, Han B, Lin CCJ, Musteata E, Gambill L, Wang MC, Tabor JJ. Optogenetic control of gut bacterial metabolism to promote longevity. eLife 2020; 9:56849. [PMID: 33325823 PMCID: PMC7744093 DOI: 10.7554/elife.56849] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Gut microbial metabolism is associated with host longevity. However, because it requires direct manipulation of microbial metabolism in situ, establishing a causal link between these two processes remains challenging. We demonstrate an optogenetic method to control gene expression and metabolite production from bacteria residing in the host gut. We genetically engineer an Escherichia coli strain that secretes colanic acid (CA) under the quantitative control of light. Using this optogenetically-controlled strain to induce CA production directly in the Caenorhabditis elegans gut, we reveal the local effect of CA in protecting intestinal mitochondria from stress-induced hyper-fragmentation. We also demonstrate that the lifespan-extending effect of this strain is positively correlated with the intensity of green light, indicating a dose-dependent CA benefit on the host. Thus, optogenetics can be used to achieve quantitative and temporal control of gut bacterial metabolism in order to reveal its local and systemic effects on host health and aging.
Collapse
Affiliation(s)
| | | | | | - John Tyler Lazar
- Department of Chemical and Biomolecular Engineering, Houston, United States
| | - Bing Han
- Huffington Center on Aging, Houston, United States
| | - Chih-Chun J Lin
- Huffington Center on Aging, Houston, United States.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, United States
| | - Elena Musteata
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, United States
| | - Lauren Gambill
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, United States
| | - Meng C Wang
- Huffington Center on Aging, Houston, United States.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Houston, United States
| | - Jeffrey J Tabor
- Department of Bioengineering, Houston, United States.,Systems, Synthetic, and Physical Biology Program, Rice University, Houston, United States.,Department of Biosciences, Houston, United States
| |
Collapse
|
39
|
Jähnigen S, Sebastiani D. Carbon Atoms Speaking Out: How the Geometric Sensitivity of 13C Chemical Shifts Leads to Understanding the Colour Tuning of Phycocyanobilin in Cph1 and AnPixJ. Molecules 2020; 25:E5505. [PMID: 33255423 PMCID: PMC7727823 DOI: 10.3390/molecules25235505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022] Open
Abstract
We present a combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics-statistical approach for the interpretation of nuclear magnetic resonance (NMR) chemical shift patterns in phycocyanobilin (PCB). These were originally associated with colour tuning upon photoproduct formation in red/green-absorbing cyanobacteriochrome AnPixJg2 and red/far-red-absorbing phytochrome Cph1Δ2. We pursue an indirect approach without computation of the absorption frequencies since the molecular geometry of cofactor and protein are not accurately known. Instead, we resort to a heuristic determination of the conjugation length in PCB through the experimental NMR chemical shift patterns, supported by quantum chemical calculations. We have found a characteristic correlation pattern of 13C chemical shifts to specific bond orders within the π-conjugated system, which rests on the relative position of carbon atoms with respect to electron-withdrawing groups and the polarisation of covalent bonds. We propose the inversion of this regioselective relationship using multivariate statistics and to apply it to the known experimental NMR chemical shifts in order to predict changes in the bond alternation pattern. Therefrom the extent of electronic conjugation, and eventually the change in absorption frequency, can be derived. In the process, the consultation of explicit mesomeric formulae plays an important role to qualitatively account for possible conjugation scenarios of the chromophore. While we are able to consistently associate the NMR chemical shifts with hypsochromic and bathochromic shifts in the Pg and Pfr, our approach represents an alternative method to increase the explanatory power of NMR spectroscopic data in proteins.
Collapse
Affiliation(s)
| | - Daniel Sebastiani
- Institut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany;
| |
Collapse
|
40
|
Abstract
Cell-free systems, as part of the synthetic biology field, have become a critical platform in biological studies. However, there is a lack of research into developing a switch for a dynamical control of the transcriptional and translational process. The optogenetic tool has been widely proven as an ideal control switch for protein synthesis due to its nontoxicity and excellent time-space conversion. Hence, in this study, a blue light-regulated two-component system named YF1/FixJ was incorporated into an Escherichia coli-based cell-free system to control protein synthesis. The corresponding cell-free system successfully achieved a 5-fold dynamic protein expression by blue light repression and 3-fold dynamic expression by blue light activation. With the aim of expanding the applications of cell-free synthetic biology, the cell-free blue light-sensing system was used to perform imaging, light-controlled antibody synthesis, and light-triggered artificial cell assembly. This study can provide a guide for further research into the field of cell-free optical sensing. Moreover, it will also promote the development of cell-free synthetic biology and optogenetics through applying the cell-free optical sensing system to synthetic biology education, biopharmaceutical research, and artificial cell construction.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Eunhee Cho
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice. Nat Commun 2020; 11:3708. [PMID: 32709899 PMCID: PMC7381682 DOI: 10.1038/s41467-020-17530-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
The Cre-loxP recombination system is a powerful tool for genetic manipulation. However, there are widely recognized limitations with chemically inducible Cre-loxP systems, and the UV and blue-light induced systems have phototoxicity and minimal capacity for deep tissue penetration. Here, we develop a far-red light-induced split Cre-loxP system (FISC system) based on a bacteriophytochrome optogenetic system and split-Cre recombinase, enabling optogenetical regulation of genome engineering in vivo solely by utilizing a far-red light (FRL). The FISC system exhibits low background and no detectable photocytotoxicity, while offering efficient FRL-induced DNA recombination. Our in vivo studies showcase the strong organ-penetration capacity of FISC system, markedly outperforming two blue-light-based Cre systems for recombination induction in the liver. Demonstrating its strong clinical relevance, we successfully deploy a FISC system using adeno-associated virus (AAV) delivery. Thus, the FISC system expands the optogenetic toolbox for DNA recombination to achieve spatiotemporally controlled, non-invasive genome engineering in living systems. Current light-inducible Cre-loxP systems have minimal capacity for deep tissue penetration. Here, the authors present a far-red light-induced split Cre-loxP system for in vivo genome engineering.
Collapse
|
42
|
Ding Q, Ma D, Liu GQ, Li Y, Guo L, Gao C, Hu G, Ye C, Liu J, Liu L, Chen X. Light-powered Escherichia coli cell division for chemical production. Nat Commun 2020; 11:2262. [PMID: 32385264 PMCID: PMC7210317 DOI: 10.1038/s41467-020-16154-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Cell division can perturb the metabolic performance of industrial microbes. The C period of cell division starts from the initiation to the termination of DNA replication, whereas the D period is the bacterial division process. Here, we first shorten the C and D periods of E. coli by controlling the expression of the ribonucleotide reductase NrdAB and division proteins FtsZA through blue light and near-infrared light activation, respectively. It increases the specific surface area to 3.7 μm−1 and acetoin titer to 67.2 g·L−1. Next, we prolong the C and D periods of E. coli by regulating the expression of the ribonucleotide reductase NrdA and division protein inhibitor SulA through blue light activation-repression and near-infrared (NIR) light activation, respectively. It improves the cell volume to 52.6 μm3 and poly(lactate-co-3-hydroxybutyrate) titer to 14.31 g·L−1. Thus, the optogenetic-based cell division regulation strategy can improve the efficiency of microbial cell factories. Manipulation of genes controlling microbial shapes can affect bio-production. Here, the authors employ an optogenetic method to realize dynamic morphological engineering of E. coli replication and division and show the increased production of acetoin and poly(lactate-co-3-hydroxybutyrate).
Collapse
Affiliation(s)
- Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China
| | - Danlei Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China
| | - Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 214122, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
43
|
Fang K, Park OJ, Hong SH. Controlling biofilms using synthetic biology approaches. Biotechnol Adv 2020; 40:107518. [PMID: 31953206 PMCID: PMC7125041 DOI: 10.1016/j.biotechadv.2020.107518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022]
Abstract
Bacterial biofilms are formed by the complex but ordered regulation of intra- or inter-cellular communication, environmentally responsive gene expression, and secretion of extracellular polymeric substances. Given the robust nature of biofilms due to the non-growing nature of biofilm bacteria and the physical barrier provided by the extracellular matrix, eradicating biofilms is a very difficult task to accomplish with conventional antibiotic or disinfectant treatments. Synthetic biology holds substantial promise for controlling biofilms by improving and expanding existing biological tools, introducing novel functions to the system, and re-conceptualizing gene regulation. This review summarizes synthetic biology approaches used to eradicate biofilms via protein engineering of biofilm-related enzymes, utilization of synthetic genetic circuits, and the development of functional living agents. Synthetic biology also enables beneficial applications of biofilms through the production of biomaterials and patterning biofilms with specific temporal and spatial structures. Advances in synthetic biology will add novel biofilm functionalities for future therapeutic, biomanufacturing, and environmental applications.
Collapse
Affiliation(s)
- Kuili Fang
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Oh-Jin Park
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA; Department of Biological and Chemical Engineering, Yanbian University of Science and Technology, Yanji, Jilin, People's Republic of China
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
44
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
45
|
Alizadeh S, Esmaeili A, Barzegari A, Rafi MA, Omidi Y. Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours. J Drug Target 2020; 28:700-713. [PMID: 32116051 DOI: 10.1080/1061186x.2020.1737087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite many endeavours for the development of new anticancer drugs, effective therapy of solid tumours remains a challenging issue. The current cancer chemotherapies may associate with two important limitations, including the lack/trivial specificity of treatment modalities towards diseased cells/tissues resulting in undesired side effects, and the emergence of drug-resistance mechanisms by tumour cells causing the failure of the treatment. Much attention, therefore, has currently been paid to develop smart and highly specific anticancer agents with maximal therapeutic impacts and minimal side effects. Among various strategies used to target cancer cells, bacteria-based cancer therapies (BCTs) have been validated as potential gene/drug delivery carriers, which can also be engineered to be used in diagnosis processes. They can be devised to selectively target the tumour microenvironment (TME), within which they may preferentially proliferate in the necrotic and anaerobic parts - often inaccessible to other therapeutics. BCTs are capable to sense and respond to the environmental signals, upon which they are considered as smart microrobots applicable in the controlled delivery of therapeutic agents to the TME. In this review, we aimed to provide comprehensive insights into the potentials of the bioengineered bacteria as smart and targeted bio-carriers and discuss their applications in cancer therapy.
Collapse
Affiliation(s)
- Siamak Alizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Rockwell NC, Lagarias JC. Phytochrome evolution in 3D: deletion, duplication, and diversification. THE NEW PHYTOLOGIST 2020; 225:2283-2300. [PMID: 31595505 PMCID: PMC7028483 DOI: 10.1111/nph.16240] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 05/09/2023]
Abstract
Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.
Collapse
|
47
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
48
|
Abstract
Since the breakthrough discoveries that CRISPR-Cas9 nucleases can be easily programmed and employed to induce targeted double-strand breaks in mammalian cells, the gene editing field has grown exponentially. Today, CRISPR technologies based on engineered class II CRISPR effectors facilitate targeted modification of genes and RNA transcripts. Moreover, catalytically impaired CRISPR-Cas variants can be employed as programmable DNA binding domains and used to recruit effector proteins, such as transcriptional regulators, epigenetic modifiers or base-modifying enzymes, to selected genomic loci. The juxtaposition of CRISPR and optogenetics enables spatiotemporally confined and highly dynamic genome perturbations in living cells and animals and holds unprecedented potential for biology and biomedicine.Here, we provide an overview of the state-of-the-art methods for light-control of CRISPR effectors. We will detail the plethora of exciting applications enabled by these systems, including spatially confined genome editing, timed activation of endogenous genes, as well as remote control of chromatin-chromatin interactions. Finally, we will discuss limitations of current optogenetic CRISPR tools and point out routes for future innovation in this emerging field.
Collapse
Affiliation(s)
- Jan Mathony
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
| | - Mareike D Hoffmann
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Niopek
- Synthetic Biology Group, BioQuant Center, University of Heidelberg, Heidelberg, Germany.
- Health Data Science Unit, Heidelberg University Hospital and Medical Faculty of Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
49
|
Hu Y, Liu X, Ren ATM, Gu JD, Cao B. Optogenetic Modulation of a Catalytic Biofilm for the Biotransformation of Indole into Tryptophan. CHEMSUSCHEM 2019; 12:5142-5148. [PMID: 31621183 DOI: 10.1002/cssc.201902413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In green chemical synthesis, biofilms as biocatalysts have shown great promise. Efficient biofilm-mediated biocatalysis requires the modulation of biofilm formation. Optogenetic tools are ideal to control biofilms because light is noninvasive, easily controllable, and cost-efficient. In this study, a gene circuit responsive to near-infrared (NIR) light was used to modulate the cellular level of bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP), a central regulator of the prokaryote biofilm lifestyle, which allowed the regulation of biofilm formation by using NIR light. The engineered biofilm was applied to catalyze the biotransformation of indole into tryptophan in submerged biofilm reactors and NIR-light-enhanced biofilm formation resulted in an approximately 30 % increase in tryptophan yield, which demonstrates the feasibility of the application of light to modulate the formation and performance of catalytic biofilms for chemical production. The c-di-GMP-targeted optogenetic approach to modulate catalytic biofilms showcases applications for biofilm-mediated biocatalysis.
Collapse
Affiliation(s)
- Yidan Hu
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Xiaobo Liu
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| | - Aloysius Teng Min Ren
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, P.R. China
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| |
Collapse
|
50
|
Ye H, Fussenegger M. Optogenetic Medicine: Synthetic Therapeutic Solutions Precision-Guided by Light. Cold Spring Harb Perspect Med 2019; 9:a034371. [PMID: 30291146 PMCID: PMC6719591 DOI: 10.1101/cshperspect.a034371] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gene- and cell-based therapies are well recognized as central pillars of next-generation medicine, but controllability remains a critical issue for clinical applications. In this context, optogenetics is opening up exciting new opportunities for precision-guided medicine by using illumination with light of appropriate intensity and wavelength as a trigger signal to achieve pinpoint spatiotemporal control of cellular activities, such as transgene expression. In this review, we highlight recent advances in optogenetics, focusing on devices for biomedical applications. We introduce the construction and applications of optogenetic-based biomedical tools to treat neurological diseases, diabetes, heart diseases, and cancer, as well as bioelectronic implants that combine light-interfaced electronic devices and optogenetic systems into portable personalized precision bioelectronic medical tools. Optogenetics-based technology promises the capability to achieve traceless, remotely controlled precision dosing of an enormous range of therapeutic outputs. Finally, we discuss the prospects for optogenetic medicine, as well as some emerging challenges.
Collapse
Affiliation(s)
- Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- University of Basel, Faculty of Science, CH-4058 Basel, Switzerland
| |
Collapse
|