1
|
Morelli MB, Caviglia M, Santini C, Del Gobbo J, Zeppa L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Battocchio C, Bertelà F, Amatori S, Meneghini C, Iucci G, Venditti I, Dolmella A, Di Palma M, Pellei M. Copper-Based Complexes with Adamantane Ring-Conjugated bis(3,5-Dimethyl-pyrazol-1-yl)acetate Ligand as Promising Agents for the Treatment of Glioblastoma. J Med Chem 2024; 67:9662-9685. [PMID: 38831692 DOI: 10.1021/acs.jmedchem.4c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The new ligand L2Ad, obtained by conjugating the bifunctional species bis(3,5-dimethylpyrazol-1-yl)-acetate and the drug amantadine, was used as a chelator for the synthesis of new Cu complexes 1-5. Their structures were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and by combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modeling. The structure of complex 3 was determined by single-crystal X-ray diffraction analysis. Tested on U87, T98, and U251 glioma cells, Cu(II) complex 3 and Cu(I) complex 5 decreased cell viability with IC50 values significantly lower than cisplatin, affecting cell growth, proliferation, and death. Their effects were prevented by treatment with the Cu chelator tetrathiomolybdate, suggesting the involvement of copper in their cytotoxic activity. Both complexes were able to increase ROS production, leading to DNA damage and death. Interestingly, nontoxic doses of 3 or 5 enhanced the chemosensitivity to Temozolomide.
Collapse
Affiliation(s)
- Maria Beatrice Morelli
- School of Pharmacy, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Jo' Del Gobbo
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Laura Zeppa
- School of Pharmacy, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Federica Bertelà
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Simone Amatori
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Carlo Meneghini
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Giovanna Iucci
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Iole Venditti
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Michele Di Palma
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| |
Collapse
|
2
|
Venkatesan D, Muthukumar S, Iyer M, Babu HWS, Gopalakrishnan AV, Yadav MK, Vellingiri B. Heavy metals toxicity on epigenetic modifications in the pathogenesis of Alzheimer's disease (AD). J Biochem Mol Toxicol 2024; 38:e23741. [PMID: 38816991 DOI: 10.1002/jbt.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD) is a progressive decline in cognitive ability and behavior which eventually disrupts daily activities. AD has no cure and the progression rate varies unlikely. Among various causative factors, heavy metals are reported to be a significant hazard in AD pathogenesis. Metal-induced neurodegeneration has been focused globally with thorough research to unravel the mechanistic insights in AD. Recently, heavy metals suggested to play an important role in epigenetic alterations which might provide evidential results on AD pathology. Epigenetic modifications are known to play towards novel therapeutic approaches in treating AD. Though many studies focus on epigenetics and heavy metal implications in AD, there is a lack of research on heavy metal influence on epigenetic toxicity in neurological disorders. The current review aims to elucidate the plausible role of cadmium (Cd), iron (Fe), arsenic (As), copper (Cu), and lithium (Li) metals on epigenetic factors and the increase in amyloid beta and tau phosphorylation in AD. Also, the review discusses the common methods of heavy metal detection to implicate in AD pathogenesis. Hence, from this review, we can extend the need for future research on identifying the mechanistic behavior of heavy metals on epigenetic toxicity and to develop diagnostic and therapeutic markers in AD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Sindduja Muthukumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
3
|
Huang H, Song D, Zhang W, Sun Y, Li Y. One step cascade detection of galactose based on a galactose oxidase-composited peroxidase nanozyme. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3644-3651. [PMID: 36098063 DOI: 10.1039/d2ay01224c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abnormal galactose metabolism is the main cause of galactosemia, which makes the accurate and rapid analysis of galactose levels in food and organism the key issue at present. In this study, a novel strategy for one-step galactose determination was proposed based on galactose oxidase and copper-based metal-organic framework complexes (GAOx@MOF) with dual catalytic activities at neutral pH. Typically, GAOx catalyzes the oxidation of the C6 hydroxyl group of D-galactose to generate an aldehyde (D-galactose-hexanedial), and coupled with the reduction of dioxygen to H2O2, which was immediately transformed to ˙OH by mimicking peroxidase activity and at the same time oxidized ABTS to a green product with a clear colorimetric signal. The whole process was completed using one buffer, which simplified the procedure and increased the sensitivity. Moreover, the proposed method can also be used for the quantitative analysis of galactose. It showed a good linear relationship at 20-1000 μM, while the LOD was 6.67 μM. Furthermore, the strategy has been successfully utilized for galactose determination in milk samples, which proved its promising applications in clinical analysis and the food industry.
Collapse
Affiliation(s)
- Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Donghui Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Wenjing Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yue Sun
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China, 13654367572.
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China, 13654367572.
| |
Collapse
|
4
|
Jadoon S, Schindler M, Wirth MG, Qafoku O, Kovarik L, Perea DE. Atom probe tomography and transmission electron microscopy: a powerful combination to characterize the speciation and distribution of Cu in organic matter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1228-1242. [PMID: 35838027 DOI: 10.1039/d2em00118g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The large surface areas in porous organic matter (OM) and on the surface of altered minerals control the sequestration of metal(loid)s in contaminated soils and sediments. This study explores the sequestration of Cu by OM in surficial forest soil in close proximity to the Horne smelter, Rouyn-Noranda, Quebec, Canada. The organic-rich soils have elevated concentrations of Cu (Cu = 〈0.75〉 wt%) but lack associations between organic matter (OM) and Cu-sulfides, commonly observed in organic-rich Cu-contaminated soils. This provides a unique opportunity to study the sequestration of Cu by OM in a sulfur-depleted environment using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT). In two examined OM particles, Cu is predominantly sequestered as (I) nano- to micrometer-size Cu-bearing spinels, (II) as cuprite (Cu2O) nanoparticles or (III) finely dispersed Cu in association with clusters of magnetite (Fe3O4) nanoparticles embedded in amorphous silica-rich pockets and (IV) in the OM matrix. The occurrence of euhedral crystals and nanoparticles in the single-digit range within the OM matrix indicate that the majority of the nanoparticles formed in situ within the OM particles. A model is developed which proposes that the sequestration of Cu in OM is promoted by (I) the partial mineralization of the OM matrix by amorphous silica; (II) the nucleation of magnetite nanoparticles on highly reactive silanol groups; (III) the diffusion of Cu within mineralized and altered areas of the OM; (IV) the availability of Cu-bearing species, which in turn is controlled by the hydrodynamic properties of the pore channels; (V) the formation of precursors and nucleation of Cu-bearing nanoparticles. This study shows that the combination of SEM, TEM and APT provides new insights into the sequestration of metal contaminants by OM at various scales ranging from the single-digit nano- to micrometer scale.
Collapse
Affiliation(s)
- Sarib Jadoon
- Department of Earth Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2.
| | - Michael Schindler
- Department of Earth Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2.
| | - Mark G Wirth
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Odeta Qafoku
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Libor Kovarik
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Daniel E Perea
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
5
|
Jadoon S, Schindler M. The role of organic colloids in the sequestration and mobilization of copper in smelter-impacted soils. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:945-959. [PMID: 35551338 DOI: 10.1039/d1em00539a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study shows that Cu occurs predominantly as Cu-sulfides and Cu-bearing phosphates and -carbonates in organic matter (OM) colloids within smelter-impacted soils in which they are often associated with other inorganic components. Major emitters of Cu are smelters and coal-power plants, which cause severe damage to the health of soils and aquatic systems as elevated Cu concentrations are toxic for terrestrial and aquatic organisms. Toxic effects and the long-term environmental fate of Cu depend among many other factors on its speciation in soil and water bodies. This study explores the role of OM colloids (defined as particles with diameters in the range of 100 to 1000 nm and with a larger proportion of organic than inorganic material) in the sequestration of Cu in contaminated soils around the Horne smelter, Rouyn Noranda, Quebec, Canada, focusing on a thin soil overlying bedrock (bedrock soil) and forest soil. The sequestration and mobilization of Cu by OM colloids are studied using a combination of column leaching experiments, ultra-centrifugation and transmission electron microscopy (TEM). TEM analysis indicates that Cu occurs as nano-sized CuSx phases in OM colloids of the bedrock soil, and as Cu-bearing Ca-Mg-phosphates and Ca-carbonates in OM colloids of the forest soil. The nano-sized CuSx phases occur along the rim of OM colloids or are attached to silica inclusions located within OM colloids, suggesting that their in situ formation is strongly controlled by the presence of polar groups within or on the surface of OM colloids. The proportion of Cu-bearing colloids in the soil leachates ranges from 20 to 40% of the total colloidal fraction, suggesting that OM colloids can play a significant role in the sequestration of Cu in surficial soil environments.
Collapse
Affiliation(s)
- Sarib Jadoon
- Department of Geological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Michael Schindler
- Department of Geological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
6
|
Abstract
In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of intense research. Despite remarkable progress, our understanding of the major aspects of mtDNA biology, such as its replication, damage, repair, transcription, maintenance, etc., is frustratingly limited. The path to better understanding mtDNA and its role in cells, however, remains torturous and not without errors, which sometimes leave a long trail of controversy behind them. This review aims to provide a brief summary of our current knowledge of mtDNA and highlight some of the controversies that require attention from the mitochondrial research community.
Collapse
Affiliation(s)
- Inna Shokolenko
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
7
|
Lettieri G, D’Agostino G, Mele E, Cardito C, Esposito R, Cimmino A, Giarra A, Trifuoggi M, Raimondo S, Notari T, Febbraio F, Montano L, Piscopo M. Discovery of the Involvement in DNA Oxidative Damage of Human Sperm Nuclear Basic Proteins of Healthy Young Men Living in Polluted Areas. Int J Mol Sci 2020; 21:ijms21124198. [PMID: 32545547 PMCID: PMC7349829 DOI: 10.3390/ijms21124198] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
DNA oxidative damage is one of the main concerns being implicated in severe cell alterations, promoting different types of human disorders and diseases. For their characteristics, male gametes are the most sensitive cells to the accumulation of damaged DNA. We have recently reported the relevance of arginine residues in the Cu(II)-induced DNA breakage of sperm H1 histones. In this work, we have extended our previous findings investigating the involvement of human sperm nuclear basic proteins on DNA oxidative damage in healthy males presenting copper and chromium excess in their semen. We found in 84% of those males an altered protamines/histones ratio and a different DNA binding mode even for those presenting a canonical protamines/histones ratio. Furthermore, all the sperm nuclear basic proteins from these samples that resulted were involved in DNA oxidative damage, supporting the idea that these proteins could promote the Fenton reaction in DNA proximity by increasing the availability of these metals near the binding surface of DNA. In conclusion, our study reveals a new and unexpected behavior of human sperm nuclear basic proteins in oxidative DNA damage, providing new insights for understanding the mechanisms related to processes in which oxidative DNA damage is implicated.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
| | - Giovanni D’Agostino
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
| | - Elena Mele
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
| | - Carolina Cardito
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
| | - Rosa Esposito
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
| | - Annalinda Cimmino
- CNR, Institute of Biochemistry and Cell Biology, via Pietro Castellino, 80131 Naples, Italy;
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (A.G.); (M.T.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (A.G.); (M.T.)
| | | | - Tiziana Notari
- GEA—Gynecology Embryology Andrology—Reproductive Medicine Unit of Check Up Polydiagnostic Center, 84131 Salerno, Italy;
| | - Ferdinando Febbraio
- CNR, Institute of Biochemistry and Cell Biology, via Pietro Castellino, 80131 Naples, Italy;
- Correspondence: (F.F.); (L.M.); (M.P.); Tel.: +39-081-613-2611 (F.F.); +39-082-879-7111 (ext. 271) (L.M.); +39-081-679-081 (M.P.)
| | - Luigi Montano
- Andrology Unit of the “S. Francesco d’Assisi” Hospital, Local Health Authority (ASL) Salerno, EcoFoodFertility Project Coordination Unit, 84020 Oliveto Citra, Italy
- Correspondence: (F.F.); (L.M.); (M.P.); Tel.: +39-081-613-2611 (F.F.); +39-082-879-7111 (ext. 271) (L.M.); +39-081-679-081 (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
- Correspondence: (F.F.); (L.M.); (M.P.); Tel.: +39-081-613-2611 (F.F.); +39-082-879-7111 (ext. 271) (L.M.); +39-081-679-081 (M.P.)
| |
Collapse
|
8
|
Ma Y, Rivera-Ingraham G, Nommick A, Bickmeyer U, Roeder T. Copper and cadmium administration induce toxicity and oxidative stress in the marine flatworm Macrostomum lignano. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105428. [PMID: 32035411 DOI: 10.1016/j.aquatox.2020.105428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The contamination of coastal regions with different toxicants, including heavy metal ions such as copper and cadmium jeopardize health and survival of organisms exposed to this habitat. To study the effects of high copper and cadmium concentrations in these marine environments, we used the flatworm Macrostomum lignano as a model. This platyhelminth lives in shallow coastal water and is exposed to high concentrations of all toxicants that accumulate in these sea floors. We could show that both, cadmium and copper show toxicity at higher concentrations, with copper being more toxic than cadmium. At concentrations below acute toxicity, a reduced long-term survival was observed for both metal ions. The effects of sublethal doses comprise reduced physical activities, an increase in ROS levels within the worms, and alterations of the mitochondrial biology. Moreover, cell death events were substantially increased in response to sublethal concentrations of both metal ions and stem cell activity was reduced following exposure to higher cadmium concentrations. Finally, the expression of several genes involved in xenobiotic metabolism was substantially altered by this intervention. Taken together, M. lignano has been identified as a suitable model for marine toxicological studies as it allows to quantify several relevant life-history traits as well as of physiological and behavioral read-outs.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Kiel University, Zoological Institute, Molecular Physiology, Olshausenstrasse 40, 24098, Kiel, Germany.
| | - Georgina Rivera-Ingraham
- Laboratoire Environement de Petit Saut, Hydreco-Guyane. BP 823, 97310, Kourou, French Guiana, France.
| | - Aude Nommick
- Institut de Biologie de Dévelopement de Marseille, Marseille, France.
| | - Ulf Bickmeyer
- Alfred-Wegener-Institute Helmholtz Center for Polar- and Marine Research, Biosciences, Ecological Chemistry, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Thomas Roeder
- Kiel University, Zoological Institute, Molecular Physiology, Olshausenstrasse 40, 24098, Kiel, Germany; German Center for Lung Research (DZL, Airway Research Center North), Kiel, Germany.
| |
Collapse
|
9
|
Huang H, Zhang W, Lei L, Bai J, Li J, Song D, Zhao J, Li J, Li Y. One-step cascade detection of glucose at neutral pH based on oxidase-integrated copper( ii) metal–organic framework composites. NEW J CHEM 2020. [DOI: 10.1039/d0nj02550j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An integrated system was fabricated from a copper(ii) metal–organic framework (Cu-MOF) and glucose oxidase (GOx) for one-step cascade determination of glucose at neutral pH (pH = 7.0).
Collapse
Affiliation(s)
- Hui Huang
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Wenjing Zhang
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Lulu Lei
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Juan Bai
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Jiao Li
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Donghui Song
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Jingqi Zhao
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Jiali Li
- College of Food Science and Engineering
- Jilin University
- Changchun 130025
- China
| | - Yongxin Li
- College of New Energy and Environment
- Jilin University
- Changchun 130021
- China
| |
Collapse
|
10
|
Husain N, Mahmood R. Copper(II) generates ROS and RNS, impairs antioxidant system and damages membrane and DNA in human blood cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20654-20668. [PMID: 31104239 DOI: 10.1007/s11356-019-05345-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Copper (Cu) is widely used in various industries, and human exposure to this metal results in severe multi-organ toxicity, which is thought to be due to the generation of free radicals by Fenton-like reaction. The generation of reactive oxygen as well as nitrogen species and free radicals results in induction of oxidative stress in the cell. We have studied the effect of different concentrations of Cu(II) on human erythrocytes and lymphocytes. Incubation of erythrocytes with copper chloride, a Cu(II) compound, enhanced the production of reactive oxygen and nitrogen species, decreased glutathione and total sulphydryl content and increased protein oxidation and lipid peroxidation. All changes were in a Cu(II) concentration-dependent manner. This strongly suggests that Cu(II) causes oxidative damage in erythrocytes. The activities of major antioxidant enzymes were altered, and antioxidant power was lowered. Cu(II) treatment also resulted in membrane damage in erythrocytes as seen by electron microscopy and lowered activities of plasma membrane-bound enzymes. Incubation of human lymphocytes with Cu(II) resulted in DNA damage when studied by the sensitive comet assay. These results show that Cu(II) exerts cytotoxic and genotoxic effects on human blood cells probably by enhancing the generation of reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
11
|
Is mitochondrial DNA profiling predictive for athletic performance? Mitochondrion 2019; 47:125-138. [PMID: 31228565 DOI: 10.1016/j.mito.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA encodes some proteins of the oxidative phosphorylation enzymatic complex, playing an important role in aerobic ATP production; therefore, it can contribute to the ability to respond to endurance exercise training. The accumulation of mitochondrial mutations and the migratory processes of populations have given a great contribution to the development of haplogroups with a different distribution in the world. Several studies have shown the important role of gene polymorphisms in aerobic performance. In this review, some mitochondrial haplogroups and multiple rare alleles were taken into consideration and could be linked to the athlete's physical performance of different ethnic groups.
Collapse
|
12
|
|
13
|
Wang C, Gao J, Tan H. Integrated Antibody with Catalytic Metal-Organic Framework for Colorimetric Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25113-25120. [PMID: 29993238 DOI: 10.1021/acsami.8b07225] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Enzyme-linked immunosorbent assay has been widely used as a gold standard in biomedical field, but some inevitable drawbacks still exist in its practical applications, especially the laborious preparation of enzyme-antibody conjugates by a covalent linkage. In this work, we proposed a new strategy to prepare enzyme-antibody conjugate by integrating antibody with catalytic metal-organic framework (MOF) to form dual-functional MOF/antibody composite. As models, rabbit antimouse immunoglobulin G antibody (RIgG) and Cu-MOF with peroxidase-like activity were used to fabricate RIgG@Cu-MOF composite for colorimetric immunoassay. It was found that Cu-MOF as a host not only has no influence on the original capture ability of RIgG to its corresponding antigen (mIgG), but also can shield RIgG against long-term storage, high temperature, and biological degradation. More importantly, upon the formation of sandwiched immunocomplex between RIgG@Cu-MOF and capture antibody, Cu-MOF can serve as a signal amplification unit to perform colorimetric immunoassay. The detection limit of RIgG@Cu-MOF toward mIgG was obtained at 0.34 ng/mL, which is 3-fold lower than that of horseradish peroxidase labeled RIgG. Furthermore, the successful determination of mIgG in serum sample demonstrates the applicability of RIgG@Cu-MOF in detecting real sample. Therefore, it is highly anticipated that this study can offer a new way to prepare enzyme-antibody conjugates, facilitating the exploration of MOF composites in biomedical field.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , P. R. China
| | - Jie Gao
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , P. R. China
| | - Hongliang Tan
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , P. R. China
| |
Collapse
|
14
|
Piscopo M, Trifuoggi M, Scarano C, Gori C, Giarra A, Febbraio F. Relevance of arginine residues in Cu(II)-induced DNA breakage and Proteinase K resistance of H1 histones. Sci Rep 2018; 8:7414. [PMID: 29743544 PMCID: PMC5943286 DOI: 10.1038/s41598-018-25784-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 01/12/2023] Open
Abstract
This work analyzes the involvement of arginines in copper/H2O2-induced DNA breakage. Copper is a highly redox active metal which has been demonstrated to form compounds with arginines. For this aim we used mixtures of pGEM3 DNA plasmid and two types of H1 histones which differ only in their arginine content. The sperm H1 histone from the annelid worm Chaetopterus variopedatus (arginine content 12.6 mol% K/R ratio 2) and the somatic H1 histone from calf thymus (arginine content 1.8 mol% and K/R ratio 15). Copper/H2O2-induced DNA breakage was observed only in presence of sperm H1 histones, but it was more relevant for the native molecule than for the deguanidinated derivative (K/R ratio 14), in which 80% of arginine residues were converted to ornithine. Further, copper induced proteinase K resistance and increase of DNA binding affinity on native sperm H1 histones. These observations are consistent with a copper induced reorganization of the side-chains of arginine residues. Copper, instead, did not affect DNA binding affinity of somatic and deguanidinated H1 histones, which show similar K/R ratio and DNA binding mode. These results indicate that arginine residues could affect these H1 histones properties and provide new insights into copper toxicity mechanisms.
Collapse
Affiliation(s)
- Marina Piscopo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126, Napoli, Italy.
| | - Marco Trifuoggi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, 80126, Napoli, Italy
| | - Carmela Scarano
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126, Napoli, Italy
| | - Carla Gori
- CNR, Institute of Protein Biochemistry, 80131, Napoli, Italy
| | - Antonella Giarra
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, 80126, Napoli, Italy
| | | |
Collapse
|
15
|
Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta 2018; 1004:74-81. [DOI: 10.1016/j.aca.2017.11.078] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022]
|
16
|
Fleming AM, Burrows CJ. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic Biol Med 2017; 107:35-52. [PMID: 27880870 PMCID: PMC5438787 DOI: 10.1016/j.freeradbiomed.2016.11.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are harnessed by the cell for signaling at the same time as being detrimental to cellular components such as DNA. The genome and transcriptome contain instructions that can alter cellular processes when oxidized. The guanine (G) heterocycle in the nucleotide pool, DNA, or RNA is the base most prone to oxidation. The oxidatively-derived products of G consistently observed in high yields from hydroxyl radical, carbonate radical, or singlet oxygen oxidations under conditions modeling the cellular reducing environment are discussed. The major G base oxidation products are 8-oxo-7,8-dihydroguanine (OG), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), spiroiminodihydantoin (Sp), and 5-guanidinohydantoin (Gh). The yields of these products show dependency on the oxidant and the reaction context that includes nucleoside, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and G-quadruplex DNA (G4-DNA) structures. Upon formation of these products in cells, they are recognized by the DNA glycosylases in the base excision repair (BER) pathway. This review focuses on initiation of BER by the mammalian Nei-like1-3 (NEIL1-3) glycosylases for removal of 2Ih, Sp, and Gh. The unique ability of the human NEILs to initiate removal of the hydantoins in ssDNA, bulge-DNA, bubble-DNA, dsDNA, and G4-DNA is outlined. Additionally, when Gh exists in a G4 DNA found in a gene promoter, NEIL-mediated repair is modulated by the plasticity of the G4-DNA structure provided by additional G-runs flanking the sequence. On the basis of these observations and cellular studies from the literature, the interplay between DNA oxidation and BER to alter gene expression is discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States.
| |
Collapse
|
17
|
How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:16-30. [DOI: 10.1016/j.mrrev.2015.01.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/28/2022]
|
18
|
Synthesis, characterization, biological evaluation and molecular docking of steroidal spirothiazolidinones. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Ali A, Asif M, Khanam H, Mashrai A, Sherwani MA, Owais M, Shamsuzzaman S. Synthesis and characterization of steroidal heterocyclic compounds, DNA condensation and molecular docking studies and their in vitro anticancer and acetylcholinesterase inhibition activities. RSC Adv 2015. [DOI: 10.1039/c5ra11049a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A facile and efficient approach for the synthesis of steroidal heterocyclic compounds (4–12) has been performed. Furthermore, these newly synthesized compounds were evaluated for their various biological activities.
Collapse
Affiliation(s)
- Abad Ali
- Steroid Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Mohd Asif
- Steroid Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Hena Khanam
- Steroid Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Ashraf Mashrai
- Steroid Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Mohd Asif Sherwani
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202 002
- India
| | | |
Collapse
|
20
|
Shao D, Shi M, Zhao Q, Wen J, Geng Z, Wang Z. Synthesis, Crystal Structure, DNA Binding, Cleavage and Docking Studies of a Novel Dinuclear Schiff-Base Copper(II) Complex. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201400410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Copper: toxicological relevance and mechanisms. Arch Toxicol 2014; 88:1929-38. [PMID: 25199685 DOI: 10.1007/s00204-014-1355-y] [Citation(s) in RCA: 415] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/28/2014] [Indexed: 01/14/2023]
Abstract
Copper (Cu) is a vital mineral essential for many biological processes. The vast majority of all Cu in healthy humans is associated with enzyme prosthetic groups or bound to proteins. Cu homeostasis is tightly regulated through a complex system of Cu transporters and chaperone proteins. Excess or toxicity of Cu, which is associated with the pathogenesis of hepatic disorder, neurodegenerative changes and other disease conditions, can occur when Cu homeostasis is disrupted. The capacity to initiate oxidative damage is most commonly attributed to Cu-induced cellular toxicity. Recently, altered cellular events, including lipid metabolism, gene expression, alpha-synuclein aggregation, activation of acidic sphingomyelinase and release of ceramide, and temporal and spatial distribution of Cu in hepatocytes, as well as Cu-protein interaction in the nerve system, have been suggested to play a role in Cu toxicity. However, whether these changes are independent of, or secondary to, an altered cellular redox state of Cu remain to be elucidated.
Collapse
|
22
|
Zhang L, Li M, Qin Y, Chu Z, Zhao S. A convenient label free colorimetric assay for pyrophosphatase activity based on a pyrophosphate-inhibited Cu2+–ABTS–H2O2reaction. Analyst 2014; 139:6298-303. [DOI: 10.1039/c4an01415d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Shokolenko IN, Wilson GL, Alexeyev MF. The "fast" and the "slow" modes of mitochondrial DNA degradation. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:490-8. [PMID: 24724936 DOI: 10.3109/19401736.2014.905829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In a living cell, oxidative stress resulting from an external or internal insult can result in mitochondrial DNA (mtDNA) damage and degradation. Here, we show that in HeLa cells, mtDNA can withstand relatively high levels of extracellular oxidant H2O2 before it is damaged to a point of degradation, and that mtDNA levels in these cells quickly recover after removal of the stressor. In contrast, mtDNA degradation in mouse fibroblast cells is induced at eight-fold lower concentrations of H2O2, and restoration of the lost mtDNA proceeds much slower. Importantly, mtDNA levels in HeLa cells continue to decline even after withdrawal of the stressor thus marking the "slow" mode of mtDNA degradation. Conversely, in mouse fibroblasts maximal loss of mtDNA is achieved during treatment, and is already detectable at 5 min after exposure, indicating the "fast" mode. These differences may modulate susceptibility to oxidative stress of those organs, which consist of multiple cell types.
Collapse
Affiliation(s)
- Inna N Shokolenko
- a Department of Cell Biology and Neuroscience , University of South Alabama , Mobile , AL , USA
| | - Glenn L Wilson
- a Department of Cell Biology and Neuroscience , University of South Alabama , Mobile , AL , USA
| | - Mikhail F Alexeyev
- a Department of Cell Biology and Neuroscience , University of South Alabama , Mobile , AL , USA
| |
Collapse
|
24
|
Bacolla A, Cooper DN, Vasquez KM. Mechanisms of base substitution mutagenesis in cancer genomes. Genes (Basel) 2014; 5:108-46. [PMID: 24705290 PMCID: PMC3978516 DOI: 10.3390/genes5010108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 01/24/2023] Open
Abstract
Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs). Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS) and other endogenous or exogenous electron-abstracting molecules.
Collapse
Affiliation(s)
- Albino Bacolla
- Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Karen M Vasquez
- Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| |
Collapse
|
25
|
Wei W, Ni Q, Pu Y, Yin L, Liu S. Electrochemical biosensor for DNA damage detection based on exonuclease III digestions. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harb Perspect Biol 2013; 5:a012641. [PMID: 23637283 DOI: 10.1101/cshperspect.a012641] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA molecules in mitochondria, just like those in the nucleus of eukaryotic cells, are constantly damaged by noxious agents. Eukaryotic cells have developed efficient mechanisms to deal with this assault. The process of DNA repair in mitochondria, initially believed nonexistent, has now evolved into a mature area of research. In recent years, it has become increasingly appreciated that mitochondria possess many of the same DNA repair pathways that the nucleus does. Moreover, a unique pathway that is enabled by high redundancy of the mitochondrial DNA and allows for the disposal of damaged DNA molecules operates in this organelle. In this review, we attempt to present a unified view of our current understanding of the process of DNA repair in mitochondria with an emphasis on issues that appear controversial.
Collapse
Affiliation(s)
- Mikhail Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
27
|
Vadhanam MV, Thaiparambil J, Gairola CG, Gupta RC. Oxidative DNA adducts detected in vitro from redox activity of cigarette smoke constituents. Chem Res Toxicol 2012; 25:2499-504. [PMID: 22994544 DOI: 10.1021/tx300312f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cigarette smoke contains a variety of carcinogens, cocarcinogens, mutagens, and tumor promoters. In addition to polycyclic aromatic carcinogens and tobacco-specific nitrosamines, cigarette smoke also contains an abundance of catechols, aldehydes, and other constituents, which are DNA damaging directly or indirectly; therefore, they can also contribute to cigarette smoke-mediated carcinogenicity. In this study, we investigated the potential of cigarette smoke constituents to induce oxidative damage to DNA through their capacity to redox cycle. When DNA (300 μg/mL) was incubated with cigarette smoke condensate (0.2 mg of tobacco particulate matter/mL) and CuCl(2) as a catalyst (50-100 μM), a variety of oxidative DNA adducts were detected by (32)P-postlabeling/TLC. Of the total adduct burden (2114 ± 419 adducts/10(6) nucleotides), over 40% of all adducts were attributed to the benchmark oxidative DNA lesion, 8-oxodeoxyguanosine (8-oxodG). Adducts were formed dose dependently. Essentially, similar adduct profiles were obtained when cigarette smoke condensate was substituted with ortho- and para-dihydroxybenzenes. Vehicle treatment with Cu(2+) or CSC alone did not induce any significant amount of oxidative DNA damage. Furthermore, coincubation of cigarette smoke condensate and ortho-dihydroxybenzene with DNA resulted in a higher amount of oxidative DNA adducts than obtained with the individual entity, suggesting that adducts presumably originated from catechols or catechol-like compounds in cigarette smoke condensate. Adducts resulting from both cigarette smoke condensate and pure dihydroxybenzenes were chromatographically identical to adducts formed by reaction of DNA with H(2)O(2), which is known to produce 8-oxodG, and many other oxidative DNA adducts. When the cigarette smoke condensate-DNA reaction was performed in the presence of ellagic acid, a known antioxidant, the adduct formation was inhibited dose dependently, further suggesting that adducts originated from oxidative pathway. Our data thus provide evidence of the capacity of catechols or catechol-like constituents in cigarette smoke to produce oxidative DNA damage, which may contribute to the tumor-promoting activity of cigarette smoke.
Collapse
Affiliation(s)
- Manicka V Vadhanam
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
28
|
Khodade VS, Dharmaraja AT, Chakrapani H. Synthesis, reactive oxygen species generation and copper-mediated nuclease activity profiles of 2-aryl-3-amino-1,4-naphthoquinones. Bioorg Med Chem Lett 2012; 22:3766-9. [DOI: 10.1016/j.bmcl.2012.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/16/2012] [Accepted: 04/03/2012] [Indexed: 01/08/2023]
|
29
|
Hwang J, Choi MG, Eor S, Chang SK. Fluorescence signaling of Zr4+ by hydrogen peroxide assisted selective desulfurization of thioamide. Inorg Chem 2012; 51:1634-9. [PMID: 22260347 DOI: 10.1021/ic2019428] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thioamide derivative with a pyrene fluorophore was smoothly transformed to its corresponding amide by Zr(4+) ions in the presence of hydrogen peroxide. The transformation was evidenced by (1)H NMR spectroscopy and the signaling was completed within 10 min after sample preparation. Interference from Ag(+) and Hg(2+) ions in Zr(4+)-selective fluorescence signaling was readily suppressed with the use of Sn(2+) as a reducing additive. Discrimination of Zr(4+) from closely related hafnium, which is a frequent contaminant in commercial zirconium, was not possible. Prominent Zr(4+)-selective turn-on type fluorescence signaling was possible with a detection limit of 4.6 × 10(-6) M in an aqueous 99% ethanol solution.
Collapse
Affiliation(s)
- Jiyoung Hwang
- Department of Chemistry, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | |
Collapse
|
30
|
Spencer WA, Vadhanam MV, Jeyabalan J, Gupta RC. Oxidative DNA Damage Following Microsome/Cu(II)-Mediated Activation of the Estrogens, 17β-Estradiol, Equilenin, and Equilin: Role of Reactive Oxygen Species. Chem Res Toxicol 2012; 25:305-14. [DOI: 10.1021/tx200356v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wendy A. Spencer
- James
Graham Brown Cancer Center, and §Department of Pharmacology and Toxicology, University of Louisville, Louisville,
Kentucky 40202, United States
| | - Manicka V. Vadhanam
- James
Graham Brown Cancer Center, and §Department of Pharmacology and Toxicology, University of Louisville, Louisville,
Kentucky 40202, United States
| | - Jeyaprakash Jeyabalan
- James
Graham Brown Cancer Center, and §Department of Pharmacology and Toxicology, University of Louisville, Louisville,
Kentucky 40202, United States
| | - Ramesh C. Gupta
- James
Graham Brown Cancer Center, and §Department of Pharmacology and Toxicology, University of Louisville, Louisville,
Kentucky 40202, United States
| |
Collapse
|
31
|
Zavitsanos K, Nunes AM, Malandrinos G, Hadjiliadis N. DNA strand breakage induced by CuII and NiII, in the presence of peptide models of histone H2B. J Inorg Biochem 2011; 105:1329-37. [PMID: 21864811 DOI: 10.1016/j.jinorgbio.2011.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 11/20/2022]
Abstract
In the present study we used the plasmid relaxation assay, a very sensitive method for detection of DNA strand breaks in vitro, in order to evaluate the role of peptide fragments of histone H2B in DNA strand breakage induced by copper and nickel. We have found that in the presence of peptides modeling the histone fold domain (H2B(32-62) and H2B(63-93)) as well as the N-terminal tail (H2B(1-31)) of histone H2B there is an increased DNA damage by Cu(2+)/H(2)O(2) and Ni(2+)/H(2)O(2) reaction mixtures. On the contrary, the C-terminal tail (H2B(94-125)) seems to have a protective role on the attack of ROS species to DNA. We have rendered our findings to the interactions of the peptides with DNA, as well as with the metal.
Collapse
Affiliation(s)
- Kimon Zavitsanos
- Department of Chemistry, University of Ioannina, Ioannina, Greece
| | | | | | | |
Collapse
|
32
|
Monro SM, Cottreau KM, Spencer C, Wentzell JR, Graham CL, Borissow CN, Jakeman DL, McFarland SA. Copper-mediated nuclease activity of jadomycin B. Bioorg Med Chem 2011; 19:3357-60. [DOI: 10.1016/j.bmc.2011.04.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/13/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
|
33
|
Fleming AM, Muller JG, Ji I, Burrows CJ. Characterization of 2'-deoxyguanosine oxidation products observed in the Fenton-like system Cu(II)/H2O2/reductant in nucleoside and oligodeoxynucleotide contexts. Org Biomol Chem 2011; 9:3338-48. [PMID: 21445431 DOI: 10.1039/c1ob05112a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species attack both base and sugar moieties in DNA with a preference among the bases for reaction at guanine. In the present study, 2'-deoxyguanosine (dG) was oxidized by a copper-mediated Fenton reaction with the reductants ascorbate or N-acetyl-cysteine, yielding oxidation on both the base and the sugar. The primary oxidized lesions observed in these studies include the 2'-deoxyribonucleosides of 8-oxo-7,8-dihydroguanosine (dOG), spiroiminodihydantoin (dSp), guanidinohydantoin (dGh), oxazolone (dZ), and 5-carboxamido-5-formamido-2-iminohydantoin (d2Ih), as well as the free base guanine. d2Ih was the major product observed in the nucleoside, single- and double-stranded oligodeoxynucleotide contexts and is proposed to arise from oxidation at C5 of guanine. Product distribution studies provide insight into the role of the reductant in partitioning of dG base oxidation along the C5 and C8 pathways.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| | | | | | | |
Collapse
|
34
|
Perron NR, García CR, Pinzón JR, Chaur MN, Brumaghim JL. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage. J Inorg Biochem 2011; 105:745-53. [PMID: 21481816 DOI: 10.1016/j.jinorgbio.2011.02.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022]
Abstract
Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy.
Collapse
Affiliation(s)
- Nathan R Perron
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, United States
| | | | | | | | | |
Collapse
|
35
|
Xing D, Tan X, Jiang X, Wang B. Deprotonation studies of Cu+–guanine and Cu2+–guanine complexes by theoretical investigation. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2010.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Wang HC, Brumaghim JL. Polyphenol Compounds as Antioxidants for Disease Prevention: Reactive Oxygen Species Scavenging, Enzyme Regulation, and Metal Chelation Mechanisms in E. coliand Human Cells. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1083.ch005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hsiao C. Wang
- Chemistry Department, Clemson University, Clemson, South Carolina 29634-0973
| | - Julia L. Brumaghim
- Chemistry Department, Clemson University, Clemson, South Carolina 29634-0973
| |
Collapse
|
37
|
Comparative nuclease and anti-cancer properties of the naturally occurring malabaricones. Bioorg Med Chem 2010; 18:7043-51. [DOI: 10.1016/j.bmc.2010.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 01/12/2023]
|
38
|
Abstract
With the aging of the population, we are seeing a global increase in the prevalence of age-related disorders, especially in developed countries. Chronic diseases disproportionately affect the older segment of the population, contributing to disability, a diminished quality of life and an increase in healthcare costs. Increased life expectancy reflects the success of contemporary medicine, which must now respond to the challenges created by this achievement, including the growing burden of chronic illnesses, injuries and disabilities. A well-developed theoretical framework is required to understand the molecular basis of aging. Such a framework is a prerequisite for the development of clinical interventions that will constitute an efficient response to the challenge of age-related health issues. This review critically analyzes the experimental evidence that supports and refutes the Free Radical/Mitochondrial Theory of Aging, which has dominated the field of aging research for almost half a century.
Collapse
Affiliation(s)
- Mikhail F Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
39
|
Spencer WA, Lehmler HJ, Robertson LW, Gupta RC. Oxidative DNA adducts after Cu(2+)-mediated activation of dihydroxy PCBs: role of reactive oxygen species. Free Radic Biol Med 2009; 46:1346-52. [PMID: 19233261 PMCID: PMC2744390 DOI: 10.1016/j.freeradbiomed.2009.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 11/22/2022]
Abstract
Polychlorinated biphenyls (PCBs) are toxic industrial chemicals, complete carcinogens, and efficacious tumor promoters. However, the mechanism(s) of PCB-mediated carcinogenicity remains largely undefined. One likely pathway by which these agents may play a role in carcinogenesis is the generation of oxidative DNA damage by redox cycling of dihydroxylated PCB metabolites. We have now employed a new (32)P-postlabeling system to examine novel oxidative DNA lesions induced by Cu(2+)-mediated activation of PCB metabolites. (32)P postlabeling of DNA incubated with various PCB metabolites resulted in over a dozen novel polar oxidative DNA adducts that were chromatographically similar for all active agents. The most potent metabolites tested were the hydroquinones (hydroxyl groups arranged para to each other), yielding polar oxidative adduct levels ranging from 55 to 142 adducts/10(6) nucleotides. PCB catechols, or ortho-dihydroxy metabolites, were up to 40% less active than their corresponding hydroquinone congeners, whereas monohydroxylated and quinone metabolites did not produce detectable oxidative damage over that of vehicle. With the exception of 2,4,5-Cl-2',5'-dihydroxybiphenyl, this oxidative DNA damage seemed to be inversely related to chlorine content: no chlorine approximately mono->di->trichlorinated metabolites. Importantly, copper, but not iron, was essential for activation of the PCB metabolites to these polar oxidative DNA adducts, because in its absence or in the presence of the Cu(+)-specific scavenger bathocuproine, no adducts were detected. Intervention studies with known reactive oxygen species (ROS) modifiers suggested that H(2)O(2), singlet oxygen, hydroxyl radical, and superoxide may also be involved in this PCB-mediated oxidative DNA damage. These data indicate a mechanistic role for several ROS, in addition to copper, in PCB-induced DNA damage and provide further support for oxidative DNA damage in PCB-mediated carcinogenesis.
Collapse
Affiliation(s)
- Wendy A. Spencer
- James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242
| | - Larry W. Robertson
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242
| | - Ramesh C. Gupta
- James Graham Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202
- Correspondence to Dr. Ramesh Gupta, 304 E Delia Baxter II, 580 Preston Street, University of Louisville Medical School, Louisville, KY 40202. Telephone: 502-852-3682;
| |
Collapse
|
40
|
A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem Biophys 2009; 53:75-100. [DOI: 10.1007/s12013-009-9043-x] [Citation(s) in RCA: 633] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Damage to cellular and isolated DNA induced by a metabolite of aspirin. Mutat Res 2008; 661:93-100. [PMID: 19101573 DOI: 10.1016/j.mrfmmm.2008.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 11/10/2008] [Accepted: 11/21/2008] [Indexed: 12/25/2022]
Abstract
Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H(2)O(2))-resistant clone HP100 cells, suggesting the involvement of H(2)O(2). In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using (32)P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H(2)O(2) with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis.
Collapse
|
42
|
Sharghi H, Hosseini-Sarvari M, Moeini F. Copper-catalyzed one-pot synthesis of benzimidazole derivatives. CAN J CHEM 2008. [DOI: 10.1139/v08-153] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple, efficient, and environmentally benign method has been developed for the synthesis of 2-substituted benzimidazoles through a one-pot reaction of phenylenediamines with aryl aldehydes in excellent isolated yields under mild conditions using Cu(II) complex as the selective, recyclable, and heterogeneous catalyst at ambient temperature. The Cu(II) complex as a heterogeneous catalyst can be reused in further catalytic reactions, and it was found that its activity remained largely unchanged for eight successive runs. No metal-complex leaching was observed after the consecutive catalytic reactions. The salient features of this method include mild conditions, high yields, simple procedure, and good recovery and reusability of the heterogeneous catalyst.Key words: benzimidazole, o-phenylenediamine, arylaldehydes, heterogeneous catalyst, N,N-bis (2-hydroxyphenyl)pyridine-2,6-dicarboxamide.
Collapse
|
43
|
Xing D, Tan X, Chen X, Bu Y. Theoretical Study on the Gas-Phase Acidity of Multiple Sites of Cu+−Adenine and Cu2+−Adenine Complexes. J Phys Chem A 2008; 112:7418-25. [PMID: 18646734 DOI: 10.1021/jp800256v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dianxiang Xing
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China, and School of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250353, P. R. China
| | - Xuejie Tan
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China, and School of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250353, P. R. China
| | - Xiaohua Chen
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China, and School of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250353, P. R. China
| | - Yuxiang Bu
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China, and School of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250353, P. R. China
| |
Collapse
|
44
|
Perron NR, Hodges JN, Jenkins M, Brumaghim JL. Predicting How Polyphenol Antioxidants Prevent DNA Damage by Binding to Iron. Inorg Chem 2008; 47:6153-61. [DOI: 10.1021/ic7022727] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1. Mol Cell Biol 2007; 27:8442-53. [PMID: 17923696 DOI: 10.1128/mcb.00791-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative lesions account for much of the spontaneously occurring DNA damage in normal cells and, left unrepaired, can be mutagenic or cytotoxic. We have investigated the capacity of purified human enzymes to initiate the base excision repair (BER) of oxidative lesions in model nucleosomes. In a construct where the minor groove of a thymine glycol lesion faced outward from the histone octamer, the human DNA glycosylase NTH1 (hNTH1) processed the lesion with nearly the same efficiency as in naked DNA. The hNTH1 reaction did not generate free DNA, indicating that the first step in BER occurred without irreversibly disrupting nucleosomes. Instead, lesion processing entailed the formation of nucleosome-hNTH1 ternary complexes that could be visualized in a gel mobility shift assay. These complexes contained both processed and unprocessed DNA. hNTH1 processing of lesions whose minor groove faced toward the histone octamer was poor at low hNTH1 concentrations but increased substantially as hNTH1 concentrations increased to nearly physiological levels. Additionally, an inward-facing lesion near the nucleosome edge was more efficiently processed than one closer to the nucleosome dyad. These observations suggest that access to sterically occluded lesions entails the partial, reversible unwrapping of DNA from the histone octamer, allowing hNTH1 to capture its DNA substrate when it is in an unwound state.
Collapse
|
46
|
Cao H, Wang Y. Quantification of oxidative single-base and intrastrand cross-link lesions in unmethylated and CpG-methylated DNA induced by Fenton-type reagents. Nucleic Acids Res 2007; 35:4833-44. [PMID: 17626047 PMCID: PMC1976268 DOI: 10.1093/nar/gkm497] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methylation of cytosine at CpG sites in mammalian cells plays an important role in the epigenetic regulation of gene expression. Here, we assessed the formation of single-nucleobase lesions and intrastrand cross-link lesions (i.e. G[8-5]C, C[5-8]G, mC[5m-8]G, and G[8-5m]mC, where ‘mC’ represents 5-methylcytosine) in unmethylated and the corresponding CpG-methylated synthetic double-stranded DNA upon treatment with Fenton-type reagents [i.e. H2O2, ascorbate together with Cu(II) or Fe(II)]. Our results showed that the yields of oxidative single-nucleobase lesions were considerably higher than those of the intrastrand cross-link lesions. Although no significant differences were found for the yields of single-base lesions induced from cytosine and mC, the G[8-5m]mC cross-link was induced ∼10 times more efficiently than the G[8-5]C cross-link. In addition, the mC[5m-8]G was induced at a level that was ∼15 times less than G[8-5m]mC, whereas the corresponding C[5-8]G intrastrand cross-link lesion was not detectable. Moreover, Cu(II) is ∼10-fold as effective as Fe(II) in inducing oxidative DNA lesions. These results suggest that oxidative intrastrand cross-link lesions formed at methylated-CpG sites may account for the previously reported mCG→TT tandem double mutations induced by Fenton-type reagents.
Collapse
Affiliation(s)
| | - Yinsheng Wang
- *To whom correspondence should be addressed.+1 951 827 2700+1 951 827 4713
| |
Collapse
|
47
|
Hong H, Cao H, Wang Y, Wang Y. Identification and quantification of a guanine-thymine intrastrand cross-link lesion induced by Cu(II)/H2O2/ascorbate. Chem Res Toxicol 2006; 19:614-21. [PMID: 16696563 PMCID: PMC2519820 DOI: 10.1021/tx060025x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) can be induced by both endogenous and exogenous processes, and they can damage biological molecules including nucleic acids. It was shown that X- or gamma-ray irradiation of aqueous solutions of DNA, during which *OH is one of the major ROS, can lead to the formation of intrastrand cross-link lesions where the neighboring nucleobases in the same DNA strand are covalently bonded. Previous 32P-postlabeling studies suggested that the intrastrand cross-link lesions may arise from Fenton reaction, which also induces the formation of *OH; the structures of the proposed intrastrand cross-link lesions, however, have not been determined. Here, we showed for the first time that the treatment of calf thymus DNA with Cu(II)/H2O2/ascorbate could lead to the formation of an intrastrand cross-link lesion, i.e., G wedge T, where the C8 of guanine is covalently bonded to the neighboring 3'-thymine through its methyl carbon. LC-MS/MS quantification results showed dose-responsive formation of G wedge T. In addition, the yield of the intrastrand cross-link was approximately 3 orders of magnitude lower than those of commonly observed single-base lesions, that is, 8-oxo-7,8-dihydro-2'-deoxyguanosine, 5-(hydroxymethyl)-2'-deoxyuridine, and 5-formyl-2'-deoxyuridine. The induction of intrastrand cross-link lesion in calf thymus DNA by Fenton reagents in vitro suggests that this type of lesion might be formed endogenously in mammalian cells.
Collapse
Affiliation(s)
- Haizheng Hong
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, USA
| | | | | | | |
Collapse
|
48
|
Oikawa S, Ito T, Iwayama M, Kawanishi S. Radical production and DNA damage induced by carcinogenic 4-hydrazinobenzoic acid, an ingredient of mushroom Agaricus bisporus. Free Radic Res 2006; 40:31-9. [PMID: 16298757 DOI: 10.1080/10715760500329994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
4-Hydrazinobenzoic acid, an ingredient of mushroom Agaricus bisporus, is carcinogenic to rodents. To clarify the mechanism of carcinogenesis, we investigated DNA damage by 4-hydrazinobenzoic acid using (32)P-labeled DNA fragments obtained from the human p53 and p16 tumor suppressor genes. 4-Hydrazinobenzoic acid induced Cu(II)-dependent DNA damage especially piperidine-labile formation at thymine and cytosine residues. Typical hydroxyl radical scavengers showed no inhibitory effects on Cu(II)-mediated DNA damage by 4-hydrazinobenzoic acid. Bathocuproine and catalase inhibited the DNA damage, indicating the participation of Cu(I) and H(2)O(2) in the DNA damage. These findings suggest that H(2)O(2) generated by the autoxidation of 4-hydrazinobenzoic acid reacts with Cu(I) to form reactive oxygen species, capable of causing DNA damage. Interestingly, catalase did not completely inhibit DNA damage caused by a high concentration of 4-hydrazinobenzoic acid (over 50 microM) in the presence of Cu(II). 4-Hydrazinobenzoic acid induced piperidine-labile sites frequently at adenine and guanine residues in the presence of catalase. 4-Hydrazinobenzoic acid increased formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a characteristic oxidative DNA lesion, in calf thymus DNA, whereas 4-hydrazinobenzoic acid did not increase the formation of 8-oxodG in the presence of catalase. ESR spin-trapping experiments showed that the phenyl radical was formed during the reaction of 4-hydrazinobenzoic acid in the presence of Cu(II) and catalase. Matrix-assisted laser desorption/ionization time-of-flight mass (MALDI-TOF/mass) spectrometry analysis showed that phenyl radical formed adduct with adenosine and guanosine. These results suggested that 4-hydrazinobenzoic acid induced DNA damage via not only H(2)O(2) production but also phenyl radical production. This study suggests that both oxidative DNA damage and DNA adduct formation play important roles in the expression of carcinogenesis of 4-hydrazinobenzoic acid.
Collapse
Affiliation(s)
- Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Japan
| | | | | | | |
Collapse
|
49
|
Subramanian M, Chander R, Chattopadhyay S. A novel naturally occurring tripyrrole with potential nuclease and anti-tumour properties. Bioorg Med Chem 2006; 14:2480-6. [PMID: 16412656 DOI: 10.1016/j.bmc.2005.11.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 11/15/2005] [Indexed: 10/25/2022]
Abstract
The DNA targeting and membrane damaging activities of a novel tripyrrole 1 obtained as a red pigment from the Micrococcus sp. were investigated. It was found that compound 1 binds with DNA efficiently and facilitates copper-mediated DNA cleavage as well as peroxidation of membrane lipids by a process that does not require any external reducing agent. Compound 1 also showed impressive cytotoxicity to both mouse and human tumour cell lines. The membrane damaging ability of compound 1 might be vital in its nuclease and cytotoxicity properties. Interestingly, compared to the various DNA cleaving agents, compound 1 showed a preferential binding with the G-C rich domain.
Collapse
Affiliation(s)
- Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | |
Collapse
|
50
|
Evans SE, Mon S, Singh R, Ryzhkov LR, Szalai VA. DNA Oxidation in Anionic Reverse Micelles: Ruthenium-Mediated Damage at Guanine in Single- and Double-Stranded DNA. Inorg Chem 2006; 45:3124-32. [PMID: 16562969 DOI: 10.1021/ic0521022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-electron guanine oxidation in DNA has been investigated in anionic reverse micelles (RMs). A photochemical method for generating Ru3+ from the ruthenium polypyridyl complex tris(2-2'-bipyridine)ruthenium(II) chloride ([Ru(bpy)3]Cl2) is combined with high-resolution polyacrylamide gel electrophoresis (PAGE) to quantify piperidine-labile guanine oxidation products. As characterized by emission spectroscopy of Ru(bpy)3(2+), the addition of DNA to RMs containing Ru(bpy)3(2+) does not perturb the environment of Ru(bpy)3(2+). The steady-state quenching efficiency of Ru(bpy)3(2+) with K3[Fe(CN)6] in buffer solution is approximately 2-fold higher than that observed in RMs. Consistent with the difference in quenching efficiency in the two media, a 1.5-fold higher yield of piperidine-labile damage products as monitored by PAGE is observed for duplex oligonucleotide in buffer vs RMs. In contrast, a 13-fold difference in the yield of PAGE-detected G oxidation products is observed when single-stranded DNA is the substrate. Circular dichroism spectra showed that single-stranded DNA undergoes a structural change in anionic RMs. This structural change is potentially due to cation-mediated adsorption of the DNA phosphates on the anionic headgroups of the RMs, leading to protection of the guanine from oxidatively generated damage.
Collapse
Affiliation(s)
- Sarah E Evans
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | | | |
Collapse
|