1
|
An J, Hu N, Yin C, Liu Y. Metal-enhanced fluorescence (MEF) effect based on silver nanoparticles with different UV spectra on a surface carbon dot-based novel dry platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124744. [PMID: 38971084 DOI: 10.1016/j.saa.2024.124744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
In this work, to enhance the fluorescence quantum yield of carbon dots (CDs), a novel metal-enhanced fluorescence (MEF) structure was designed by decorating CDs on silver nanoparticle (AgNPs) film. The glass slide-AgNPs (GS-AgNPs) structure was fabricated using the electrostatic adsorption method, and the AgNPs-CDs structures were prepared by the direct drying method, which then formed the GS-AgNPs-CDs composite structure. In this structure, the MEF effect was found to be size dependent by changing the 5 types of AgNPs with different sizes. And the MEF effect also decreased as the distance between the AgNPs and CDs increased by using polyvinylpyrrolidone (PVP) to separate the AgNPs and CDs. This hybrid structure can be used as a fluorescence detection platform and the recorded fluorescence intensity of GS-AgNPs 428 nm-CDs achieved a maximum enhancement factor (EF) of 31.72. Considering the high enhancement factor, this system may become promising to find potential applications in biochemical assay fields.
Collapse
Affiliation(s)
- Jia An
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Nan Hu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Chengyue Yin
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China; Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Dinger N, Russo C, Fusco S, Netti PA, Sirignano M, Panzetta V. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure. Nanotoxicology 2024:1-27. [PMID: 39484725 DOI: 10.1080/17435390.2024.2419418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies. Similarly, carbon dots (CDs) uptaken by the nucleus can also be used to set-up cutting edge nano delivery systems. In an earlier paper, we showed the cellular uptake and plasma membrane impact of combustion generated yellow luminescing CDs produced by our group from fuel rich combustion reactors in a one-step tunable production. In this paper, we aim to specifically study the nucleus by establishing the uptake kinetics of these combustion-generated yellow luminescing CDs. At sub-lethal doses, after crossing the plasma membrane, they impact the actin and microtubule mesh, affecting cell adhesion and migration; enter nucleus by diffusion processes; modify the overall appearance of the nucleus in terms of morphology; and alter chromatin condensation. We thus establish how this one-step produced, cost and bulk production friendly carbon dots from fuel rich combustion flames can be innovatively repurposed as potential nano delivery agents in cancer cells.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilita Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| | - Paolo A Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
3
|
Wu J, Ding X, Pang Y, Liu Q, Lei J, Zhang H, Zhang T. Research advance of occupational exposure risks and toxic effects of semiconductor nanomaterials. J Appl Toxicol 2024. [PMID: 38837250 DOI: 10.1002/jat.4647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
In recent years, semiconductor nanomaterials, as one of the most promising and applied classes of engineered nanomaterials, have been widely used in industries such as photovoltaics, electronic devices, and biomedicine. However, occupational exposure is unavoidable during the production, use, and disposal stages of products containing these materials, thus posing potential health risks to workers. The intricacies of the work environment present challenges in obtaining comprehensive data on such exposure. Consequently, there remains a significant gap in understanding the exposure risks and toxic effects associated with semiconductor nanomaterials. This paper provides an overview of the current classification and applications of typical semiconductor nanomaterials. It also delves into the existing state of occupational exposure, methodologies for exposure assessment, and prevailing occupational exposure limits. Furthermore, relevant epidemiological studies are examined. Subsequently, the review scrutinizes the toxicity of semiconductor nanomaterials concerning target organ toxicity, toxicity mechanisms, and influencing factors. The aim of this review is to lay the groundwork for enhancing the assessment of occupational exposure to semiconductor nanomaterials, optimizing occupational exposure limits, and promoting environmentally sustainable development practices in this domain.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaomeng Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jialin Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haopeng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices Southeast University, Nanjing, China
| |
Collapse
|
4
|
Batawi AH. Ginkgo biloba extract mitigates the neurotoxicity of AlCl 3 in alzheimer rat's model: role of apolipoprotein E4 and clusterin genes in stimulating ROS generation and apoptosis. Int J Neurosci 2024; 134:34-44. [PMID: 35634646 DOI: 10.1080/00207454.2022.2082968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/13/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Alzheimer's disease (AD) appears as a result of an increase in the accumulation of amyloid beta peptide (Aβ) and a decrease in neurotransmitters (acetylcholine) within the brain cells which may be due to increase in acetylcholinesterase (AchE) activity and change in expression of Apolipoprotein E4 (ApoE4) and Clusterin (Clu) genes. The aim of the present study was using natural products such as Ginkgo biloba (G. biloba) extract that has the potential to reduce Aβ formation and increase AchE inhibition with its ability to save neuronal DNA from damage. METHODS Sixty male aged rats were divided into six experimental groups exposed to AlCl3 to induce AD model and were treated with G. biloba extract. Collected brain tissues were used to assess the apoptosis rate, reactive oxygen species (ROS) generation, AchE inhibitory activity, expression alteration in ApoE4 and Clu genes, DNA fragmentations and gutathione peroxidase (GPx) activity.Results: The results exhibited that rats exposed to AlCl3 increased significantly rate of apoptosis, ROS formation, DNA fragmentation, up-regulation of ApoE4 and Clu genes as well as decrease of AchE inhibitory activity and GPx activity compared with those in control rats. However, treatment of AlCl3-rats with G. biloba extract improved the above neurotoxicity results induced by AlCl3 exposure. CONCLUSIONS It is therefore likely that G. biloba extract's protective properties against AD are due to its ability to activate the response against oxidative stress.
Collapse
Affiliation(s)
- Ashwaq H Batawi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Sedik AA, Elgohary R, Khalifa E, Khalil WKB, I Shafey H, B Shalaby M, S O Gouida M, M Tag Y. Lauric acid attenuates hepato-metabolic complications and molecular alterations in high-fat diet-induced nonalcoholic fatty liver disease in rats. Toxicol Mech Methods 2024; 34:454-467. [PMID: 38166588 DOI: 10.1080/15376516.2023.2301344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/29/2023] [Indexed: 01/04/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a major chronic liver illness characterized by increase of lipid content in the liver. This study investigated the role of lauric acid to treat NAFLD in male adult Sprague Dawley rats. In this study, to induce NAFLD in the rats, a high-fat diet (HFD) was administered for eight consecutive weeks. Lauric acid groups received lauric acid (250 and 500 mg/kg; orally), concurrently with HFD for eight consecutive weeks. Lauric acid could ameliorate the serum levels of TG, TC, ALT, AST, blood glucose, and insulin. Moreover, lauric acid significantly elevated the levels of SOD, GSH, catalase, and IL-10. Additionally, it lowered the hepatic levels of MDA, ROS, MPO, 4-HNE, interleukin (IL)-1β, and tumor necrosis factor (TNF-α). Furthermore, lauric acid significantly up-regulated the hepatic expression of IRS1, AMPK, PI3K, and SIRT1 genes. In parallel, lauric acid could improve the histopathological picture of the liver and reduce the liver apoptosis via decreasing the expression of annexin V (Anx V). Finally, our data proposed that lauric acid could be an effective candidate for the NAFLD treatment.
Collapse
Affiliation(s)
- Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Eman Khalifa
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | | | - Heba I Shafey
- Cell Biology Department, National Research Centre, Giza, Egypt
| | - Mohamed B Shalaby
- Toxicology Research Department, Research Institute of Medical Entomology (RIME), General Organisation of Teaching Hospitals and Institutes (GOTHI), Ministry of Health and Population (MoHP), Cairo, Egypt
| | - Mona S O Gouida
- Genetics Unit, Faculty of Medicine, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Yasmin M Tag
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| |
Collapse
|
6
|
Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. NATURE REVIEWS. METHODS PRIMERS 2022; 2:92. [PMID: 38111858 PMCID: PMC10727510 DOI: 10.1038/s43586-022-00170-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 12/20/2023]
Abstract
Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.
Collapse
Affiliation(s)
- Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Thredgold L, Ramkissoon C, Kumarasamy C, Gun R, Rowett S, Gaskin S. Rapid Assessment of Oxidative Damage Potential: A Comparative Study of Engineered Stone Dusts Using a Deoxyguanosine Assay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6221. [PMID: 35627757 PMCID: PMC9140999 DOI: 10.3390/ijerph19106221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
Abstract
The popularity of engineered stone (ES) has been associated with a global increase in occupational lung disease in workers exposed to respirable dust during the fabrication of benchtops and other ES products. In this study, the reactivity and subsequent oxidative reduction potential of freshly generated ES dusts were evaluated by (i) comparing different engineered and natural stones, (ii) comparing settled and respirable stone dust fractions and (iii) assessing the effect of ageing on the reactivity of freshly generated stone dust. An established cell-free deoxyguanosine hydroxylation assay was used to assess the potential for oxidative DNA damage. ES dust exhibited a higher relative reactivity than two of the three natural stones tested. Respirable dust fractions were found to be significantly more reactive than their corresponding settled fraction (ANOVA, p < 0.05) across all stone types and samples. However, settled dust still displayed high relative reactivity. The lower reactivity of the settled dust was not due to decay in reactivity of the respirable dust when it settled but rather a result of the admixture of larger nonrespirable particles. No significant change in respirable dust reactivity was observed for three ES samples over a 21-day time period, whereas a significant decrease in reactivity was observed in the natural stone studied. This study has practical implications for dust control and housekeeping in industry, risk assessment and hazard management.
Collapse
Affiliation(s)
- Leigh Thredgold
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, SA 5005, Australia; (L.T.); (C.R.); (C.K.); (R.G.)
| | - Chandnee Ramkissoon
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, SA 5005, Australia; (L.T.); (C.R.); (C.K.); (R.G.)
| | - Chellan Kumarasamy
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, SA 5005, Australia; (L.T.); (C.R.); (C.K.); (R.G.)
| | - Richard Gun
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, SA 5005, Australia; (L.T.); (C.R.); (C.K.); (R.G.)
| | - Shelley Rowett
- SafeWork SA, Government of South Australia, Adelaide, SA 5035, Australia;
| | - Sharyn Gaskin
- Adelaide Exposure Science and Health, School of Public Health, University of Adelaide, Adelaide, SA 5005, Australia; (L.T.); (C.R.); (C.K.); (R.G.)
| |
Collapse
|
8
|
Raja IS, Lee JH, Hong SW, Shin DM, Lee JH, Han DW. A critical review on genotoxicity potential of low dimensional nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124915. [PMID: 33422758 DOI: 10.1016/j.jhazmat.2020.124915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Low dimensional nanomaterials (LDNMs) have earned attention among researchers as they exhibit a larger surface area to volume and quantum confinement effect compared to high dimensional nanomaterials. LDNMs, including 0-D and 1-D, possess several beneficial biomedical properties such as bioimaging, sensor, cosmetic, drug delivery, and cancer tumors ablation. However, they threaten human beings with the adverse effects of cytotoxicity, carcinogenicity, and genotoxicity when exposed for a prolonged time in industry or laboratory. Among different toxicities, genotoxicity must be taken into consideration with utmost importance as they inherit DNA related disorders causing congenital disabilities and malignancy to human beings. Many researchers have performed NMs' genotoxicity using various cell lines and animal models and reported the effect on various physicochemical and biological factors. In the present work, we have compiled a comparative study on the genotoxicity of the same or different kinds of NMs. Notwithstanding, we have included the classification of genotoxicity, mechanism, assessment, and affecting factors. Further, we have highlighted the importance of studying the genotoxicity of LDNMs and signified the perceptions, future challenges, and possible directives in the field.
Collapse
Affiliation(s)
| | - Jong Ho Lee
- Daan Korea Corporation, Seoul 06252, South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, South Korea.
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, South Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
9
|
Diltiazem potentiates the cytotoxicity of gemcitabine and 5-fluorouracil in PANC-1 human pancreatic cancer cells through inhibition of P-glycoprotein. Life Sci 2020; 262:118518. [PMID: 33011221 DOI: 10.1016/j.lfs.2020.118518] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
AIM Pancreatic cancer (PC) is one of the most aggressive tumors with dismal survival and a high death rate due to chemotherapeutic failure. P-glycoprotein (P-gp) plays a pivotal role in PC response to gemcitabine and 5-fluorouracil (5-FU). Diltiazem, a calcium channel blocker, is a P-gp inhibitor. In the current study, we investigated the hypothesis that targeting of P-gp by diltiazem can enhance the cytotoxicity of gemcitabine and 5-FU against human pancreatic cancer cells. MAIN METHODS The cytotoxic effect of diltiazem, gemcitabine, and 5-FU in single and combined forms against PANC-1 and AsPC-1 cells were assayed by MTT. Flow cytometric analysis was used for the determination of cell cycle, apoptosis, and stemness markers in PC cells. Besides, immunoblotting was used for assessment of Bax, caspase 3, cyclin D1, and P-gp expressions. KEY FINDINGS Diltiazem co-treatment, either with gemcitabine or 5-FU, synergistically reduced cell viability, induced apoptosis, and caused cell cycle arrest. In addition, diltiazem co-treatment decreased the expressions of stem cell markers CD24 and CD44, increased the expressions of Bax and cleaved caspase 3, enhanced DNA fragmentation, and attenuated cyclin D1 and P-gp expressions as compared to cells treated with either gemcitabine or 5-FU alone. SIGNIFICANCE Our findings suggest that diltiazem may be potential neoadjuvant therapy to enhance the response of PC to gemcitabine or 5-FU treatment.
Collapse
|
10
|
Zhao L, Guo Z, Wu H, Wang Y, Zhang H, Liu R. New insights into the release mechanism of Cd 2+ from CdTe quantum dots within single cells in situ. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110569. [PMID: 32278141 DOI: 10.1016/j.ecoenv.2020.110569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Cadmium-quantum dots (Cd-QDs) possess unique properties as optoelectronic devices for sensitive detection in food and biomedicine fields. However, the toxic effects of Cd-QDs to single cells is still controversial, due to the release mechanism of QDs to Cd2+in situ and the cytotoxic effects of QDs and Cd2+ respectively are still unclear. In this paper, the release rule of Cd2+ from CdTe QDs within single cells was investigated in situ by using flow cytometry method and the dose-response relationships were explored. Besides, an all-inclusive microscopy system was optimized for live cell imaging to observe the real-time entry process of CdTe QDs into cells. We found that intracellular CdTe QDs and Cd2+ contents were increased based on the dosage and exposing time. A dissociated saturation of Cd2+ from CdTe QDs was exist within cells. CdTe QDs induced more serious cytotoxicity on kidney cells than hepatocytes. The toxicity of oxidative stress, cell apoptosis effects induced by CdTe QDs and Cd2+ are also in consistent with this result. This research develops analytical method to quantify the uptake and release of Cd-QDs to primary cells in situ and can provide technical support in studying the cytotoxicity portion contributed by nanoparticles (NPs) and metal ions.
Collapse
Affiliation(s)
- Lining Zhao
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Zihan Guo
- College of Life Sciences, Hebei University, Baoding, 071000, China
| | - Hongxin Wu
- College of Life Sciences, Hebei University, Baoding, 071000, China
| | - Yan Wang
- College of Life Sciences, Hebei University, Baoding, 071000, China
| | - Hao Zhang
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Affiliated Hospital of Hubei University for Nationalities, Enshi, China.
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
11
|
Huang Y, Qiu F, Chen R, Yan D, Zhu X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J Mater Chem B 2020; 8:3772-3788. [DOI: 10.1039/d0tb00262c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this Review, recent advances in fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy are described, and the current challenges and perspectives in this emerging field are also discussed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Feng Qiu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital
- National Clinical Research Centre for Oral Diseases
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London
- UK
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
12
|
Bláhová L, Nováková Z, Večeřa Z, Vrlíková L, Dočekal B, Dumková J, Křůmal K, Mikuška P, Buchtová M, Hampl A, Hilscherová K, Bláha L. The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology 2019; 14:214-231. [PMID: 31726900 DOI: 10.1080/17435390.2019.1685696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although the production of engineered nanoparticles increases our knowledge of toxicity and mechanisms of bioactivity during relevant exposures is lacking. In the present study mice were exposed to PbO nanoparticles (PbONP; 192.5 µg/m3; 1.93 × 106 particles/cm3) for 2, 5 and 13 weeks through continuous inhalation. The analyses addressed Pb and PbONP distribution in organs (lung, liver, kidney, brain) using electrothermal atomic absorption spectrometry and transmission electron microscopy, as well as histopathology and analyses of oxidative stress biomarkers. New LC-MS/MS methods were validated for biomarkers of lipid damage F2-isoprostanes (8-iso-prostaglandins F2-alpha and E2) and hydroxylated deoxoguanosine (8-OHdG, marker of DNA oxidation). Commonly studied malondialdehyde was also measured as TBARS by HPLC-DAD. The study revealed fast blood transport and distribution of Pb from the lung to the kidney and liver. A different Pb accumulation trend was observed in the brain, suggesting transfer of NP along the nasal nerve to the olfactory bulbs. Long-term inhalation of PbONP caused lipid peroxidation in animal brains (increased levels of TBARS and both isoprostanes). Membrane lipid damage was also detected in the kidney after shorter exposures, but not in the liver or lung. On the contrary, longer exposures to PbONP increased levels of 8-OHdG in the lung and temporarily increased lung weight after 2 and 5 weeks of exposure. The histopathological changes observed mainly in the lung and liver indicated inflammation and general toxicity responses. The present long-term inhalation study indicates risks of PbONP to both human health and the environment.
Collapse
Affiliation(s)
- Lucie Bláhová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Zuzana Nováková
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Zbyněk Večeřa
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Lucie Vrlíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Bohumil Dočekal
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Dumková
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic
| | - Kamil Křůmal
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Pavel Mikuška
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Marcela Buchtová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic
| | - Klára Hilscherová
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Brno, Czech Republic
| |
Collapse
|
13
|
Geißler D, Wegmann M, Jochum T, Somma V, Sowa M, Scholz J, Fröhlich E, Hoffmann K, Niehaus J, Roggenbuck D, Resch-Genger U. An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. NANOSCALE 2019; 11:13458-13468. [PMID: 31287475 DOI: 10.1039/c9nr01021a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials.
Collapse
Affiliation(s)
- D Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - M Wegmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany. and MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - T Jochum
- Fraunhofer-Zentrum für Angewandte Nanotechnologie CAN, Grindelallee 117, 20146 Hamburg, Germany
| | - V Somma
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - M Sowa
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - J Scholz
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - E Fröhlich
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - K Hoffmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - J Niehaus
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - D Roggenbuck
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany and Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Germany
| | - U Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| |
Collapse
|
14
|
Tao L, Yue Q, Hou Y, Wang Y, Chen C, Li CZ. Resonance light scattering aptasensor for urinary 8-hydroxy-2'-deoxyguanosine based on magnetic nanoparticles: a preliminary study of oxidative stress association with air pollution. Mikrochim Acta 2018; 185:419. [PMID: 30121832 DOI: 10.1007/s00604-018-2937-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
An aptamer based method is described for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) using resonance light scattering (RLS). Magnetic nanoparticles (MNPs) were employed as RLS probes. The probe DNA was placed on the surface of MNPs, which produces a rather low RLS signal. If, however, probe DNA hybridizes with the aptamer against 8-OHdG, a sandwich structure will be formed. This results in a significant enhancement of RLS intensity. The aptamer was used as the recognition element to capture 8-OHdG. 8-OHdG has a stronger affinity for the aptamer than probe DNA, and the conformation of the aptamer therefore switches from a double-stranded to a G-quadruplex structure. As a result, MNPs labeled with probe DNA are released, and RLS intensity decreases. The method allows 8-OHdG to be detected with a linear response in the 32 pM - 12.0 nM concentration range and an 11 pM limit of detection (at 3.29SB/m, according to the recent recommendation of IUPAC). The MNPs can be reused 5 times by applying an external magnetic field for collection. The method was successfully applied to analyze human urine samples for its content of 8-OHdG. It was also found that the levels of 8-OHdG noticeably increased with the increase of the Air Quality Index. Conceivably, the method is a viable tool to investigate the relationship between 8-OHdG levels and the effect of air pollution. Graphical abstract A reusable sensing strategy was constructed to detect urinary 8-OHdG based on "turn-off" resonance light scattering. The LOD was as low as 11 pM. This study showed some preliminary data for the association between oxidative stress and air pollution.
Collapse
Affiliation(s)
- Lixia Tao
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Qiaoli Yue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China.
| | - Yining Hou
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Yongping Wang
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Chen-Zhong Li
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China. .,Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
15
|
Emam AN, Loutfy SA, Mostafa AA, Awad H, Mohamed MB. Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Adv 2017. [DOI: 10.1039/c7ra01423f] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, hybrid carbon dots–plasmonic nanostructures including carbon dots/polyethyleneimine/gold (C-dots/PEI/Au), and carbon dots/polyethyleneimine/silver (C-dots/PEI/Ag) have been prepared using a MWI method for biomedical imaging.
Collapse
Affiliation(s)
- A. N. Emam
- Refractories, Ceramics and Building Materials Department
- National Research Centre
- Cairo
- Egypt
- Nanomedicine and Tissue Engineering Laboratory
| | - Samah A. Loutfy
- Virology and Immunology Unit
- Cancer Biology Department
- National Cancer Institute
- Cairo University
- Cairo
| | - Amany A. Mostafa
- Refractories, Ceramics and Building Materials Department
- National Research Centre
- Cairo
- Egypt
- Nanomedicine and Tissue Engineering Laboratory
| | - H. Awad
- Tanning Materials and Leather Technology Department
- National Research Centre
- Cairo
- Egypt
| | - Mona B. Mohamed
- National Institute of Laser Enhanced Sciences (NILES)
- Cairo University
- Cairo
- Egypt
- Egyptian Nanotechnology Center (EGNC)
| |
Collapse
|
16
|
Gonzalez L, Kirsch-Volders M. Reprint of “Biomonitoring of genotoxic effects for human exposure to nanomaterials: The challenge ahead”. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:204-216. [DOI: 10.1016/j.mrrev.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
|
17
|
Reiss P, Carrière M, Lincheneau C, Vaure L, Tamang S. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chem Rev 2016; 116:10731-819. [DOI: 10.1021/acs.chemrev.6b00116] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peter Reiss
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Marie Carrière
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-CIBEST/LAN, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Christophe Lincheneau
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Louis Vaure
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Sudarsan Tamang
- Department
of Chemistry, Sikkim University, Sikkim 737102, India
| |
Collapse
|
18
|
Biomonitoring of genotoxic effects for human exposure to nanomaterials: The challenge ahead. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:14-26. [DOI: 10.1016/j.mrrev.2016.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 11/19/2022]
|
19
|
Shen Y, Shuhendler AJ, Ye D, Xu JJ, Chen HY. Two-photon excitation nanoparticles for photodynamic therapy. Chem Soc Rev 2016; 45:6725-6741. [DOI: 10.1039/c6cs00442c] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integration of the two-photon excitation (TPE) technique and nanomaterials to construct TPE nanoparticle-based photosensitizers for PDT is summarized and reviewed.
Collapse
Affiliation(s)
- Yizhong Shen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Adam J. Shuhendler
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
20
|
Alaraby M, Demir E, Hernández A, Marcos R. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:66-75. [PMID: 26026410 DOI: 10.1016/j.scitotenv.2015.05.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/12/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl2. Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl2 suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; Sohag University, Faculty of Sciences, Zoology Department, 82524-Campus, Sohag, Egypt
| | - Esref Demir
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain.
| |
Collapse
|
21
|
Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol 2014; 88:2191-211. [PMID: 25326817 DOI: 10.1007/s00204-014-1383-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Nanotechnology offers enormous potential for technological progress. Fortunately, early and intensive efforts have been invested in investigating toxicology and safety aspects of this new technology. However, despite there being more than 6,000 publications on nanotoxicology, some key questions still have to be answered and paradigms need to be challenged. Here, we present a view on the field of nanotoxicology to stimulate the discussion on major knowledge gaps and the critical appraisal of concepts or dogma. First, in the ongoing debate as to whether nanoparticles may harbour a specific toxicity due to their size, we support the view that there is at present no evidence of 'nanospecific' mechanisms of action; no step-change in hazard was observed so far for particles below 100 nm in one dimension. Therefore, it seems unjustified to consider all consumer products containing nanoparticles a priori as hazardous. Second, there is no evidence so far that fundamentally different biokinetics of nanoparticles would trigger toxicity. However, data are sparse whether nanoparticles may accumulate to an extent high enough to cause chronic adverse effects. To facilitate hazard assessment, we propose to group nanomaterials into three categories according to the route of exposure and mode of action, respectively: Category 1 comprises nanomaterials for which toxicity is mediated by the specific chemical properties of its components, such as released ions or functional groups on the surface. Nanomaterials belonging to this category have to be evaluated on a case-by-case basis, depending on their chemical identity. Category 2 focuses on rigid biopersistent respirable fibrous nanomaterials with a specific geometry and high aspect ratio (so-called WHO fibres). For these fibres, hazard assessment can be based on the experiences with asbestos. Category 3 focuses on respirable granular biodurable particles (GBP) which, after inhalation, may cause inflammation and secondary mutagenicity that may finally lead to lung cancer. After intravenous, oral or dermal exposure, nanoscaled GBPs investigated apparently did not show 'nanospecific' effects so far. Hazard assessment of GBPs may be based on the knowledge available for granular particles. In conclusion, we believe the proposed categorization system will facilitate future hazard assessments.
Collapse
|
22
|
Recent toxicological investigations of metal or metal oxide nanoparticles in mammalian models in vitro and in vivo: DNA damaging potential, and relevant physicochemical characteristics. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0013-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R, Jiang G, Yan B. Perturbation of physiological systems by nanoparticles. Chem Soc Rev 2014; 43:3762-809. [PMID: 24647382 DOI: 10.1039/c3cs60338e] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology is having a tremendous impact on our society. However, societal concerns about human safety under nanoparticle exposure may derail the broad application of this promising technology. Nanoparticles may enter the human body via various routes, including respiratory pathways, the digestive tract, skin contact, intravenous injection, and implantation. After absorption, nanoparticles are carried to distal organs by the bloodstream and the lymphatic system. During this process, they interact with biological molecules and perturb physiological systems. Although some ingested or absorbed nanoparticles are eliminated, others remain in the body for a long time. The human body is composed of multiple systems that work together to maintain physiological homeostasis. The unexpected invasion of these systems by nanoparticles disturbs normal cell signaling, impairs cell and organ functions, and may even cause pathological disorders. This review examines the comprehensive health risks of exposure to nanoparticles by discussing how nanoparticles perturb various physiological systems as revealed by animal studies. The potential toxicity of nanoparticles to each physiological system and the implications of disrupting the balance among systems are emphasized.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Silva ACA, da Silva SW, Morais PC, Dantas NO. Shell thickness modulation in ultrasmall CdSe/CdS(x)Se(1-x)/CdS core/shell quantum dots via 1-thioglycerol. ACS NANO 2014; 8:1913-1922. [PMID: 24460449 DOI: 10.1021/nn406478f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, we report on the synthesis of CdSe/CdS core-shell ultrasmall quantum dots (CS-USQDs) using an aqueous-based wet chemistry protocol. The proposed chemical route uses increasing concentration of 1-thioglycerol to grow the CdS shell on top of the as-precipitated CdSe core in a controllable way. We found that lower concentration of 1-thioglycerol (3 mmol) added into the reaction medium limits the growth of the CdSe core, and higher and increasing concentration (5-11 mmol) of 1-thioglycerol promotes the growth of CdS shell on top of the CdSe core in a very controllable way, with an increase from 0.50 to 1.25 nm in shell thickness. The growth of CS-USQDs of CdSe/CdS was confirmed by using different experimental techniques, such as optical absorption (OA) spectroscopy, fluorescence spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Data collected from OA were used to obtain the average values of the CdSe core diameter, whereas Raman data were used to assess the average values of the CdSe core diameter and CdS shell thicknesses.
Collapse
Affiliation(s)
- Anielle Christine A Silva
- Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Institute of Physics, Federal University of Uberlândia , CP 593, Uberlândia MG 38400-902, Brazil
| | | | | | | |
Collapse
|
25
|
McMahan RS, Lee V, Parks WC, Kavanagh TJ, Eaton DL. In vitro approaches to assessing the toxicity of quantum dots. Methods Mol Biol 2014; 1199:155-163. [PMID: 25103807 DOI: 10.1007/978-1-4939-1280-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Advances in nanotechnology have produced a new class of fluorescent nanoparticles known as quantum dots (Qdots). Compared with organic dyes and fluorescent proteins, Qdots offer several unique advantages in terms of spectral range, brightness, and photostability. Relative to other imaging modalities, optical imaging with Qdots is highly sensitive, quantitative, and capable of multiplexing. Thus, Qdots are being developed for a wide range of applications, including biomedical imaging. Qdot production has also emerged in a number of industrial applications, such as optoelectronic devices and photovoltaic cells. This widespread development and use of Qdots has outpaced research progress on their potential cytotoxicity, engendering major concerns surrounding occupational, environmental, and diagnostic exposures. Given the extensive physicochemical heterogeneity of Qdots (size, charge, chemical composition, solubility, etc.), high-throughput in vitro cytotoxicity assays represent a feasible means of determining effects of multiple variables and can inform design of lower-throughput in vivo cytotoxicity studies. Here, we describe the application of two commonly used assays, lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), for detection of Qdot-induced cytotoxicity.
Collapse
Affiliation(s)
- Ryan S McMahan
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | | | | | | | | |
Collapse
|
26
|
Santos AR, Miguel AS, Macovei A, Maycock C, Balestrazzi A, Oliva A, Fevereiro P. CdSe/ZnS quantum dots trigger DNA repair and antioxidant enzyme systems in Medicago sativa cells in suspension culture. BMC Biotechnol 2013; 13:111. [PMID: 24359290 PMCID: PMC3901376 DOI: 10.1186/1472-6750-13-111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/16/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Nanoparticles appear to be promising devices for application in the agriculture and food industries, but information regarding the response of plants to contact with nano-devices is scarce. Toxic effects may be imposed depending on the type and concentration of nanoparticle as well as time of exposure. A number of mechanisms may underlie the ability of nanoparticles to cause genotoxicity, besides the activation of ROS scavenging mechanisms. In a previous study, we showed that plant cells accumulate 3-Mercaptopropanoic acid-CdSe/ZnS quantum dots (MPA-CdSe/ZnS QD) in their cytosol and nucleus and increased production of ROS in a dose dependent manner when exposed to QD and that a concentration of 10 nM should be cyto-compatible. RESULTS When Medicago sativa cells were exposed to 10, 50 and 100 nM MPA-CdSe/ZnS QD a correspondent increase in the activity of Superoxide dismutase, Catalase and Glutathione reductase was registered. Different versions of the COMET assay were used to assess the genotoxicity of MPA-CdSe/ZnS QD. The number of DNA single and double strand breaks increased with increasing concentrations of MPA-CdSe/ZnS QD. At the highest concentrations, tested purine bases were more oxidized than the pyrimidine ones. The transcription of the DNA repair enzymes Formamidopyrimidine DNA glycosylase, Tyrosyl-DNA phosphodiesterase I and DNA Topoisomerase I was up-regulated in the presence of increasing concentrations of MPA-CdSe/ZnS QD. CONCLUSIONS Concentrations as low as 10 nM MPA-CdSe/ZnS Quantum Dots are cytotoxic and genotoxic to plant cells, although not lethal. This sets a limit for the concentrations to be used when practical applications using nanodevices of this type on plants are being considered. This work describes for the first time the genotoxic effect of Quantum Dots in plant cells and demonstrates that both the DNA repair genes (Tdp1β, Top1β and Fpg) and the ROS scavenging mechanisms are activated when MPA-CdSe/ZnS QD contact M. sativa cells.
Collapse
Affiliation(s)
- Ana R Santos
- Biomolecular Diagnostics Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
- Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Ana S Miguel
- Biomolecular Diagnostics Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
- Organic Synthesis Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology, via Ferrata 1, 27100 Pavia, Italy
| | - Christopher Maycock
- Organic Synthesis Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, 1749-016 Lisboa, Portugal
| | - Alma Balestrazzi
- Department of Biology and Biotechnology, via Ferrata 1, 27100 Pavia, Italy
| | - Abel Oliva
- Biomolecular Diagnostics Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Pedro Fevereiro
- Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, 1749-016 Lisboa, Portugal
| |
Collapse
|
27
|
Aye M, Di Giorgio C, Mekaouche M, Steinberg JG, Brerro-Saby C, Barthélémy P, De Méo M, Jammes Y. Genotoxicity of intraperitoneal injection of lipoamphiphile CdSe/ZnS quantum dots in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 758:48-55. [DOI: 10.1016/j.mrgentox.2013.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 11/15/2022]
|
28
|
Nagy A, Hollingsworth JA, Hu B, Steinbrück A, Stark PC, Rios Valdez C, Vuyisich M, Stewart MH, Atha DH, Nelson BC, Iyer R. Functionalization-dependent induction of cellular survival pathways by CdSe quantum dots in primary normal human bronchial epithelial cells. ACS NANO 2013; 7:8397-411. [PMID: 24007210 DOI: 10.1021/nn305532k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals exhibiting unique optical properties that can be exploited for many practical applications ranging from photovoltaics to biomedical imaging and drug delivery. A significant number of studies have alluded to the cytotoxic potential of these materials, implicating Cd-leaching as the causal factor. Here, we investigated the role of heavy metals in biological responses and the potential of CdSe-induced genotoxicity. Our results indicate that, while negatively charged QDs are relatively noncytotoxic compared to positively charged QDs, the same does not hold true for their genotoxic potential. Keeping QD core composition and size constant, 3 nm CdSe QD cores were functionalized with mercaptopropionic acid (MPA) or cysteamine (CYST), resulting in negatively or positively charged surfaces, respectively. CYST-QDs were found to induce significant cytotoxicity accompanied by DNA strand breakage. However, MPA-QDs, even in the absence of cytotoxicity and reactive oxygen species formation, also induced a high number of DNA strand breaks. QD-induced DNA damage was confirmed by identifying the presence of p53 binding protein 1 (53BP1) in the nuclei of exposed cells and subsequent diminishment of p53 from cytoplasmic cellular extracts. Further, high-throughput real-time PCR analyses revealed upregulation of DNA damage and response genes and several proinflammatory cytokine genes. Most importantly, transcriptome sequencing revealed upregulation of the metallothionein family of genes in cells exposed to MPA-QDs but not CYST-QDs. These data indicate that cytotoxic assays must be supplemented with genotoxic analyses to better understand cellular responses and the full impact of nanoparticle exposure when making recommendations with regard to risk assessment.
Collapse
Affiliation(s)
- Amber Nagy
- Bioscience Division, ‡Center for Integrated Nanotechnologies, Materials Physics & Applications Division, and §Chemical Diagnostics and Engineering, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kumar A, Dhawan A. Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol 2013; 87:1883-1900. [DOI: 10.1007/s00204-013-1128-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/09/2013] [Indexed: 12/22/2022]
|
30
|
Oxidative stress is involved in the pathogenesis of Keshan disease (an endemic dilated cardiomyopathy) in China. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:474203. [PMID: 24062877 PMCID: PMC3770050 DOI: 10.1155/2013/474203] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/29/2013] [Indexed: 12/02/2022]
Abstract
Oxidative stress and selenoprotein deficiency are thought to be associated with the pathogenesis of Keshan disease (KD). However, to our knowledge, the level of oxidative stress and expression of selenoproteins have not been investigated in the myocardium of patients with KD. In this study, 8-hydroxy-2-deoxy guanosine (8-OH-dG), a marker of oxidative stress, was used to assess the level of oxidative stress, and thioredoxin reductase 1 (TrxR1) and glutathione peroxidase 1 (GPx1) were assessed to reflect the level of selenoproteins. Myocardial samples from 8 patients with KD and 9 non-KD patients (controls) were immunohistochemically stained for 8-OH-dG, TrxR1, and GPx1. The staining intensities were subsequently quantified using Olympus Image-Pro Plus 6.0 software. The data showed that the positive rate of 8-OH-dG expression in myocardial nuclei was higher in the KD group (68.6%) than that in the control group (2.4%). In addition, a positive correlation between the positive rate of 8-OH-dG and the degree of myocardial damage was observed in the KD group. The distribution of TrxR1 and GPx-1 was not associated with the distribution of myocardial damage. The expression of these two selenoproteins was higher in the control group than that in the KD group. Our study represents the first report on the expression profiles of oxidative stress and selenoproteins in the myocardium of patients with KD. The level of oxidative stress significantly increased and was positively correlated with the degree of myocardial damage in patients with KD. The selenoproteins, TrxR1 and GPx1, may have a role in the pathogenesis of KD.
Collapse
|
31
|
Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Saf Health Work 2013; 4:177-86. [PMID: 24422173 PMCID: PMC3889076 DOI: 10.1016/j.shaw.2013.07.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022] Open
Abstract
The use of nanoparticles (NPs) in industry is increasing, bringing with it a number of adverse health effects on workers. Like other chemical carcinogens, NPs can cause cancer via oxidative DNA damage. Of all the molecules vulnerable to oxidative modification by NPs, DNA has received the greatest attention, and biomarkers of exposure and effect are nearing validation. This review concentrates on studies published between 2000 and 2012 that attempted to detect oxidative DNA damage in humans, laboratory animals, and cell lines. It is important to review these studies to improve the current understanding of the oxidative DNA damage caused by NP exposure in the workplace. In addition to examining studies on oxidative damage, this review briefly describes NPs, giving some examples of their adverse effects, and reviews occupational exposure assessments and approaches to minimizing exposure (e.g., personal protective equipment and engineering controls such as fume hoods). Current recommendations to minimize exposure are largely based on common sense, analogy to ultrafine material toxicity, and general health and safety recommendations.
Collapse
|
32
|
Ladhar C, Geffroy B, Cambier S, Treguer-Delapierre M, Durand E, Brèthes D, Bourdineaud JP. Impact of dietary cadmium sulphide nanoparticles on Danio rerio zebrafish at very low contamination pressure. Nanotoxicology 2013; 8:676-85. [PMID: 23883150 DOI: 10.3109/17435390.2013.822116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To address the impact of cadmium sulphide nanoparticles (CdSNPs) of two different sizes (8 and 50 nm), Danio rerio zebrafish were dietary exposed to very low doses: 100 or 40 ng CdSNPs/day/g body weight for 36 or 60 days, respectively. The results obtained using RAPD-PCR genotoxicity test showed genomic alteration since the number of hybridisation sites of the RAPD probes was significantly modified after CdSNPs exposure. In addition, selected stress response genes were either repressed or upregulated in tissues of CdSNPs-exposed fish. Mitochondrial dysfunction was also caused by the presence of CdSNPs in food. Cadmium accumulation in fish tissues (brain and muscles) could only be observed after 60 days of exposure. CdSNPs toxicity was dependent on their size and concentration.
Collapse
Affiliation(s)
- Chiraz Ladhar
- University of Bordeaux, CNRS, UMR 5805, Arcachon Marine Station , Place du Dr Peyneau, 33120 Arcachon , France
| | | | | | | | | | | | | |
Collapse
|
33
|
Møller P, Danielsen PH, Jantzen K, Roursgaard M, Loft S. Oxidatively damaged DNA in animals exposed to particles. Crit Rev Toxicol 2013; 43:96-118. [PMID: 23346980 DOI: 10.3109/10408444.2012.756456] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exposure to combustion-derived particles, quartz and asbestos is associated with increased levels of oxidized and mutagenic DNA lesions. The aim of this survey was to critically assess the measurements of oxidatively damaged DNA as marker of particle-induced genotoxicity in animal tissues. Publications based on non-optimal assays of 8-oxo-7,8-dihydroguanine by antibodies and/or unrealistically high levels of 8-oxo-7,8-dihydroguanine (suggesting experimental problems due to spurious oxidation of DNA) reported more induction of DNA damage after exposure to particles than did the publications based on optimal methods. The majority of studies have used single intracavitary administration or inhalation with dose rates exceeding the pulmonary overload threshold, resulting in cytotoxicity and inflammation. It is unclear whether this is relevant for the much lower human exposure levels. Still, there was linear dose-response relationship for 8-oxo-7,8-dihydroguanine in lung tissue without obvious signs of a threshold. The dose-response function was also dependent on chemical composition and other characteristics of the administered particles, whereas dependence on species and strain could not be equivocally determined. Roles of cytotoxicity or inflammation for oxidatively induced DNA damage could not be documented or refuted. Studies on exposure to particles in the gastrointestinal tract showed consistently increased levels of 8-oxo-7,8-dihydroguanine in the liver. Collectively, there is evidence from animal experimental models that both pulmonary and gastrointestinal tract exposure to particles are associated with elevated levels of oxidatively damaged DNA in the lung and internal organs. However, there is a paucity of studies on pulmonary exposure to low doses of particles that are relevant for hazard/risk assessment.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
34
|
Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 2013; 8:233-78. [PMID: 23379603 DOI: 10.3109/17435390.2013.773464] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineered nanoparticles (NPs) are widely used in different technologies but their unique properties might also cause adverse health effects. In reviewing recent in vitro and in vivo genotoxicity studies we discuss potential mechanisms of genotoxicity induced by NPs. Various factors that may influence genotoxic response, including physico-chemical properties and experimental conditions, are highlighted. From 4346 articles on NP toxicity, 112 describe genotoxicity studies (94 in vitro, 22 in vivo). The most used assays are the comet assay (58 in vitro, 9 in vivo), the micronucleus assay (31 in vitro, 14 in vivo), the chromosome aberrations test (10 in vitro, 1 in vivo) and the bacterial reverse mutation assay (13 studies). We describe advantages and potential problems with different methods and suggest the need for appropriate methodologies to be used for investigation of genotoxic effects of NPs, in vitro and in vivo.
Collapse
Affiliation(s)
- Zuzana Magdolenova
- NILU-Norwegian Institute for Air Research, MILK, Health Effects Laboratory , Kjeller , Norway
| | | | | | | | | | | |
Collapse
|
35
|
Brunetti V, Chibli H, Fiammengo R, Galeone A, Malvindi MA, Vecchio G, Cingolani R, Nadeau JL, Pompa PP. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. NANOSCALE 2013; 5:307-17. [PMID: 23165345 DOI: 10.1039/c2nr33024e] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We show that water soluble InP/ZnS core/shell QDs are a safer alternative to CdSe/ZnS QDs for biological applications, by comparing their toxicity in vitro (cell culture) and in vivo (animal model Drosophila). By choosing QDs with comparable physical and chemical properties, we find that cellular uptake and localization are practically identical for these two nanomaterials. Toxicity of CdSe/ZnS QDs appears to be related to the release of poisonous Cd(2+) ions and indeed we show that there is leaching of Cd(2+) ions from the particle core despite the two-layer ZnS shell. Since an almost identical amount of In(III) ions is observed to leach from the core of InP/ZnS QDs, their very low toxicity as revealed in this study hints at a much lower intrinsic toxicity of indium compared to cadmium.
Collapse
Affiliation(s)
- Virgilio Brunetti
- Istituto Italiano di Tecnologia (IIT), Center for Bio-Molecular Nanotechnologies@UniLe, Via Barsanti, 73010 Arnesano, Lecce, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pathakoti K, Hwang HM, Xu H, Aguilar ZP, Wang A. In vitro cytotoxicity of CdSe/ZnS quantum dots with different surface coatings to human keratinocytes HaCaT cells. J Environ Sci (China) 2013; 25:163-171. [PMID: 23586311 DOI: 10.1016/s1001-0742(12)60015-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quantum dots (QD) nanoparticles have been widely used in biomedical and electronics fields, because of their novel optical properties. Consequently it confers enormous potential for human exposure and environmental release. To increase the biocompatibility of QDs, a variety of surface coatings or functional groups are added to increase their bioactivity and water solubility. Human adult low calcium high temperature (HaCaT) cells are the epithelial cells derived from adult human skin that exhibits normal differentiation capacity and a DNA fingerprint pattern that is unaffected by long-term cultivation, transformation, or the presence of multiple chromosomal alternations. Human keratinocytes, HaCaT cells were used to systematically evaluate the cytotoxicity of biocompatible QD made of CdSe metal core and ZnS shell with three different coatings and at three different wavelengths (530, 580 and 620 nm). In terms of half-maximal inhibitory concentration, QSA-QDs with amine-polyethyleneglycol coating and QSH-QDs with amphiphilic polymer coating were not cytotoxic, while QEI-QDs with polyethylenimine coating were highly toxic to the HaCaT cells in comparison to a reference CuInS2/ZnS. QEI-QDs led to significant increase in reactive oxygen species, decrease in mitochondrial membrane potential and DNA damage in HaCaT cells. The mechanisms of toxicity of QEI-530 and QEI-580 can be attributed to the combination of intracellular reactive oxygen species production and loss of MMP. The QDs toxicity can be attributed to the polyethylemimine surface coating which was highly toxic to cells in comparison with amine-polyethyleneglycol, but not due to the release of cadmium ions.
Collapse
Affiliation(s)
- Kavitha Pathakoti
- Department of Biology, Jackson State University, Jackson, Mississippi 39217, USA.
| | | | | | | | | |
Collapse
|
37
|
Jennifer M, Maciej W. Nanoparticle Technology as a Double-Edged Sword: Cytotoxic, Genotoxic and Epigenetic Effects on Living Cells. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbnb.2013.41008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Shining light on nanotechnology to help repair and regeneration. Biotechnol Adv 2012; 31:607-31. [PMID: 22951919 DOI: 10.1016/j.biotechadv.2012.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 12/27/2022]
Abstract
Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration.
Collapse
|
39
|
Magnetic nanovectors for drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8 Suppl 1:S37-50. [PMID: 22640907 DOI: 10.1016/j.nano.2012.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/25/2012] [Indexed: 12/12/2022]
Abstract
Nanotechnology holds the promise of novel and more effective treatments for vexing human health issues. Among these are the use of nanoparticle platforms for site-specific delivery of therapeutics to tumors, both by passive and active mechanisms; the latter includes magnetic vectoring of magnetically responsive nanoparticles (MNP) that are functionalized to carry a drug payload that is released at the tumor. The conceptual basis, which actually dates back a number of decades, resides in physical (magnetic) enhancement, with magnetic field gradients aligned non-parallel to the direction of flow in the tumor vasculature, of existing passive mechanisms for extravasation and accumulation of MNP in the tumor interstitial fluid, followed by MNP internalization. In this review, we will assess the most recent developments and current status of this approach, considering MNP that are composed of one or more of the three elements that are ferromagnetic at physiological temperature: nickel, cobalt and iron. The effects on cellular functions in vitro, the ability to successfully vector the platform in vivo, the anti-tumor effects of such localized nano-vectors, and any associated toxicities for these MNP will be presented. The merits and shortcomings of nanomaterials made of each of the three elements will be highlighted, and a roadmap for moving this long-established approach forward to clinical evaluation will be put forth.
Collapse
|
40
|
Girgis E, Khalil WKB, Emam AN, Mohamed MB, Rao KV. Nanotoxicity of Gold and Gold–Cobalt Nanoalloy. Chem Res Toxicol 2012; 25:1086-98. [DOI: 10.1021/tx300053h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E. Girgis
- Solid State Physics Department, National Research Center, 12622 Dokki, Giza, Egypt
- Advanced Materials and Nanotechnology
Lab, CEAS, National Research Center, 12622
Dokki, Giza, Egypt
| | - W. K. B. Khalil
- Cell
Biology Department, National Research Center, 12622 Dokki, Giza, Egypt
| | - A. N. Emam
- Advanced Materials and Nanotechnology
Lab, CEAS, National Research Center, 12622
Dokki, Giza, Egypt
- Biomaterials Department, National Research Center, 12622 Dokki, Giza, Egypt
| | - M. B. Mohamed
- National Institute of Laser
Enhanced Science, Cairo University, Egypt
| | - K. V. Rao
- Department of Materials Science, Royal Institute of Technology, Stockholm SE-100 44,
Sweden
| |
Collapse
|
41
|
Klostergaard J, Seeney CE. Magnetic nanovectors for drug delivery. Maturitas 2012; 73:33-44. [PMID: 22402027 DOI: 10.1016/j.maturitas.2012.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 10/28/2022]
Abstract
Nanotechnology holds the promise of novel and more effective treatments for vexing human health issues. Among these are the use of nanoparticle platforms for site-specific delivery of therapeutics to tumors, both by passive and active mechanisms; the latter includes magnetic vectoring of magnetically responsive nanoparticles (MNP) that are functionalized to carry a drug payload that is released at the tumor. The conceptual basis, which actually dates back a number of decades, resides in physical (magnetic) enhancement, with magnetic field gradients aligned non-parallel to the direction of flow in the tumor vasculature, of existing passive mechanisms for extravasation and accumulation of MNP in the tumor interstitial fluid, followed by MNP internalization. In this review, we will assess the most recent developments and current status of this approach, considering MNP that are composed of one or more of the three elements that are ferromagnetic at physiological temperature: nickel, cobalt and iron. The effects on cellular functions in vitro, the ability to successfully vector the platform in vivo, the anti-tumor effects of such localized nano-vectors, and any associated toxicities for these MNP will be presented. The merits and shortcomings of nanomaterials made of each of the three elements will be highlighted, and a roadmap for moving this long-established approach forward to clinical evaluation will be put forth.
Collapse
Affiliation(s)
- Jim Klostergaard
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| | | |
Collapse
|
42
|
Koedrith P, Seo YR. Advances in carcinogenic metal toxicity and potential molecular markers. Int J Mol Sci 2011; 12:9576-95. [PMID: 22272150 PMCID: PMC3257147 DOI: 10.3390/ijms12129576] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/28/2011] [Accepted: 12/12/2011] [Indexed: 01/27/2023] Open
Abstract
Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system's ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression.
Collapse
Affiliation(s)
- Preeyaporn Koedrith
- Department of Life Science, Dongguk University, 30 Pildong-ro 1-gil (26 Pildong 3-ga), Jung-gu, Seoul 100-715, Korea; E-Mail:
- Institute of Environmental Medicine for Green Chemistry, Dongguk University, 30 Pildong-ro 1-gil (26 Pildong 3-ga), Jung-gu, Seoul 100-715, Korea
| | - Young Rok Seo
- Department of Life Science, Dongguk University, 30 Pildong-ro 1-gil (26 Pildong 3-ga), Jung-gu, Seoul 100-715, Korea; E-Mail:
- Institute of Environmental Medicine for Green Chemistry, Dongguk University, 30 Pildong-ro 1-gil (26 Pildong 3-ga), Jung-gu, Seoul 100-715, Korea
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-2-2260-3321; Fax: +82-2-2760-0674
| |
Collapse
|