1
|
Zheng J, Lu B, Carr G, Mwangi J, Wang K, Hao J, Staiger KM, Kozon N, Murray BP, Bashir M, Gohdes MA, Tse WC, Schroeder S, Graupe M, Link JO, Yoon J, Chiu A, Rowe W, Smith BJ, Subramanian R. Lenacapavir Exhibits Atropisomerism-Mechanistic Pharmacokinetics and Disposition Studies of Lenacapavir Reveal Intestinal Excretion as a Major Clearance Pathway. J Pharmacol Exp Ther 2024; 391:91-103. [PMID: 39117460 DOI: 10.1124/jpet.124.002302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Lenacapavir (LEN), a long-acting injectable, is the first approved human immunodeficiency virus type 1 capsid inhibitor and one of a few Food and Drug Administration-approved drugs that exhibit atropisomerism. LEN exists as a mixture of two class 2 atropisomers that interconvert at a fast rate (half-life < 2 hours) with a ratio that is stable over time and unaffected by enzymes or binding to proteins in plasma. LEN exhibits low systemic clearance (CL) in nonclinical species and humans; however, in all species, the observed CL was higher than the in vitro predicted CL. The volume of distribution was moderate in nonclinical species and consistent with the tissue distribution observed by whole-body autoradiography in rats. LEN does not distribute to brain, consistent with being a P-glycoprotein (P-gp) substrate. Mechanistic drug disposition studies with [14C]LEN in intravenously dosed bile duct-cannulated rats and dogs showed a substantial amount of unchanged LEN (31%-60% of dose) excreted in feces, indicating that intestinal excretion (IE) was a major clearance pathway for LEN in both species. Coadministration of oral elacridar, a P-gp inhibitor, in rats decreased CL and IE of LEN. Renal excretion was < 1% of dose in both species. In plasma, almost all radioactivity was unchanged LEN. Low levels of metabolites in excreta included LEN conjugates with glutathione, pentose, and glucuronic acid, which were consistent with metabolites formed in vitro in Hμrel hepatocyte cocultures and those observed in human. Our studies highlight the importance of IE for efflux substrates that are highly metabolically stable compounds with slow elimination rates. SIGNIFICANCE STATEMENT: LEN is a long-acting injectable that exists as conformationally stable atropisomers. Due to an atropisomeric interconversion rate that significantly exceeds the in vivo elimination rate, the atropisomer ratio of LEN remains constant in circulation. The disposition of LEN highlights that intestinal excretion has a substantial part in the elimination of compounds that are metabolically highly stable and efflux transporter substrates.
Collapse
Affiliation(s)
- Jim Zheng
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Bing Lu
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Gavin Carr
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Judy Mwangi
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Kelly Wang
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Jia Hao
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Kelly McLennan Staiger
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Nathan Kozon
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Bernard P Murray
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Mohammad Bashir
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Mark A Gohdes
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Winston C Tse
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Scott Schroeder
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Michael Graupe
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - John O Link
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Jungjoo Yoon
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Anna Chiu
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - William Rowe
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Bill J Smith
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Raju Subramanian
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| |
Collapse
|
2
|
Zorzatto R, Mulrainey PT, Reid M, Tuttle T, Lindsay DM, Kerr WJ. C-H Activation and Hydrogen Isotope Exchange of Aryl Carbamates Using Iridium(I) Complexes Bearing Chelating NHC-Phosphine Ligands. Chemistry 2024:e202403090. [PMID: 39288103 DOI: 10.1002/chem.202403090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Hydrogen isotope exchange (HIE) via C-H activation constitutes an efficient method for the synthesis of isotopically-enriched compounds, which are crucial components of the drug discovery process and are extensively employed in mechanistic studies. A series of iridium(I) complexes, bearing a chelating phosphine-N-heterocyclic carbene ligand, was designed and synthesized for application in the catalytic HIE of challenging N- and O-aryl carbamates. A broad range of substrates were labeled efficiently, and applicability to biologically-relevant systems was demonstrated by labeling an ʟ-tyrosine-derived carbamate with excellent levels of deuterium incorporation. Combined theoretical and experimental studies unveiled intriguing mechanistic features within this process, in comparison to C-H activation and hydrogen isotope exchange catalyzed by monodentate Ir(I) NHC/phosphine complexes.
Collapse
Affiliation(s)
- Renan Zorzatto
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1, Scotland, 1XL, U.K
| | - Paul T Mulrainey
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1, Scotland, 1XL, U.K
| | - Marc Reid
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1, Scotland, 1XL, U.K
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1, Scotland, 1XL, U.K
| | - David M Lindsay
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1, Scotland, 1XL, U.K
| | - William J Kerr
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1, Scotland, 1XL, U.K
| |
Collapse
|
3
|
Hodges MR, Ople E, Evans P, Pantophlet AJ(A, Richardson J, Williams D, Tripathy S, Tawadrous M, Jakate A. A phase 1 open label study to assess the human mass balance and metabolite profile of 14C-fosmanogepix, a novel Gwt-1 inhibitor in healthy male participants. Antimicrob Agents Chemother 2024; 68:e0027324. [PMID: 39012090 PMCID: PMC11304685 DOI: 10.1128/aac.00273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Fosmanogepix [FMGX; active form manogepix (MGX)], a novel antifungal, is currently being studied for the treatment of invasive fungal diseases caused by Candida spp., Aspergillus spp., and other rare molds. This Phase 1, single-dose study used 14C-radiolabeled FMGX to determine the disposition and metabolism of FMGX. Ten healthy male participants were enrolled equally into: oral cohort {FMGX 500 mg oral + 3.1 megabecquerel [MBq, 84.0 microcurie (μCi)] 14C} and intravenous (IV) cohort [FMGX 600 mg IV + 3.4 MBq (93.0 µCi) 14C]. At the end of the sampling period (456 h post-dose), 90.2% of radioactivity administered was recovered (46.4% from urine; 43.8% from feces) in oral cohort (82.3% within 240 h), and 82.4% was recovered (42.5% from urine; 39.9% from feces) in IV cohort (76.2% within 264 h), indicating that FMGX elimination occurs via renal and hepatic routes. Radioactivity transformation pathways (oral and IV) indicated multiple major routes of metabolism of FMGX, mainly via MGX, and included oxidation, oxidative deamination, and conjugation. All except one key human plasma metabolite was observed in toxicity species, but its proportion (<10%) in the human area under the curve plasma samples was not of toxicological concern. No deaths, serious, or severe adverse events (AE) were reported, and there were no AE-related withdrawals. The results of this study indicated extensive metabolism of FMGX, with similar key human plasma metabolites observed in the animal studies. The elimination of FMGX was equally through renal and hepatic routes. CLINICAL TRIALS This study is registered with ClinicalTrials.gov as NCT04804059.
Collapse
Affiliation(s)
| | - Eric Ople
- Amplyx Pharmaceuticals, Inc., San Diego, California, USA
| | - Philip Evans
- Quotient Sciences, Ruddington Fields, Nottingham, United Kingdom
| | | | | | - Dylan Williams
- Pharmaron UK Ltd., Rushden, Northamptonshire, United Kingdom
| | | | | | | |
Collapse
|
4
|
Manakkadan V, Haribabu J, Palakkeezhillam VNV, Rasin P, Vediyappan R, Kumar VS, Garg M, Bhuvanesh N, Sreekanth A. Copper-mediated cyclization of thiosemicarbazones leading to 1,3,4-thiadiazoles: Structural elucidation, DFT calculations, in vitro biological evaluation and in silico evaluation studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124117. [PMID: 38461559 DOI: 10.1016/j.saa.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Cancer's global impact necessitates innovative and less toxic treatments. Thiosemicarbazones (TSCs), adaptable metal chelators, offer such potential. In this study, we have synthesized N (4)-substituted heterocyclic TSCs from syringaldehyde (TSL1, TSL2), and also report the unexpected copper-mediated cyclization of the TSCs to form thiadiazoles (TSL3, TSL4), expanding research avenues. This work includes extensive characterization and studies such as DNA/protein binding, molecular docking, and theoretical analyses to demonstrate the potential of the as-prepared TSCs and thiadiazoles against different cancer cells. The DFT results depict that the thiadiazoles exhibit greater structural stability and reduced reactivity compared to the corresponding TSCs. The docking results suggest superior EGFR inhibition for TSL3 with a binding constant value of - 6.99 Kcal/mol. According to molecular dynamics studies, the TSL3-EGFR complex exhibits a lower average RMSD (1.39 nm) as compared to the TSL1-EGFR complex (3.29 nm) suggesting that both the thiadiazole and thiosemicarbazone examined here can be good inhibitors of EGFR protein, also that TSL3 can inhibit EGFR better than TSL1. ADME analysis indicates drug-likeness and oral availability of the thiadiazole-based drugs. The DNA binding experiment through absorption and emission spectroscopy discovered that TSL3 is more active towards DNA which is quantitatively calculated with a Kb value of 4.74 × 106 M-1, Kq value of 4.04 × 104 M-1and Kapp value of 5 × 106 M-1. Furthermore, the BSA binding studies carried out with fluorescence spectroscopy showed that TSL3 shows better binding capacity (1.64 × 105 M-1) with BSA protein. All the compounds show significant cytotoxicity against A459-lung, MCF-7-breast, and HepG2-liver cancer cell lines; TSL3 exhibits the best cytotoxicity, albeit less effective than cisplatin. Thiadiazoles demonstrate greater cytotoxicity than the TSCs. Overall, the promise of TSCs and thiadiazoles in cancer research is highlighted by this study. Furthermore, it unveils unexpected copper-mediated cyclization of the TSCs to thiadiazoles.
Collapse
Affiliation(s)
- Vipin Manakkadan
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, Copiapo 1532502, Chile; Chennai Institute of Technology (CIT), Chennai 600069, India
| | | | - Puthiyavalappil Rasin
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | - Ramesh Vediyappan
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Vaishnu Suresh Kumar
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India; Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani-333031 Rajasthan, India
| | - Mohit Garg
- Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani-333031 Rajasthan, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Anandaram Sreekanth
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India.
| |
Collapse
|
5
|
Hahm G, Redeker FA, Jorabchi K. Multielement Detection of Nonmetals by Barium-Based Post-ICP Chemical Ionization Coupled to Orbitrap-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:871-882. [PMID: 38650348 PMCID: PMC11066957 DOI: 10.1021/jasms.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Prevalence of F, Cl, S, P, Br, and I in pharmaceuticals and environmental contaminants has promoted standard-free quantitation using analyte-independent heteroatom responses in inductively coupled plasma (ICP)-MS. However, in-plasma ionization challenges and element-dependent isobaric interference removal methods have hampered the multielement nonmetal detection in ICP-MS. Here, we examine an alternative approach to enhance multielement detection capabilities. Analytes are introduced into an ICP leading to post-plasma formation of HF, HCl, H3PO3, H2SO4, HBr, and HI, which are then chemically ionized to BaF+, BaCl+, BaH2PO3+, BaHSO4+, BaBr+, and BaI+ via reactions with barium-containing ions supplied by a nanospray. Subsequent ion detection by high-resolution MS provides an element-independent approach for resolving isobaric interferences. We show that elemental response factors using these ions are linear within 2 orders of magnitude and independent of analytes' chemical structures. Using a single set of operating parameters, detection limits <1 ng/mL are obtained for Cl, Br, I, and P, while those for F and S are 1.8 and 6.2 ng/mL, respectively, offering improved multielement quantitation of nonmetals. Further, insights into ionization mechanisms indicate that the reactivities of reagent ions follow the order BaNO2+ > BaHCO2+ > Ba(H2O)n2+ ∼ BaCH3CO2+. Notably, the least reactive ions are generated directly by nanospray, suggesting that modification of these ions via interaction with plasma afterglow is critical for achieving good sensitivities. Moreover, our experiments indicate that the element-specific plasma products follow the order HF < H2SO4 ∼ HCl < H3PO3 ∼ HBr ∼ HI for their propensity to react with reagent ions. These insights provide guidelines to manage matrix effects and offer pathways to further improve the technique.
Collapse
Affiliation(s)
- Grace Hahm
- Department of Chemistry, Georgetown
University, Washington, D.C. 20057, United States
| | - Frenio A. Redeker
- Department of Chemistry, Georgetown
University, Washington, D.C. 20057, United States
| | - Kaveh Jorabchi
- Department of Chemistry, Georgetown
University, Washington, D.C. 20057, United States
| |
Collapse
|
6
|
Kanazu T, Tamada J, Kume S, Mizutare T. Cross-species drug metabolism and impact of metabolic stability testing under anaerobic condition on predicting pharmacokinetics of keto-enol containing compound in humans. Drug Metab Pharmacokinet 2024; 55:100538. [PMID: 38244327 DOI: 10.1016/j.dmpk.2023.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 01/22/2024]
Abstract
After oral administration of [14C]-S-1360 in rats and dogs, [14C]-S-1360 was absorbed rapidly and the bioavailability was 93.7% in rats and 75.1% in dogs. Based on the results in animals, good systemic exposure would be expected in humans. In contrast to the expectation, the exposure was low in healthy volunteers compared to the exposure expected. In addition, human mass balance study using [14C]-S1360 revealed that a large amount of metabolites existed in human plasma. The major metabolites in human plasma were reduced metabolite (HP1) and S-1360 N-glucuronide, and they respectively accounted for approximately 30% of total AUC. Unchanged S-1360 accounted for only 14% of total AUC. The results showed that a significant difference between humans and animals were observed in metabolism of S-1360. Although S-1360 was stable in human hepatocytes under aerobic condition (approximately 84% remaining at 1 h), S-1360 was labile under anaerobic condition (approximately 55% remaining at 1 h). The present study revealed that the reductive metabolism pathways are the key metabolic pathway of S-1360, especially the metabolic stability test under anaerobic condition is important to predict pharmacokinetics of keto-enol containing compound, such as S-1360.
Collapse
Affiliation(s)
- Takushi Kanazu
- Drug Metabolism & Pharmacokinetics, Drug Developmental Research Laboratories, Shionogi & Co. Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| | - Junto Tamada
- Drug Metabolism & Pharmacokinetics, Drug Developmental Research Laboratories, Shionogi & Co. Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Susumu Kume
- Drug Metabolism & Pharmacokinetics, Drug Developmental Research Laboratories, Shionogi & Co. Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Tohru Mizutare
- Drug Metabolism & Pharmacokinetics, Drug Developmental Research Laboratories, Shionogi & Co. Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| |
Collapse
|
7
|
Bian Y, Ma S, Yao Q, Hu T, Ge M, Li H, Zheng S, Gu Z, Feng H, Yu Z, Huang C, Zhang H, Zhao L, Miao L. Pharmacokinetics, metabolism, excretion and safety of iruplinalkib (WX-0593), a novel ALK inhibitor, in healthy subjects: a phase I human radiolabeled mass balance study. Expert Opin Investig Drugs 2024; 33:63-72. [PMID: 38224050 DOI: 10.1080/13543784.2024.2305134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Iruplinalkib is a novel anaplastic lymphoma kinase (ALK) inhibitor for the treatment of ALK-positive crizotinib-resistant NSCLC. RESEARCH DESIGN AND METHODS A single oral dose of 120 mg/3.7 MBq [14C]iruplinalkib was administered to healthy subjects. Blood, urine and fecal samples were collected and analyzed for iruplinalkib and its metabolites. The safety of iruplinalkib was also assessed. RESULTS Iruplinalkib was absorbed quickly and eliminated slowly from plasma, with a Tmax of 1.5 h and t1/2 of 28.6 h. About 88.85% of iruplinalkib was excreted at 312 h, including 20.23% in urine and 68.63% in feces. Seventeen metabolites of iruplinalkib were identified, and M3b (demethylation), M7 (cysteine conjugation), M11 (oxidative dehydrogenation and cysteine conjugation of M3b) and M12 (oxidative dehydrogenation and cysteine conjugation) were considered the prominent metabolites in humans. Iruplinalkib-related compounds were found to be covalently bound to proteins, accounting for 7.70% in plasma and 17.96% in feces, which suggested chemically reactive metabolites were formed. There were no serious adverse events observed in the study. CONCLUSIONS Iruplinalkib was widely metabolized and excreted mainly through feces in humans. Unchanged iruplinalkib, cysteine conjugates and covalent protein binding products were the main drug-related compounds in circulation. Iruplinalkib was well tolerated at the study dose. TRIAL REGISTRATION The trial is registered at ClinicalTrials.gov (Identifier: Anonymized).
Collapse
Affiliation(s)
- Yicong Bian
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sheng Ma
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingqing Yao
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Hu
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | - Zheming Gu
- Value Pharmaceutical Services Co., Ltd., Nanjing, China
| | - Hao Feng
- Value Pharmaceutical Services Co., Ltd., Nanjing, China
| | - Zhenwen Yu
- Value Pharmaceutical Services Co., Ltd., Nanjing, China
| | - Chenrong Huang
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyan Miao
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Shim SY. Late-Stage C-H Activation of Drug (Derivative) Molecules with Pd(ll) Catalysis. Chemistry 2023; 29:e202302620. [PMID: 37846586 DOI: 10.1002/chem.202302620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
This review comprehensively analyses representative examples of Pd(II)-catalyzed late-stage C-H activation reactions and demonstrates their efficacy in converting C-H bonds at multiple positions within drug (derivative) molecules into diverse functional groups. These transformative reactions hold immense potential in medicinal chemistry, enabling the efficient and selective functionalization of specific sites within drug molecules, thereby enhancing their pharmacological activity and expanding the scope of potential drug candidates. Although notable articles have focused on late-stage C-H functionalization reactions of drug-like molecules using transition-metal catalysts, reviews specifically focusing on late-stage C-H functionalization reactions of drug (derivative) molecules using Pd(II) catalysts are required owing to their prominence as the most widely utilized metal catalysts for C-H activation and their ability to introduce a myriad of functional groups at specific C-H bonds. The utilization of Pd-catalyzed C-H activation methodologies demonstrates impressive success in introducing various functional groups, such as cyano (CN), fluorine (F), chlorine (Cl), aromatic rings, olefin, alkyl, alkyne, and hydroxyl groups, to drug (derivative) molecules with high regioselectivity and functional-group tolerance. These breakthroughs in late-stage C-H activation reactions serve as invaluable tools for drug discovery and development, thereby offering strategic options to optimize drug candidates and drive the exploration of innovative therapeutic solutions.
Collapse
Affiliation(s)
- Su Yong Shim
- Infectious Diseases Therapeutic Research Center Division of Medicinal Chemistry and Pharmacology Korea Research Institute of Chemical Technology (KRICT) KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
9
|
Pelkonen O, Abass K, Parra Morte JM, Panzarea M, Testai E, Rudaz S, Louisse J, Gundert-Remy U, Wolterink G, Jean-Lou CM D, Coecke S, Bernasconi C. Metabolites in the regulatory risk assessment of pesticides in the EU. FRONTIERS IN TOXICOLOGY 2023; 5:1304885. [PMID: 38188093 PMCID: PMC10770266 DOI: 10.3389/ftox.2023.1304885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
A large majority of chemicals is converted into metabolites through xenobiotic-metabolising enzymes. Metabolites may present a spectrum of characteristics varying from similar to vastly different compared with the parent compound in terms of both toxicokinetics and toxicodynamics. In the pesticide arena, the role of metabolism and metabolites is increasingly recognised as a significant factor particularly for the design and interpretation of mammalian toxicological studies and in the toxicity assessment of pesticide/metabolite-associated issues for hazard characterization and risk assessment purposes, including the role of metabolites as parts in various residues in ecotoxicological adversities. This is of particular relevance to pesticide metabolites that are unique to humans in comparison with metabolites found in in vitro or in vivo animal studies, but also to disproportionate metabolites (quantitative differences) between humans and mammalian species. Presence of unique or disproportionate metabolites may underlie potential toxicological concerns. This review aims to present the current state-of-the-art of comparative metabolism and metabolites in pesticide research for hazard and risk assessment, including One Health perspectives, and future research needs based on the experiences gained at the European Food Safety Authority.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | | | - Emanuela Testai
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
| | - Jochem Louisse
- EFSA, European Food Safety Authority, Parma, Italy
- Wageningen Food Safety Research (WFSR), Wageningen, Netherlands
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerrit Wolterink
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
10
|
Wang S, Ballard TE, Christopher LJ, Foti RS, Gu C, Khojasteh SC, Liu J, Ma S, Ma B, Obach RS, Schadt S, Zhang Z, Zhang D. The Importance of Tracking "Missing" Metabolites: How and Why? J Med Chem 2023; 66:15586-15612. [PMID: 37769129 DOI: 10.1021/acs.jmedchem.3c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Technologies currently employed to find and identify drug metabolites in complex biological matrices generally yield results that offer a comprehensive picture of the drug metabolite profile. However, drug metabolites can be missed or are captured only late in the drug development process. This could be due to a variety of factors, such as metabolism that results in partial loss of the molecule, covalent bonding to macromolecules, the drug being metabolized in specific human tissues, or poor ionization in a mass spectrometer. These scenarios often draw a great deal of attention from chemistry, safety assessment, and pharmacology. This review will summarize scenarios of missing metabolites, why they are missing, and associated uncovering strategies from deeper investigations. Uncovering previously missed metabolites can have ramifications in drug development with toxicological and pharmacological consequences, and knowledge of these can help in the design of new drugs.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - T Eric Ballard
- Takeda Development Center Americas, Inc., 35 Landsdowne St, Cambridge, Massachusetts 02139, United States
| | - Lisa J Christopher
- Department of Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Robert S Foti
- Preclinical Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Chungang Gu
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shuguang Ma
- Drug Metabolism and Pharmacokinetics, Pliant Therapeutics, 260 Littlefield Avenue, South San Francisco, California 94080, United States
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - R Scott Obach
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacher Strasse 124, 4070 Basel, Switzerland
| | - Zhoupeng Zhang
- DMPK Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
11
|
Fan Y, Wang X, Yan G, Gao H, Yang M. Rectal delivery of 89Zr-labeled infliximab-loaded nanoparticles enables PET imaging-guided localized therapy of inflammatory bowel disease. J Mater Chem B 2023; 11:11228-11234. [PMID: 37990919 DOI: 10.1039/d3tb02128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Inflammatory bowel diseases (IBDs) like Crohn's disease and ulcerative colitis involve chronic gastrointestinal inflammation. The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) drives IBD pathogenesis. Anti-TNF-α therapies using monoclonal antibodies (mAbs) like infliximab (INF) help treat IBD but have limitations. We developed inflammation-targeting polyphenol-poloxamer nanoparticles loaded with the anti-inflammatory mAb INF (INF@PPNP) as a novel IBD therapy. Characterization showed that INF@PPNP had favorable stability and purity. Radiolabeling INF@PPNP with 89Zr enabled tracking localization with positron emission tomography (PET) imaging. Rectal administration of 89Zr-INF@PPNP led to colon delivery with remarkably reduced systemic exposure versus intravenous INF revealed by non-invasive PET imaging. 89Zr-INF@PPNP retention at inflamed foci indicated prolonged INF@PPNP action. INF@PPNP rectally achieved similar anti-inflammatory effects as intravenously injected INF, demonstrating the high therapeutic potential. Our findings support the use of nanoparticle-based rectal administration for localized drug delivery, prolonging drug activity and minimizing systemic exposure, ultimately offering an effective approach for treating IBD.
Collapse
Affiliation(s)
- Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi 214105, P. R. China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China.
| | - Ge Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China.
| | - Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi 214105, P. R. China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China.
| |
Collapse
|
12
|
Sarhan MO, Haffez H, Elsayed NA, El-Haggar RS, Zaghary WA. New phenothiazine conjugates as apoptosis inducing agents: Design, synthesis, In-vitro anti-cancer screening and 131I-radiolabeling for in-vivo evaluation. Bioorg Chem 2023; 141:106924. [PMID: 37871390 DOI: 10.1016/j.bioorg.2023.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Phenothiazines (PTZs) are a group of compounds characterized by the presence of the 10H-dibenzo-[b,e]-1,4-thiazine system. PTZs used in clinics as antipsychotic drugs with other diverse biological activities. The current aim of the study is to investigate and understand the effect of potent PTZs compounds using a group of In-vitro and In-vivo assays. A total of seventeen novel phenothiazine derivatives have been designed, synthesized, and evaluated primarily in-vitro for their ability to inhibit proliferation activity against NCI-60 cancer cell lines, including several multi-drug resistant (MDR) tumor cell lines. Almost all compounds were active and displayed promising cellular activities with GI50 values in the sub-micromolar range. Four of the most promising derivatives (4b, 4h, 4g and 6e) have been further tested against two selected sensitive cancer cell lines (colon cancer; HCT-116 and breast cancer; MDA-MB231). The apoptosis assay showed that all the selected compounds were able to induce early apoptosis and compound 6e was able to induce additional cellular necrosis. Cell cycle assay showed all selected compounds were able to induce cell cycle arrest at sub-molecular phase of G0-G1 with compound 6e induced cell cycle arrest at G2M in HCT-116 cells. Accordingly, the apoptotic effect of the selected compounds was extensively investigated on genetic level and Casp-3, Casp-9 and Bax gene were up-regulated with down-regulation of Bcl-2 gene suggesting the activation of both intrinsic and extrinsic pathways. In-vivo evaluation of the antitumor activity of compound 4b in solid tumor bearing mice showed promising therapeutic effect with manifestation of dose and time dependent toxic effects at higher doses. For better evaluation of the degree of localization of 4b, its 131I-congener (131I-4b) was injected intravenously in Ehrlich solid tumor bearing mice that showed good localization at tumor site with rapid distribution and clearance from the blood. In-silico study suggested NADPH oxidases (NOXs) as potential molecular target. The compounds introduced in the current study work provided a cutting-edge phenothiazine hybrid scaffold with promising anti-proliferation action that may suggest their anti-cancer activity.
Collapse
Affiliation(s)
- Mona O Sarhan
- Labelled Compounds Department, Hot Lab Centre, Egyptian Atomic Energy Authority, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt.
| | - Nosaiba A Elsayed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Radwan S El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Wafaa A Zaghary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt.
| |
Collapse
|
13
|
Yuan JJ, Bian YC, Ma S, Chen W, Zhang FY, Zhang H, Miao LY. Pharmacokinetics, Mass Balance and Metabolism of [ 14C]HSK21542, a Novel Kappa Opioid Receptor Agonist, in Humans. Eur J Drug Metab Pharmacokinet 2023; 48:723-731. [PMID: 37833493 DOI: 10.1007/s13318-023-00858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND OBJECTIVE HSK21542, a synthetic short-chain polypeptide, is a selective peripheral kappa opioid receptor (KOR) agonist. In this single-centre, non-randomized, open-label study, the pharmacokinetics, mass balance, metabolism and excretion of HSK21542 were investigated. METHODS A single intravenous dose of 2 μg/0.212 μCi/kg [14C]HSK21542 was administered to six healthy male subjects. Samples of blood, urine and faeces were collected for quantitative determination of total radioactivity and unchanged HSK21542, and identification of metabolites. RESULTS The mean total recovery was 81.89% of the radiolabelled dose over 240 h post-dose, with 35.60% and 46.30% excreted in faeces and urine, respectively. The mean maximum concentration (Cmax), the half-life (t1/2) and the area under the concentration-time curve (AUC0-t) of total radioactivity (TRA) in plasma were 20.4 ±4.16 ng Eq./g, 1.93 ± 0.322 h and 21.8 ± 2.93 h·ng Eq./g, respectively, while the Cmax, t1/2 and the AUC0-t of unchanged HSK21542 were 18.3 ± 3.36 ng/mL, 1.66 ± 0.185 h and 18.4 ± 2.24 h·ng/mL, respectively. The blood-to-plasma ratios of TRA at several times ranged from 0.46 to 0.54. [14C]HSK21542 was detected as the main circulating substance in plasma, accounting for 92.17% of the AUC of TRA. The unchanged parent compound was the only major radioactive chemical in urine (100.00% of TRA) and faeces (93.53% of TRA). Metabolites were very minor components. CONCLUSIONS HSK21542 was barely metabolized in vivo and mainly excreted with unchanged HSK21542 as its main circulating component in plasma. It was speculated that renal excretion was the principal excretion pathway, and faecal excretion was the secondary pathway. CLINICAL TRIAL REGISTRATION NUMBER NCT05835934.
Collapse
Affiliation(s)
- Jin-Jie Yuan
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, China
- National Institution of Drug Clinical Trial, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Yi-Cong Bian
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, China
- National Institution of Drug Clinical Trial, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Sheng Ma
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, China
- National Institution of Drug Clinical Trial, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Wei Chen
- Sichuan Haisco Pharmaceutical Co., Ltd., Chengdu, China
| | - Feng-Yi Zhang
- Sichuan Haisco Pharmaceutical Co., Ltd., Chengdu, China
| | - Hua Zhang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, China.
- National Institution of Drug Clinical Trial, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China.
| | - Li-Yan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215000, China.
- National Institution of Drug Clinical Trial, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Tananta VL, Costa EV, Mary YS, Mary YS, S Al-Otaibi J, Costa RA. DFT, ADME studies and evaluation of the binding with HSA and MAO-B inhibitory potential of protoberberine alkaloids from Guatteria friesiana: theoretical insights of promising candidates for the treatment of Parkinson's disease. J Mol Model 2023; 29:353. [PMID: 37907772 DOI: 10.1007/s00894-023-05756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
CONTEXT Parkinson's disease is a chronic neurodegenerative condition that has no cure, characterized by the progressive degeneration of specific brain cells responsible for producing dopamine, a crucial neurotransmitter for controlling movement and muscle coordination. Parkinson's disease is estimated to affect around 1% of the world's population over the age of 60, but it can be diagnosed at younger ages. One of the treatment strategies for Parkinson's disease involves the use of drugs that aim to increase dopamine levels or simulate the action of dopamine in the brain. A class of commonly prescribed drugs are the so-called monoamine oxidase B (MAO-B) inhibitors due to the fact that this enzyme is responsible for metabolizing dopamine, thus reducing its levels in the brain. Studies have shown that berberine-derived alkaloids have the ability to selectively inhibit MAO-B activity, resulting in increased dopamine availability in the brain. In this context, berberine derivatives 13-hydroxy-discretinine and 7,8-dihydro-8-hydroxypalmatine, isolated from Guatteria friesiana, were evaluated via density functional theory followed by ADME studies, docking and molecular dynamic simulations with MAO-B, aiming to evaluate their anti-Parkinson potential, which have not been reported yet. Docking simulations with HSA were carried out aiming to evaluate the transport of these molecules through the circulatory system. METHODS The 3D structures of the berberine-derived alkaloids were modeled via the DFT approach at B3LYP-D3(BJ)/6-311 + + G(2df, 2pd) theory level using Gaussian 09 software. Solvation free energies were determined through Truhlar's solvation model. MEP and ALIE maps were generated with Multiwfn software. Autodock Vina software was used for molecular docking simulations and analysis of the interactions in the binding sites. The 3D structure of MAO-B was obtained from the Protein Data Bank website under PDB code 2V5Z. For the interaction of studied alkaloids with human serum albumin (HSA) drug sites, 3D structures with PDB codes 2BXD, 2BXG, and 4L9K were used. Molecular dynamics simulations were carried out using GROMACS 2019.4 software, with the GROMOS 53A6 force field at 100 ns simulation time. The estimation of the ligand's binding free energies was obtained via molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method.
Collapse
Affiliation(s)
- Victor L Tananta
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil
| | - Emmanoel V Costa
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil
| | | | | | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 8442811671, Riyadh, Saudi Arabia
| | - Renyer A Costa
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, AM, 69080-900, Brazil.
| |
Collapse
|
15
|
Behera N, Gunasekera D, Mahajan JP, Frimpong J, Liu ZF, Luo L. Electrochemical hydrogen isotope exchange of amines controlled by alternating current frequency. Faraday Discuss 2023; 247:45-58. [PMID: 37466111 PMCID: PMC10796833 DOI: 10.1039/d3fd00044c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Here, we report an electrochemical protocol for hydrogen isotope exchange (HIE) at α-C(sp3)-H amine sites. Tetrahydroisoquinoline and pyrrolidine are selected as two model substrates because of their different proton transfer (PT) and hydrogen atom transfer (HAT) kinetics at the α-C(sp3)-H amine sites, which are utilized to control the HIE reaction outcome at different applied alternating current (AC) frequencies. We found the highest deuterium incorporation for tetrahydroisoquinolines at 0 Hz (i.e., under direct current (DC) electrolysis conditions) and pyrrolidines at 0.5 Hz. Analysis of the product distribution and D isotope incorporation at different frequencies reveals that the HIE of tetrahydroisoquinolines is limited by its slow HAT, whereas the HIE of pyrrolidines is limited by the overoxidation of its α-amino radical intermediates. The AC-frequency-dependent HIE of amines can be potentially used to achieve selective labeling of α-amine sites in one drug molecule, which will significantly impact the pharmaceutical industry.
Collapse
Affiliation(s)
- Nibedita Behera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Disni Gunasekera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Jyoti P Mahajan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Joseph Frimpong
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Zhen-Fei Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
16
|
Shi R, Chai Y, Feng H, Xie L, Zhang L, Zhong T, Chen J, Yan P, Zhu B, Zhao J, Zhou C. Study of the mass balance, biotransformation and safety of [ 14C]SHR8554, a novel μ-opioid receptor injection, in healthy Chinese subjects. Front Pharmacol 2023; 14:1231102. [PMID: 37781692 PMCID: PMC10538116 DOI: 10.3389/fphar.2023.1231102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Background: SHR8554 is a novel μ-opioid receptor-biased agonist. It has analgesic effects by selectively activating the G protein-coupled pathway. Additionally, it can weakly activate the ß-arrestin-2 pathway, resulting in a limited number of side effects, such as gastrointestinal inhibition. Previous studies have shown that SHR8554 has good analgesic effects, safety and tolerability, but the pharmacokinetic characteristics of SHR8554 in humans have not been reported. This study was designed to investigate the pharmacokinetics and safety of SHR8554 in healthy Chinese male subjects. Methods: A single 1 mg/41.3 μCi intravenous dose of [14C]SHR8554 was administered to six healthy male subjects. Blood, urine and faecal samples were collected at continuous time points to analyse SHR8554 parent drug levels and their metabolites. The total radioactivity in blood, plasma, urine and faeces was detected by using a liquid scintillation counter. The dynamic changes of SHR8554 and its metabolite concentration were by liquid chromatography-tandem mass spectrometry (LC/MS), and then pharmacokinetic analysis. The safety of the drug on the subjects was also observed after a single intravenous injection. Results: The total recovery of radioactivity in urine and faeces was 99.68% ± 0.79% in 216 h, including 76.22% ± 1.12% in urine and 23.46% ± 1.36% in faeces. Seventeen major metabolites in blood, urine and faeces were analysed and identified. The main metabolic pathways of SHR8554 in the human body involve 1) N-dealkylation; 2) O-deethylation; 3) mono-oxidation; 4) glucuronidation, etc. The primary mechanism of SHR8554 clearance in the human body is through urinary excretion, primarily in its parent drug and metabolite forms. The drug has good safety, and no serious adverse effects were observed. Conclusion: SHR8554 showed favourable pharmacokinetic characteristics and safety profiles in this study. SHR8554 is extensively metabolized in human body. The main metabolic pathways include N-dealkylation and O-deethylation, as well as mono-oxidation and glucuronidation. The main excretion route of SHR8554 and its metabolites is through urine. Clinical Trial Registration: http://www.chinadrugtrials.org.cn/, identifier CTR20220450.
Collapse
Affiliation(s)
- Rupeng Shi
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Chai
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Feng
- Value Pharmaceutical Services Co., Ltd., Nanjing, China
| | - Lijun Xie
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lulu Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tianqi Zhong
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Chen
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Yan
- Nuclear Medicine Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bei Zhu
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Zhao
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Kramp H, Weck R, Sandvoss M, Sib A, Mencia G, Fazzini PF, Chaudret B, Derdau V. In situ Generated Iridium Nanoparticles as Hydride Donors in Photoredox-Catalyzed Hydrogen Isotope Exchange Reactions with Deuterium and Tritium Gas. Angew Chem Int Ed Engl 2023; 62:e202308983. [PMID: 37453077 DOI: 10.1002/anie.202308983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
We have studied the photoredox-catalyzed hydrogen isotope exchange (HIE) reaction with deuterium or tritium gas as isotope sources and in situ formed transition metal nanoparticles as hydrogen atom transfer pre-catalysts. By this means we have found synergistic reactivities applying two different HIE mechanisms, namely photoredox-catalyzed and CH-functionalization HIE leading to the synthesis of highly deuterated complex molecules. Finally, we adopted these findings successfully to tritium chemistry.
Collapse
Affiliation(s)
- Henrik Kramp
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Remo Weck
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Martin Sandvoss
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Anna Sib
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Gabriel Mencia
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Labiche A, Malandain A, Molins M, Taran F, Audisio D. Modern Strategies for Carbon Isotope Exchange. Angew Chem Int Ed Engl 2023; 62:e202303535. [PMID: 37074841 DOI: 10.1002/anie.202303535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
In contrast to stable and natural abundant carbon-12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C-labeled building blocks. For long time, multi-step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C-C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late-stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1-building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal-catalyzed and biocatalytic processes.
Collapse
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Maxime Molins
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Ghiglieri A, Messina M, Cenacchi V, Piutti C, Cinato F, Brogin G, Puccini P. ADME properties of CHF6366, a novel bi-functional M3-Muscarinic receptor antagonist and ß-2 adrenoceptor agonist (MABA) radiolabeled at both functional moieties. Xenobiotica 2023:1-59. [PMID: 37376730 DOI: 10.1080/00498254.2023.2230490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
CHF6366, a dual action β2-receptor agonist and M3-muscarinic receptor antagonist developed for chronic obstructive pulmonary disease (COPD), was [14C]-radiolabeled on the two different functional moieties of the molecule (either aminobutanolic or carbamate) to characterize its ADME profile following intravenous (IV), intratracheal (IT) and oral (PO) administration.A very low oral bioavailability and a good balance between absorption and lung retention after IT administration were observed, together with a rapid distribution throughout the body and a complete metabolic transformation of the parent drug without relevant gender difference.CHF6366 was observed fully hydrolyzed to alcohol (CHF6387) and carboxylic acid (CHF6361) in plasma and urine after IV and IT administration, and mainly unchanged in feces only after oral administration. An important number of metabolites containing aminobutanolic moiety was excreted via urine, whereas carbamate-containing derivatives were excreted mainly by bile.The major metabolic routes of the alcoholic moiety (CHF6387) included isomerization (Ma7), conjugation with glucuronic acid and dehydrogenation, while the carboxylic acid moiety (CHF6361) was mainly metabolized through oxidation, glucuronide conjugation and, in both pathways, combinations of those metabolic reactions.No major differences arose also from in vitro metabolism profiles investigated using liver microsomes and hepatocytes of different species.
Collapse
Affiliation(s)
- A Ghiglieri
- Accelera Srl, viale Pasteur 10, 20014 Nerviano, Milano (Italy)
| | - M Messina
- Accelera Srl, viale Pasteur 10, 20014 Nerviano, Milano (Italy)
| | - V Cenacchi
- Chiesi Farmaceutici SpA, Largo Belloli 11/a - 43122 Parma (Italy)
| | - C Piutti
- Accelera Srl, viale Pasteur 10, 20014 Nerviano, Milano (Italy)
| | - F Cinato
- Accelera Srl, viale Pasteur 10, 20014 Nerviano, Milano (Italy)
| | - G Brogin
- Chiesi Farmaceutici SpA, Largo Belloli 11/a - 43122 Parma (Italy)
| | - P Puccini
- Chiesi Farmaceutici SpA, Largo Belloli 11/a - 43122 Parma (Italy)
| |
Collapse
|
20
|
Becquet P, Vazquez-Anon M, Mercier Y, Wedekind K, Mahmood T, Batonon-Alavo DI, Yan F. A systematic review of metabolism of methionine sources in animals: One parameter does not convey a comprehensive story. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:31-49. [PMID: 37009071 PMCID: PMC10060178 DOI: 10.1016/j.aninu.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/16/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
The goal of this review article, based on a systematic literature search, is to critically assess the state of knowledge and experimental methodologies used to delineate the conversion and metabolism of the 2 methionine (Met) sources DL-methionine (DL-Met) and DL-2-hydroxy-4-(methylthio) butanoic acid (HMTBa). The difference in the chemical structures of HMTBa and DL-Met indicates that these molecules are absorbed and metabolized differently in animals. This review explores the methodologies used to describe the 2-step enzymatic conversion of the 3 enantiomers (D-HMTBa, L-HMTBa and D-Met) to L-Met, as well as the site of conversion at the organ and tissue levels. Extensive work was published documenting the conversion of HMTBa and D-Met into L-Met and, consequently, the incorporation into protein using a variety of in vitro techniques, such as tissue homogenates, cell lines, primary cell lines, and everted gut sacs of individual tissues. These studies illustrated the role of the liver, kidney, and intestine in the conversion of Met precursors into L-Met. A combination of in vivo studies using stable isotopes and infusions provided evidence of the wide conversion of HMTBa to L-Met by all tissues and how some tissues are net users of HMTBa, whereas others are net secreters of L-Met derived from HMTBa. Conversion of D-Met to L-Met in organs other than the liver and kidney is poorly documented. The methodology cited in the literature to determine conversion efficiency ranged from measurements of urinary, fecal, and respiratory excretion to plasma concentration and tissue incorporation of isotopes after intraperitoneal and oral infusions. Differences observed between these methodologies reflect differences in the metabolism of Met sources rather than differences in conversion efficiency. The factors affecting conversion efficiency are explored in this paper and are mostly associated with extreme dietary conditions, such as noncommercial crystalline diets that are very deficient in total sulfur amino acids with respect to requirements. Implications in the diversion of the 2 Met sources toward transsulfuration over transmethylation pathways are discussed. The strengths and weaknesses of some methodologies used are discussed in this review. From this review, it can be concluded that due to the inherent differences in conversion and metabolism of the 2 Met sources, the experimental methodologies (e.g., selecting different organs at different time points or using diets severely deficient in Met and cysteine) can impact the conclusions of the study and may explain the apparent divergences of conclusion found in the literature. It is recommended when conducting studies or reviewing the literature to properly select the experimental models that allow for differences in how the 2 Met precursors are converted to L-Met and metabolized by the animal to enable a proper comparison of their bioefficacy.
Collapse
Affiliation(s)
- Philippe Becquet
- International Methionine Analogue Association, Regus Brussels City Centre, Stéphanie Square, Avenue Louise, 65, B-1050 Brussels, Belgium
| | - Mercedes Vazquez-Anon
- Novus International Inc., 20 Research Park Drive, Saint Charles, Missouri 63304, USA
| | - Yves Mercier
- Adisseo France SAS, Antony Parc II, 10 Place Du Général de Gaulle, Antony 92160, France
| | - Karen Wedekind
- Novus International Inc., 20 Research Park Drive, Saint Charles, Missouri 63304, USA
| | - Tahir Mahmood
- Adisseo France SAS, Antony Parc II, 10 Place Du Général de Gaulle, Antony 92160, France
| | | | - Frances Yan
- Novus International Inc., 20 Research Park Drive, Saint Charles, Missouri 63304, USA
| |
Collapse
|
21
|
Zhang H, Yan S, Zhan Y, Ma S, Bian Y, Li S, Tian J, Li G, Zhong D, Diao X, Miao L. A mass balance study of [14C]SHR6390 (dalpiciclib), a selective and potent CDK4/6 inhibitor in humans. Front Pharmacol 2023; 14:1116073. [PMID: 37063263 PMCID: PMC10102643 DOI: 10.3389/fphar.2023.1116073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
SHR6390 (dalpiciclib) is a selective and effective cyclin-dependent kinase (CDK) 4/6 inhibitor and an effective cancer therapeutic agent. On 31 December 2021, the new drug application was approved by National Medical Product Administration (NMPA). The metabolism, mass balance, and pharmacokinetics of SHR6390 in 6 healthy Chinese male subjects after a single oral dose of 150 mg [14C]SHR6390 (150 µCi) in this research. The Tmax of SHR6390 was 3.00 h. In plasma, the t1/2 of SHR6390 and its relative components was approximately 17.50 h. The radioactivity B/P (blood-to-plasma) AUC0-t ratio was 1.81, indicating the preferential distribution of drug-related substances in blood cells. At 312 h after administration, the average cumulative excretion of radioactivity was 94.63% of the dose, including 22.69% in urine and 71.93% in stool. Thirteen metabolites were identified. In plasma, because of the low level of radioactivity, only SHR6390 was detected in pooled AUC0-24 h plasma. Stool SHR6390 was the main component in urine and stool. Five metabolites were identified in urine, and 12 metabolites were identified in stool. Overall, faecal clearance is the main method of excretion.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Shu Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Ma
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Yicong Bian
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Shaorong Li
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, Jiangsu, China
| | - Junjun Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guangze Li
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, Jiangsu, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Dafang Zhong, ; Xingxing Diao, ; Liyan Miao,
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Dafang Zhong, ; Xingxing Diao, ; Liyan Miao,
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
- *Correspondence: Dafang Zhong, ; Xingxing Diao, ; Liyan Miao,
| |
Collapse
|
22
|
Fan Y, Pan D, Yang M, Wang X. Radiolabelling and in vivo radionuclide imaging tracking of emerging pollutants in environmental toxicology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161412. [PMID: 36621508 DOI: 10.1016/j.scitotenv.2023.161412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Emerging pollutants (EPs) have become a global concern, attracting tremendous attention because of serious threats to human and animal health. EP diversity emanates from their behaviour and ability to enter the body via multiple pathways and exhibit completely different distribution, transport, and excretion. To better understand the in vivo behaviour of EPs, we reviewed radiolabelling and in vivo radionuclide imaging tracking of various EPs, including micro- and nano-plastics, perfluoroalkyl substances, metal oxides, pharmaceutical and personal care products, and so on. Because this accurate and quantitative imaging approach requires the labelling of radionuclides onto EPs, the main strategies for radiolabelling were reviewed, such as synthesis with radioactive precursors, element exchange, proton beam activation, and modification. Spatial and temporal biodistribution of various EPs was summarised in a heat map, revealing that the absorption, transport, and excretion of EPs are markedly related to their type, size, and pathway into the body. These findings implicate the potential toxicity of diverse EPs in organs and tissues. Finally, we discussed the potential and challenges of radionuclide imaging tracking of EPs, which can be considered in future EPs studies.
Collapse
Affiliation(s)
- Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi 214105, PR China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China.
| |
Collapse
|
23
|
Lim HK, Chen J, Lam W, Gong Y, Leclercq L, Silva J, Salter R, Berwaerts J, Gelotte CK, Vakil AM, Eichenbaum GE, Kuffner EK, Flores CM. Metabolism and disposition of JNJ-10450232 (NTM-006) in rats, dogs, nonhuman primates and humans. Regul Toxicol Pharmacol 2023:105379. [PMID: 36931586 DOI: 10.1016/j.yrtph.2023.105379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
JNJ-10450232 (NTM-006), a novel non-opioid, non-nonsteroidal anti-inflammatory drug with structural similarities to acetaminophen, demonstrated anti-pyretic and/or analgesic activities in preclinical models and humans and reduced potential to cause hepatotoxicity in preclinical species. Metabolism and disposition of JNJ-10450232 (NTM-006) following oral administration to rats, dogs, monkeys and humans are reported. Urinary excretion was the major route of elimination based on recovery of 88.6% (rats) and 73.7% (dogs) of oral dose. The compound was extensively metabolized based on low recovery of unchanged drug in excreta from rats (11.3%) and dogs (18.4%). Clearance is driven by O-glucuronidation, amide hydrolysis, O-sulfation and methyl oxidation pathways. The combination of metabolic pathways driving clearance in human is covered in at least one preclinical species despite a few species-dependent pathways. O-Glucuronidation was the major primary metabolic pathway of JNJ-10450232 (NTM-006) in dogs, monkeys and humans, although amide hydrolysis was another major primary metabolic pathway in rats and dogs. A minor bioactivation pathway to quinone-imine is observed only in monkeys and humans. Unchanged drug was the major circulatory component in all species investigated. Except for metabolic pathways unique to the 5-methyl-1H-pyrazole-3-carboxamide moiety, metabolism and disposition of JNJ-10450232 (NTM-006) are similar to acetaminophen across species.
Collapse
Affiliation(s)
- Heng-Keang Lim
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | - Jie Chen
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | - Wing Lam
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | - Yong Gong
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | - Laurent Leclercq
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Jose Silva
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | - Rhys Salter
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | | | | | - Amy M Vakil
- Johnson & Johnson Consumer Inc, Fort Washington, PA, USA
| | | | | | | |
Collapse
|
24
|
Vermillion Maier ML, Siddens LK, Pennington JM, Uesugi SL, Tilton SC, Vertel EA, Anderson KA, Tidwell LG, Ognibene TJ, Turteltaub KW, Smith JN, Williams DE. Benzo[a]pyrene toxicokinetics in humans following dietary supplementation with 3,3'-diindolylmethane (DIM) or Brussels sprouts. Toxicol Appl Pharmacol 2023; 460:116377. [PMID: 36642108 PMCID: PMC9946811 DOI: 10.1016/j.taap.2023.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Utilizing the atto-zeptomole sensitivity of UPLC-accelerator mass spectrometry (UPLC-AMS), we previously demonstrated significant first-pass metabolism following escalating (25-250 ng) oral micro-dosing in humans of [14C]-benzo[a]pyrene ([14C]-BaP). The present study examines the potential for supplementation with Brussels sprouts (BS) or 3,3'-diindolylmethane (DIM) to alter plasma levels of [14C]-BaP and metabolites over a 48-h period following micro-dosing with 50 ng (5.4 nCi) [14C]-BaP. Volunteers were dosed with [14C]-BaP following fourteen days on a cruciferous vegetable restricted diet, or the same diet supplemented for seven days with 50 g of BS or 300 mg of BR-DIM® prior to dosing. BS or DIM reduced total [14C] recovered from plasma by 56-67% relative to non-intervention. Dietary supplementation with DIM markedly increased Tmax and reduced Cmax for [14C]-BaP indicative of slower absorption. Both dietary treatments significantly reduced Cmax values of four downstream BaP metabolites, consistent with delaying BaP absorption. Dietary treatments also appeared to reduce the T1/2 and the plasma AUC(0,∞) for Unknown Metabolite C, indicating some effect in accelerating clearance of this metabolite. Toxicokinetic constants for other metabolites followed the pattern for [14C]-BaP (metabolite profiles remained relatively consistent) and non-compartmental analysis did not indicate other significant alterations. Significant amounts of metabolites in plasma were at the bay region of [14C]-BaP irrespective of treatment. Although the number of subjects and large interindividual variation are limitations of this study, it represents the first human trial showing dietary intervention altering toxicokinetics of a defined dose of a known human carcinogen.
Collapse
Affiliation(s)
- Monica L Vermillion Maier
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, ALS 1007, Oregon State University, Corvallis, OR 97331, USA.
| | - Lisbeth K Siddens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Jamie M Pennington
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Sandra L Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Emily A Vertel
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Lane G Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Kenneth W Turteltaub
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Jordan N Smith
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
25
|
He YF, Liu Y, Yu JH, Cheng H, Odilov A, Yang FP, Tian GH, Yao XM, Duan HQ, Yu CY, Yu C, Liu YM, Liu GY, Shen JS, Wang Z, Diao XX. Pharmacokinetics, mass balance, and metabolism of [ 14C]TPN171, a novel PDE5 inhibitor, in humans for the treatment of pulmonary arterial hypertension. Acta Pharmacol Sin 2023; 44:221-233. [PMID: 35676531 DOI: 10.1038/s41401-022-00922-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
TPN171 is a novel phosphodiesterase-5 (PDE5) inhibitor used to treat pulmonary arterial hypertension (PAH) and erectile dysfunction (ED), which currently is undergoing phase II clinical trials in China. In this single-center, single-dose, nonrandomized, and open design study, radiolabeled [14C]TPN171 was used to investigate the metabolic mechanism, pharmacokinetic characteristics, and clearance pathways of TPN171 in 6 healthy Chinese male volunteers. Each volunteer was administered a single oral suspension of 10 mg (100 μCi) of [14C]TPN171. We found that TPN171 was absorbed rapidly in humans with a peak time (Tmax) of 0.667 h and a half-life (t1/2) of approximately 9.89 h in plasma. Excretion of radiopharmaceutical-related components was collected 216 h after administration, accounting for 95.21% of the dose (46.61% in urine and 48.60% in feces). TPN171 underwent extensive metabolism in humans. Twenty-two metabolites were detected in human plasma, urine, and feces using a radioactive detector combined with a high-resolution mass spectrometer. According to radiochromatograms, a glucuronide metabolite of O-dealkylated TPN171 exceeded 10% of the total drug-related components in human plasma. However, according to the Food and Drug Administration (FDA) guidelines, no further tests are needed to evaluate the safety of this metabolite because it is a phase II metabolite, but the compound is still worthy of attention. The main metabolic biotransformation of TPN171 was mono-oxidation (hydroxylation and N-oxidation), dehydrogenation, N-dealkylation, O-dealkylation, amide hydrolysis, glucuronidation, and acetylation. Cytochrome P450 3A4 (CYP3A4) mainly catalyzed the formation of metabolites, and CYP2E1 and CYP2D6 were involved in the oxidative metabolism of TPN171 to a lesser extent. According to the incubation data, M1 was mainly metabolized to M1G by UDP-glucuronosyltransferase 1A9 (UGT1A9), followed by UGT1A7 and UGT1A10.
Collapse
Affiliation(s)
- Yi-Fei He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Hua Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huan Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Ji-nan, 250355, China
| | - Abdullajon Odilov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei-Pu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | | - Xiu-Mei Yao
- Vigonvita Life Sciences Co., Ltd, Suzhou, 215000, China
| | - Hua-Qing Duan
- Vigonvita Life Sciences Co., Ltd, Suzhou, 215000, China
| | - Cheng-Yin Yu
- Shanghai Xuhui Central Hospital, Shanghai, 200030, China
| | - Chen Yu
- Shanghai Xuhui Central Hospital, Shanghai, 200030, China
| | - Yan-Mei Liu
- Shanghai Xuhui Central Hospital, Shanghai, 200030, China
| | - Gang-Yi Liu
- Shanghai Xuhui Central Hospital, Shanghai, 200030, China
| | - Jing-Shan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,Lingang Laboratory, Shanghai, 201602, China.
| | - Xing-Xing Diao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Ramamoorthy A, Bende G, Chow ECY, Dimova H, Hartman N, Jean D, Pahwa S, Ren Y, Shukla C, Yang Y, Doddapaneni S, Danielsen ZY. Human radiolabeled mass balance studies supporting the FDA approval of new drugs. Clin Transl Sci 2022; 15:2567-2575. [PMID: 36066467 PMCID: PMC9652429 DOI: 10.1111/cts.13403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023] Open
Abstract
Human radiolabeled mass balance studies are an important component of the clinical pharmacology programs supporting the development of new investigational drugs. These studies allow for understanding of the absorption, distribution, metabolism, and excretion of the parent drug and metabolite(s) in the human body. Understanding the drug's disposition as well as metabolite profiling and abundance via mass balance studies can help inform the overall drug development program. A survey of the US Food and Drug Administration (FDA)-approved new drug applications (NDAs) indicated that about 66% of the drugs had relied on findings from the mass balance studies to help understand the pharmacokinetic characteristics of the drug and to inform the overall drug development program. When such studies were not available in the original NDA, adequate justifications were routinely provided. Of the 104 mass balance studies included in this survey, most of the studies were conducted in healthy volunteers (90%) who were mostly men (>86%). The studies had at least six evaluable participants (66%) and were performed using the final route(s) of administration (98%). Eighty-five percent of the studies utilized a dose within the pharmacokinetic linearity range with 54% of the studies using a dose the same as the approved dose. Nearly all studies were performed as a single-dose (97%) study using a fit-for-purpose radiolabeled formulation. In this analysis, we summarized the current practices for conducting mass balance studies and highlighted the importance of conducting appropriately designed human radiolabeled mass balance studies and the challenges associated with inadequately designed or untimely studies.
Collapse
Affiliation(s)
- Anuradha Ramamoorthy
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Girish Bende
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Edwin Chiu Yuen Chow
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Hristina Dimova
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA,Present address:
Office of ScienceCenter for Tobacco Products, FDASilver SpringMarylandUSA
| | - Neil Hartman
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Daphney Jean
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Sonia Pahwa
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Yunzhao Ren
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Chinmay Shukla
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Yuching Yang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Suresh Doddapaneni
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Zhixia Yan Danielsen
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER)US Food and Drug Administration (FDA)Silver SpringMarylandUSA
| |
Collapse
|
27
|
Vaidyanathan S, Reed A. Pipeline Impact of Radiolabeled Compounds in Drug Discovery and Development. ACS Med Chem Lett 2022; 13:1564-1567. [PMID: 36262403 PMCID: PMC9575178 DOI: 10.1021/acsmedchemlett.2c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
The long-lived radionuclides tritium and carbon-14 have been used for many years in pharmaceutical research and development for making key efficacy and toxicological decisions. Early discovery utilizes radiolabels for compound selection through radioligand binding assays and autoradiography. In preclinical safety evaluation, the use of labeled compounds for adsorption, distribution, metabolism, and excretion studies is often preferred for the added detection sensitivity. As the drug substance proceeds to the clinic, human metabolism studies are reliant on the use of labeled materials to fulfill required regulatory applications.
Collapse
Affiliation(s)
- Srirajan Vaidyanathan
- Department of Process Chemistry, Radiochemistry, AbbVie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Aimee Reed
- Department of Process Chemistry, Radiochemistry, AbbVie Inc., 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| |
Collapse
|
28
|
Research on the separation and purification of 14C emissions from nuclear power plant by chemical exchange method. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Fernandes EFA, Wilbs J, Raavé R, Jacobsen CB, Toftelund H, Helleberg H, Boswinkel M, Heskamp S, Gustafsson MBF, Bjørnsdottir I. Comparison of the Tissue Distribution of a Long-Circulating Glucagon-like Peptide-1 Agonist Determined by Positron Emission Tomography and Quantitative Whole-Body Autoradiography. ACS Pharmacol Transl Sci 2022; 5:616-624. [DOI: 10.1021/acsptsci.2c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Jonas Wilbs
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - Rene Raavé
- Radboudumc, Department of Medical Imaging − Nuclear Medicine, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Christian Borch Jacobsen
- Isotope Chemistry, CMC Development, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - Hanne Toftelund
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - Hans Helleberg
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - Milou Boswinkel
- Radboudumc, Department of Medical Imaging − Nuclear Medicine, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Sandra Heskamp
- Radboudumc, Department of Medical Imaging − Nuclear Medicine, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | | | - Inga Bjørnsdottir
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| |
Collapse
|
30
|
Wan K, Jiang X, Tang X, Xiao L, Chen Y, Huang C, Zhu F, Wang F, Xu H. Study on Absorption, Distribution, Metabolism, and Excretion Properties of Novel Insecticidal GABA Receptor Antagonist, Pyraquinil, in Diamondback Moth Combining MALDI Mass Spectrometry Imaging and High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6072-6083. [PMID: 35576451 DOI: 10.1021/acs.jafc.2c00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A thorough understanding of absorption, distribution, metabolism, and excretion (ADME) of insecticide candidates is essential in insecticide development and structural optimization. Here, ADME of pyraquinil, a novel insecticidal GABA receptor antagonist, in Plutella xylostella larvae during the accumulation phase and depuration phase was investigated separately using a combination of UHPLC-Q-Orbitrap, HPLC-MS/MS, and MALDI-MSI. Five new metabolites of pyraquinil were identified, and a metabolic pathway was proposed. The oxidative metabolite (pyraquinil-sulfone) was identified as the main metabolite and confirmed by its standard. Quantitative results showed that pyraquinil was taken up by the larvae rapidly and then undergone a cytochrome P450s-mediated oxidative transformation into pyraquinil-sulfone. Both fecal excretion and oxidative metabolism were demonstrated to be predominant ways to eliminate pyraquinil in P. xylostella larvae during accumulation, while oxidative metabolism followed by fecal excretion was probably the major pathway during depuration. MALDI-MSI revealed that pyraquinil was homogeneously distributed in the larvae, while pyraquinil-sulfone presented a continuous enrichment in the midgut during accumulation. Conversely, pyraquinil-sulfone located in hemolymph can be preferentially eliminated during depuration, suggesting its tissue tropism. It improves the understanding of the fate of pyraquinil in P. xylostella and provides useful information for insecticidal mechanism elucidation and structural optimization of pyraquinil.
Collapse
Affiliation(s)
- Kai Wan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Lu Xiao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Congling Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Fuwei Zhu
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Fuhua Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
31
|
Peters M, Bockfeld D, Tamm M. Cationic Iridium(I) NHC‐Phosphinidene Complexes and Their Application in Hydrogen Isotope Exchange Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Peters
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Dirk Bockfeld
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Matthias Tamm
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig GERMANY
| |
Collapse
|
32
|
Cheng H, Yu J, Yang C, Zhang N, Fan Z, Zhang X, Wang J, Wang Z, Zhong DF, He JX, Yan S, Diao X. Absorption, distribution, metabolism, and excretion of [ 14C]TPN729 after oral administration to rats. Xenobiotica 2022; 52:79-90. [PMID: 35038952 DOI: 10.1080/00498254.2022.2030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
TPN729, a novel phosphodiesterase type 5 (PDE5) inhibitor for the treatment of erectile dysfunction (ED), is in phase II clinical trials in China. Previous studies suggested that TPN729 possesses promising therapeutic value. In previous non-radiolabeled rat excretion studies, the recovery of TPN729 and its major metabolites accounted for approximately 8.58% of the administration dose in urine and feces by 48 h post-dose.To solve this problem and further study the metabolism of TPN729 in rats, we used the radio-isotopic tracing technique for the first time. In this study, the mass balance, tissue distribution, and metabolism of TPN729 were evaluated in rats after a single oral dose of 25 mg/kg [14C]TPN729 (150 μCi/kg).At 168 h post-dose, the mean total radioactivity recovery of the dose was 92.13%. Feces was the major excretion route, accounting for 74.63% of the dose, and urine excretion accounted for 17.50%. After oral administration of [14C]TPN729, radioactivity was widely distributed in all examined tissues, and a higher radioactivity concentration was observed in the stomach, large intestine, lung, liver, small intestine, and eyes. The concentration of drug-related materials were similar in plasma and blood cells. A total of 51 metabolites were identified in rat plasma, urine, feces, and bile, and the predominant metabolically susceptible position of TPN729 was the pyrrolidine moiety. The main metabolic pathways were N-dealkylation, oxidation, dehydrogenation, and glucuronidation.In summary, we solved the previous problem of low drug recovery, elucidated the major excretion pathway, determined the tissue distribution patterns, and investigated the metabolism of TPN729 in rats by using a radioisotopic tracing technique.
Collapse
Affiliation(s)
- Huan Cheng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chen Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ning Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhen Fan
- Henan Topfond Pharma Co., Ltd, Zhumadian 463000, China
| | | | - Junchen Wang
- Henan Topfond Pharma Co., Ltd, Zhumadian 463000, China
| | - Zhen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Da-Fang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ji-Xiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shu Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
33
|
Guo B, Vries JG, Otten E. Selective α‐Deuteration of Cinnamonitriles using D
2
O as Deuterium Source. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Beibei Guo
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Johannes G. Vries
- Leibniz Institute für Katalyse e. V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Edwin Otten
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
34
|
Pharmacokinetics, mass balance, and metabolism of [ 14C]vicagrel, a novel irreversible P2Y 12 inhibitor in humans. Acta Pharmacol Sin 2021; 42:1535-1546. [PMID: 33244163 PMCID: PMC8379165 DOI: 10.1038/s41401-020-00547-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Vicagrel, a novel irreversible P2Y12 receptor inhibitor, is undergoing phase III trials for the treatment of acute coronary syndromes in China. In this study, we evaluated the pharmacokinetics, mass balance, and metabolism of vicagrel in six healthy male Chinese subjects after a single oral dose of 20 mg [14C]vicagrel (120 µCi). Vicagrel absorption was fast (Tmax = 0.625 h), and the mean t1/2 of vicagrel-related components was ~38.0 h in both plasma and blood. The blood-to-plasma radioactivity AUCinf ratio was 0.55, suggesting preferential distribution of drug-related material in plasma. At 168 h after oral administration, the mean cumulative excreted radioactivity was 96.71% of the dose, including 68.03% in urine and 28.67% in feces. A total of 22 metabolites were identified, and the parent vicagrel was not detected in plasma, urine, or feces. The most important metabolic spot of vicagrel was on the thiophene ring. In plasma pretreated with the derivatization reagent, M9-2, which is a methylated metabolite after thiophene ring opening, was the predominant drug-related component, accounting for 39.43% of the radioactivity in pooled AUC0-8 h plasma. M4, a mono-oxidation metabolite upon ring-opening, was the most abundant metabolite in urine, accounting for 16.25% of the dose, followed by M3-1, accounting for 12.59% of the dose. By comparison, M21 was the major metabolite in feces, accounting for 6.81% of the dose. Overall, renal elimination plays a crucial role in vicagrel disposition, and the thiophene ring is the predominant metabolic site.
Collapse
|
35
|
Tian J, Lei P, He Y, Zhang N, Ge X, Luo L, Yan S, Diao X. Absorption, distribution, metabolism, and excretion of [ 14C]NBP (3-n-butylphthalide) in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1181:122915. [PMID: 34500404 DOI: 10.1016/j.jchromb.2021.122915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
3-n-Butylphthalide (NBP) has a considerable neuroprotective effect and is currently used for the treatment of ischemic stroke. NBP was launched on the market in 2004. However, information on its metabolism in humans and preclinical animal models is insufficient. Although the metabolism of unradiolabeled NBP in humans has been reported, the quantitative metabolite profile, blood-to-plasma radioactivity concentration ratio (B/P), and tissue distribution of this drug remain unclear. We evaluated the pharmacokinetics, tissue distribution, mass balance, and metabolism of NBP in rats after a single oral dose of 60 mg/kg (100 μCi/kg) [14C]NBP to understand the biotransformation of NBP comprehensively and to provide preclinical drug metabolism data prior to human mass balance studies with [14C]NBP in the near future. NBP absorption was rapid (Tmax = 0.75 h) and declined with a terminal half-life of 9.73 h. In rats, the B/P was 0.63 during the 48 h postdose period, indicating that drug-related substances did not tend to be distributed into blood cells. Tissue distribution was determined by using the oxidative combustion method. NBP-related components were widely distributed throughout the body, and high concentrations were detected in the stomach, small intestine, fat, bladder, kidney, liver and ovary. At 168 h after oral administration, the mean cumulative recovered radioactivity was 99.85% of the original dose, and was 85.12% in urine and 14.73% in feces. Metabolite profiles were detected via radiochromatography. A total of 49 metabolites were identified in rat plasma, urine, and feces. The main metabolic pathways were oxidation, glucuronidation, and sulfation. Overall, NBP was absorbed rapidly, distributed throughout the body, and excreted in the form of metabolites. Urine was the main excretion route, and the absorption, distribution, metabolism and excretion of NBP showed no significant gender difference between male and female rats.
Collapse
Affiliation(s)
- Junjun Tian
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, PR China.
| | - Peng Lei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, PR China.
| | - Yifei He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, PR China.
| | - Ning Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, PR China.
| | - Xinyu Ge
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, PR China.
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Shu Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, PR China.
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, PR China.
| |
Collapse
|
36
|
Kertesz V, Cahill JF. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Anal Bioanal Chem 2021; 413:2619-2636. [PMID: 33140126 DOI: 10.1007/s00216-020-02964-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) has become the de facto tool for routine quantitative analysis of biomolecules. MS is increasingly being used to reveal the spatial distribution of proteins, metabolites, and pharmaceuticals in tissue and interest in this area has led to a number of novel spatially resolved MS technologies. Most spatially resolved MS measurements are qualitative in nature due to a myriad of potential biases, such as sample heterogeneity, sampling artifacts, and ionization effects. As applications of spatially resolved MS in the pharmacological and clinical fields increase, demand has become high for quantitative MS imaging and profiling data. As a result, several varied technologies now exist that provide differing levels of spatial and quantitative information. This review provides an overview of MS profiling and imaging technologies that have demonstrated quantitative analysis from tissue. Focus is given on the fundamental processes affecting quantitative analysis in an array of MS imaging and profiling technologies and methods to address these biases.Graphical abstract.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| | - John F Cahill
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| |
Collapse
|
37
|
Babin V, Sallustrau A, Loreau O, Caillé F, Goudet A, Cahuzac H, Del Vecchio A, Taran F, Audisio D. A general procedure for carbon isotope labeling of linear urea derivatives with carbon dioxide. Chem Commun (Camb) 2021; 57:6680-6683. [PMID: 34132265 DOI: 10.1039/d1cc02665h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon isotope labeling is a traceless technology, which allows tracking the fate of organic compounds either in the environment or in living organisms. This article reports on a general approach to label urea derivatives with all carbon isotopes, including 14C and 11C, based on a Staudinger aza-Wittig sequence. It provides access to all aliphatic/aromatic urea combinations.
Collapse
Affiliation(s)
- Victor Babin
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Antoine Sallustrau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Olivier Loreau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Amélie Goudet
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Héloïse Cahuzac
- Université Paris-Saclay, Département Médicaments et Technologies pour la santé (DMTS), CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Antonio Del Vecchio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Frédéric Taran
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Davide Audisio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| |
Collapse
|
38
|
Development of radioactive tracing coupled with LC/MS-IT-TOF methodology for the discovery and identification of diaveridine metabolites in pigs. Food Chem 2021; 363:130200. [PMID: 34120054 DOI: 10.1016/j.foodchem.2021.130200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/26/2021] [Accepted: 05/23/2021] [Indexed: 11/23/2022]
Abstract
We developed a sensitive and reliable method by coupling radiotracing with LC/MS-IT-TOF to identify diaveridine metabolites. Tritium-labeled diaveridine was orally administered to pigs and their organs, blood, bile, and excreta were collected. Under optimized conditions, radioactive recovery was >90% and the highest numbers of metabolites were detected. MCX-based solid-phase extraction was conducted for urine, plasma, and bile purification. Methanol-chloroform 1:1 (v/v), methanol-chloroform 6:1 (v/v), methanol, methanol-chloroform 1:1 (v/v), and methanol were used as solvents to extract feces, liver, kidney, fat and muscle, respectively. The method validation confirmed satisfactory 3H-H exchange efficiency (<5%), chromatographic column efficiency (≥97.5%), LOQ (10.73 μg/kg), and analytical accuracy (97.6-107.8%) and precision (RSD < 5%). Moreover, novel in vivo metabolites were detected in the pigs, including D2 (3'-desmethyl-diaveridine monoglucuronide), D3 (diaveridine monoglucuronide). Hence, the analytical method developed herein lays an empirical foundation for further systematic studies of the diaveridine metabolism.
Collapse
|
39
|
Biological Screening and Radiolabeling of Raptinal as a Potential Anticancer Novel Drug in Hepatocellular Carcinoma Model. Eur J Pharm Sci 2021; 158:105653. [DOI: 10.1016/j.ejps.2020.105653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/26/2020] [Accepted: 11/21/2020] [Indexed: 12/21/2022]
|
40
|
Kim A, Dueker SR, Hwang JG, Yoon J, Lee SW, Lee HS, Yu BY, Yu KS, Lee H. An Investigation of the Metabolism and Excretion of KD101 and Its Interindividual Differences: A Microtracing Mass Balance Study in Humans. Clin Transl Sci 2021; 14:231-238. [PMID: 33460293 PMCID: PMC7877834 DOI: 10.1111/cts.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/24/2020] [Indexed: 11/28/2022] Open
Abstract
The absorption, metabolism, and excretion (AME) profiles of KD101, currently under clinical development to treat obesity, were assessed in humans using accelerator mass spectrometry (AMS) after a single oral administration of KD101 at 400 mg and a microdose of 14C‐KD101 at ~ 35.2 μg with a total radioactivity of 6.81 kBq. The mean total recovery of administered radioactivity was 85.2% with predominant excretion in the urine (78.0%). The radio‐chromatographic metabolite profiling showed that most of the total radioactivity in the plasma and the urine was ascribable to metabolites. The UDP‐glucuronosyltransferase (UGT), including UGT1A1, UGT1A3, and UGT2B7, might have contributed to the interindividual variability in the metabolism and excretion of KD101. The microtracing approach using AMS is a useful tool to evaluate the AME of a drug under development without risk for high radiation exposure to humans.
Collapse
Affiliation(s)
- Anhye Kim
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Stephen R Dueker
- BioCore Co., Ltd., Seoul, Korea.,Korean Institute of Radiological and Medical Science, Seoul, Korea
| | - Jun Gi Hwang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Clinical Pharmacology and Therapeutics, Chung Buk National University Hospital, College of Medicine, Cheongju-si, Chungcheongbuk-do, Korea
| | - Jangsoo Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Sang-Won Lee
- Clinical Trial Center, Hanyang University Seoul Hospital, Seoul, Korea
| | - Hye Suk Lee
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Byung-Yong Yu
- Korea Institute of Science and Technology, Seoul, Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
41
|
Nunes N, Popović I, Abreu E, Maciel D, Rodrigues J, Soto J, Algarra M, Petković M. Detection of Ru potential metallodrug in human urine by MALDI-TOF mass spectrometry: Validation and options to enhance the sensitivity. Talanta 2021; 222:121551. [PMID: 33167254 DOI: 10.1016/j.talanta.2020.121551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 02/05/2023]
Abstract
We studied the possibility of detection of [Ru(η5-C5H5)(PPh3)2Cl] (abbreviated by RuCp) complex as a model system for Ru-based metallodrugs in human urine by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) without previous purification or removal of inorganic salts. Inorganic salts might prevent the detection of RuCp by MALDI-TOF MS, most likely through the increased number and intensity of background/organic matrix signals. This problem might be overcome by the acquisition of matrix-free spectra and the addition of nanoparticles, such as carbon dots, to the urine solution. Our results suggest that RuCp is easily detectable by MALDI-TOF MS in all acquisition conditions, with the CHCA matrix being the best for acquisition in phosphate-containing solutions, whereas in urine, DHB and matrix-free approach demonstrated the highest sensitivity, precision, and reproducibility. The sensitivity of matrix-free MALDI detection of RuCp could be increased by the addition of carbon dots to the urine. Based on theoretical calculations for all matrix/analyte combinations, the model for the interaction of RuCp with carbon dots was established, and higher sensitivity explained.
Collapse
Affiliation(s)
- Nádia Nunes
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Iva Popović
- Department of Atomic Physics, VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Elder Abreu
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Dina Maciel
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Juan Soto
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Manuel Algarra
- Department of Inorganic Chemistry, Faculty of Science, University of Málaga, Campus de Teatinos s/n, 29071, Malaga, Spain.
| | - Marijana Petković
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| |
Collapse
|
42
|
Nunes N, Popović I, Abreu E, Maciel D, Rodrigues J, Soto J, Algarra M, Petković M. Detection of Ru potential metallodrug in human urine by MALDI-TOF mass spectrometry: Validation and options to enhance the sensitivity. Talanta 2021. [DOI: https://doi.org/10.1016/j.talanta.2020.121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Ren S, Huffman MA, Whittaker AM, Yang H, Nawrat CC, Waterhouse DJ, Maloney KM, Strotman NA. Synthesis of Isotopically Labeled Anti-HIV Nucleoside Islatravir through a One-Pot Biocatalytic Cascade Reaction. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sumei Ren
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mark A. Huffman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Aaron M. Whittaker
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hao Yang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Christopher C. Nawrat
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - David J. Waterhouse
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin M. Maloney
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
44
|
Kerr WJ, Knox GJ, Reid M, Tuttle T, Bergare J, Bragg RA. Computationally-Guided Development of a Chelated NHC-P Iridium(I) Complex for the Directed Hydrogen Isotope Exchange of Aryl Sulfones. ACS Catal 2020; 10:11120-11126. [PMID: 33123410 PMCID: PMC7587147 DOI: 10.1021/acscatal.0c03031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Indexed: 02/05/2023]
Abstract
Herein, we report the rational, computationally-guided design of an iridium(I) catalyst system capable of enabling directed hydrogen isotope exchange (HIE) with the challenging sulfone directing group. Substrate binding energy was used as a parameter to guide rational ligand design via an in silico catalyst screen, resulting in a lead series of chelated iridium(I) NHC-phosphine complexes. Subsequent preparative studies show that the optimal catalyst system displays high levels of activity in HIE, and we demonstrate the labeling of a broad scope of substituted aryl sulfones. We also show that the activity of the catalyst is maintained at low pressures of deuterium gas and apply these conditions to tritium radiolabeling, including the expedient synthesis of a tritium-labeled drug molecule.
Collapse
Affiliation(s)
- William J. Kerr
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, U.K
| | - Gary J. Knox
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, U.K
| | - Marc Reid
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, U.K
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, U.K
| | - Jonas Bergare
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Ryan A. Bragg
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|
45
|
Legros F, Fernandez‐Rodriguez P, Mishra A, Weck R, Bauer A, Sandvoss M, Ruf S, Méndez M, Mora‐Radó H, Rackelmann N, Pöverlein C, Derdau V. Photoredox‐Mediated Hydrogen Isotope Exchange Reactions of Amino‐Acids, Peptides, and Peptide‐Derived Drugs. Chemistry 2020; 26:12738-12742. [DOI: 10.1002/chem.202003464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Fabien Legros
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | | | - Anurag Mishra
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Remo Weck
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Armin Bauer
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Martin Sandvoss
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Sven Ruf
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - María Méndez
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Helena Mora‐Radó
- TIDES Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Nils Rackelmann
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Christoph Pöverlein
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| | - Volker Derdau
- Integrated Drug Discovery Sanofi-Aventis (Deutschland) GmbH Industriepark Höchst 65926 Frankfurt Germany
| |
Collapse
|
46
|
Bian Y, Zhang H, Ma S, Jiao Y, Yan P, Liu X, Ma S, Xiong Y, Gu Z, Yu Z, Huang C, Miao L. Mass balance, pharmacokinetics and pharmacodynamics of intravenous HSK3486, a novel anaesthetic, administered to healthy subjects. Br J Clin Pharmacol 2020; 87:93-105. [PMID: 32415708 DOI: 10.1111/bcp.14363] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yicong Bian
- Department of Clinical Pharmacology the First Affiliated Hospital of Soochow University Suzhou China
| | - Hua Zhang
- Department of Clinical Pharmacology the First Affiliated Hospital of Soochow University Suzhou China
| | - Sheng Ma
- Department of Clinical Pharmacology the First Affiliated Hospital of Soochow University Suzhou China
| | - Yongyi Jiao
- Department of Clinical Pharmacology the First Affiliated Hospital of Soochow University Suzhou China
| | - Pangke Yan
- Sichuan Haisco Pharmaceutical Co., Ltd. Chengdu China
| | - Xiao Liu
- Sichuan Haisco Pharmaceutical Co., Ltd. Chengdu China
| | - Shiping Ma
- Sichuan Haisco Pharmaceutical Co., Ltd. Chengdu China
| | - Yating Xiong
- Value Pharmaceutical Services Co., Ltd. Nanjing China
| | - Zheming Gu
- Value Pharmaceutical Services Co., Ltd. Nanjing China
| | - Zhenwen Yu
- Value Pharmaceutical Services Co., Ltd. Nanjing China
| | - Chenrong Huang
- Department of Clinical Pharmacology the First Affiliated Hospital of Soochow University Suzhou China
| | - Liyan Miao
- Department of Clinical Pharmacology the First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
47
|
Bai T, Zhu B, Shao D, Lian Z, Liu P, Shi J, Kong J. Blocking ACAT-1 Activity for Tumor Therapy with Fluorescent Hyperstar Polymer-Encapsulated Avasimible. Macromol Biosci 2020; 20:e1900438. [PMID: 32406183 DOI: 10.1002/mabi.201900438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Targeting the distinct cholesterol metabolism of tumor cells is proposed as a novel way to treat tumors. Blocking acyl-CoA cholesterol acyltransferase-1 (ACAT-1) by the inhibitor avasimible (Ava), which elevates intracellular free cholesterol levels, is shown to effectively induce apoptosis. However, Ava faces disadvantages of poor water solubility, a short half-life, and no capability for fluorescence detection, which have greatly limited its application. Herein, a fluorescent hyperstar polymer (FHSP) is developed to encapsulate Ava to improve its ability to inhibit HeLa cells and K562 cells. The results of this study show that the obtained Ava-FHSP micelles possess a high drug loading capacity of 22.7% and bright green fluorescence. Ava and Ava-FHSP are cytotoxic to both HeLa and K562 cells and cause reductions in cell size, nuclear lysis, and chromatin condensation and hindered proliferation of both cell types by causing S phase cell cycle arrest. Further mechanistic analysis indicates that Ava-FHSP reduces the protein and messenger RNA expression of ACAT-1 and significantly increases intracellular free cholesterol levels, which can increase endoplasmic reticulum stress and finally cause cell apoptosis. All these results suggest that this fluorescent hyperstar polymer represents a potential therapeutic tumor strategy by changing the cholesterol metabolism of tumor cells.
Collapse
Affiliation(s)
- Ting Bai
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bobo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ziyang Lian
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Pei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
48
|
Valero M, Kruissink T, Blass J, Weck R, Güssregen S, Plowright AT, Derdau V. C-H Functionalization-Prediction of Selectivity in Iridium(I)-Catalyzed Hydrogen Isotope Exchange Competition Reactions. Angew Chem Int Ed Engl 2020; 59:5626-5631. [PMID: 31917506 PMCID: PMC7232431 DOI: 10.1002/anie.201914220] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 12/22/2022]
Abstract
An assessment of the C-H activation catalyst [(COD)Ir(IMes)(PPh3 )]PF6 (COD=1,5-cyclooctadiene, IMes=1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) in the deuteration of phenyl rings containing different functional directing groups is divulged. Competition experiments have revealed a clear order of the directing groups in the hydrogen isotope exchange (HIE) with an iridium (I) catalyst. Through DFT calculations the iridium-substrate coordination complex has been identified to be the main trigger for reactivity and selectivity in the competition situation with two or more directing groups. We postulate that the competition concept found in this HIE reaction can be used to explain regioselectivities in other transition-metal-catalyzed functionalization reactions of complex drug-type molecules as long as a C-H activation mechanism is involved.
Collapse
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Thomas Kruissink
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Jennifer Blass
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Remo Weck
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Stefan Güssregen
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Alleyn T. Plowright
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| |
Collapse
|
49
|
Valero M, Bouzouita D, Palazzolo A, Atzrodt J, Dugave C, Tricard S, Feuillastre S, Pieters G, Chaudret B, Derdau V. NHC-Stabilized Iridium Nanoparticles as Catalysts in Hydrogen Isotope Exchange Reactions of Anilines. Angew Chem Int Ed Engl 2020; 59:3517-3522. [PMID: 31849160 PMCID: PMC7079112 DOI: 10.1002/anie.201914369] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 12/21/2022]
Abstract
The preparation of N-heterocyclic carbene-stabilized iridium nanoparticles and their application in hydrogen isotope exchange reactions is reported. These air-stable and easy-to-handle iridium nanoparticles showed a unique catalytic activity, allowing selective and efficient hydrogen isotope incorporation on anilines using D2 or T2 as isotopic source. The usefulness of this transformation has been demonstrated by the deuterium and tritium labeling of diverse complex pharmaceuticals.
Collapse
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Donia Bouzouita
- LPCNO, Laboratoire de Physique et Chimie de Nano-ObjetsUMR5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées135, Avenue de Rangueil31077ToulouseFrance
| | - Alberto Palazzolo
- SCBMJOLIOT InstituteCEAUniversité Paris-Saclay91191Gif-sur-YvetteFrance
| | - Jens Atzrodt
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Christophe Dugave
- SCBMJOLIOT InstituteCEAUniversité Paris-Saclay91191Gif-sur-YvetteFrance
| | - Simon Tricard
- LPCNO, Laboratoire de Physique et Chimie de Nano-ObjetsUMR5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées135, Avenue de Rangueil31077ToulouseFrance
| | | | - Grégory Pieters
- SCBMJOLIOT InstituteCEAUniversité Paris-Saclay91191Gif-sur-YvetteFrance
| | - Bruno Chaudret
- LPCNO, Laboratoire de Physique et Chimie de Nano-ObjetsUMR5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées135, Avenue de Rangueil31077ToulouseFrance
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| |
Collapse
|
50
|
Valero M, Kruissink T, Blass J, Weck R, Güssregen S, Plowright AT, Derdau V. C−H Functionalization—Prediction of Selectivity in Iridium(I)‐Catalyzed Hydrogen Isotope Exchange Competition Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Thomas Kruissink
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Jennifer Blass
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Remo Weck
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Stefan Güssregen
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Alleyn T. Plowright
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| |
Collapse
|