1
|
Tsegay PS, Hernandez D, Brache C, Chatgilialoglu C, Krokidis MG, Chapagain P, Liu Y. Incorporation of 5',8-cyclo-2'deoxyadenosines by DNA repair polymerases via base excision repair. DNA Repair (Amst) 2022; 109:103258. [PMID: 34871863 PMCID: PMC9884144 DOI: 10.1016/j.dnarep.2021.103258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 01/31/2023]
Abstract
5',8-cyclo-2-deoxy nucleosides (cdPus) are the smallest tandem purine lesions including 5',8-cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG). They can inhibit DNA and RNA polymerases causing mutations, DNA strand breaks, and termination of DNA replication and gene transcription. cdPus can be removed by nucleotide excision repair with low efficiency allowing them to accumulate in the genome. Recent studies suggest that cdPus can be induced in damaged nucleotide pools and incorporated into the genome by DNA polymerases. However, it remains unknown if and how DNA polymerases can incorporate cdPus. In this study, we examined the incorporation of cdAs by human DNA repair polymerases, DNA polymerases β (pol β), and pol η during base excision repair. We then determined the efficiency of cdA incorporation by the polymerases using steady-state kinetics. We found that pol β and pol η incorporated cdAs opposite dT and dC with low efficiency, and incorporated cdAs were readily extended and ligated into duplex DNA. Using molecular docking analysis, we found that the 5',8-covalent bond in cdA disrupted its hydrogen bonding with a template base suggesting that the phosphodiester bond between the 3'-terminus nucleotide and the α-phosphate of cdATP were generated in the absence of hydrogen bonding. The enzyme kinetics analysis further suggests that pol β and pol η increased their substrate binding to facilitate the enzyme catalysis for cdA incorporation. Our study reveals unique mechanisms underlying the accumulation of cdPu lesions in the genome resulting from nucleotide incorporation by repair DNA polymerases.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Daniela Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Christopher Brache
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | | | - Marios G. Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos,” 15341, Agia Paraskevi, Athens, Greece
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, USA,Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA,Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA,Correspondence:
| |
Collapse
|
2
|
Products of Oxidative Guanine Damage Form Base Pairs with Guanine. Int J Mol Sci 2020; 21:ijms21207645. [PMID: 33076559 PMCID: PMC7589758 DOI: 10.3390/ijms21207645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/18/2023] Open
Abstract
Among the natural bases, guanine is the most oxidizable base. The damage caused by oxidation of guanine, commonly referred to as oxidative guanine damage, results in the formation of several products, including 2,5-diamino-4H-imidazol-4-one (Iz), 2,2,4-triamino-5(2H)-oxazolone (Oz), guanidinoformimine (Gf), guanidinohydantoin/iminoallantoin (Gh/Ia), spiroiminodihydantoin (Sp), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), urea (Ua), 5-guanidino-4-nitroimidazole (NI), spirodi(iminohydantoin) (5-Si and 8-Si), triazine, the M+7 product, other products by peroxynitrite, alkylated guanines, and 8,5'-cyclo-2'-deoxyguanosine (cG). Herein, we summarize the present knowledge about base pairs containing the products of oxidative guanine damage and guanine. Of these products, Iz is involved in G-C transversions. Oz, Gh/Ia, and Sp form preferably Oz:G, Gh/Ia:G, and Sp:G base pairs in some cases. An involvement of Gf, 2Ih, Ua, 5-Si, 8-Si, triazine, the M+7 product, and 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid (HICA) in G-C transversions requires further experiments. In addition, we describe base pairs that target the RNA-dependent RNA polymerase (RdRp) of RNA viruses and describe implications for the 2019 novel coronavirus (SARS-CoV-2): When products of oxidative guanine damage are adapted for the ribonucleoside analogs, mimics of oxidative guanine damages, which can form base pairs, may become antiviral agents for SARS-CoV-2.
Collapse
|
3
|
Scanlan LD, Coskun SH, Jaruga P, Hanna SK, Sims CM, Almeida JL, Catoe D, Coskun E, Golan R, Dizdaroglu M, Nelson BC. Measurement of Oxidatively Induced DNA Damage in Caenorhabditis elegans with High-Salt DNA Extraction and Isotope-Dilution Mass Spectrometry. Anal Chem 2019; 91:12149-12155. [PMID: 31454479 PMCID: PMC6996937 DOI: 10.1021/acs.analchem.9b01503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Caenorhabditis elegans is used extensively as a medical and toxicological model organism. However, little is known about background levels of oxidatively induced DNA damage in the nematode or how culturing methods affect DNA damage levels. The tough C. elegans cuticle makes it challenging to extract genomic DNA without harsh procedures that can artifactually increase DNA damage. Therefore, a mild extraction protocol based on enzymatic digestion of the C. elegans cuticle with high-salt phase-separation of DNA has been developed and optimized. This method allows for efficient extraction of >50 μg DNA using a minimum of 250000 nematodes grown in liquid culture. The extracted DNA exhibited acceptable RNA levels (<10% contamination), functionality in polymerase chain reaction assays, and reproducible DNA fragmentation. Gas chromatography/tandem mass spectrometry (GC-MS/MS) with isotope-dilution measured lower lesion levels in high-salt extracts than in phenol extracts. Phenolic extraction produced a statistically significant increase in 8-hydroxyguanine, a known artifact, and additional artifactual increases in 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 4,6-diamino-5-formamidopyrimidine, and 8-hydroxyadenine. The high-salt DNA extraction procedure utilizes green solvents and reagents and minimizes artifactual DNA damage, making it more suitable for molecular and toxicological studies in C. elegans. This is, to our knowledge, the first use of GC-MS/MS to measure multiple 8,5'-cyclopurine-2'-deoxynucleosides in a toxicologically important terrestrial organism.
Collapse
Affiliation(s)
- Leona D. Scanlan
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sanem Hosbas Coskun
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Gazi University, Faculty of Pharmacy, Ankara, 06330, Turkey
| | - Pawel Jaruga
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shannon K. Hanna
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Christopher M. Sims
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jamie L. Almeida
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David Catoe
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Erdem Coskun
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Rachel Golan
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Miral Dizdaroglu
- Material Measurement Laboratory – Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Bryant C. Nelson
- Material Measurement Laboratory – Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
4
|
5',8-Cyclopurine Lesions in DNA Damage: Chemical, Analytical, Biological, and Diagnostic Significance. Cells 2019; 8:cells8060513. [PMID: 31141888 PMCID: PMC6628319 DOI: 10.3390/cells8060513] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Purine 5′,8-cyclo-2′-deoxynucleosides (cPu) are tandem-type lesions observed among the DNA purine modifications and identified in mammalian cellular DNA in vivo. These lesions can be present in two diasteroisomeric forms, 5′R and 5′S, for each 2′-deoxyadenosine and 2′-deoxyguanosine moiety. They are generated exclusively by hydroxyl radical attack to 2′-deoxyribose units generating C5′ radicals, followed by cyclization with the C8 position of the purine base. This review describes the main recent achievements in the preparation of the cPu molecular library for analytical and DNA synthesis applications for the studies of the enzymatic recognition and repair mechanisms, their impact on transcription and genetic instability, quantitative determination of the levels of lesions in various types of cells and animal model systems, and relationships between the levels of lesions and human health, disease, and aging, as well as the defining of the detection limits and quantification protocols.
Collapse
|
5
|
Shafirovich V, Kolbanovskiy M, Kropachev K, Liu Z, Cai Y, Terzidis MA, Masi A, Chatgilialoglu C, Amin S, Dadali A, Broyde S, Geacintov NE. Nucleotide Excision Repair and Impact of Site-Specific 5',8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes. Biochemistry 2019; 58:561-574. [PMID: 30570250 PMCID: PMC6373774 DOI: 10.1021/acs.biochem.8b01066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nonbulky 5',8-cyclopurine DNA lesions (cP) and the bulky, benzo[ a]pyrene diol epoxide-derived stereoisomeric cis- and trans- N2-guanine adducts (BPDE-dG) are good substrates of the human nucleotide excision repair (NER) mechanism. These DNA lesions were embedded at the In or Out rotational settings near the dyad axis in nucleosome core particles reconstituted either with native histones extracted from HeLa cells (HeLa-NCP) or with recombinant histones (Rec-NCP). The cP lesions are completely resistant to NER in human HeLa cell extracts. The BPDE-dG adducts are also NER-resistant in Rec-NCPs but are good substrates of NER in HeLa-NCPs. The four BPDE-dG adduct samples are excised with different efficiencies in free DNA, but in HeLa-NCPs, the efficiencies are reduced by a common factor of 2.2 ± 0.2 relative to the NER efficiencies in free DNA. The NER response of the BPDE-dG adducts in HeLa-NCPs is not directly correlated with the observed differences in the thermodynamic destabilization of HeLa-NCPs, the Förster resonance energy transfer values, or hydroxyl radical footprint patterns and is weakly dependent on the rotational settings. These and other observations suggest that NER is initiated by the binding of the DNA damage-sensing NER factor XPC-RAD23B to a transiently opened BPDE-modified DNA sequence that corresponds to the known footprint of XPC-DNA-RAD23B complexes (≥30 bp). These observations are consistent with the hypothesis that post-translational modifications and the dimensions and properties of the DNA lesions are the major factors that have an impact on the dynamics and initiation of NER in nucleosomes.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Marina Kolbanovskiy
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Konstantin Kropachev
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Zhi Liu
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Yuquin Cai
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Shantu Amin
- Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Alexander Dadali
- Bronx College of the City University of New York, Bronx, NY 10453, United States
| | - Suse Broyde
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| |
Collapse
|
6
|
Bypassing a 8,5'-cyclo-2'-deoxyadenosine lesion by human DNA polymerase η at atomic resolution. Proc Natl Acad Sci U S A 2018; 115:10660-10665. [PMID: 30275308 DOI: 10.1073/pnas.1812856115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oxidatively induced DNA lesions 8,5'-cyclopurine-2'-deoxynucleosides (cdPus) are prevalent and cytotoxic by impeding DNA replication and transcription. Both the 5'R- and 5'S-diastereomers of cdPu can be removed by nucleotide excision repair; however, the 5'S-cdPu is more resistant to repair than the 5'R counterpart. Here, we report the crystal structures of human polymerase (Pol) η bypassing 5'S-8,5'-cyclo-2'-deoxyadenosine (cdA) in insertion and the following two extension steps. The cdA-containing DNA structures vary in response to the protein environment. Supported by the "molecular splint" of Pol η, the structure of 5'S-cdA at 1.75-Å resolution reveals that the backbone is pinched toward the minor groove and the adenine base is tilted. In the templating position, the cdA takes up the extra space usually reserved for the thymine dimer, and dTTP is efficiently incorporated by Pol η in the presence of Mn2+ Rigid distortions of the DNA duplex by cdA, however, prevent normal base pairing and hinder immediate primer extension by Pol η. Our results provide structural insights into the strong replication blockage effect and the mutagenic property of the cdPu lesions in cells.
Collapse
|
7
|
Brooks PJ. The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions. Free Radic Biol Med 2017; 107:90-100. [PMID: 28011151 DOI: 10.1016/j.freeradbiomed.2016.12.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Patients with the genetic disease xeroderma pigmentosum (XP) who lack the capacity to carry out nucleotides excision repair (NER) have a dramatically elevated risk of skin cancer on sun exposed areas of the body. NER is the DNA repair mechanism responsible for the removal of DNA lesions resulting from ultraviolet light. In addition, a subset of XP patients develop a progressive neurodegenerative disease, referred to as XP neurologic disease, which is thought to be the result of accumulation of endogenous DNA lesions that are repaired by NER but not other repair pathways. The 8,5-cyclopurine deoxynucleotides (cyPu) have emerged as leading candidates for such lesions, in that they result from the reaction of the hydroxyl radical with DNA, are strong blocks to transcription in human cells, and are repaired by NER but not base excision repair. Here I present a focused perspective on progress into understating the repair and biological effects of these lesions. In doing so, I emphasize the role of Tomas Lindahl and his laboratory in stimulating cyPu research. I also include a critical evaluation of the evidence supporting a role for cyPu lesions in XP neurologic disease, with a focus on outstanding questions, and conceptual and technologic challenges.
Collapse
Affiliation(s)
- Philip J Brooks
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
8
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
9
|
Khan I, Suhasini AN, Banerjee T, Sommers JA, Kaplan DL, Kuper J, Kisker C, Brosh RM. Impact of age-associated cyclopurine lesions on DNA repair helicases. PLoS One 2014; 9:e113293. [PMID: 25409515 PMCID: PMC4237422 DOI: 10.1371/journal.pone.0113293] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
8,5′ cyclopurine deoxynucleosides (cPu) are locally distorting DNA base lesions corrected by nucleotide excision repair (NER) and proposed to play a role in neurodegeneration prevalent in genetically defined Xeroderma pigmentosum (XP) patients. In the current study, purified recombinant helicases from different classifications based on sequence homology were examined for their ability to unwind partial duplex DNA substrates harboring a single site-specific cPu adduct. Superfamily (SF) 2 RecQ helicases (RECQ1, BLM, WRN, RecQ) were inhibited by cPu in the helicase translocating strand, whereas helicases from SF1 (UvrD) and SF4 (DnaB) tolerated cPu in either strand. SF2 Fe-S helicases (FANCJ, DDX11 (ChlR1), DinG, XPD) displayed marked differences in their ability to unwind the cPu DNA substrates. Archaeal Thermoplasma acidophilum XPD (taXPD), homologue to the human XPD helicase involved in NER DNA damage verification, was impeded by cPu in the non-translocating strand, while FANCJ was uniquely inhibited by the cPu in the translocating strand. Sequestration experiments demonstrated that FANCJ became trapped by the translocating strand cPu whereas RECQ1 was not, suggesting the two SF2 helicases interact with the cPu lesion by distinct mechanisms despite strand-specific inhibition for both. Using a protein trap to simulate single-turnover conditions, the rate of FANCJ or RECQ1 helicase activity was reduced 10-fold and 4.5-fold, respectively, by cPu in the translocating strand. In contrast, single-turnover rates of DNA unwinding by DDX11 and UvrD helicases were only modestly affected by the cPu lesion in the translocating strand. The marked difference in effect of the translocating strand cPu on rate of DNA unwinding between DDX11 and FANCJ helicase suggests the two Fe-S cluster helicases unwind damaged DNA by distinct mechanisms. The apparent complexity of helicase encounters with an unusual form of oxidative damage is likely to have important consequences in the cellular response to DNA damage and DNA repair.
Collapse
Affiliation(s)
- Irfan Khan
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland, United States of America
| | - Avvaru N. Suhasini
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland, United States of America
| | - Taraswi Banerjee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland, United States of America
| | - Joshua A. Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland, United States of America
| | - Daniel L. Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Pednekar V, Weerasooriya S, Jasti VP, Basu AK. Mutagenicity and genotoxicity of (5'S)-8,5'-cyclo-2'-deoxyadenosine in Escherichia coli and replication of (5'S)-8,5'-cyclopurine-2'-deoxynucleosides in vitro by DNA polymerase IV, exo-free Klenow fragment, and Dpo4. Chem Res Toxicol 2014; 27:200-10. [PMID: 24392701 PMCID: PMC3952113 DOI: 10.1021/tx4002786] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Reactive
oxygen species generate many lesions in DNA, including R and S diastereomers of 8,5′-cyclo-2′-deoxyadenosine
(cdA) and 8,5′-cyclo-2′-deoxyguanosine (cdG). Herein,
the result of replication of a plasmid containing S-cdA in Escherichia coli is reported. S-cdA was found mutagenic and highly genotoxic. Viability and mutagenicity
of the S-cdA construct were dependent on functional
pol V, but mutational frequencies (MFs) and types varied in pol II-
and pol IV-deficient strains relative to the wild-type strain. Both S-cdA → T and S-cdA → G substitutions
occurred in equal frequency in wild-type E. coli,
but the frequency of S-cdA → G dropped in
pol IV-deficient strain, especially when being SOS induced. This suggests
that pol IV plays a role in S-cdA → G mutations.
MF increased significantly in pol II-deficient strain, suggesting
pol II’s likely role in error-free translesion synthesis. Primer
extension and steady-state kinetic studies using pol IV, exo-free
Klenow fragment (KF (exo–)), and Dpo4 were performed
to further assess the replication efficiency and fidelity of S-cdA and S-cdG. Primer extension by pol
IV mostly stopped before the lesion, although a small fraction was
extended opposite the lesion. Kinetic studies showed that pol IV incorporated
dCMP almost as efficiently as dTMP opposite S-cdA,
whereas it incorporated the correct nucleotide dCMP opposite S-cdG 10-fold more efficiently than any other dNMP. Further
extension of each lesion containing pair, however, was very inefficient.
These results are consistent with the role of pol IV in S-cdA → G mutations in E. coli. KF (exo–) was also strongly blocked by both lesions, but it
could slowly incorporate the correct nucleotide opposite them. In
contrast, Dpo4 could extend a small fraction of the primer to a full-length
product on both S-cdG and S-cdA
templates. Dpo4 incorporated dTMP preferentially opposite S-cdA over the other dNMPs, but the discrimination was only
2- to 8-fold more proficient. Further extension of the S-cdA:T and S-cdA:C pair was not much different.
For S-cdG, conversely, the wrong nucleotide, dTMP,
was incorporated more efficiently than dCMP, although one-base extension
of the S-cdG:T pair was less efficient than the S-cdG:C pair. S-cdG, therefore, has the
propensity to cause G → A transition, as was reported to occur
in E. coli. The results of this study are consistent
with the strong replication blocking nature of S-cdA
and S-cdG, and their ability to initiate error-prone
synthesis by Y-family DNA polymerases.
Collapse
Affiliation(s)
- Varsha Pednekar
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
11
|
Guerrero CR, Wang J, Wang Y. Induction of 8,5'-cyclo-2'-deoxyadenosine and 8,5'-cyclo-2'-deoxyguanosine in isolated DNA by Fenton-type reagents. Chem Res Toxicol 2013; 26:1361-6. [PMID: 23961697 DOI: 10.1021/tx400221w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure of aqueous solutions of DNA to X- or γ-rays, which induces the hydroxyl radical as one of the major reactive oxygen species (ROS), can result in the generation of a battery of single-nucleobase and bulky DNA lesions. These include the (5'R) and (5'S) diastereomers of 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG), which were also found to be present at appreciable levels in DNA isolated from mammalian cells and tissues. However, it remains unexplored how efficiently the cdA and cdG can be induced by Fenton-type reagents. By employing HPLC coupled with tandem mass spectrometry (LC-MS/MS/MS) with the use of the isotope-dilution technique, here we demonstrated that treatment of calf thymus DNA with Cu(II) or Fe(II), together with H2O2 and ascorbate, could lead to dose-responsive formation of both the (5'R) and (5'S) diastereomers of cdA and cdG, though the yields of cdG were 2-4 orders of magnitude lower than that of 8-oxo-7,8-dihydro-2'-deoxyguanosine. This result suggests that the Fenton reaction may constitute an important endogenous source for the formation of the cdA and cdG. Additionally, the (5'R) diastereomers of cdA and cdG were induced at markedly higher levels than the (5'S) counterparts. This latter finding, in conjunction with the previous observations of similar or greater levels of the (5'S) than (5'R) diastereomers of the two lesions in mammalian tissues, furnishes an additional line of evidence to support the more efficient repair of the (5'R) diastereomers of the purine cyclonucleosides in mammalian cells.
Collapse
Affiliation(s)
- Candace R Guerrero
- Department of Chemistry-027, University of California, Riverside , California 92521-0403, United States
| | | | | |
Collapse
|
12
|
You C, Swanson AL, Dai X, Yuan B, Wang J, Wang Y. Translesion synthesis of 8,5'-cyclopurine-2'-deoxynucleosides by DNA polymerases η, ι, and ζ. J Biol Chem 2013; 288:28548-56. [PMID: 23965998 DOI: 10.1074/jbc.m113.480459] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Reactive oxygen species can give rise to a battery of DNA damage products including the 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG) tandem lesions. The 8,5'-cyclopurine-2'-deoxynucleosides are quite stable lesions and are valid and reliable markers of oxidative DNA damage. However, it remains unclear how these lesions compromise DNA replication in mammalian cells. Previous in vitro biochemical assays have suggested a role for human polymerase (Pol) η in the insertion step of translesion synthesis (TLS) across the (5'S) diastereomers of cdA and cdG. Using in vitro steady-state kinetic assay, herein we showed that human Pol ι and a two-subunit yeast Pol ζ complex (REV3/REV7) could function efficiently in the insertion and extension steps, respectively, of TLS across S-cdA and S-cdG; human Pol κ and Pol η could also extend past these lesions, albeit much less efficiently. Results from a quantitative TLS assay showed that, in human cells, S-cdA and S-cdG inhibited strongly DNA replication and induced substantial frequencies of mutations at the lesion sites. Additionally, Pol η, Pol ι, and Pol ζ, but not Pol κ, had important roles in promoting replication through S-cdA and S-cdG in human cells. Based on these results, we propose a model for TLS across S-cdA and S-cdG in human cells, where Pol η and/or Pol ι carries out nucleotide insertion opposite the lesion, whereas Pol ζ executes the extension step.
Collapse
|