1
|
Elzagallaai AA, Rieder MJ. Pathophysiology of drug hypersensitivity. Br J Clin Pharmacol 2024; 90:1856-1868. [PMID: 36519187 DOI: 10.1111/bcp.15645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Drug hypersensitivity reactions (DHRs) are type B adverse drug reactions (ADRs) traditionally defined as unpredictable, dose independent and not related to the drug pharmacology. DHRs, also called drug allergy if the immune system involvement is confirmed, represent around one-sixth of all ADRs and can cause major clinical problems due to their vague clinical presentation and irregular time course. Understanding the underlying pathophysiology of DHRs is very important for their diagnosis and management. Multiple layers of evidence exist pointing to the involvement of the immune system in DHRs. Recent data have led to a paradigm shift in our understanding of the exact pathophysiology of these reactions. Numerous hypotheses proposing explanation on how a low molecular weight drug molecule can elicit an immune reaction have been proposed. In addition to the classical "hapten" hypothesis, the reactive metabolite hypothesis, the pharmacological interaction with the immune system (p-i) concept, the danger/injury hypothesis and the altered peptide repertoire hypothesis have been proposed. We here introduce the inflammasome activation hypothesis and the cross-reactivity hypothesis as additional models explaining the pathophysiology of DHRs. Available data supporting these hypotheses are briefly summarized and discussed. We also introduced the cross-reactivity model, which may provide a platform to appreciate the potential role played by other factors leading to the activation of the immune system. We believe that although the drug in question could be the trigger of the reaction, the components of the immune system mediating the reaction do not act in isolation but rather are affected by the proinflammatory milieu occurring at the time of the reaction. This review attempts to summarize the available evidence to further illustrate the pathophysiology of DHRs.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Michael J Rieder
- Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Pediatrics and Physiology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Macchione M, Yoshizaki K, Frias DP, Maier K, Smelan J, Prado CM, Mauad T. Fragrances as a trigger of immune responses in different environments. Toxicol In Vitro 2024; 96:105769. [PMID: 38142785 DOI: 10.1016/j.tiv.2023.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Fragrances can cause allergic skin reactions, expressed as allergic contact dermatitis and reactions in the respiratory tract that range from acute temporary upper airway irritation to obstructive lung disease. These adverse health effects may result from the stimulation of a specific (adaptive) immune response. Th1 cells, which essentially produce interleukin-2 (IL-2) and interferon-γ (IFN-γ), play a key role in allergic contact dermatitis and also on allergic sensitization to common allergens (e.g., nickel and fragrance). It has been shown that fragrance allergy leads to Th2/Th22 production of IL-4, IL-5 and IL-13, controlling the development of IgE and mediating hypersensitivity reactions in the lung, such as asthma. Cytokines released during immune response modulate the expression of cytochrome P450 (CYPs) proteins, which can result in alterations of the pharmacological effects of substances in inflammatory diseases. The mechanisms linking environment and immunity are still not completely understood but it is known that aryl hydrocarbon receptor (AhR) is a sensor with conserved ligand-activated transcription factor, highly expressed in cells that controls complex transcriptional programs which are ligand and cell type specific, with CYPs as targeted genes. This review focuses on these important aspects of immune responses of the skin and respiratory tract cells, describing some in vitro models applied to evaluate the mechanisms involved in fragrance-induced allergy.
Collapse
Affiliation(s)
- M Macchione
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil.
| | - K Yoshizaki
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - D P Frias
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - K Maier
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - J Smelan
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - C M Prado
- Federal University of Sao Paulo, Santos, Brazil
| | - T Mauad
- Laboratory of Experimental Environmental Pathology, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| |
Collapse
|
3
|
Ta GH, Weng CF, Leong MK. Development of a hierarchical support vector regression-based in silico model for the prediction of the cysteine depletion in DPRA. Toxicology 2024; 503:153739. [PMID: 38307191 DOI: 10.1016/j.tox.2024.153739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
Topical and transdermal treatments have been dramatically growing recently and it is crucial to consider skin sensitization during the drug discovery and development process for these administration routes. Various tests, including animal and non-animal approaches, have been devised to assess the potential for skin sensitization. Furthermore, numerous in silico models have been created, providing swift and cost-effective alternatives to traditional methods such as in vivo, in vitro, and in chemico methods for categorizing compounds. In this study, a quantitative structure-activity relationship (QSAR) model was developed using the innovative hierarchical support vector regression (HSVR) scheme. The aim was to quantitatively predict the potential for skin sensitization by analyzing the percent of cysteine depletion in Direct Peptide Reactivity Assay (DPRA). The results demonstrated accurate, consistent, and robust predictions in the training set, test set, and outlier set. Consequently, this model can be employed to estimate skin sensitization potential of novel or virtual compounds.
Collapse
Affiliation(s)
- Giang H Ta
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan
| | - Ching-Feng Weng
- Institute of Respiratory Disease Department of Basic Medical Science Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Max K Leong
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan.
| |
Collapse
|
4
|
Mraz V, Funch AB, Jee MH, Gadsbøll ASØ, Weber JF, Yeung K, Lohmann RKD, Hawkes A, Ødum N, Woetmann A, McKay D, Witherden D, Geisler C, Bonefeld CM. CD100 boosts the inflammatory response in the challenge phase of allergic contact dermatitis in mice. Contact Dermatitis 2023; 89:442-452. [PMID: 37700557 DOI: 10.1111/cod.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Allergic contact dermatitis (ACD) is an inflammatory disease with a complex pathophysiology in which epidermal-resident memory CD8+ T (TRM ) cells play a key role. The mechanisms involved in the activation of CD8+ TRM cells during allergic flare-up responses are not understood. METHODS The expression of CD100 and its ligand Plexin B2 on CD8+ TRM cells and keratinocytes before and after allergen exposure was determined by flow cytometry and RT-qPCR. The role of CD100 in the inflammatory response during the challenge phase of ACD was determined in a model of ACD in CD100 knockout and wild-type mice. RESULTS We show that CD8+ TRM cells express CD100 during homeostatic conditions and up-regulate it following re-exposure of allergen-experienced skin to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene (DNFB). Furthermore, Plexin B2 is up-regulated on keratinocytes following exposure to some contact allergens. We show that loss of CD100 results in a reduced inflammatory response to DNFB with impaired production of IFNγ, IL-17A, CXCL1, CXCL2, CXCL5, and IL-1β and decreased recruitment of neutrophils to the epidermis. CONCLUSION Our study demonstrates that CD100 is expressed on CD8+ TRM cells and is required for full activation of CD8+ TRM cells and the flare-up response of ACD.
Collapse
Affiliation(s)
- Veronika Mraz
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anders B Funch
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, National Allergy Research Center, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Mia H Jee
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Ø Gadsbøll
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Julie F Weber
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Kelvin Yeung
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, National Allergy Research Center, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Rebecca K D Lohmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Alana Hawkes
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Dianne McKay
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Deborah Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Siswina T, Rustama MM, Sumiarsa D, Apriyanti E, Dohi H, Kurnia D. Antifungal Constituents of Piper crocatum and Their Activities as Ergosterol Biosynthesis Inhibitors Discovered via In Silico Study Using ADMET and Drug-Likeness Analysis. Molecules 2023; 28:7705. [PMID: 38067436 PMCID: PMC10708292 DOI: 10.3390/molecules28237705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Along with the increasing resistance of Candida spp. to some antibiotics, it is necessary to find new antifungal drugs, one of which is from the medicinal plant Red Betel (Piper crocatum). The purpose of this research is to isolate antifungal constituents from P. crocatum and evaluate their activities as ergosterol biosynthesis inhibitors via an in silico study of ADMET and drug-likeness analysis. Two new active compounds 1 and 2 and a known compound 3 were isolated, and their structures were determined using spectroscopic methods, while their bioactivities were evaluated via in vitro and in silico studies, respectively. Antifungal compound 3 was the most active compared to 1 and 2 with zone inhibition values of 14.5, 11.9, and 13.0 mm, respectively, at a concentration of 10% w/v, together with MIC/MFC at 0.31/1.2% w/v. Further in silico study demonstrated that compound 3 had a stronger ΔG than the positive control and compounds 1 and 2 with -11.14, -12.78, -12.00, and -6.89 Kcal/mol against ERG1, ERG2, ERG11, and ERG24, respectively, and also that 3 had the best Ki with 6.8 × 10-3, 4 × 10-4, 1.6 × 10-3, and 8.88 μM. On the other hand, an ADMET analysis of 1-3 met five parameters, while 1 had one violation of Ro5. Based on the research data, the promising antifungal constituents of P. crocatum allow P. crocatum to be proposed as a new antifungal candidate to treat and cure infections due to C. albicans.
Collapse
Affiliation(s)
- Tessa Siswina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
- Department of Midwifery, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Mia Miranti Rustama
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| | - Eti Apriyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| | - Hirofumi Dohi
- Graduate School of Horticulture, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan;
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| |
Collapse
|
6
|
Yan G, Rose J, Ellison C, Mudd AM, Zhang X, Wu S. Refine and Strengthen SAR-Based Read-Across by Considering Bioactivation and Modes of Action. Chem Res Toxicol 2023; 36:1532-1548. [PMID: 37594911 PMCID: PMC10523590 DOI: 10.1021/acs.chemrestox.3c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 08/20/2023]
Abstract
Structure-activity relationship (SAR)-based read-across is an important and effective method to establish the safety of a data-poor target chemical (structure of interest (SOI)) using hazard data from structurally similar source chemicals (analogues). Many methods use quantitative similarity scores to evaluate the structural similarity for searching and selecting analogues as well as for evaluating analogue suitability. However, studies suggest that read-across based purely on structural similarity cannot accurately predict the toxicity of an SOI. As mechanistic data become available, we gain a greater understanding of the mode of action (MOA), the relationship between structures and metabolism/bioactivation pathways, and the existence of "activity cliffs" in chemical chain length, which can improve the analogue rating process. For this purpose, the current work identifies a series of classes of chemicals where a small change at a key position can result in a significant change in metabolism and bioactivation pathways and may eventually result in significant changes in chemical toxicity that have a big impact on the suitability of analogues for read-across. Additionally, a series of SAR-based read-across case studies are presented, which cover a variety of chemical classes that commonly link to different toxic endpoints. The case study results indicate that SAR-based read-across can be refined and strengthened by considering MOAs or proposed reactive metabolite formation pathways, which can improve the overall accuracy, consistency, transparency, and confidence in evaluating analogue suitability.
Collapse
Affiliation(s)
- Gang Yan
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| | - Jane Rose
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| | - Corie Ellison
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| | - Ashley M. Mudd
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| | - Xiaoling Zhang
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| | - Shengde Wu
- Global Product
Stewardship, The Procter & Gamble Company, 8700 Mason Montgomery Rd., Mason, Ohio 45040, United States
| |
Collapse
|
7
|
Kim EN, Seo JA, Kim BH, Jeong GS. Defining the reactivity of nanoparticles to peptides through direct peptide reactivity assay (DPRA) using a high pressure liquid chromatography system with a diode array detector. Toxicol Res 2023; 39:485-495. [PMID: 37398568 PMCID: PMC10313635 DOI: 10.1007/s43188-022-00166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 07/04/2023] Open
Abstract
The possibility of inducing skin sensitization reactions following exposure to various chemicals can lead to skin diseases, and the evaluation of skin sensitivity to such substances is very important. However, as animal tests for skin sensitization are prohibited, the OECD Test Guideline 442 C was designated as part of an alternative testing method. Therefore, in this study, the reactivity of cysteine and lysine peptides to nanoparticle substrates was identified through HPLC-DAD analysis according to the skin sensitization animal replacement test method specified in the OECD Test Guideline 442 C. In this study, all criteria for skin sensitization experiments specified in OECD Test Guideline 442 C were satisfied. As a result of analyzing the disappearance rates of cysteine and lysine peptides for the five types of nanoparticle substrates (TiO2, CeO2, Co3O4, NiO, and Fe2O3) using the established analytical method, all were identified as positive. Therefore, our findings suggest that basic data from this technique can contribute to skin sensitization studies by providing the depletion percentage of cysteine and lysine peptides for nanoparticle materials that have not yet been tested for skin sensitization.
Collapse
Affiliation(s)
- Eun-Nam Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Jung-Ah Seo
- Department of Public Health, Keimyung University, Daegu, 42601 Republic of Korea
| | - Bae-Hwan Kim
- Department of Public Health, Keimyung University, Daegu, 42601 Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| |
Collapse
|
8
|
Lina Hagvall L, Munem M, Hoang Philipsen M, Dowlatshahi Pour M, Hedberg Y, Malmberg P. Skin permeation studies of chromium species - Evaluation of a reconstructed human epidermis model. Toxicol In Vitro 2023:105636. [PMID: 37380007 DOI: 10.1016/j.tiv.2023.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
A reconstructed human epidermis (RHE) model, the EpiDerm, was investigated and compared to human skin ex vivo regarding tissue penetration and distribution of two chromium species, relevant in both occupational and general exposure in the population. Imaging mass spectrometry was used in analysis of the sectioned tissue. The RHE model gave similar results compared to human skin ex vivo for skin penetration of CrVI. However, the penetration of CrIII into the tissue of the RHE model compared to human skin ex vivo differed markedly, such that in the RHE model the CrIII species accumulated in the tissue layer corresponding to stratum corneum whereas in human skin ex vivo, the CrIII species penetrated evenly through the skin tissue. Further, skin lipids such as cholesterol were less abundant in the RHE model compared to the human skin tissue. Results presented here indicate that the RHE models do not possess the same fundamental properties as human skin tissue. As the RHE models appear to be able to give false negative results, experiments using RHE models for the study of skin penetration should be evaluated with caution.
Collapse
Affiliation(s)
- L Lina Hagvall
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden.
| | - M Munem
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - M Hoang Philipsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - M Dowlatshahi Pour
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Y Hedberg
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada; Surface Science Western, The University of Western Ontario, 999 Collip Circle, London, Ontario N6G 0J3, Canada; Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
| | - P Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
9
|
Aubry L, Vallion R, Salman S, Damiens MH, Ferret PJ, Kerdine-Römer S. Ethylhexadecyldimethylammonium bromide, a quaternary ammonium compound, controls inflammatory response through NRF2 pathway in a human immortalized keratinocyte cell line. FRONTIERS IN TOXICOLOGY 2023; 5:1132020. [PMID: 37089166 PMCID: PMC10117438 DOI: 10.3389/ftox.2023.1132020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Many everyday products contain quaternary ammonium compounds (QAC) and some of them are known to be skin irritants such as benzalkonium chloride. Others, such as didecyldimethylammonium chloride, have been shown to cause allergic contact dermatitis. Ethylhexadecyldimethylammonium bromide (EHD) is a QAC for which sensitization potential is not clearly known. Therefore, we have studied its mechanism in human keratinocytes (KC), the main cells of the epidermis. We used the well-described human KC cell line KERTr exposed to EHD, cinnamaldehyde (CinA), a well-known skin sensitizer, and a mixture of both. Since chemical sensitizers are known to activate the transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2), leading to cellular detoxification and suppressed proinflammatory cytokines, protein or mRNA expression of NRF2 pathway-related enzymes and pro-inflammatory cytokines were investigated by Western blot and RT-qPCR. The activity of the NRF2 pathway on inflammation was studied by RT-qPCR in NRF2-invalidated KERTr cells. We showed that EHD cannot induce the NRF2 pathway, unlike contact sensitizers like CinA. EHD triggers an inflammatory response by inducing the mRNA expression of pro-inflammatory cytokines such as IL-1β or IL-6. Moreover, mixing EHD and CinA inhibits the effect of CinA on NRF2 expression and mitigates the inflammatory response induced by EHD alone. EHD treatment of KERTr cells in which NRF2 has been invalidated showed an exacerbation of the inflammatory response at the transcriptional level. Hence, EHD may elicit an inflammatory response in KC via the NF-κB pathway, which could lead to irritation when applied to the skin. This inflammation is negatively controlled by the basal activity of the NRF2 pathway.
Collapse
Affiliation(s)
- Lise Aubry
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Orsay, France
| | - Romain Vallion
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Orsay, France
| | - Sara Salman
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Orsay, France
| | - Marie-Hélène Damiens
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Orsay, France
| | | | - Saadia Kerdine-Römer
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Orsay, France
- *Correspondence: Saadia Kerdine-Römer,
| |
Collapse
|
10
|
Wang CC, Wang SS, Liao CL, Tsai WR, Tung CW. Reconfiguring the online tool of SkinSensPred for predicting skin sensitization of pesticides. JOURNAL OF PESTICIDE SCIENCE 2022; 47:184-189. [PMID: 36514692 PMCID: PMC9716044 DOI: 10.1584/jpestics.d22-043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 06/17/2023]
Abstract
Adverse outcome pathway (AOP)-based computational models provide state-of-the-art prediction for human skin sensitizers and are promising alternatives to animal testing. However, little is known about their applicability to pesticides due to scarce pesticide data for evaluation. Moreover, pesticides traditionally have been tested on animals without human data, making validation difficult. Direct application of AOP-based models to pesticides may be inappropriate since their original applicability domains were designed to maximize reliability for human response prediction on diverse chemicals but not pesticides. This study proposed to identify a consensus chemical space with concordant human responses predicted by the SkinSensPred online tool and animal testing data to reduce animal testing. The identified consensus chemical space for non-sensitizers achieved high concordance of 85% and 100% for the cross-validation and independent test, respectively. The reconfigured SkinSensPred can be applied as the first-tier tool for identifying non-sensitizers to reduce. animal testing for pesticides by 19.6%.
Collapse
Affiliation(s)
- Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University
| | - Shan-Shan Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes
| | - Chun-Lin Liao
- Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture
| | - Wei-Ren Tsai
- Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes
- Graduate Institute of Data Science, College of Management, Taipei Medical University
| |
Collapse
|
11
|
Srour H, Gosset A, Moussallieh FM, Elbayed K, Giménez-Arnau E, Lepoittevin JP. Synthesis and In Situ Behavior of 1,4- and 2,5-( 13C) Isotopomers of p-Phenylenediamine in Reconstructed Human Epidermis Using High Resolution Magic Angle Spinning NMR. Chem Res Toxicol 2022; 35:1881-1892. [PMID: 35976686 DOI: 10.1021/acs.chemrestox.2c00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p-Phenylenediamine (PPD) has been classified as a strong skin allergen, but when it comes to toxicological concerns, benzoquinone diamine (BQDI), the primary oxidation derivative of PPD, is frequently considered and was shown to covalently bind nucleophilic residues on model peptides. However, tests in solution are far from providing a reliable model, as the cutaneous metabolism of PPD is not covered. We now report the synthesis of two 13C substituted isotopomers of PPD, 1,4-(13C)p-phenylenediamine 1 and 2,5-(13C)p-phenylenediamine 2, and the investigation of their reactivity in reconstructed human epidermis (RHE) using the high resolution magic angle spinning (HRMAS) NMR technique. RHE samples were first treated with 1 or 2 and incubated for 1 to 48 h. Compared to the control, spectra clearly showed only the signals of 1 or 2 gradually decreasing with time to disappear after 48 h of incubation. However, the culture media of RHE incubated with 1 for 1 and 24 h, respectively, showed the presence of both monoacetylated- and diacetylated-PPD as major products. Therefore, the acetylation reaction catalyzed by N-acetyltransferase (NAT) enzymes appeared to be the main process taking place in RHE. With the aim of increasing the reactivity by oxidation, 1 and 2 were treated with 0.5 equiv of H2O2 prior to their application to RHE and incubated for different times. Under these conditions, new peaks having close chemical shifts to those of PPD-cysteine adducts previously observed in solution were detected. Under such oxidative conditions, we were thus able to detect and quantify cysteine adducts in RHE (maximum of 0.2 nmol/mg of RHE at 8 h of incubation) while no reaction with other nucleophilic amino acid residues could be observed.
Collapse
Affiliation(s)
- Hassan Srour
- University of Strasbourg, CNRS, Institute of Chemistry UMR 7177, F-67081 Strasbourg Cedex, France
| | - Alexis Gosset
- University of Strasbourg, CNRS, Institute of Chemistry UMR 7177, F-67081 Strasbourg Cedex, France
| | | | - Karim Elbayed
- University of Strasbourg, CNRS, ICube UMR 7357, F-67412 Illkirch Cedex, France
| | - Elena Giménez-Arnau
- University of Strasbourg, CNRS, Institute of Chemistry UMR 7177, F-67081 Strasbourg Cedex, France
| | - Jean-Pierre Lepoittevin
- University of Strasbourg, CNRS, Institute of Chemistry UMR 7177, F-67081 Strasbourg Cedex, France
| |
Collapse
|
12
|
Sahli F, Vileno B, Gourlaouen C, Giménez-Arnau E. Autoxidized citronellol: Free radicals as potential sparkles to ignite the fragrance induced skin sensitizing pathway. Food Chem Toxicol 2022; 166:113201. [PMID: 35671905 DOI: 10.1016/j.fct.2022.113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Citronellol, one of the most used fragrance compounds worldwide, is one ingredient of Fragrance Mix II used to assess skin allergy to fragrances in dermatitis patients. Pure citronellol is non-allergenic. Main issue is it autoxidizes when exposed to air becoming then allergenic. The increased skin sensitizing potency of air-exposed citronellol has been attributed to the hydroperoxides detected at high concentrations in the oxidation mixtures. It has been postulated that such hydroperoxides can give rise to specific antigens, although chemical mechanisms involved and the pathogenesis are far from being unraveled. Hydroperoxides are believed to react with skin proteins through mechanisms involving radical intermediates. Here, insights on the potential radicals involved in skin sensitization to citronellol hydroperoxides are given. The employed tool is a multispectroscopic approach based on (i) electron paramagnetic resonance and spin trapping, that confirmed the formation of oxygen- and carbon-radicals when exposing reconstructed human epidermis to concentrations of hydroperoxides close to those used for patch testing patients with air-oxidized citronellol; (ii) liquid chromatography-mass spectrometry, that proved the reaction with amino acids such as cysteine and histidine, known to be involved in radical processes and (iii) density functional theory calculations, that gave an overview on the preferential paths for radical degradation.
Collapse
Affiliation(s)
- Fatma Sahli
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Elena Giménez-Arnau
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France.
| |
Collapse
|
13
|
Goksøyr L, Funch AB, Okholm AK, Theander TG, de Jongh WA, Bonefeld CM, Sander AF. Preclinical Efficacy of a Capsid Virus-like Particle-Based Vaccine Targeting IL-1β for Treatment of Allergic Contact Dermatitis. Vaccines (Basel) 2022; 10:vaccines10050828. [PMID: 35632584 PMCID: PMC9143278 DOI: 10.3390/vaccines10050828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
Hypersensitivity to a contact allergen is one of the most abundant forms of inflammatory skin disease. Today, more than 20% of the general population are sensitized to one or more contact allergens, making this disease an important healthcare issue, as re-exposure to the allergen can initiate the clinical disease termed allergic contact dermatitis (ACD). The current standard treatment using corticosteroids is effective, but it has side effects when used for longer periods. Therefore, there is a need for new alternative therapies for severe ACD. In this study, we used the versatile Tag/Catcher AP205 capsid virus-like particle (cVLP) vaccine platform to develop an IL-1β-targeted vaccine and to assess the immunogenicity and in vivo efficacy of the vaccine in a translational mouse model of ACD. We show that vaccination with cVLPs displaying full-length murine IL-1β elicits high titers of neutralizing antibodies, leading to a significant reduction in local IL-1β levels as well as clinical symptoms induced by treatment with 1-Fluoro-2,4-dinitrobenzene (DNFB). Moreover, we show that a single amino acid mutation in muIL-1β reduces the biological activity while maintaining the ability to induce neutralizing antibodies. Collectively, the data suggest that a cVLP-based vaccine displaying full-length IL-1β represents a promising vaccine candidate for use as an alternative treatment modality against severe ACD.
Collapse
Affiliation(s)
- Louise Goksøyr
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.G.); (A.K.O.); (T.G.T.)
- AdaptVac Aps, 2200 Copenhagen, Denmark;
| | - Anders B. Funch
- LEO Foundation Skin Immunology Research Center, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (A.B.F.); (C.M.B.)
| | - Anna K. Okholm
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.G.); (A.K.O.); (T.G.T.)
| | - Thor G. Theander
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.G.); (A.K.O.); (T.G.T.)
| | | | - Charlotte M. Bonefeld
- LEO Foundation Skin Immunology Research Center, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (A.B.F.); (C.M.B.)
| | - Adam F. Sander
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (L.G.); (A.K.O.); (T.G.T.)
- AdaptVac Aps, 2200 Copenhagen, Denmark;
- Correspondence:
| |
Collapse
|
14
|
Quantin P, Stricher M, Catoire S, Ficheux H, Egles C. Dermatokinetics: Advances and Experimental Models, Focus on Skin Metabolism. Curr Drug Metab 2022; 23:340-354. [PMID: 35585827 DOI: 10.2174/1389200223666220517114004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Numerous dermal contact products, such as drugs or cosmetics, are applied on the skin, the first protective barrier to their entrance into the organism. These products contain various xenobiotic molecules that can penetrate the viable epidermis. Many studies have shown that keratinocyte metabolism could affect their behavior by biotransformation. While aiming for detoxification, toxic metabolites can be produced. These metabolites may react with biological macromolecules often leading to sensitization reactions. After passing through the epidermis, xenobiotics can reach the vascularized dermis and therefore be bioavailable and distributed into the entire organism. To highlight these mechanisms, dermatokinetics, based on the concept of pharmacokinetics, has been developed recently. It provides information on the action of xenobiotics that penetrate the organism through the dermal route. The purpose of this review is first to describe and synthesize the dermatokinetics mechanisms to consider when assessing the absorption of a xenobiotic through the skin. We focus on skin absorption and specifically on skin metabolism, the two main processes involved in dermatokinetics. In addition, experimental models and methods to assess dermatokinetics are described and discussed to select the most relevant method when evaluating, in a specific context, dermatokinetics parameters of a xenobiotic. We also discuss the limits of this approach as it is notably used for risk assessment in the industry where scenario studies generally focus only on one xenobiotic and do not consider interactions with the rest of the exposome. The hypothesis of adverse effects due to the combination of chemical substances in contact with individuals and not to a single molecule are being increasingly studied and embraced in the scientific community.
Collapse
Affiliation(s)
- Paul Quantin
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| | - Mathilde Stricher
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | | | - Hervé Ficheux
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | - Christophe Egles
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| |
Collapse
|
15
|
Ndreu L, Sasse S, Karlberg AT, Karlsson I. Haptenation of Macrophage Migration Inhibitory Factor: A Potential Biomarker for Contact Hypersensitivity. FRONTIERS IN TOXICOLOGY 2022; 4:856614. [PMID: 35465102 PMCID: PMC9019732 DOI: 10.3389/ftox.2022.856614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The immunological response in contact hypersensitivity is incited by small electrophilic compounds, known as haptens, that react with endogenous proteins after skin absorption. However, the identity of hapten-modified proteins seen as immunogenic remains as yet largely unknown. In a recent study, we have for the first time identified a hapten-modified protein in the local lymph nodes of mice treated topically with the model hapten tetramethylrhodamine isothiocyanate (TRITC). The TRITC modification was located on the N-terminal proline of the protein macrophage migration inhibitory factor (MIF). The focus of the current study was to investigate the presence of the same hapten-protein conjugate in blood samples from mice treated topically with TRITC. Furthermore, TRITC modifications of the two major blood proteins, namely hemoglobin (Hb) and albumin (Alb), as well as TRITC modifications of MIF other than the N-terminal proline, were examined. Following incubation with different molar ratios of TRITC, a proteomic approach was applied to characterize conjugate formation of the three aforementioned proteins, using high resolution mass spectrometry (HRMS). The targeted screening of the TRITC-treated mice blood and lymph node samples for these sites led to the identification of only the same TRITC-MIF conjugate previously detected in the lymph nodes. No Hb and Alb conjugates were detected. Quantification of both the TRITC-modified and unmodified N-terminal peptide of MIF in blood and lymph node samples gave interesting insights of MIF’s role in murine contact hypersensitivity. Incubation of MIF with four different haptens encompassing different reactivity mechanisms and potencies, showed adduct formation at different amino acid residues, suggesting that MIF can be the preferred target for a wide variety of haptens. The present study provides essential progress toward understanding of hapten-protein conjugate formation in contact hypersensitivity and identifies hapten-modified MIF as a potential biomarker for this condition. Further investigation of MIF as a target protein can be a next step to determine if MIF is a biomarker that can be used to develop better diagnostic tools and targeted therapeutics for individuals with allergic contact dermatitis.
Collapse
Affiliation(s)
- Lorena Ndreu
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Samantha Sasse
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Isabella Karlsson
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
- *Correspondence: Isabella Karlsson,
| |
Collapse
|
16
|
Klimek L. [Allergic reactions to bioimplants]. HNO 2022; 70:361-370. [PMID: 35344067 DOI: 10.1007/s00106-022-01173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bioimplants are used in a variety of ways in otorhinolaryngology, most commonly in facial reconstructive surgery, cochlear implants (CI), bone-anchored hearing aids, and partial/total ossicular replacement prostheses (PORP/TORP), but also for tympanic drainage, laryngeal cannula, voice prostheses after laryngectomy, etc., and in otorhinolaryngology-related procedures as dental implants in dentistry. METHODS A literature search was performed to analyze the immunology of allergic reactions to bioimplants and to determine the available evidence by searching Medline, PubMed, and national and international study and guideline registries and the Cochrane Library. Human studies published in the period up to and including 12/2021 were considered. RESULTS Based on the international literature and previous experience, a review of allergies to bioimplants in otolaryngology is presented. CONCLUSION Otorhinolaryngologists should always consider the possibility of allergic reactions when inserting allogeneic materials, particularly, but not only, when using bioimplants.
Collapse
Affiliation(s)
- L Klimek
- Zentrum für Rhinologie und Allergologie, An den Quellen 10, 65183, Wiesbaden, Deutschland.
| |
Collapse
|
17
|
Vileno B, Port-Lougarre Y, Giménez-Arnau E. Electron paramagnetic resonance and spin trapping to detect free radicals from allergenic hydroperoxides in contact with the skin: from the molecule to the tissue. Contact Dermatitis 2022; 86:241-253. [PMID: 34982482 DOI: 10.1111/cod.14037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
A major research topic consists of revealing the contribution of radical-mediated reactions in dermatological diseases related to xenobiotic-induced stress, to succeed risk assessment procedures protecting producers and consumers. Allergic contact dermatitis is the clinically relevant consequence of skin sensitization, one of the most critical occupational and environmental health issues related to xenobiotics exposure. The first key event identified for the skin sensitization process to a chemical is its aptitude to react with epidermal proteins and form antigenic structures that will further trigger the immune response. Many chemical sensitizers are suspected to react through mechanisms involving radical intermediates. This review focuses on recent progress we have accomplished over the last few years studying radical intermediates derived from skin sensitizing chemicals by electron paramagnetic resonance in combination with the spin trapping technique. Our work is carried out "from the molecule", performing studies in solution, "to the tissue", by the development of a methodology on a reconstructed human epidermis model, very close in terms of histology and metabolic/enzymatic activity to real human epidermis, that can be used as suitable biological tissue model. The benefits are to test chemicals under conditions close to human use and real-life sensitization exposures and benefit from the 3D microenvironment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bertrand Vileno
- POMAM Laboratory, CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, Strasbourg, France
| | - Yannick Port-Lougarre
- Dermatochemistry Laboratory, CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Karlberg AT, Lepoittevin JP. One hundred years of allergic contact dermatitis due to oxidized terpenes: What we can learn from old research on turpentine allergy. Contact Dermatitis 2021; 85:627-636. [PMID: 34453446 DOI: 10.1111/cod.13962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
Although in recent years the focus on sensitizing terpene oxidation products has been on oxidized limonene and linalool, the autoxidation of terpenes in relation to allergic contact dermatitis is not new and dates back to the early part of the 20th century with the use of turpentine causing occupational contact dermatitis in painters. This review is written in a way as to allow us to get closer to the work of the scientists in earlier days, to participate in the successes, and also to observe the weak points. The researchers concluded that the main culprit in Scandinavian turpentine was Δ3 -carene hydroperoxides. This explains its high sensitizing effect compared with French turpentine which is of the Iberian type with no or only traces of Δ3 -carene. Historical exposure to turpentine showed that ending the industrial exposure stopped the occupational skin sensitization. Patch test studies demonstrated that monoterpene hydroperoxides, far from being an obsolete source of contact allergy solely related to turpentine, is a common cause of contact allergy in the population. A hundred years of extensive chemical and clinical studies worldwide should be sufficient to meet the evidence requirement regarding allergic contact dermatitis caused by terpenes. HIGHLIGHTS: The autoxidation of terpenes in relation to allergic contact dermatitis is not new and dates back to the early part of the 20th century with the use of turpentine. The main culprit in Scandinavian turpentine was Δ3 -carene hydroperoxides. This explains its high sensitizing effect compared with French turpentine with no or only traces of Δ3 -carene. Recent patch test studies demonstrated that monoterpene hydroperoxides, far from being an obsolete source of contact allergy solely related to turpentine, is a common cause of contact allergy in the population.
Collapse
Affiliation(s)
- Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
19
|
Skin permeation of nickel, cobalt and chromium salts in ex vivo human skin, visualized using mass spectrometry imaging. Toxicol In Vitro 2021; 76:105232. [PMID: 34365006 DOI: 10.1016/j.tiv.2021.105232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Skin permeation and distribution of three of the most common skin sensitizers was investigated using a previously developed animal-free exposure method combined with imaging mass spectrometry. Nickel, cobalt, and chromium (III) salts were dissolved in a buffer and exposed to human skin ex vivo, to be analyzed using time of flight secondary ion mass spectrometry (ToF-SIMS). Our findings demonstrate that metal haptens mainly accumulated in the stratum corneum, however all three metal sensitizers could also be detected in the epidermis. Cobalt and chromium (III) species penetrated into the epidermis to a larger extent than nickel species. The degree of penetration into the epidermis is suggested to be affected by the sensitization potency of the metal salts, as well as their speciation, i.e. the amount of the respective metal present in the solution as bioaccessible and solubilised ions. Our method provided permeation profiles in human skin for known sensitizers, on a level of detail that is not possible to achieve by other means. The findings show that the permeation profiles are different, despite these sensitizers being all metal ions and common causes of contact allergy. Studying skin uptake by only considering penetration through the skin might therefore not give accurate results.
Collapse
|
20
|
Arnesdotter E, Rogiers V, Vanhaecke T, Vinken M. An overview of current practices for regulatory risk assessment with lessons learnt from cosmetics in the European Union. Crit Rev Toxicol 2021; 51:395-417. [PMID: 34352182 DOI: 10.1080/10408444.2021.1931027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Risk assessments of various types of chemical compounds are carried out in the European Union (EU) foremost to comply with legislation and to support regulatory decision-making with respect to their safety. Historically, risk assessment has relied heavily on animal experiments. However, the EU is committed to reduce animal experimentation and has implemented several legislative changes, which have triggered a paradigm shift towards human-relevant animal-free testing in the field of toxicology, in particular for risk assessment. For some specific endpoints, such as skin corrosion and irritation, validated alternatives are available whilst for other endpoints, including repeated dose systemic toxicity, the use of animal data is still central to meet the information requirements stipulated in the different legislations. The present review aims to provide an overview of established and more recently introduced methods for hazard assessment and risk characterisation for human health, in particular in the context of the EU Cosmetics Regulation (EC No 1223/2009) as well as the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation (EC 1907/2006).
Collapse
Affiliation(s)
- Emma Arnesdotter
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Development of quantitative model of a local lymph node assay for evaluating skin sensitization potency applying machine learning CatBoost. Regul Toxicol Pharmacol 2021; 125:105019. [PMID: 34311055 DOI: 10.1016/j.yrtph.2021.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 06/13/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022]
Abstract
The estimated concentrations for a stimulation index of 3 (EC3) in murine local lymph node assay (LLNA) is an important quantitative value for determining the strength of skin sensitization to chemicals, including cosmetic ingredients. However, animal testing bans on cosmetics in Europe necessitate the development of alternative testing methods to LLNA. A machine learning-based prediction method can predict complex toxicity risks from multiple variables. Therefore, we developed an LLNA EC3 regression model using CatBoost, a new gradient boosting decision tree, based on the reliable Cosmetics Europe database which included data for 119 substances. We found that a model using in chemico/in vitro tests, physical properties, and chemical information associated with key events of skin sensitization adverse outcome pathway as variables showed the best performance with a coefficient of determination (R2) of 0.75. In addition, this model can indicate the variable importance as the interpretation of the model, and the most important variable was associated with the human cell line activation test that evaluate dendritic cell activation. The good performance and interpretability of our LLNA EC3 predictable regression model suggests that it could serve as a useful approach for quantitative assessment of skin sensitization.
Collapse
|
22
|
Chipinda I, Anderson SE, Siegel PD. Laboratory Techniques for Identifying Causes of Allergic Dermatitis. Immunol Allergy Clin North Am 2021; 41:423-438. [PMID: 34225898 DOI: 10.1016/j.iac.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This article reviews the laboratory's role in identifying causes of chemical-induced allergic dermatitis. Several topics will be discussed. Allergen hazard identification refers to testing of chemicals for their sensitization potential. Animal-based, in silico, in chemico, and in vitro tests have been developed to identify the skin sensitization hazard of potential chemical allergens, but only a few of these are accepted by regulatory agencies. Laboratory investigations have also evaluated the stability of several commercially available allergic contact dermatitis patch tests. Such studies are considered product testing and are usually conducted in analytical chemistry laboratories.
Collapse
Affiliation(s)
- Itai Chipinda
- Global Product Stewardship & Toxicology, Phillips 66, Bartlesville, OK 74003, USA
| | - Stacey E Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | - Paul D Siegel
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
23
|
Scheinman PL, Vocanson M, Thyssen JP, Johansen JD, Nixon RL, Dear K, Botto NC, Morot J, Goldminz AM. Contact dermatitis. Nat Rev Dis Primers 2021; 7:38. [PMID: 34045488 DOI: 10.1038/s41572-021-00271-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Contact dermatitis (CD) is among the most common inflammatory dermatological conditions and includes allergic CD, photoallergic CD, irritant CD, photoirritant CD (also called phototoxic CD) and protein CD. Occupational CD can be of any type and is the most prevalent occupational skin disease. Each CD type is characterized by different immunological mechanisms and/or requisite exposures. Clinical manifestations of CD vary widely and multiple subtypes may occur simultaneously. The diagnosis relies on clinical presentation, thorough exposure assessment and evaluation with techniques such as patch testing and skin-prick testing. Management is based on patient education, avoidance strategies of specific substances, and topical treatments; in severe or recalcitrant cases, which can negatively affect the quality of life of patients, systemic medications may be needed.
Collapse
Affiliation(s)
- Pamela L Scheinman
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marc Vocanson
- CIRI - Centre International de Recherche en Infectiologie, INSERM, U1111; Univ Lyon; Université Claude Bernard Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR, 5308, Lyon, France
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jeanne Duus Johansen
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rosemary L Nixon
- Skin Health Institute - Occupational Dermatology Research and Education Centre, Carlton, VIC, Australia
| | - Kate Dear
- Skin Health Institute - Occupational Dermatology Research and Education Centre, Carlton, VIC, Australia
| | - Nina C Botto
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Johanna Morot
- CIRI - Centre International de Recherche en Infectiologie, INSERM, U1111; Univ Lyon; Université Claude Bernard Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR, 5308, Lyon, France
| | - Ari M Goldminz
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Stefaniak AB, Wade EE, Lawrence RB, Arnold ED, Virji MA. Particle transfer and adherence to human skin compared with cotton glove and pre-moistened polyvinyl alcohol exposure sampling substrates. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:585-598. [PMID: 33720803 PMCID: PMC8276042 DOI: 10.1080/10934529.2021.1899524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Measurement of skin exposure to particles using interception (e.g., cotton gloves) and removal (e.g., wiping) sampling techniques could be inaccurate because these substrates do not have the same topography and adhesion characteristics as skin. The objective of this study was to compare particle transfer and adherence to cotton gloves, cotton gloves with artificial sebum, and a pre-moistened polyvinyl alcohol (PVA) material with bare human skin (fingertip, palm). Experiments were performed with aluminum oxide powder under standardized conditions for three types of surfaces touched, applied loads, contact times, and powder mass levels. In the final mixed model, the fixed effects of substrate, surface type, applied load, and powder mass and their significant two-way interaction terms explained 71% (transfer) and 74% (adherence) of the observed total variance in measurements. For particle mass transfer, compared with bare skin, bias was -77% (cotton glove with sebum) to +197% (PVA material) and for adherence bias ranged from -40% (cotton glove) to +428% (PVA material), which indicated under- and over-sampling by these substrates, respectively. Dermal exposure assessment would benefit from sampling substrates that better reflect human skin characteristics and more accurately estimate exposures. Mischaracterization of dermal exposure has important implications for exposure and risk assessment.
Collapse
Affiliation(s)
- Aleksandr B Stefaniak
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Eleanor E Wade
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Robert B Lawrence
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Elizabeth D Arnold
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - M Abbas Virji
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
25
|
Olusegun OA, Martincigh BS. Allergic contact dermatitis: a significant environmental and occupational skin disease. Int J Dermatol 2021; 60:1082-1091. [PMID: 33710640 DOI: 10.1111/ijd.15502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/01/2022]
Abstract
This review article seeks to provide an overview of allergic contact dermatitis (ACD) as a significant environmental and occupational skin disease, the phases of ACD, its causes from the occupational and environmental perspectives, its detection, the effects of ACD with respect to the social, psychological, occupational, and financial perspectives, and its cure and/or prevention. Human skin is very sensitive and as the largest organ in the body, it is highly prone to direct and indirect contact with the substances from its environment. The skin reacts to these substances (xenobiotics) differently depending on the individual's tolerance level or threshold. Allergic contact dermatitis is a significant environmental and occupational skin disease that should not be ignored in our society because it can affect the quality of life of an affected individual. There are multiple causes of ACD, and these causes of ACD have been discussed from two perspectives: environmental and occupational. The effects of ACD can be psychological, social, financial, and occupational. There is need for more public enlightenment on the effects of ACD as well as a precise understanding that it is not a contagious disease so as to significantly reduce the psychological and social effects of ACD on these patients.
Collapse
Affiliation(s)
- Olufunmilayo A Olusegun
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
26
|
Basketter DA, Kimber I, Ezendam J. Predictive Tests for Irritants and Allergens: Human, Animal, and In Vitro Tests. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Identification of Allergens in Complex Mixtures and Products. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Olusegun OA, Martincigh BS. Understanding the Role of pH in Protein‐Haptenation Reaction: Kinetics and Mechanisms of the Protein‐Haptenation Reactions of Selected Quinones Present in the Environment. ChemistrySelect 2020. [DOI: 10.1002/slct.202003310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olufunmilayo A. Olusegun
- School of Chemistry and Physics University of KwaZulu-Natal, Westville Campus Private Bag X54001, Durban 4000 South Africa
| | - Bice S. Martincigh
- School of Chemistry and Physics University of KwaZulu-Natal, Westville Campus Private Bag X54001, Durban 4000 South Africa
| |
Collapse
|
29
|
Tokunaga T, Yamamoto G, Takahashi T, Mukumoto M, Sato M, Okamoto M. Sensitive Method for the Identification of Potential Sensitizing Impurities in Reaction Mixtures by Fluorescent Nitrobenzoxadiazole-Labeled Glutathione. Chem Res Toxicol 2020; 33:3001-3009. [PMID: 33256404 DOI: 10.1021/acs.chemrestox.0c00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allergic contact dermatitis is a critical issue in the development of new chemicals. Minor impurities with strong skin-sensitizing properties can be generated as byproducts. However, it is very difficult to identify these skin sensitizers in product mixtures. In this study, fluorescent nitrobenzoxadiazole-labeled glutathione (NBD-GSH) was synthesized to identify small amounts of skin sensitizers in reaction mixtures. Twelve known skin sensitizers and three nonsensitizers were reacted with NBD-GSH. Adducts formed only with the skin sensitizers, which allowed for their detection by a fluorescence detector. Liquid chromatography-mass spectrometry (LC-MS) analyses showed that NBD-GSH reacted with the skin sensitizers via its thiol and amino groups. An adduct of NBD-GSH with the strong skin sensitizer 1-chloro-2,4-dinitrobenzene was detected with a limit of detection of 6 × 10-8 mol/L by high-performance liquid chromatography with fluorescence detection. When a reaction mixture from primary alcohol oxidation was incubated with NBD-GSH, a NBD-GSH adduct formed with skin-sensitizing aldehyde impurities and could be specifically detected by LC-MS with fluorescence detection. This method will be useful for detection and identification of small amounts of skin sensitizers in raw materials, intermediates, reaction mixtures, and end products in the chemical industry.
Collapse
Affiliation(s)
- Takashi Tokunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Gaku Yamamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Teruki Takahashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Makiko Mukumoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Masayuki Sato
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Masahiko Okamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
30
|
Lichter J, Silva E Sousa M, Peter N, Sahli F, Vileno B, Kuresepi S, Gourlaouen C, Giménez-Arnau E, Blömeke B. Skin sensitization to fragrance hydroperoxides: interplay between dendritic cells, keratinocytes and free radicals. Br J Dermatol 2020; 184:1143-1152. [PMID: 33205411 DOI: 10.1111/bjd.19685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Skin sensitization to hydroperoxides (R-OOHs) of the commonly used fragrance terpenes limonene, linalool and citronellol is frequently reported. R-OOHs are believed to initiate the process leading to sensitization and allergic contact dermatitis through mechanisms involving radical intermediates. Thus, radical intermediates, keratinocytes and dendritic cells (DCs) may act in concert to initiate the process. OBJECTIVES To evaluate individual DC activation profiles by R-OOHs in the context of keratinocytes with regard to frequency, specificity and magnitude of upregulation. METHODS We used 2D and 3D cocultures with keratinocytes/reconstructed human epidermis (RHE) and DCs to evaluate cell surface levels of the costimulatory molecules CD86, CD80 and the adhesion molecule CD54 on cocultured DCs. Analysis of radical formation from limonene hydroperoxides in RHE was performed using electron paramagnetic resonance combined with the spin trapping technique. RESULTS R-OOHs induce donor-dependent DC activation. Major differences were found between the limonene-OOHs. Limonene-1-OOH was stronger with respect to both frequency and magnitude of response. Using a 3D coculture model, no DC activation was detected after topical application of 0·2% limonene-OOHs (20 µg cm-2 ), while 1·2% limonene-1-OOH or 2% limonene-2-OOH induced DC activation. Furthermore, we demonstrated differences in the carbon and oxygen radicals formed from the limonene-OOHs using RHE, mimicking what may happen in vivo. CONCLUSIONS We report clear individual differences in DC maturation induced by the most important hydroperoxides. Response rates and magnitude of response both indicate that very small structural alterations in the hydroperoxides are translated into specific DC responses. In addition, we provide more insight into the amounts of hydroperoxides that can activate DCs and induce sensitization.
Collapse
Affiliation(s)
- J Lichter
- Department of Environmental Toxicology, Trier University, Trier, Germany
| | - M Silva E Sousa
- Department of Environmental Toxicology, Trier University, Trier, Germany
| | - N Peter
- Department of Environmental Toxicology, Trier University, Trier, Germany
| | - F Sahli
- Dermatochemistry Laboratory, University of Strasbourg, Institute of Chemistry, CNRS UMR 7177, Strasbourg, France
| | - B Vileno
- POMAM Laboratory, University of Strasbourg, Institute of Chemistry, CNRS UMR 7177, Strasbourg, France.,French EPR Federation of Research, Réseau NAtional de Rpe interDisciplinaire (RENARD, Fédération IR-RPE CNRS #3443), Strasbourg, France
| | - S Kuresepi
- Dermatochemistry Laboratory, University of Strasbourg, Institute of Chemistry, CNRS UMR 7177, Strasbourg, France
| | - C Gourlaouen
- Laboratoire de Chimie Quantique, University of Strasbourg, Institute of Chemistry, CNRS UMR 7177, Strasbourg, France
| | - E Giménez-Arnau
- Dermatochemistry Laboratory, University of Strasbourg, Institute of Chemistry, CNRS UMR 7177, Strasbourg, France
| | - B Blömeke
- Department of Environmental Toxicology, Trier University, Trier, Germany
| |
Collapse
|
31
|
Brites GS, Ferreira I, Sebastião AI, Silva A, Carrascal M, Neves BM, Cruz MT. Allergic contact dermatitis: From pathophysiology to development of new preventive strategies. Pharmacol Res 2020; 162:105282. [PMID: 33161140 DOI: 10.1016/j.phrs.2020.105282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022]
Abstract
As the body's first line of defense, the skin is the organ most frequently exposed to chemicals present in personal hygiene products, household products, or materials used in the work environment. In this context, skin disorders account for more than 40 % of all occupational and work-related diseases, constituting a significant public health burden. Among skin disorders, allergic contact dermatitis (ACD) is the most prevalent occupational disease and the most common form of immunotoxicity in humans. ACD is a T-cell-mediated skin inflammation resulting from the priming and expansion of allergen-specific CD4+ and CD8+ T cells. The clinical condition is characterized by local skin rash, itchiness, redness, swelling, and lesions, being mainly diagnosed by the patch test. Upon ACD diagnosis, avoiding the exposure to the triggering allergen is the mainstay of treatment to prevent future flares. In cases where avoidance is not possible, the use of a standard of care interim treatments such as steroid creams or ointments, barrier creams, and moisturizers are strongly recommended to alleviate symptoms. In this review, we sought to provide the reader with an overview of the pathophysiology of ACD as well as the currently available pharmacological treatment options. Furthermore, a comprehensive outline of several preventive strategies is also provided.
Collapse
Affiliation(s)
- Gonçalo Sousa Brites
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; Center for Neuroscience and Cell Biology - CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Isabel Ferreira
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; Center for Neuroscience and Cell Biology - CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| | | | - Ana Silva
- Center for Neuroscience and Cell Biology - CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Mylene Carrascal
- Center for Neuroscience and Cell Biology - CNC, University of Coimbra, Coimbra, 3004-504, Portugal; Tecnimede Group, Sintra, 2710-089, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; Center for Neuroscience and Cell Biology - CNC, University of Coimbra, Coimbra, 3004-504, Portugal.
| |
Collapse
|
32
|
Ndreu L, Erber LN, Törnqvist M, Tretyakova NY, Karlsson I. Characterizing Adduct Formation of Electrophilic Skin Allergens with Human Serum Albumin and Hemoglobin. Chem Res Toxicol 2020; 33:2623-2636. [PMID: 32875789 PMCID: PMC7582624 DOI: 10.1021/acs.chemrestox.0c00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Skin
(contact) allergy, the most predominant form of immunotoxicity
in humans, is caused by small electrophilic compounds (haptens) that
modify endogenous proteins. Approximately 20% of the general population
in the Western world is affected by contact allergy. Although the
importance of the hapten–protein conjugates is well established
in the initiation of the immunological reaction, not much progress
has been made regarding identification of these conjugates in vivo or exploration of their potential as diagnostic
tools. In this study, the human serum albumin (HSA) and human hemoglobin
(Hb) adductome for three representative contact allergens with different
chemical properties, 1-chloro-2,4-dinitrobenzene (DNCB), 1,2-epoxy-3-phenoxypropane
(PGE), and 2-bromo-2-(bromomethyl)glutaronitrile (MDBGN), were studied.
Plasma and red blood cell lysate were used as a source for HSA and
Hb, respectively. The Direct Peptide Reactivity Assay was used to
investigate adduct formation of MDBGN with nucleophilic moieties and
revealed that MDGBN is converted to 2-methylenepentanedinitrile in
the presence of sulfhydryl groups prior to adduct formation. Following
incubation of HSA and Hb with haptens, an Orbitrap Q Exactive high-resolution
mass spectrometer was used to perform an initial untargeted analysis
to screen for adduct formation, followed by confirmation by targeted
Parallel Reaction Monitoring analysis. Although a subset of adducted
sites was confirmed by targeted analysis, only some of the adducted
peptides showed an increase in the relative amount of the adducted
peptide with an increased concentration of hapten. In total, seven
adduct sites for HSA and eight for Hb were confirmed for DNCB and
PGE. These sites are believed to be the most reactive. Further, three
of the HSA sites (Cys34, Cys62, and Lys190) and six of the Hb sites (subunit α: Val1, His45, His72; subunit β: Cys93, His97, and Cys112) were haptenated already
at the lowest level of hapten to protein molar ratio (0.1:1), indicating
that these sites are the most likely to be modified in vivo. To the best of our knowledge, this is the first time that the adductome
of Hb has been studied in the context of contact allergens. Identification
of the most reactive sites of abundant proteins, such as HSA and Hb,
is the first step toward identification of contact allergy biomarkers
that can be used for biomonitoring and to develop better diagnostic
tools based on a blood sample.
Collapse
Affiliation(s)
- Lorena Ndreu
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Luke N Erber
- Department of Medicinal Chemistry and the College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry and the College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Isabella Karlsson
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
33
|
Roach KA, Anderson SE, Stefaniak AB, Shane HL, Boyce GR, Roberts JR. Evaluation of the skin-sensitizing potential of gold nanoparticles and the impact of established dermal sensitivity on the pulmonary immune response to various forms of gold. Nanotoxicology 2020; 14:1096-1117. [PMID: 32909489 DOI: 10.1080/17435390.2020.1808107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gold nanoparticles (AuNP) are largely biocompatible; however, many studies have demonstrated their potential to modulate various immune cell functions. The potential allergenicity of AuNP remains unclear despite the recognition of gold as a common contact allergen. In these studies, AuNP (29 nm) dermal sensitization potential was assessed via Local Lymph Node Assay (LLNA). Soluble gold (III) chloride (AuCl3) caused lymph node (LN) expansion (SI 10.9), whereas bulk particles (Au, 942 nm) and AuNP did not. Next, the pulmonary immune effects of AuNP (10, 30, 90 µg) were assessed 1, 4, and 8 days post-aspiration. All markers of lung injury and inflammation remained unaltered, but a dose-responsive increase in LN size was observed. Finally, mice were dermally-sensitized to AuCl3 then aspirated once, twice, or three times with Au or AuNP in doses normalized for mass or surface area (SA) to assess the impact of existing contact sensitivity to gold on lung immune responses. Sensitized animals exhibited enhanced responsivity to the metal, wherein subsequent immune alterations were largely conserved with respect to dose SA. The greatest increase in bronchoalveolar lavage (BAL) lymphocyte number was observed in the high dose group - simultaneous to preferential expansion of BAL/LN CD8+ T-cells. Comparatively, the lower SA-based doses of Au/AuNP caused more modest elevations in BAL lymphocyte influx (predominantly CD4+ phenotype), exposure-dependent increases in serum IgE, and selective expansion/activation of LN CD4+ T-cells and B-cells. Overall, these findings suggest that AuNP are unlikely to cause sensitization; however, established contact sensitivity to gold may increase immune responsivity following pulmonary AuNP exposure.
Collapse
Affiliation(s)
- K A Roach
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - S E Anderson
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - A B Stefaniak
- Respiratory Health Division (RHD), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - H L Shane
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - G R Boyce
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - J R Roberts
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
34
|
Mraz V, Geisler C, Bonefeld CM. Dendritic Epidermal T Cells in Allergic Contact Dermatitis. Front Immunol 2020; 11:874. [PMID: 32508820 PMCID: PMC7248261 DOI: 10.3389/fimmu.2020.00874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/16/2020] [Indexed: 01/25/2023] Open
Abstract
Allergic contact dermatitis (ACD) is a common inflammatory skin disease with a prevalence of approximately 20% in the European population. ACD is caused by contact allergens that are reactive chemicals able to modify non-immunogenic self-proteins to become immunogenic proteins. The most frequent contact allergens are metals, fragrances, and preservatives. ACD clinically manifests as pruritic eczematous lesions, erythema, local papules, and oedema. ACD is a T cell-mediated disease, involving both CD4+ and CD8+ T cells. In addition, γδ T cells appear to play an important role in the immune response to contact allergens. However, it is debated whether γδ T cells act in a pro- or anti-inflammatory manner. A special subset of γδ T cells, named dendritic epidermal T cells (DETC), is found in the epidermis of mice and it plays an important role in immunosurveillance of the skin. DETC are essential in sensing the contact allergen-induced stressed environment. Thus, allergen-induced activation of DETC is partly mediated by numerous allergen-induced stress proteins expressed on the keratinocytes (KC). Several stress proteins, like mouse UL-16-binding protein-like transcript 1 (Mult-1), histocompatibility 60 (H60) and retinoic acid early inducible-1 (Rae-1) α-ε family in mice and major histocompatibility complex (MHC) class I-chain-related A (MICA) in humans, are upregulated on allergen-exposed KC. Allergen-induced stress proteins expressed on the KC are consequently recognized by NKG2D receptor on DETC. This review focuses on the role of γδ T cells in ACD, with DETC in the spotlight, and on the role of stress proteins in contact allergen-induced activation of DETC.
Collapse
Affiliation(s)
- Veronika Mraz
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Nishikawa MU, Iwaki M, Tashiro K, Kurose K. Identification of gene expression markers and development of evaluation method using cell-based and RT-PCR-based assay for skin sensitising potential of chemicals. Xenobiotica 2020; 50:1359-1369. [PMID: 32394774 DOI: 10.1080/00498254.2020.1767320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recently, alternatives to animal testing have been used to evaluate skin sensitisers in cosmetic products. However, testing is still complicated and expensive. To develop a simpler, cost-effective and more accurate evaluation method for the skin sensitising chemicals, we employed cell-based and RT-PCR-based assay. Representative sensitiser specific gene expression in THP-1 cells was analysed by microarray. Gene ontology (GO) analysis revealed that 26 genes induced by the sensitisers were associated with immune function. First, seven of the 26 genes were chosen arbitrarily as candidate markers for our sensitisation assay. Then, THP-1 cells were exposed to 13 reference chemicals with known sensitising potential, and real-time RT-PCR assays targeting the candidate marker genes were performed. Among them, six markers were able to properly evaluate the sensitisation potential by classifying the gene induction rates with appropriate criteria. Especially, the results of the assay using TREM1 and TNFRSF12A gene markers showed 100% sensitivity and specificity. An existing test method, h-CLAT, requires a flow cytometer and is complicated to operate. In contrast, our method is relatively simpler and more cost-effective. Therefore, our method is a promising one to evaluate sensitising chemicals.
Collapse
Affiliation(s)
- Maho Ukaji Nishikawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Megumi Iwaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kouichi Kurose
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
36
|
Jeong HY, Lee TH, Lee HJ, Cho JY, Moon JH. Ionization Neutralizes the Allergy-Inducing Property of 3-Pentadecylcatechol: A Urushiol Derivative. J Med Food 2020; 23:793-801. [PMID: 32380887 DOI: 10.1089/jmf.2019.4510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Urushiols are amphipathic compounds found in Rhus verniciflua Stokes that exhibit various biological activities. However, their practical use is very restricted due to their contact dermatitis-inducing property. Therefore, we applied the ionization method to remove the allergenic properties of the urushiols and to increase their usability. One of the natural urushiols, 3-pentadecylcatechol (PDC), was heated for 30 min with a solution of H2O and sodium carbonate (Na2CO3). The reaction product was analyzed by electrospray ionization mass spectrometry (ESI-MS). Ionized PDC with an m/z value of 316.9 and complexed PDCs with Na+ of 1 - 3 atoms with m/z values of 340.8, 365.2, and 380.8 were detected. PDC and ionized PDC (3 μmol/3 mg of Vaseline) treatments were applied on the rear of left ear of Sprague-Dawley rats once daily for 10 days. Erythema and swelling were observed on the ear skin treated with PDC, but not in case of ionized PDC. Compared with control, contact hypersensitivity-related biomarkers (neutrophils, eosinophils, immunoglobulin E, and histamine) in the blood were significantly higher only in the PDC-treated group. In addition, Il-1b, Il-6, Tnfα, and Cox-2 mRNA expression levels were dramatically increased in the ear tissue of PDC-treated rats, but in the ionized PDC-treated group, they were similar to those in the control group. Overall, it was confirmed that the allergenic property of the urushiol PDC was removed by ionization. This method is expected to be useful for preventing allergy induction in cooking and food processing using R. verniciflua Stokes.
Collapse
Affiliation(s)
- Hang Yeon Jeong
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Tae Ho Lee
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyoung Jae Lee
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Hak Moon
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
37
|
Air Particulate Matter Induces Skin Barrier Dysfunction and Water Transport Alteration on a Reconstructed Human Epidermis Model. J Invest Dermatol 2020; 140:2343-2352.e3. [PMID: 32339540 DOI: 10.1016/j.jid.2020.03.971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
Knowing the damage that particulate matter (PM) can cause in skin is important for tightly controlling the release of air pollutants and preventing more serious diseases. This study investigates if such alterations are present in reconstructed human epidermis exposed to coarse air PM. Exposure of reconstructed human epidermis to increasing concentrations (2.2, 8.9, and 17.9 μg/cm2) of standard urban PM over time led to decreased cell viability at 48 hours. The barrier function was shown to be compromised by 24 hours of exposure to high doses (17.9 μg/cm2). Morphological alterations included cytoplasm vacuolization and partial loss of epidermal stratification. Cytokeratin 10, involucrin, loricrin, and filaggrin protein levels were significantly decreased. We confirmed an inflammatory process by IL-1α release and found a significant increase in AQP3 expression. We also demonstrated changes in NOTCH1 and AhR expression of epidermis treated with coarse air PM. The use of hydrogen peroxide altered AQP3 and NOTCH1 expression, and the use of N-acetyl-L-cysteine altered NOTCH1 expression, suggesting that this is a redox-dependent process. These results demonstrate that coarse air PM induces dose-dependent inflammatory response and alterations in protein markers of differentiation and water transport in the epidermis that could ultimately compromise the structural integrity of the skin, promoting or exacerbating various skin diseases.
Collapse
|
38
|
Hagvall L, Prystupa‐Chalkidis K. Contact allergy to oxidized terpenes and occupational contact dermatitis in massage therapists – A case series. Contact Dermatitis 2020; 82:390-392. [DOI: 10.1111/cod.13494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Lina Hagvall
- Department of Dermatology and VenereologyInstitute of Clinical Sciences, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Dermatology and VenereologyRegion Västra Götaland, Sahlgrenska University Hospital Gothenburg Sweden
| | | |
Collapse
|
39
|
An N, Pourzal S, Luccioli S, Vukmanović S. Effects of diet on skin sensitization by nickel, poison ivy, and sesquiterpene lactones. Food Chem Toxicol 2020; 137:111137. [PMID: 31982450 DOI: 10.1016/j.fct.2020.111137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
Skin contact or exposure to sensitizers often occurs as a consequence of occupational exposures (e.g. poison ivy in forestry), wearing jewelry (e.g. nickel), or use of cosmetics (e.g. fragrances). However, many of the known skin sensitizers or their chemical variants are also consumed orally through foods or other sources. Since oral exposure to antigenic substances can lead to tolerance, consumption of sensitizers may impact the development and potency of skin sensitization, especially if the sensitizer is consumed early in life, prior to the first skin contact. To address this issue, we have reviewed human clinical and epidemiological literature relevant to this subject and evaluated whether early oral exposures to relevant sensitizers, or their chemical variants, are associated with reduced prevalence of skin sensitization to three main allergic sensitizers - nickel, urushiols of poison ivy, and sesquiterpene lactones of chrysanthemum and other plants.
Collapse
Affiliation(s)
- Nan An
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), USA
| | - Selma Pourzal
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), USA
| | - Stefano Luccioli
- Office of Compliance (OC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), USA
| | - Stanislav Vukmanović
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), USA.
| |
Collapse
|
40
|
Tsui HC, Ronsmans S, De Sadeleer LJ, Hoet PHM, Nemery B, Vanoirbeek JAJ. Skin Exposure Contributes to Chemical-Induced Asthma: What is the Evidence? A Systematic Review of Animal Models. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:579-598. [PMID: 32400126 PMCID: PMC7224990 DOI: 10.4168/aair.2020.12.4.579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
It is generally assumed that allergic asthma originates primarily through sensitization via the respiratory mucosa, but emerging clinical observations and experimental studies indicate that skin exposure to low molecular weight (LMW) agents, i.e. “chemicals,” may lead to systemic sensitization and subsequently develop asthma when the chemical is inhaled. This review aims to evaluate the accumulating experimental evidence that adverse respiratory responses can be elicited upon inhalation of an LMW chemical sensitizer after previous sensitization by dermal exposure. We systematically searched the PubMed and Embase databases up to April 15, 2017, and conducted forward and backward reference tracking. Animal studies involving both skin and airway exposure to LMW agents were included. We extracted 6 indicators of “selective airway hyper-responsiveness” (SAHR)—i.e. respiratory responses that only occurred in previously sensitized animals—and synthesized the evidence level for each indicator into strong, moderate or limited strength. The summarized evidence weight for each chemical agent was graded into high, middle, low or “not possible to assess.” We identified 144 relevant animal studies. These studies involved 29 LMW agents, with 107 (74%) studies investigating the occurrence of SAHR. Indicators of SAHR included physiological, cytological/histological and immunological responses in bronchoalveolar lavage, lung tissue and airway-draining lymph nodes. Evidence for skin exposure-induced SAHR was present for 22 agents; for 7 agents the evidence for SAHR was inconclusive, but could not be excluded. The ability of a chemical to cause sensitization via skin exposure should be regarded as constituting a risk of adverse respiratory reactions.
Collapse
Affiliation(s)
- Hung Chang Tsui
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Steven Ronsmans
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Laurens J De Sadeleer
- Department of Respiratory Diseases, Unit for Interstitial Lung Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Peter H M Hoet
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
| | - Jeroen A J Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
| |
Collapse
|
41
|
Abstract
In the cosmetics industry, various natural complex mixtures such as botanical extracts and essential oils are used. In addition, finished consumer products may contain a number of constituents of natural origin but many products are derived from organic synthesis too. Hence, finding skin sensitizers within this myriad of chemicals is an arduous task. Nowadays, methods validated by European dedicated instances to evaluate the allergenicity of chemicals are incapable of predicting the sensitization potential of complex mixtures, although research has progressed a lot in this direction recently. In this context, precisely identifying the culprit(s) responsible for skin sensitization in these mixtures is essential for risk assessment. This review is a short summary of approaches that identify allergens in chemical mixtures such as bioassay-guided chemical fractionation, structure–activity relationship studies, and recent methods allowing identification of reactive intermediates in natural extracts exposed to air oxidation. It is shown that substantial progress has been made, although the identification of sensitizers in complex mixtures continues to be puzzling.
Collapse
|
42
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
43
|
Moussallieh F, Moss E, Elbayed K, Lereaux G, Tourneix F, Lepoittevin J. Modifications induced by chemical skin allergens on the metabolome of reconstructed human epidermis: A pilot high‐resolution magic angle spinning nuclear magnetic resonance study. Contact Dermatitis 2019; 82:137-146. [DOI: 10.1111/cod.13415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | - Eric Moss
- Institute of ChemistryCNRS UMR 7177 and University of Strasbourg Strasbourg France
| | - Karim Elbayed
- Laboratoire des Sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube)CNRS UMR 7357 and University of Strasbourg Strasbourg France
| | | | | | | |
Collapse
|
44
|
Verbraucherschutz und Risikobewertung — allergieauslösende Substanzen in Verbraucherprodukten. ALLERGO JOURNAL 2019. [DOI: 10.1007/s15007-019-1901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Jiang SQ, Wu XY, Sun JL, Chen G, Tang R, Li Z, Wei RY, Liang L, Zhou XJ, Chen DL, Li J, Gao H, Zhang J, Zhao ZT. Analysis of nickel distribution by synchrotron radiation X-ray fluorescence in nickel-induced early- and late-phase allergic contact dermatitis in Hartley guinea pigs. Chin Med J (Engl) 2019; 132:1959-1964. [PMID: 31373908 PMCID: PMC6708687 DOI: 10.1097/cm9.0000000000000365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Nickel-induced allergic contact dermatitis (Ni-ACD) is a global health problem. More detailed knowledge on the skin uptake of haptens is required. This study aimed to investigate the penetration process and distribution of nickel in skin tissues with late phase and early phase of Ni-ACD to understand the mechanisms of metal allergy. METHODS Forty Hartley guinea pigs were divided into four groups according to the NiSO4 sensitizing concentration and the NiSO4 challenged concentration: the 5% NiSO4-group, 5% to 10% (sensitization-challenge; late phase group); 10% NiSO4-group, 10% to 10% (sensitization-challenge; early-phase group); and the positive and negative controls. Pathological biopsies were performed on each group. The depth profile of nickel element concentration in the skin of guinea pigs was detected by synchrotron radiation micro X-ray fluorescence spectroscopy (SR-μ-XRF) and micro X-ray absorption near-edge spectroscopy (μ-XANES). RESULTS In each section, the nickel element concentration in both the 5% NiSO4-group and 10% NiSO4-group was significantly higher than that in the negative control group. In the upper 300-μm section of skin for the early phase group, the nickel element concentration was significantly higher than that in the lower section of skin. In deeper sections (>200 μm) of skin, the concentration of nickel in the early phase group was approximately equal to that in the late phase group. The curve of the late phase group was flat, which means that the nickel element concentration was distributed uniformly by SR-μ-XRF. According to the XANES data for the 10% NiSO4 metal salt solution, structural changes occurred in the skin model sample, indicating that nickel was not present in the Ni aqueous ionic state but in the nickel-binding protein. CONCLUSIONS This study showed that the distribution of the nickel element concentration in ACD skin tissue was different between the early phase and late phase groups. The nickel element was not present in the Ni aqueous ionic state but bound with certain proteins to form a complex in the stratum corneum in ACD model tissue.
Collapse
Affiliation(s)
- Shan-Qun Jiang
- School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Xiang-Yu Wu
- School of Life Science, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Jin-Lyu Sun
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, China
| | - Guang Chen
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Tang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, China
| | - Zhi Li
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, China
| | - Ruo-Yao Wei
- The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100021, China
| | - Lan Liang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, China
| | - Xian-Jie Zhou
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, China
| | - Dong-Liang Chen
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Laboratory Animal Center, Peking University, Beijing 100083, China
| | - Hong Gao
- The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100021, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zuo-Tao Zhao
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
| |
Collapse
|
46
|
Yordanova D, Schultz TW, Kuseva C, Tankova K, Ivanova H, Dermen I, Pavlov T, Temelkov S, Chapkanov A, Georgiev M, Gissi A, Sobanski T, Mekenyan OG. Automated and standardized workflows in the OECD QSAR Toolbox. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Buzzella A, Mazzini G, Vicini R, Angelinetta C, Pastoris O. A preliminary study of an alternative method for evaluating skin sensitizing potential of chemicals. Int J Cosmet Sci 2019; 41:257-264. [PMID: 30993720 DOI: 10.1111/ics.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND In order to comply with the European legislation concerning the risk assessment of skin sensitizers, considerable progress has been made in developing alternative methods, such as human cell line activation test (h-CLAT). H-CLAT is based on cytometric measurement of fluorescence emitted by anti-CD54 and anti-CD86 antibodies in THP-1 cells. Following this method, a range of substances have been analyzed; the emitted fluorescence, generally at low intensity, has caused problems concerning the interpretation of results. AIM Find an alternative parameter to h-CLAT for evaluating the sensitizing potential of chemicals. MATERIALS AND METHODS Cells have been analyzed with flow cytometry after treatment with sensitizing compounds administered at non-cytotoxic concentrations. RESULTS Sensitizers were able to inducealterations in cell morphology to a more 'condensed' one allowing the identification of cells under microscope as a 'sensitized' subpopulation. These variations cause similar modifications in 'scattering' parameters, making cells easily monitorable by flow cytometry. No changes have been observed in cells treated with non-sensitizers or in untreated cells. CONCLUSION This method based on the analysis of forward scatter and side scatter parameters, can be used as an alternative method for identifying sensitization potential of chemical compounds.
Collapse
Affiliation(s)
- A Buzzella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,BioBasic Europe s.r.l., Pavia, Italy
| | - G Mazzini
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Institute of Molecular Genetics, CNR, Pavia, Italy
| | - R Vicini
- BioBasic Europe s.r.l., Pavia, Italy
| | | | - O Pastoris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
48
|
Consumer protection and risk assessment: sensitising substances in consumer products. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40629-019-0093-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Tung CW, Lin YH, Wang SS. Transfer learning for predicting human skin sensitizers. Arch Toxicol 2019; 93:931-940. [PMID: 30806762 DOI: 10.1007/s00204-019-02420-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
Computational prioritization of chemicals for potential skin sensitization risks plays essential roles in the risk assessment of environmental chemicals and drug development. Given the huge number of chemicals for testing, computational methods enable the fast identification of high-risk chemicals for experimental validation and design of safer alternatives. However, the development of robust prediction model requires a large dataset of tested chemicals that is usually not available for most toxicological endpoints, especially for human data. A small training dataset makes the development of effective models difficult with insufficient coverage and accuracy. In this study, an ensemble tree-based multitask learning method was developed incorporating three relevant tasks in the well-defined adverse outcome pathway (AOP) of skin sensitization to transfer shared knowledge to the major task of human sensitizers. The results show both largely improved coverage and accuracy compared with three state-of-the-art methods. A user-friendly prediction server was available at https://cwtung.kmu.edu.tw/skinsensdb/predict . As AOPs for various toxicity endpoints are being actively developed, the proposed method can be applied to develop prediction models for other endpoints.
Collapse
Affiliation(s)
- Chun-Wei Tung
- Graduate Institute of Data Science, College of Management, Taipei Medical University, 172-1, Sec. 2, Keelung Rd., Taipei, 10675, Taiwan.
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd., Zhunan, Miaoli County, 35053, Taiwan.
| | - Yi-Hui Lin
- School of Pharmacy, Kaohsiung Medical University, 100 Shihchuan 1st Rd., Kaohsiung, 80708, Taiwan
| | - Shan-Shan Wang
- School of Pharmacy, Kaohsiung Medical University, 100 Shihchuan 1st Rd., Kaohsiung, 80708, Taiwan
| |
Collapse
|
50
|
An Update on Fragrance Contact Dermatitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-0196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|