1
|
Nguyen QH, Nguyen H, Oh EC, Nguyen T. Current approaches and outstanding challenges of functional annotation of metabolites: a comprehensive review. Brief Bioinform 2024; 25:bbae498. [PMID: 39397425 PMCID: PMC11471905 DOI: 10.1093/bib/bbae498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Metabolite profiling is a powerful approach for the clinical diagnosis of complex diseases, ranging from cardiometabolic diseases, cancer, and cognitive disorders to respiratory pathologies and conditions that involve dysregulated metabolism. Because of the importance of systems-level interpretation, many methods have been developed to identify biologically significant pathways using metabolomics data. In this review, we first describe a complete metabolomics workflow (sample preparation, data acquisition, pre-processing, downstream analysis, etc.). We then comprehensively review 24 approaches capable of performing functional analysis, including those that combine metabolomics data with other types of data to investigate the disease-relevant changes at multiple omics layers. We discuss their availability, implementation, capability for pre-processing and quality control, supported omics types, embedded databases, pathway analysis methodologies, and integration techniques. We also provide a rating and evaluation of each software, focusing on their key technique, software accessibility, documentation, and user-friendliness. Following our guideline, life scientists can easily choose a suitable method depending on method rating, available data, input format, and method category. More importantly, we highlight outstanding challenges and potential solutions that need to be addressed by future research. To further assist users in executing the reviewed methods, we provide wrappers of the software packages at https://github.com/tinnlab/metabolite-pathway-review-docker.
Collapse
Affiliation(s)
- Quang-Huy Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, United States
| | - Ha Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, United States
| | - Edwin C Oh
- Department of Internal Medicine, UNLV School of Medicine, University of Nevada, Las Vegas, NV 89154, United States
| | - Tin Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
2
|
Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal 2024; 22:265. [PMID: 38741195 DOI: 10.1186/s12964-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cisplatin (CDDP) is a widely used first-line chemotherapeutic drug in various cancers. However, CDDP resistance is frequently observed in cancer patients. Therefore, it is required to evaluate the molecular mechanisms associated with CDDP resistance to improve prognosis among cancer patients. Integrins are critical factors involved in tumor metastasis that regulate cell-matrix and cell-cell interactions. They modulate several cellular mechanisms including proliferation, invasion, angiogenesis, polarity, and chemo resistance. Modification of integrin expression levels can be associated with both tumor progression and inhibition. Integrins are also involved in drug resistance of various solid tumors through modulation of the tumor cell interactions with interstitial matrix and extracellular matrix (ECM). Therefore, in the present review we discussed the role of integrin protein family in regulation of CDDP response in tumor cells. It has been reported that integrins mainly promoted the CDDP resistance through interaction with PI3K/AKT, MAPK, and WNT signaling pathways. They also regulated the CDDP mediated apoptosis in tumor cells. This review paves the way to suggest the integrins as the reliable therapeutic targets to improve CDDP response in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Bork T, Hernando-Erhard C, Liang W, Tian Z, Yamahara K, Huber TB. Cisplatin Nephrotoxicity Is Critically Mediated by the Availability of BECLIN1. Int J Mol Sci 2024; 25:2560. [PMID: 38473806 DOI: 10.3390/ijms25052560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Cisplatin nephrotoxicity is a critical limitation of solid cancer treatment. Until now, the complex interplay of various pathophysiological mechanisms leading to proximal tubular cell apoptosis after cisplatin exposure has not been fully understood. In our study, we assessed the role of the autophagy-related protein BECLIN1 (ATG6) in cisplatin-induced acute renal injury (AKI)-a candidate protein involved in autophagy and with putative impact on apoptosis by harboring a B-cell lymphoma 2 (BCL2) interaction site of unknown significance. By using mice with heterozygous deletion of Becn1, we demonstrate that reduced intracellular content of BECLIN1 does not impact renal function or autophagy within 12 months. However, these mice were significantly sensitized towards cisplatin-induced AKI, and by using Becn1+/-;Sglt2-Cre;Tomato/EGFP mice with subsequent primary cell analysis, we confirmed that nephrotoxicity depends on proximal tubular BECLIN1 content. Mechanistically, BECLIN1 did not impact autophagy or primarily the apoptotic pathway. In fact, a lack of BECLIN1 sensitized mice towards cisplatin-induced ER stress. Accordingly, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blunted cisplatin-induced cell death in Becn1 heterozygosity. In conclusion, our data first highlight a novel role of BECLIN1 in protecting against cellular ER stress independent from autophagy. These novel findings open new therapeutic avenues to intervene in this important intracellular stress response pathway with a promising impact on future AKI management.
Collapse
Affiliation(s)
- Tillmann Bork
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Camila Hernando-Erhard
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Wei Liang
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhejia Tian
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Kosuke Yamahara
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu 520-2192, Shiga, Japan
| | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Mahmod II, Ismail IS, Normi YM, Chong SG. Protective effect of Clinacanthus nutans in cisplatin-induced nephrotoxicity on human kidney cell (PCS-400-010) elucidated by an LCMS-based metabolomics approach. Biomed Chromatogr 2023; 37:e5750. [PMID: 37778127 DOI: 10.1002/bmc.5750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Cisplatin-induced nephrotoxicity has been widely reported in numerous studies. The objective of this study is to assess the potential nephroprotective effects of Clinacanthus nutans (Burm. f.) Lindau (Acanthaceae) leaf extracts on human kidney cells (PCS-400-010) in vitro using an LCMS-based metabolomics approach. Orthogonal partial least square-discriminant analysis identified 16 significantly altered metabolites when comparing the control and pre-treated C. nutans cisplatin-induced groups. These metabolites were found to be associated with glycerophospholipid, purine, and amino acid metabolism, as well as the glycolysis pathway. Pre-treatment with C. nutans aqueous extract (125 μg/mL) for 24 h, followed by 48 h of cisplatin induction in PCS-400-010 cells, demonstrated a nephroprotective effect, particularly involving the regulation of amino acid metabolism.
Collapse
Affiliation(s)
- Ilya Iryani Mahmod
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siok-Geok Chong
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Farid A, Mohamed D, Mostafa D, Tarek R, Sherif V, Safwat G. Novel grape seed extract nanoparticles attenuate amikacin-induced nephrotoxicity in rats. AMB Express 2023; 13:129. [PMID: 37985554 PMCID: PMC10661670 DOI: 10.1186/s13568-023-01639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Amikacin (AMK), an antibiotic, is prescribed for treating various bacterial diseases like urinary tract infections, encephalitis, asthma and joint infections. The most significant side effects, which affect 1 to 10% of consumers, are kidney injury and ototoxicity. Several studies discussed the role of grape seed extract (GSE) in renoprotection against AMK. The current study aimed to extract Muscat of Alexandria grape seeds followed by its characterization to determine its bioactive components and elements. GSE nanoparticles was prepared and tested, in vitro, to determine its safety for the in vivo experiment. Experimental groups were control group I, AMK group II, GSE (50 mg/kg)-AMK group III, GSE (100 mg/kg)-AMK group IV, GSE NPs (25 mg/kg)-AMK group V and GSE NPs (50 mg/kg)-AMK group VI. Groups 2-6 received 100 mg/kg/day of AMK by intramuscular injection for two weeks for the induction of experimental nephrotoxicity. Groups 3-6 received daily doses of GSE or GSE NPs by oral gavage, concurrently, with AMK for two weeks. GSE was rich in polyphenol compounds like proanthocyanidins, phenolic acids like gallic and egallic acids, catechine and epicatechine. GSE NPs have a smooth surface and a size that ranged from 40 to 70 nm; and have an anti-oxidant, anti-inflammatory, anti-cytotoxic and anti-microbial in vitro effects. It reduced oxidative stress and inflammation that followed AMK administration; and attenuated the AMK-induced nephrotoxicity. GSE NPs were safe to be used in vivo as a renoprotective agent against AMK; where, it reduced the oxidative stress and inflammation.
Collapse
Affiliation(s)
- Alyaa Farid
- Biotechnology Dep, Faculty of Science, Cairo University, Giza, Egypt.
| | - Dina Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Dina Mostafa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Rawan Tarek
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Viola Sherif
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
6
|
Foresto-Neto O, da Silva ARPA, Cipelli M, Santana-Novelli FPR, Camara NOS. The impact of hypoxia-inducible factors in the pathogenesis of kidney diseases: a link through cell metabolism. Kidney Res Clin Pract 2023; 42:561-578. [PMID: 37448286 PMCID: PMC10565456 DOI: 10.23876/j.krcp.23.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023] Open
Abstract
Kidneys are sensitive to disturbances in oxygen homeostasis. Hypoxia and activation of the hypoxia-inducible factor (HIF) pathway alter the expression of genes involved in the metabolism of renal and immune cells, interfering with their functioning. Whether the transcriptional activity of HIF protects the kidneys or participates in the pathogenesis of renal diseases is unclear. Several studies have indicated that HIF signaling promotes fibrosis in experimental models of kidney disease. Other reports showed a protective effect of HIF activation on kidney inflammation and injury. In addition to the direct effect of HIF on the kidneys, experimental evidence indicates that HIF-mediated metabolic shift activates inflammatory cells, supporting the HIF cascade as a link between lung or gut damage and worsening of renal disease. Although hypoxia and HIF activation are present in several scenarios of renal diseases, further investigations are needed to clarify whether interfering with the HIF pathway is beneficial in different pathological contexts.
Collapse
Affiliation(s)
- Orestes Foresto-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Marcella Cipelli
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Taha K, Sharma A, Kroeker K, Ross C, Carleton B, Wishart D, Medeiros M, Blydt-Hansen TD. Noninvasive testing for mycophenolate exposure in children with renal transplant using urinary metabolomics. Pediatr Transplant 2022; 27:e14460. [PMID: 36582125 DOI: 10.1111/petr.14460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/11/2022] [Accepted: 11/18/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite the common use of mycophenolate in pediatric renal transplantation, lack of effective therapeuic drug monitoring increases uncertainty over optimal drug exposure and risk for adverse reactions. This study aims to develop a novel urine test to estimate MPA exposure based using metabolomics. METHODS Urine samples obtained on the same day of MPA pharmacokinetic testing from two prospective cohorts of pediatric kidney transplant recipients were assayed for 133 unique metabolites by mass spectrometry. Partial least squares (PLS) discriminate analysis was used to develop a top 10 urinary metabolite classifier that estimates MPA exposure. An independent cohort was used to test pharmacodynamic validity for allograft inflammation (urinary CXCL10 levels) and eGFR ratio (12mo/1mo eGFR) at 1 year. RESULTS Fifty-two urine samples from separate children (36.5% female, 12.0 ± 5.3 years at transplant) were evaluated at 1.6 ± 2.5 years post-transplant. Using all detected metabolites (n = 90), the classifier exhibited strong association with MPA AUC by principal component regression (r = 0.56, p < .001) and PLS (r = 0.75, p < .001). A practical classifier (top 10 metabolites; r = 0.64, p < .001) retained similar accuracy after cross-validation (LOOCV; r = 0.52, p < .001). When applied to an independent cohort (n = 97 patients, 1053 samples), estimated mean MPA exposure over Year 1 was inversely associated with mean urinary CXCL10:Cr (r = -0.28, 95% CI -0.45, -0.08) and exhibited a trend for association with eGFR ratio (r = 0.35, p = .07), over the same time period. CONCLUSIONS This urinary metabolite classifier can estimate MPA exposure and correlates with allograft inflammation. Future studies with larger samples are required to validate and evaluate its clinical application.
Collapse
Affiliation(s)
- Khalid Taha
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Vancouver, Vancouver, British Columbia, Canada
| | - Atul Sharma
- Department of Pediatrics and Child Health, University of Manitoba, Children's Hospital at Health Sciences Center, Winnipeg, Manitoba, Canada
| | - Kristine Kroeker
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Colin Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, BC Children's Hospital Vancouver, Vancouver, British Columbia, Canada
| | - Bruce Carleton
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Vancouver, Vancouver, British Columbia, Canada
| | - David Wishart
- Departments of Computing Science and Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mara Medeiros
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tom D Blydt-Hansen
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Vancouver, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Chen Y, Lu S, Zhang Y, Chen B, Zhou H, Jiang H. Examination of the emerging role of transporters in the assessment of nephrotoxicity. Expert Opin Drug Metab Toxicol 2022; 18:787-804. [PMID: 36420583 DOI: 10.1080/17425255.2022.2151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The kidney is vulnerable to various injuries based on its function in the elimination of many xenobiotics, endogenous substances and metabolites. Since transporters are critical for the renal elimination of those substances, it is urgent to understand the emerging role of transporters in nephrotoxicity. AREAS COVERED This review summarizes the contribution of major renal transporters to nephrotoxicity induced by some drugs or toxins; addresses the role of transporter-mediated endogenous metabolic disturbances in nephrotoxicity; and discusses the advantages and disadvantages of in vitro models based on transporter expression and function. EXPERT OPINION Due to the crucial role of transporters in the renal disposition of xenobiotics and endogenous substances, it is necessary to further elucidate their renal transport mechanisms and pay more attention to the underlying relationship between the transport of endogenous substances and nephrotoxicity. Considering the species differences in the expression and function of transporters, and the low expression of transporters in general cell models, in vitro humanized models, such as humanized 3D organoids, shows significant promise in nephrotoxicity prediction and mechanism study.
Collapse
Affiliation(s)
- Yujia Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuanghui Lu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingqiong Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| |
Collapse
|
9
|
Laou E, Mavridis T, Papagiannakis N, Pais G, Chighine A, Chang J, Locci E, D’Aloja E, Scheetz M, Chalkias A, Xanthos T. Blood Biomarkers and Metabolomic Profiling for the Early Diagnosis of Vancomycin-Associated Acute Kidney Injury: A Systematic Review and Meta-Analysis of Experimental Studies. J Pers Med 2022; 12:1397. [PMID: 36143182 PMCID: PMC9505572 DOI: 10.3390/jpm12091397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND several blood-based biomarkers have been proposed for predicting vancomycin-associated kidney injury (VIKI). However, no systematic analysis has compared their prognostic value. OBJECTIVE this systematic review and meta-analysis was designed to investigate the role of blood biomarkers and metabolomic profiling as diagnostic and prognostic predictors in pre-clinical studies of VIKI. METHODS a systematic search of PubMed was conducted for relevant articles from January 2000 to May 2022. Animal studies that administered vancomycin and studied VIKI were eligible for inclusion. Clinical studies, reviews, and non-English literature were excluded. The primary outcome was to investigate the relationship between the extent of VIKI as measured by blood biomarkers and metabolomic profiling. Risk of bias was assessed with the CAMARADES checklist the SYRCLE's risk of bias tool. Standard meta-analysis methods (random-effects models) were used. RESULTS there were four studies for the same species, dosage, duration of vancomycin administration and measurement only for serum creatine and blood urea nitrogen in rats. A statistically significant increase was observed between serum creatinine in the vancomycin group compared to controls (pooled p = 0.037; Standardized Mean Difference: 2.93; 95% CI: 0.17 to 5.69; I2 = 92.11%). Serum BUN levels were not significantly different between control and vancomycin groups (pooled p = 0.11; SMD: 3.05; 95% CI: 0.69 to 6.8; I2 = 94.84%). We did not identify experimental studies using metabolomic analyses in animals with VIKI. CONCLUSIONS a total of four studies in rodents only described outcomes of kidney injury as defined by blood biomarkers. Blood biomarkers represented included serum creatinine and BUN. Novel blood biomarkers have not been explored.
Collapse
Affiliation(s)
- Eleni Laou
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
| | - Theodoros Mavridis
- First Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Nikolaos Papagiannakis
- First Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gwendolyn Pais
- Department of Pharmacy Practice, Pharmacometric Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, IL 60515, USA
| | - Alberto Chighine
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, 09124 Cagliari, Italy
| | - Jack Chang
- Department of Pharmacy Practice, Pharmacometric Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, IL 60515, USA
- Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Emanuela Locci
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, 09124 Cagliari, Italy
| | - Ernesto D’Aloja
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, 09124 Cagliari, Italy
| | - Marc Scheetz
- Department of Pharmacy Practice, Pharmacometric Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, IL 60515, USA
- Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| | - Theodoros Xanthos
- School of Health sciences, University of West Attica, 12243 Athens, Greece
| |
Collapse
|
10
|
Locci E, Liu J, Pais GM, Chighine A, Kahnamoei DA, Xanthos T, Chalkias A, Lee A, Hauser AR, Chang J, Rhodes NJ, Aloja ED, Scheetz MH. Urinary Metabolomics from a Dose-Fractionated Polymyxin B Rat Model of Acute Kidney Injury. Int J Antimicrob Agents 2022; 60:106593. [PMID: 35460851 DOI: 10.1016/j.ijantimicag.2022.106593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Polymyxin B treatment is limited by kidney injury. We sought to identify Polymyxin B related urinary metabolomic profile modifications for early detection of polymyxin-associated nephrotoxicity. METHODS Samples were obtained from a previously conducted study. Male Sprague-Dawley rats received dose-fractionated polymyxin B (12mg/kg/day) once daily (QD), twice daily (BID), and thrice daily (TID) for three days with urinary biomarkers and kidney histopathology scores determined. Daily urine was analysed for metabolites via 1H NMR. Principal Components Analyses identified spectral data trends with orthogonal Partial Least Square Discriminant Analysis applied to classify metabolic differences. Metabolomes were compared across groups (i.e., those receiving QD, BID, TID, and control) using a mixed-effects models. Spearman correlation was performed for injury biomarkers and the metabolome. RESULTS A total of 25 rats were treated with Polymyxin B, and n=2 received saline, contributing 77 urinary samples. Pre-dosing samples clustered well, characterized by higher amounts of citrate, 2-oxoglutarate, and hippurate. Day 1 samples showed higher taurine; day 3 samples had higher lactate, acetate, and creatine. Taurine was the only metabolite significantly increased in both BID and TID compared to QD group. Day 1 taurine correlated with increasing histopathology scores (rho=0.4167, P=0.038) and KIM-1 (rho =0.4052, P=0.036); whereas KIM-1 on day one and day 3 did not reach significance with histopathology (rho=0.3248, P=0.11 and rho=0.3739, P=0.066). CONCLUSIONS Polymyxin B causes increased amounts of urinary taurine on day 1 which then normalizes to baseline concentrations. Taurine may provide one of the earlier signals of acute kidney damage caused by polymyxin B.
Collapse
Affiliation(s)
- Emanuela Locci
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Jiajun Liu
- Midwestern University, Downers Grove, IL; Midwestern University Chicago College of Pharmacy Pharmacometrics Center of Excellence, Downers Grove, IL; Northwestern Memorial Hospital, Chicago, IL
| | - Gwendolyn M Pais
- Midwestern University, Downers Grove, IL; Midwestern University Chicago College of Pharmacy Pharmacometrics Center of Excellence, Downers Grove, IL
| | - Alberto Chighine
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Dariusc Andrea Kahnamoei
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | | | - Athanasios Chalkias
- University of Thessaly, Faculty of Medicine, Department of Anesthesiology, Larisa, Greece; Outcomes Research Consortium, Cleveland, OH 44195, USA
| | | | | | - Jack Chang
- Midwestern University, Downers Grove, IL; Midwestern University Chicago College of Pharmacy Pharmacometrics Center of Excellence, Downers Grove, IL; Northwestern Memorial Hospital, Chicago, IL
| | - Nathaniel J Rhodes
- Midwestern University, Downers Grove, IL; Midwestern University Chicago College of Pharmacy Pharmacometrics Center of Excellence, Downers Grove, IL; Northwestern Memorial Hospital, Chicago, IL
| | - Ernesto d' Aloja
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Marc H Scheetz
- Midwestern University, Downers Grove, IL; Midwestern University Chicago College of Pharmacy Pharmacometrics Center of Excellence, Downers Grove, IL; Northwestern Memorial Hospital, Chicago, IL.
| |
Collapse
|
11
|
Jia W, Zhuang P, Wang Q, Wan X, Mao L, Chen X, Miao H, Chen D, Ren Y, Zhang Y. Urinary non-targeted toxicokinetics and metabolic fingerprinting of exposure to 3-monochloropropane-1,2-diol and glycidol from refined edible oils. Food Res Int 2022; 152:110898. [DOI: 10.1016/j.foodres.2021.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
|
12
|
Su YQ, Yu YY, Shen B, Yang F, Nie YX. Management of acute kidney injury in gastrointestinal tumor: An overview. World J Clin Cases 2021; 9:10746-10764. [PMID: 35047588 PMCID: PMC8678862 DOI: 10.12998/wjcc.v9.i35.10746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal tumors remain a global health problem. Acute kidney injury (AKI) is a common complication during the treatment of gastrointestinal tumors. AKI can cause a decrease in the remission rate and an increase in mortality. In this review, we analyzed the causes and risk factors for AKI in gastrointestinal tumor patients. The possible mechanisms of AKI were divided into three groups: pretreatment, intrafraction and post-treatment causes. Treatment and prevention measures were proposed according to various factors to provide guidance to clinicians and oncologists that can reduce the incidence of AKI and improve the quality of life and survival rate of gastrointestinal tumor patients.
Collapse
Affiliation(s)
- Yi-Qi Su
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, Fujian Province, China
| | - Yi-Yi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yu-Xin Nie
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Jain A, Huang R, Lee J, Jawa N, Lim YJ, Guron M, Abish S, Boutros PC, Brudno M, Carleton B, Cuvelier GDE, Gunaratnam L, Ho C, Adeli K, Kuruvilla S, Lajoie G, Liu G, Nathan PC, Rod Rassekh S, Rieder M, Waikar SS, Welch SA, Weir MA, Winquist E, Wishart DS, Zorzi AP, Blydt-Hansen T, Zappitelli M, Urquhart B. A Canadian Study of Cisplatin Metabolomics and Nephrotoxicity (ACCENT): A Clinical Research Protocol. Can J Kidney Health Dis 2021; 8:20543581211057708. [PMID: 34820133 PMCID: PMC8606978 DOI: 10.1177/20543581211057708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/18/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Cisplatin, a chemotherapy used to treat solid tumors, causes acute kidney injury (AKI), a known risk factor for chronic kidney disease and mortality. AKI diagnosis relies on biomarkers which are only measurable after kidney damage has occurred and functional impairment is apparent; this prevents timely AKI diagnosis and treatment. Metabolomics seeks to identify metabolite patterns involved in cell tissue metabolism related to disease or patient factors. The A Canadian study of Cisplatin mEtabolomics and NephroToxicity (ACCENT) team was established to harness the power of metabolomics to identify novel biomarkers that predict risk and discriminate for presence of cisplatin nephrotoxicity, so that early intervention strategies to mitigate onset and severity of AKI can be implemented. Objective: Describe the design and methods of the ACCENT study which aims to identify and validate metabolomic profiles in urine and serum associated with risk for cisplatin-mediated nephrotoxicity in children and adults. Design: Observational prospective cohort study. Setting: Six Canadian oncology centers (3 pediatric, 1 adult and 2 both). Patients: Three hundred adults and 300 children planned to receive cisplatin therapy. Measurements: During two cisplatin infusion cycles, serum and urine will be measured for creatinine and electrolytes to ascertain AKI. Many patient and disease variables will be collected prospectively at baseline and throughout therapy. Metabolomic analyses of serum and urine will be done using mass spectrometry. An untargeted metabolomics approach will be used to analyze serum and urine samples before and after cisplatin infusions to identify candidate biomarkers of cisplatin AKI. Candidate metabolites will be validated using an independent cohort. Methods: Patients will be recruited before their first cycle of cisplatin. Blood and urine will be collected at specified time points before and after cisplatin during the first infusion and an infusion later during cancer treatment. The primary outcome is AKI, defined using a traditional serum creatinine-based definition and an electrolyte abnormality-based definition. Chart review 3 months after cisplatin therapy end will be conducted to document kidney health and survival. Limitations: It may not be possible to adjust for all measured and unmeasured confounders when evaluating prediction of AKI using metabolite profiles. Collection of data across multiple sites will be a challenge. Conclusions: ACCENT is the largest study of children and adults treated with cisplatin and aims to reimagine the current model for AKI diagnoses using metabolomics. The identification of biomarkers predicting and detecting AKI in children and adults treated with cisplatin can greatly inform future clinical investigations and practices.
Collapse
Affiliation(s)
- Anshika Jain
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada.,Temerty Faculty of Medicine, University of Toronto, ON, Canada
| | - Ryan Huang
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jasmine Lee
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Natasha Jawa
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yong Jin Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Mike Guron
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| | - Sharon Abish
- Division of Hematology and Oncology, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Paul C Boutros
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, ON, Canada
| | - Michael Brudno
- Department of Computer Science, University of Toronto, ON, Canada.,Canada Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bruce Carleton
- Department of Pediatrics, The University of British Columbia, Vancouver, Canada.,Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | | | - Lakshman Gunaratnam
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cheryl Ho
- Medical Oncology, BC Cancer, The University of British Columbia, Vancouver, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,University of Toronto, ON, Canada, Canada
| | - Sara Kuruvilla
- Division of Medical Oncology, Department of Oncology, Western University, London, ON, Canada
| | - Giles Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Paul C Nathan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shahrad Rod Rassekh
- Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplantation, BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| | - Michael Rieder
- Department of Pediatrics, Western University, London, ON, Canada
| | - Sushrut S Waikar
- Section of Nephrology, Boston University School of Medicine, MA, USA.,Boston Medical Center, MA, USA
| | - Stephen A Welch
- Division of Medical Oncology, Department of Oncology, Western University, London, ON, Canada
| | - Matthew A Weir
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Eric Winquist
- Division of Medical Oncology, Department of Oncology, Western University, London, ON, Canada
| | - David S Wishart
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Alexandra P Zorzi
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital, Western University, London, ON, Canada
| | - Tom Blydt-Hansen
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| | - Michael Zappitelli
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bradley Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
14
|
HIF in Nephrotoxicity during Cisplatin Chemotherapy: Regulation, Function and Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13020180. [PMID: 33430279 PMCID: PMC7825709 DOI: 10.3390/cancers13020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cisplatin is a widely used chemotherapy drug, but its use and efficacy are limited by its nephrotoxicity. HIF has protective effects against kidney injury during cisplatin chemotherapy, but it may attenuate the anti-cancer effect of cisplatin. In this review, we describe the role and regulation of HIF in cisplatin-induced nephrotoxicity and highlight the therapeutic potential of targeting HIF in chemotherapy. Abstract Cisplatin is a highly effective, broad-spectrum chemotherapeutic drug, yet its clinical use and efficacy are limited by its side effects. Particularly, cancer patients receiving cisplatin chemotherapy have high incidence of kidney problems. Hypoxia-inducible factor (HIF) is the “master” transcription factor that is induced under hypoxia to trans-activate various genes for adaptation to the low oxygen condition. Numerous studies have reported that HIF activation protects against AKI and promotes kidney recovery in experimental models of cisplatin-induced acute kidney injury (AKI). In contrast, little is known about the effects of HIF on chronic kidney problems following cisplatin chemotherapy. Prolyl hydroxylase (PHD) inhibitors are potent HIF inducers that recently entered clinical use. By inducing HIF, PHD inhibitors may protect kidneys during cisplatin chemotherapy. However, HIF activation by PHD inhibitors may reduce the anti-cancer effect of cisplatin in tumors. Future studies should test PHD inhibitors in tumor-bearing animal models to verify their effects in kidneys and tumors.
Collapse
|
15
|
Mahmod II, Ismail IS, Alitheen NB, Normi YM, Abas F, Khatib A, Rudiyanto, Latip J. NMR and LCMS analytical platforms exhibited the nephroprotective effect of Clinacanthus nutans in cisplatin-induced nephrotoxicity in the in vitro condition. BMC Complement Med Ther 2020; 20:320. [PMID: 33092571 PMCID: PMC7579835 DOI: 10.1186/s12906-020-03067-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background Clinacanthus nutans (C. nutans) Lind. locally known as Belalai Gajah or Sabah snake grass is a medicinal plant belonging to Acanthaceae family. In Asia, this plant is traditionally used for treating skin rashes, insects and snake bites, diabetes mellitus, fever and for diuretic effect. C. nutans has been reported to possess biological activities including anti-oxidant, anti-inflammation, anti-cancer, anti-diabetic and anti-viral activities. Methods Proton Nuclear Magnetic Resonance (1H NMR) and Liquid Chromatography Mass Spectroscopy (LCMS) coupled with multivariate data analysis were employed to characterize the metabolic variations of intracellular metabolites and the compositional changes of the corresponding culture media in rat renal proximal tubular cells (NRK-52E). Results NMR and LCMS analysis highlighted choline, creatine, phosphocholine, valine, acetic acid, phenylalanine, leucine, glutamic acid, threonine, uridine and proline as the main metabolites which differentiated the cisplatin-induced group of NRK-52E from control cells extract. The corresponding media exhibited lactic acid, glutamine, glutamic acid and glucose-1-phosphate as the varied metabolites. The altered pathways perturbed by cisplatin nephrotoxic on NRK-52E cells included changes in amino acid metabolism, lipid metabolism and glycolysis. Conclusion The C. nutans aqueous extract (1000 μg/mL) exhibited the most potential nephroprotective effect against cisplatin toxicity on NRK-52E cell lines at 89% of viability. The protective effect could be seen through the changes of the metabolites such as choline, alanine and valine in the C. nutans pre-treated samples with those of the cisplatin-induced group. Supplementary information Supplementary information accompanies this paper at 10.1186/s12906-020-03067-3.
Collapse
Affiliation(s)
- Ilya Iryani Mahmod
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Faculty of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Rudiyanto
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Jalifah Latip
- School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bandar Baru Bangi, Selangor, Malaysia
| |
Collapse
|
16
|
Del Vecchio L, Locatelli F. Hypoxia response and acute lung and kidney injury: possible implications for therapy of COVID-19. Clin Kidney J 2020; 13:494-499. [PMID: 32905208 PMCID: PMC7467604 DOI: 10.1093/ckj/sfaa149] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic of unprecedented severity affecting millions of people around the world and causing several hundred thousands of deaths. The presentation of the disease ranges from asymptomatic manifestations through to acute respiratory distress syndrome with the necessity of mechanical ventilation. Cytokine storm and maladaptive responses to the viral spread in the body could be responsible for the severity of disease. Many patients develop acute kidney injury (AKI) during the course of their disease, especially in more severe cases. Many factors could cause kidney damage during infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. It is still unclear whether direct viral damage or the overexpression of cytokines and inflammatory factors are preeminent. According to autoptic studies, in most of the cases, AKI is due proximal tubular damage. However, cases of collapsing focal segmental glomerulosclerosis were reported as well in the absence of signs of direct viral infection of the kidney. Considering that severe hypoxia is a hallmark of severe SARS-CoV-2 infection, the involvement of the hypoxia-inducible factor (HIF) system is very likely, possibly influencing the inflammatory response and outcome in both the lungs and kidneys. Several bodies of evidence have shown a possible role of the HIF pathway during AKI in various kidney disease models. Similar observations were made in the setting of acute lung injury. In both organs, HIF activation by means of inhibition of the prolyl-hydroxylases domain (PHD) could be protective. Considering these promising experimental data, we hypothesize that PHD inhibitors could be considered as a possible new therapy against severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Francesco Locatelli
- Past Director, Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, ASST Lecco, Lecco, Italy
| |
Collapse
|
17
|
Urinary NMR Profiling in Pediatric Acute Kidney Injury-A Pilot Study. Int J Mol Sci 2020; 21:ijms21041187. [PMID: 32054020 PMCID: PMC7072839 DOI: 10.3390/ijms21041187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) in critically ill children and adults is associated with significant short- and long-term morbidity and mortality. As serum creatinine- and urine output-based definitions of AKI have relevant limitations, there is a persistent need for better diagnostics of AKI. Nuclear magnetic resonance (NMR) spectroscopy allows for analysis of metabolic profiles without extensive sample manipulations. In the study reported here, we examined the diagnostic accuracy of NMR urine metabolite patterns for the diagnosis of neonatal and pediatric AKI according to the Kidney Disease: Improving Global Outcomes (KDIGO) definition. A cohort of 65 neonatal and pediatric patients (0–18 years) with established AKI of heterogeneous etiology was compared to both a group of apparently healthy children (n = 53) and a group of critically ill children without AKI (n = 31). Multivariate analysis identified a panel of four metabolites that allowed diagnosis of AKI with an area under the receiver operating characteristics curve (AUC-ROC) of 0.95 (95% confidence interval 0.86–1.00). Especially urinary citrate levels were significantly reduced whereas leucine and valine levels were elevated. Metabolomic differentiation of AKI causes appeared promising but these results need to be validated in larger studies. In conclusion, this study shows that NMR spectroscopy yields high diagnostic accuracy for AKI in pediatric patients.
Collapse
|
18
|
Pannala VR, Vinnakota KC, Estes SK, Trenary I, OˈBrien TP, Printz RL, Papin JA, Reifman J, Oyama T, Shiota M, Young JD, Wallqvist A. Genome-Scale Model-Based Identification of Metabolite Indicators for Early Detection of Kidney Toxicity. Toxicol Sci 2020; 173:293-312. [PMID: 31722432 PMCID: PMC8000070 DOI: 10.1093/toxsci/kfz228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Identifying early indicators of toxicant-induced organ damage is critical to provide effective treatment. To discover such indicators and the underlying mechanisms of toxicity, we used gentamicin as an exemplar kidney toxicant and performed systematic perturbation studies in Sprague Dawley rats. We obtained high-throughput data 7 and 13 h after administration of a single dose of gentamicin (0.5 g/kg) and identified global changes in genes in the liver and kidneys, metabolites in the plasma and urine, and absolute fluxes in central carbon metabolism. We used these measured changes in genes in the liver and kidney as constraints to a rat multitissue genome-scale metabolic network model to investigate the mechanism of gentamicin-induced kidney toxicity and identify metabolites associated with changes in tissue gene expression. Our experimental analysis revealed that gentamicin-induced metabolic perturbations could be detected as early as 7 h postexposure. Our integrated systems-level analyses suggest that changes in kidney gene expression drive most of the significant metabolite alterations in the urine. The analyses thus allowed us to identify several significantly enriched injury-specific pathways in the kidney underlying gentamicin-induced toxicity, as well as metabolites in these pathways that could serve as potential early indicators of kidney damage.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817
| | - Kalyan C Vinnakota
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Tracy P OˈBrien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
| | - Tatsuya Oyama
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
| |
Collapse
|
19
|
Carneiro TJ, Araújo R, Vojtek M, Gonçalves-Monteiro S, Diniz C, Batista de Carvalho AL, Marques MPM, Gil AM. Multi-Organ NMR Metabolomics to Assess In Vivo Overall Metabolic Impact of Cisplatin in Mice. Metabolites 2019; 9:E279. [PMID: 31766161 PMCID: PMC6918135 DOI: 10.3390/metabo9110279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
This work describes, to our knowledge, the first NMR metabolomics analysis of mice kidney, liver, and breast tissue in response to cisplatin exposure, in search of early metabolic signatures of cisplatin biotoxicity. Balb/c mice were exposed to a single 3.5 mg/kg dose of cisplatin and then euthanized; organs (kidney, liver, breast tissue) were collected at 1, 12, and 48 h. Polar tissue extracts were analyzed by NMR spectroscopy, and the resulting spectra were studied by multivariate and univariate analyses. The results enabled the identification of the most significant deviant metabolite levels at each time point, and for each tissue type, and showed that the largest metabolic impact occurs for kidney, as early as 1 h post-injection. Kidney tissue showed a marked depletion in several amino acids, comprised in an overall 13-metabolites signature. The highest number of changes in all tissues was noted at 12 h, although many of those recovered to control levels at 48 h, with the exception of some persistently deviant tissue-specific metabolites, thus enabling the identification of relatively longer-term effects of cDDP. This work reports, for the first time, early (1-48 h) concomitant effects of cDDP in kidney, liver, and breast tissue metabolism, thus contributing to the understanding of multi-organ cDDP biotoxicity.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry and CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| | - Rita Araújo
- Department of Chemistry and CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| | - Martin Vojtek
- LAQV/REQUIMTE, Department of Drug Sciences, Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Department of Drug Sciences, Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Carmen Diniz
- LAQV/REQUIMTE, Department of Drug Sciences, Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | | | - Maria Paula M. Marques
- “Química-Física Molecular”, University of Coimbra, 3004-535 Coimbra, Portugal (M.P.M.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- Department of Chemistry and CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| |
Collapse
|
20
|
Shen H, Scialis RJ, Lehman-McKeeman L. Xenobiotic Transporters in the Kidney: Function and Role in Toxicity. Semin Nephrol 2019; 39:159-175. [DOI: 10.1016/j.semnephrol.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Izquierdo-Garcia JL, Nin N, Cardinal-Fernandez P, Rojas Y, de Paula M, Granados R, Martínez-Caro L, Ruíz-Cabello J, Lorente JA. Identification of novel metabolomic biomarkers in an experimental model of septic acute kidney injury. Am J Physiol Renal Physiol 2018; 316:F54-F62. [PMID: 30379100 DOI: 10.1152/ajprenal.00315.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study is the identification of metabolomic biomarkers of sepsis and sepsis-induced acute kidney injury (AKI) in an experimental model. Pigs were anesthetized and monitored to measure mean arterial pressure (MAP), systemic blood flow (QT), mean pulmonary arterial pressure, renal artery blood flow (QRA), renal cortical blood flow (QRC), and urine output (UO). Sepsis was induced at t = 0 min by the administration of live Escherichia coli ( n = 6) or saline ( n = 8). At t = 300 min, animals were killed. Renal tissue, urine, and serum samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy. Principal component analyses were performed on the processed NMR spectra to highlight kidney injury biomarkers. Sepsis was associated with decreased QT and MAP and decreased QRA, QRC, and UO. Creatinine serum concentration and neutrophil gelatinase-associated lipocalin (NGAL) serum and urine concentrations increased. NMR-based metabolomics analysis found metabolic differences between control and septic animals: 1) in kidney tissue, increased lactate and nicotinuric acid and decreased valine, aspartate, glucose, and threonine; 2) in urine, increased isovaleroglycine, aminoadipic acid, N-acetylglutamine, N-acetylaspartate, and ascorbic acid and decreased myoinositol and phenylacetylglycine; and 3) in serum, increased lactate, alanine, pyruvate, and glutamine and decreased valine, glucose, and betaine concentrations. The concentration of several metabolites altered in renal tissue and urine samples from septic animals showed a significant correlation with markers of AKI (i.e., creatinine and NGAL serum concentrations). NMR-based metabolomics is a potentially useful tool for biomarker identification of sepsis-induced AKI.
Collapse
Affiliation(s)
- Jose L Izquierdo-Garcia
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,CIC biomaGUNE, Donostia- San Sebastian , Spain
| | - Nicolás Nin
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,Hospital Español , Montevideo , Uruguay
| | - Pablo Cardinal-Fernandez
- Department of Emergency, Hospital Universitario HM Sanchinarro. Fundación de Investigación HM , Madrid , Spain
| | - Yenny Rojas
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,Department of Critical Care, Hospital Universitario de Getafe , Madrid , Spain
| | - Marta de Paula
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,Department of Critical Care, Hospital Universitario de Getafe , Madrid , Spain
| | - Rosario Granados
- Department of Critical Care, Hospital Universitario de Getafe , Madrid , Spain
| | - Leticia Martínez-Caro
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,Department of Critical Care, Hospital Universitario de Getafe , Madrid , Spain
| | - Jesús Ruíz-Cabello
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,CIC biomaGUNE, Donostia- San Sebastian , Spain.,Departamento de Química-Física II, Facultad de Farmacia, Universidad Complutense de Madrid , Madrid , Spain
| | - José A Lorente
- CIBER de Enfermedades Respiratorias, CIBERES, Madrid , Spain.,Department of Critical Care, Hospital Universitario de Getafe , Madrid , Spain.,Universidad Europea de Madrid , Madrid , Spain
| |
Collapse
|
22
|
Morello J, Derks RJE, Lopes SS, Steenvoorden E, Monteiro EC, Mayboroda OA, Pereira SA. Zebrafish Larvae Are a Suitable Model to Investigate the Metabolic Phenotype of Drug-Induced Renal Tubular Injury. Front Pharmacol 2018; 9:1193. [PMID: 30459607 PMCID: PMC6232664 DOI: 10.3389/fphar.2018.01193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 12/04/2022] Open
Abstract
Prevention and treatment of drug-induced renal injury (DIRI) rely on the availability of sensitive and specific biomarkers of early kidney injury and predictive animal models of human pathophysiology. This study aimed to evaluate the potential of zebrafish larvae as translational model in metabolic profiling of DIRI. Zebrafish larvae were exposed to the lethal concentration for 10% of the larvae (LC10) or ½ LC10 of gentamicin, paracetamol and tenofovir as tenofovir disoproxil fumarate (TDF) and tenofovir (TFV). Metabolites were extracted from whole larvae and analyzed by liquid chromatography-mass spectrometry. Principal component analysis showed that drug exposition to the LC10 of paracetamol, TFV, and TDF was the main source of the variance of the data. To identify the metabolites responsible for the toxic effects of the drugs, partial least squares discriminant analyses were built between the LC10 and ½ LC10 for each drug. Features with variable importance in projection> 1.0 were selected and Venn diagrams were built to differentiate between the common and drug specific metabolites of DIRI. Creatine, tyrosine, glutamine, guanosine, hypoxanthine were identified as common metabolites, adenosine and tryptophan as paracetamol-specific and xanthine and oxidized glutathione as tenofovir-specific. Those metabolic changes can be associated with alterations in energy metabolism, xenobiotic detoxification and protein catabolism, all described in the human pathophysiology of DIRI. Thus, zebrafish proved to be a suitable model to characterize the metabolic changes associated with DIRI. This information can be useful to early diagnose DIRI and to improve our knowledge on the mechanisms of DIRI.
Collapse
Affiliation(s)
- Judit Morello
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rico J E Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Susana S Lopes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Evelyne Steenvoorden
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands
| | - Emilia C Monteiro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, Netherlands.,Department of Chemistry, Tomsk State University, Tomsk, Russia
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Troth SP, Everds NE, Siska W, Knight B, Lamb M, Hutt J. Scientific and Regulatory Policy Committee Points to Consider: Data Visualization for Clinical and Anatomic Pathologists. Toxicol Pathol 2018; 46:476-487. [DOI: 10.1177/0192623318778733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Assessment and communication of toxicology data are fundamental components of the work performed by veterinary anatomic and clinical pathologists involved in toxicology research. In recent years, there has been an evolution in the number and variety of software tools designed to facilitate the evaluation and presentation of toxicity study data. A working group of the Society of Toxicologic Pathology Scientific and Regulatory Policy Committee reviewed existing and emerging visualization technologies. This Points to Consider article reviews some of the currently available data visualization options, describes the utility of different types of graphical displays, and explores potential areas of controversy and ambiguity encountered with the use of these tools.
Collapse
Affiliation(s)
- Sean P. Troth
- Merck & Co., Inc., Sumneytown Pike, West Point, PA, USA
| | | | | | | | | | - Julie Hutt
- Lovelace Biomedical, Albuquerque, NM, USA
| |
Collapse
|
24
|
Malyszko J, Kozlowska K, Kozlowski L, Malyszko J. Nephrotoxicity of anticancer treatment. Nephrol Dial Transplant 2018; 32:924-936. [PMID: 28339935 DOI: 10.1093/ndt/gfw338] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
Severe adverse systemic drug events occur commonly as a result of treatment of cancer patients. Nephrotoxicity of chemotherapeutic agents remains a significant complication limiting the efficacy of the treatment. A variety of renal disease and electrolyte disorders can result from the drugs that are used to treat malignant disease. The kidneys are a major elimination pathway for many antineoplastic drugs and their metabolites. Tumour lysis syndrome, an emergency in haematooncology, occurs most often after the initiation of cytotoxic therapy in patients with high-grade lymphomas and acute lymphoblastic leukaemia. Chemotherapeutic agents can affect the glomerulus, tubules, interstitium and renal microvasculature, with clinical manifestations that range from asymptomatic elevation of serum creatinine to acute renal failure requiring dialysis. Some factors such as intravascular volume depletion, as well as concomitant use of other drugs or radiographic ionic contrast media, can potentiate or contribute to the nephrotoxicity. Cytotoxic agents can cause nephrotoxicity by a variety of mechanisms. The most nephrotoxic chemotherapeutic drug is cisplatin, which is often associated with acute kidney injury. Many other drugs such as alkylating agents, antimetabolites, vascular endothelial growth factor pathway inhibitors and epidermal growth factor receptor pathway inhibitors may have toxic effects on the kidneys. The aim of this review is to discuss the issue of nephrotoxicity associated with chemotherapy. In routine clinical practice, monitoring of kidney function is mandatory in order to identify nephrotoxicity early, allowing dosage adjustments or withdrawal of the offending drug.
Collapse
Affiliation(s)
- Jolanta Malyszko
- 2nd Department ofNephrology and Hypertension with Dialysis Unit, Medical University in Bialystok
| | - Klaudia Kozlowska
- 2nd Department ofNephrology and Hypertension with Dialysis Unit, Medical University in Bialystok
| | - Leszek Kozlowski
- Department of Oncological Surgery, Ministry of Interior Affairs Hospital, Bialystok, Poland
| | - Jacek Malyszko
- 1st Department of Nephrology and Transplantology with Dialysis Unit, Medical University in Bialystok, Bialystok, Poland
| |
Collapse
|
25
|
Zheng W, Feng Q, Liu J, Guo Y, Gao L, Li R, Xu M, Yan G, Yin Z, Zhang S, Liu S, Shan C. Inhibition of 6-phosphogluconate Dehydrogenase Reverses Cisplatin Resistance in Ovarian and Lung Cancer. Front Pharmacol 2017; 8:421. [PMID: 28713273 PMCID: PMC5491617 DOI: 10.3389/fphar.2017.00421] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/14/2017] [Indexed: 01/25/2023] Open
Abstract
Cisplatin (DDP) is currently one of the most commonly used chemotherapeutic drugs for treating ovarian and lung cancer. However, resistance to cisplatin is common and it often leads to therapy failure. In addition, the precise mechanism of cisplatin resistance is still in its infancy. In this study, we demonstrated that the oxidative pentose phosphate pathway enzyme 6-phosphogluconate dehydrogenase (6PGD) promotes cisplatin resistance. We showed that cisplatin-resistant cancer cells (C13∗ and A549DDP), had higher levels of 6PGD compared to their cisplatin-sensitive counterparts (OV2008 and A549). Furthermore, ovarian and lung cancer patients with higher 6PGD levels have worse survival outcomes relative to patients with lower 6PGD expression. Interestingly, we found that the upregulation of 6PGD in cisplatin-resistant cells was due to the decreased expression of miR-206 and miR-613, which we found to target this enzyme. We further demonstrate that suppressing 6PGD using shRNA, inhibitor or miR-206/miR-613, either as single agents or in combination, could sensitize cisplatin-resistant cancer cells to cisplatin treatment and thereby improving the therapeutic efficacy of cisplatin. Taken together, our results suggest that 6PGD serves as a novel potential target to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Wujian Zheng
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| | - Qi Feng
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| | - Jiao Liu
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| | - Yanke Guo
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| | - Lvfen Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Ruiman Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Guizhen Yan
- Lixia District People's HospitalJinan, China
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| | - Shuai Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan UniversityGuangzhou, China
| | - Shuangping Liu
- Department of Pathology, Medical School, Dalian UniversityDalian, China
| | - Changliang Shan
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan UniversityGuangzhou, China
| |
Collapse
|
26
|
Abstract
Acute kidney injury (AKI) is characterized by an acute decline in renal function and is associated to increased mortality rate, hospitalization time, and total health-related costs. The severity of this ‘fearsome’ clinical complication might depend on, or even be worsened by, the late detection of AKI, when the diagnosis is based on the elevation of serum creatinine (SCr). For these reasons, in recent years a great number of new tools, biomarkers and predictive models have been proposed to clinicians in order to improve diagnosis and prevent the development of AKI. The purpose of this narrative paper is to review the current state of the art in prediction and early detection of AKI and outline future challenges.
Collapse
Affiliation(s)
- Simona Pozzoli
- Chair of Nephrology - IRCCS San Raffaele Scientific Institute, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Marco Simonini
- Chair of Nephrology - IRCCS San Raffaele Scientific Institute, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| | - Paolo Manunta
- Chair of Nephrology - IRCCS San Raffaele Scientific Institute, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| |
Collapse
|
27
|
Yamasaki T, Yanishi K, Tateishi S, Nakanishi N, Zen K, Nakamura T, Yamano T, Shiraishi H, Shirayama T, Matoba S. Late-onset Mitochondrial Cardiomyopathy Triggered by Anticancer Treatment. Intern Med 2017; 56:1357-1361. [PMID: 28566598 PMCID: PMC5498199 DOI: 10.2169/internalmedicine.56.8076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report the case of a 62-year-old woman with a history of bilateral hearing impairment, who developed mitochondrial cardiomyopathy after chemotherapy. The patient underwent postoperative cisplatin chemotherapy after the surgical treatment of cervical cancer. The systolic function of her left ventricle decreased significantly. A tissue examination of the left ventricle revealed mitochondrial cardiomyopathy. Genetic testing revealed mutations in mitochondrial 3,243 A→G. Nine hundred fifty-five individual mutations were identified by next-generation sequencing. Since cardiovascular complications are the second leading cause of morbidity and mortality in patients undergoing cancer treatment, mitochondrial cardiomyopathy should be considered a potential cause of heart failure.
Collapse
Affiliation(s)
- Takashi Yamasaki
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Kenji Yanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Kan Zen
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Takeshi Nakamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Tetsuhiro Yamano
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Hirokazu Shiraishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Takeshi Shirayama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
28
|
Renal injury in neonates: use of "omics" for developing precision medicine in neonatology. Pediatr Res 2017; 81:271-276. [PMID: 27723726 DOI: 10.1038/pr.2016.206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/05/2016] [Indexed: 12/18/2022]
Abstract
Preterm birth is associated with increased risks of morbidity and mortality along with increased healthcare costs. Advances in medicine have enhanced survival for preterm infants but the overall incidence of major morbidities has changed very little. Abnormal renal development is an important consequence of premature birth. Acute kidney injury (AKI) in the neonatal period is multifactorial and may increase lifetime risk of chronic kidney disease.Traditional biomarkers in newborns suffer from considerable confounders, limiting their use for early identification of AKI. There is a need to develop novel biomarkers that can identify, in real time, the evolution of renal dysfunction in an early diagnostic, monitoring and prognostic fashion. Use of "omics", particularly metabolomics, may provide valuable information regarding functional pathways underlying AKI and prediction of clinical outcomes.The emerging knowledge generated by the application of "omics" (genomics, proteomics, metabolomics) in neonatology provides new insights that can help to identify markers of early diagnosis, disease progression, and identify new therapeutic targets. Additionally, omics will have major implications in the field of personalized healthcare in the future. Here, we will review the current knowledge of different omics technologies in neonatal-perinatal medicine including biomarker discovery, defining as yet unrecognized biologic therapeutic targets, and linking of omics to relevant standard indices and long-term outcomes.
Collapse
|
29
|
The metabolomic signature of hematologic malignancies. Leuk Res 2016; 49:22-35. [PMID: 27526405 DOI: 10.1016/j.leukres.2016.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
The ongoing accumulation of knowledge raises hopes that understanding tumor metabolism will provide new ways for predicting, diagnosing, and even treating cancers. Some metabolic biomarkers are at present routinely utilized to diagnose cancer and metabolic alterations of tumors are being confirmed as therapeutic targets. The growing utilization of metabolomics in clinical research may rapidly turn it into one of the most potent instruments used to detect and fight tumor. In fact, while the current state and trends of high throughput metabolomics profiling focus on the purpose of discovering biomarkers and hunting for metabolic mechanism, a prospective direction, namely reprogramming metabolomics, highlights the way to use metabolomics approach for the aim of treatment of disease by way of reconstruction of disturbed metabolic pathways. In this review, we present an ample summary of the current clinical appliances of metabolomics in hematological malignancies.
Collapse
|
30
|
Malagrino PA, Venturini G, Yogi PS, Dariolli R, Padilha K, Kiers B, Gois TC, Motta-Leal-Filho JM, Takimura CK, Girardi ACC, Carnevale FC, Canevarolo R, Malheiros DMAC, de Mattos Zeri AC, Krieger JE, Pereira AC. Metabolomic characterization of renal ischemia and reperfusion in a swine model. Life Sci 2016; 156:57-67. [DOI: 10.1016/j.lfs.2016.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023]
|
31
|
Li S, Dunlop AL, Jones DP, Corwin EJ. High-Resolution Metabolomics: Review of the Field and Implications for Nursing Science and the Study of Preterm Birth. Biol Res Nurs 2016; 18:12-22. [PMID: 26183181 PMCID: PMC4684995 DOI: 10.1177/1099800415595463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most complex health conditions do not have a single etiology but rather develop from exposure to multiple risk factors that interact to influence individual susceptibility. In this review, we discuss the emerging field of metabolomics as a means by which metabolic pathways underlying a disease etiology can be exposed and specific metabolites can be identified and linked, ultimately providing biomarkers for early detection of disease onset and new strategies for intervention. We present the theoretical foundation of metabolomics research, the current methods employed in its conduct, and the overlap of metabolomics research with other "omic" approaches. As an exemplar, we discuss the potential of metabolomics research in the context of deciphering the complex interactions of the maternal-fetal exposures that underlie the risk of preterm birth, a condition that accounts for substantial portions of infant morbidity and mortality and whose etiology and pathophysiology remain incompletely defined. We conclude by providing strategies for including metabolomics research in future nursing studies for the advancement of nursing science.
Collapse
Affiliation(s)
- Shuzhao Li
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Elizabeth J Corwin
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
32
|
Cavill R, Jennen D, Kleinjans J, Briedé JJ. Transcriptomic and metabolomic data integration. Brief Bioinform 2015; 17:891-901. [PMID: 26467821 DOI: 10.1093/bib/bbv090] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/12/2023] Open
Abstract
Many studies now produce parallel data sets from different omics technologies; however, the task of interpreting the acquired data in an integrated fashion is not trivial. This review covers those methods that have been used over the past decade to statistically integrate and interpret metabolomics and transcriptomic data sets. It defines four categories of approaches, correlation-based integration, concatenation-based integration, multivariate-based integration and pathway-based integration, into which all existing statistical methods fit. It also explores the choices in study design for generating samples for analysis by these omics technologies and the impact that these technical decisions have on the subsequent data analysis options.
Collapse
|
33
|
Drug-induced acid-base disorders. Pediatr Nephrol 2015; 30:1407-23. [PMID: 25370778 DOI: 10.1007/s00467-014-2958-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
The incidence of acid-base disorders (ABDs) is high, especially in hospitalized patients. ABDs are often indicators for severe systemic disorders. In everyday clinical practice, analysis of ABDs must be performed in a standardized manner. Highly sensitive diagnostic tools to distinguish the various ABDs include the anion gap and the serum osmolar gap. Drug-induced ABDs can be classified into five different categories in terms of their pathophysiology: (1) metabolic acidosis caused by acid overload, which may occur through accumulation of acids by endogenous (e.g., lactic acidosis by biguanides, propofol-related syndrome) or exogenous (e.g., glycol-dependant drugs, such as diazepam or salicylates) mechanisms or by decreased renal acid excretion (e.g., distal renal tubular acidosis by amphotericin B, nonsteroidal anti-inflammatory drugs, vitamin D); (2) base loss: proximal renal tubular acidosis by drugs (e.g., ifosfamide, aminoglycosides, carbonic anhydrase inhibitors, antiretrovirals, oxaliplatin or cisplatin) in the context of Fanconi syndrome; (3) alkalosis resulting from acid and/or chloride loss by renal (e.g., diuretics, penicillins, aminoglycosides) or extrarenal (e.g., laxative drugs) mechanisms; (4) exogenous bicarbonate loads: milk-alkali syndrome, overshoot alkalosis after bicarbonate therapy or citrate administration; and (5) respiratory acidosis or alkalosis resulting from drug-induced depression of the respiratory center or neuromuscular impairment (e.g., anesthetics, sedatives) or hyperventilation (e.g., salicylates, epinephrine, nicotine).
Collapse
|
34
|
Choi YM, Kim HK, Shim W, Anwar MA, Kwon JW, Kwon HK, Kim HJ, Jeong H, Kim HM, Hwang D, Kim HS, Choi S. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation. PLoS One 2015; 10:e0135083. [PMID: 26247588 PMCID: PMC4527592 DOI: 10.1371/journal.pone.0135083] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/16/2015] [Indexed: 12/18/2022] Open
Abstract
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.
Collapse
Affiliation(s)
- Yong-Min Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Han-Kyul Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Wooyoung Shim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Ji-Woong Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Hyung Joong Kim
- Division of Energy Systems Research, Ajou University, Suwon, 443–749, Korea
| | - Hyobin Jeong
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 790–784, Korea
| | - Hwan Myung Kim
- Division of Energy Systems Research, Ajou University, Suwon, 443–749, Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 790–784, Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 440–746, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
- * E-mail:
| |
Collapse
|
35
|
Hall AM, Vilasi A, Garcia-Perez I, Lapsley M, Alston CL, Pitceathly RDS, McFarland R, Schaefer AM, Turnbull DM, Beaumont NJ, Hsuan JJ, Cutillas PR, Lindon JC, Holmes E, Unwin RJ, Taylor RW, Gorman GS, Rahman S, Hanna MG. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int 2015; 87:610-22. [PMID: 25207879 DOI: 10.1038/ki.2014.297] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023]
Abstract
We studied the extent and nature of renal involvement in a cohort of 117 adult patients with mitochondrial disease, by measuring urinary retinol-binding protein (RBP) and albumin; established markers of tubular and glomerular dysfunction, respectively. Seventy-five patients had the m.3243A>G mutation and the most frequent phenotypes within the entire cohort were 14 with MELAS, 33 with MIDD, and 17 with MERRF. Urinary RBP was increased in 29 of 75 of m.3243A>G patients, whereas albumin was increased in 23 of the 75. The corresponding numbers were 16 and 14, respectively, in the 42 non-m.3243A>G patients. RBP and albumin were higher in diabetic m.3243A>G patients than in nondiabetics, but there were no significant differences across the three major clinical phenotypes. The urine proteome (mass spectrometry) and metabonome (nuclear magnetic resonance) in a subset of the m.3243A>G patients were markedly different from controls, with the most significant alterations occurring in lysosomal proteins, calcium-binding proteins, and antioxidant defenses. Differences were also found between asymptomatic m.3243A>G carriers and controls. No patients had an elevated serum creatinine level, but 14% had hyponatremia, 10% had hypophosphatemia, and 14% had hypomagnesemia. Thus, abnormalities in kidney function are common in adults with mitochondrial disease, exist in the absence of elevated serum creatinine, and are not solely explained by diabetes.
Collapse
Affiliation(s)
- Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Annalisa Vilasi
- Laboratory of Mass Spectrometry and Proteomics, Institute of Protein Biochemistry-CNR, Naples, Italy
| | - Isabel Garcia-Perez
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Marta Lapsley
- South West Thames Institute for Renal Research, St Helier University Hospitals, Surrey, UK
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Robert D S Pitceathly
- Medical Research Council Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, University College London Institute of Neurology, London, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew M Schaefer
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Nick J Beaumont
- Division of Medicine, Institute for Liver & Digestive Health, University College London, London, UK
| | - Justin J Hsuan
- Division of Medicine, Institute for Liver & Digestive Health, University College London, London, UK
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| | - John C Lindon
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Elaine Holmes
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Robert J Unwin
- UCL Centre for Nephrology, Royal Free Hospital, London, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Grainne S Gorman
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | | | - Michael G Hanna
- Medical Research Council Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, University College London Institute of Neurology, London, UK
| |
Collapse
|
36
|
Abstract
Nephrotoxicity or renal toxicity can be a result of hemodynamic changes, direct injury to cells and tissue, inflammatory tissue injury, and/or obstruction of renal excretion. Nephrotoxicity is frequently induced by a wide spectrum of therapeutic drugs and environ mental pollutants. Knowledge of the complex molecular and pathophysiologic mechanisms leading to nephrotoxicity remains limited, in part, by research that historically focused on single or relatively few risk markers. As such, current kidney injury biomarkers are inadequate in terms of sensitivity and specificity. In contrast, metabolomics enables screening of a vast array of metabolites simultaneously using NMR and MS to assess their role in nephrotoxicity development and progression. A more comprehensive understanding of these biochemical pathways would also provide valuable insight to disease mechanisms critical for drug development and treatment.
Collapse
|
37
|
Thompson MF, Fleeman LM, Kessell AE, Steenhard LA, Foster SF. Acquired proximal renal tubulopathy in dogs exposed to a common dried chicken treat: retrospective study of 108 cases (2007-2009). Aust Vet J 2014; 91:368-73. [PMID: 23980829 DOI: 10.1111/avj.12100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Proximal renal tubulopathy was reported in Australian dogs with markedly increased frequency from September 2007. METHODS Two veterinarian-completed surveys were launched in response to an increased incidence of acquired proximal renal tubulopathy in dogs. The selection criterion for inclusion was glucosuria with blood glucose < 10 mmol/L. Data collected included signalment, presenting signs, history of feeding treats, results of urinalysis and blood tests, treatment and time to resolution of clinical signs. RESULTS A total of 108 affected dogs were studied. All had been fed the same brand of dried chicken treats, made in China, for a median of 12 weeks (range, 0.3-78 weeks). Small breeds (< 10 kg) accounted for 88% of cases. Common presenting signs included polyuria/polydipsia (76%), lethargy (73%), inappetence (65%) and vomiting (54%). Common biochemical findings included euglycaemia (74%; 71/96), hypoglycaemia (23%; 22/96), acidosis (77%; 20/26), hypokalaemia (45%; 38/84), hypophosphataemia (37%; 28/75) and azotaemia (27%; 23/85). In addition to discontinuation of treats, 64 dogs received medical treatment, including intravenous fluids (52%) and oral electrolyte, amino acid or vitamin supplements. Six dogs died or were euthanased. Two dogs were necropsied. Histopathological findings consisted of proximal tubular necrosis accompanied by regeneration. Time to resolution of clinical signs in 35 survivors available for follow-up was < 2 weeks (n = 8), 2-4 weeks (n = 2), 5-7 weeks (n = 5) and 2-6 months (n = 10). CONCLUSION Of the 108 dogs with acquired proximal renal tubulopathy contemporaneous with chicken treat consumption, most survived but many required aggressive supportive care. The treats likely contained a toxin targeting the proximal renal tubules. Diet history and urinalysis were vital for diagnosis.
Collapse
Affiliation(s)
- M F Thompson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4072, Australia.
| | | | | | | | | |
Collapse
|
38
|
Hewitt P, Herget T. Value of new biomarkers for safety testing in drug development. Expert Rev Mol Diagn 2014; 9:531-6. [DOI: 10.1586/erm.09.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Cianciolo R, Yoon L, Krull D, Stokes A, Rodriguez A, Jordan H, Cooper D, Falls JG, Cullen J, Kimbrough C, Berridge B. Gene expression analysis and urinary biomarker assays reveal activation of tubulointerstitial injury pathways in a rodent model of chronic proteinuria (Doxorubicin nephropathy). Nephron Clin Pract 2013; 124:1-10. [PMID: 24248038 DOI: 10.1159/000355542] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tubular atrophy and interstitial fibrosis are well-recognized sequelae of chronic proteinuria; however, little is known regarding the molecular pathways activated within tubulointerstitium in chronic proteinuric nephropathies. METHODS To investigate the molecular mechanisms of proteinuria-associated tubulointerstitial (TI) disease, doxorubicin nephropathy was induced in rats. Progression of disease was monitored with weekly urinary biomarker assays. Because histopathology revealed multifocal TI injury, immunodirected laser capture microdissection was used to identify and isolate injured proximal tubules, as indicated by kidney injury molecule-1 immunolabeling. Adjacent interstitial cells were harvested separately. Gene expression microarray, manual annotation of gene lists, and Gene Set Enrichment Analysis were performed. A subset of the regulated transcripts was validated by quantitative PCR and immunohistochemistry. RESULTS Severe proteinuria preceded tubular injury biomarkers by 1 week. Histology revealed multifocal, mild TI damage at 3 weeks, which progressed in severity at 5 weeks. Affymetrix microarray analysis revealed tissue-specific regulation of gene expression. Manual annotation of gene lists, gene set enrichment analysis, and urinary biomarker assays revealed similarities to pathways activated in direct TI injuries. This suggests commonalities amongst the molecular mechanisms of TI injury secondary to proteinuria, ischemia-reperfusion, and nephrotoxicity. © 2013 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Rachel Cianciolo
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, N.C., USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kleensang A, Maertens A, Rosenberg M, Fitzpatrick S, Lamb J, Auerbach S, Brennan R, Crofton KM, Gordon B, Fornace AJ, Gaido K, Gerhold D, Haw R, Henney A, Ma'ayan A, McBride M, Monti S, Ochs MF, Pandey A, Sharan R, Stierum R, Tugendreich S, Willett C, Wittwehr C, Xia J, Patton GW, Arvidson K, Bouhifd M, Hogberg HT, Luechtefeld T, Smirnova L, Zhao L, Adeleye Y, Kanehisa M, Carmichael P, Andersen ME, Hartung T. Pathways of Toxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2013; 31:53-61. [PMID: 24127042 DOI: 10.14573/altex.1309261] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 01/01/2023]
Abstract
Despite wide-spread consensus on the need to transform toxicology and risk assessment in order to keep pace with technological and computational changes that have revolutionized the life sciences, there remains much work to be done to achieve the vision of toxicology based on a mechanistic foundation. To this end, a workshop was organized to explore one key aspect of this transformation - the development of Pathways of Toxicity as a key tool for hazard identification based on systems biology. Several issues were discussed in depth in the workshop: The first was the challenge of formally defining the concept of a Pathway of Toxicity (PoT), as distinct from, but complementary to, other toxicological pathway concepts such as mode of action (MoA). The workshop came up with a preliminary definition of PoT as "A molecular definition of cellular processes shown to mediate adverse outcomes of toxicants". It is further recognized that normal physiological pathways exist that maintain homeostasis and these, sufficiently perturbed, can become PoT. Second, the workshop sought to define the adequate public and commercial resources for PoT information, including data, visualization, analyses, tools, and use-cases, as well as the kinds of efforts that will be necessary to enable the creation of such a resource. Third, the workshop explored ways in which systems biology approaches could inform pathway annotation, and which resources are needed and available that can provide relevant PoT information to the diverse user communities.
Collapse
Affiliation(s)
- Andre Kleensang
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kuo TC, Tian TF, Tseng YJ. 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC SYSTEMS BIOLOGY 2013; 7:64. [PMID: 23875761 PMCID: PMC3723580 DOI: 10.1186/1752-0509-7-64] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 07/17/2013] [Indexed: 01/08/2023]
Abstract
Background Integrative and comparative analyses of multiple transcriptomics, proteomics and metabolomics datasets require an intensive knowledge of tools and background concepts. Thus, it is challenging for users to perform such analyses, highlighting the need for a single tool for such purposes. The 3Omics one-click web tool was developed to visualize and rapidly integrate multiple human inter- or intra-transcriptomic, proteomic, and metabolomic data by combining five commonly used analyses: correlation networking, coexpression, phenotyping, pathway enrichment, and GO (Gene Ontology) enrichment. Results 3Omics generates inter-omic correlation networks to visualize relationships in data with respect to time or experimental conditions for all transcripts, proteins and metabolites. If only two of three omics datasets are input, then 3Omics supplements the missing transcript, protein or metabolite information related to the input data by text-mining the PubMed database. 3Omics’ coexpression analysis assists in revealing functions shared among different omics datasets. 3Omics’ phenotype analysis integrates Online Mendelian Inheritance in Man with available transcript or protein data. Pathway enrichment analysis on metabolomics data by 3Omics reveals enriched pathways in the KEGG/HumanCyc database. 3Omics performs statistical Gene Ontology-based functional enrichment analyses to display significantly overrepresented GO terms in transcriptomic experiments. Although the principal application of 3Omics is the integration of multiple omics datasets, it is also capable of analyzing individual omics datasets. The information obtained from the analyses of 3Omics in Case Studies 1 and 2 are also in accordance with comprehensive findings in the literature. Conclusions 3Omics incorporates the advantages and functionality of existing software into a single platform, thereby simplifying data analysis and enabling the user to perform a one-click integrated analysis. Visualization and analysis results are downloadable for further user customization and analysis. The 3Omics software can be freely accessed at http://3omics.cmdm.tw.
Collapse
Affiliation(s)
- Tien-Chueh Kuo
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
42
|
Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant 2013; 27:4273-87. [PMID: 23235953 PMCID: PMC3616759 DOI: 10.1093/ndt/gfs493] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Proximal renal tubular acidosis (RTA) (Type II RTA) is characterized by a defect in the ability to reabsorb HCO3 in the proximal tubule. This is usually manifested as bicarbonate wastage in the urine reflecting that the defect in proximal tubular transport is severe enough that the capacity for bicarbonate reabsorption in the thick ascending limb of Henle's loop and more distal nephron segments is overwhelmed. More subtle defects in proximal bicarbonate transport likely go clinically unrecognized owing to compensatory reabsorption of bicarbonate distally. Inherited proximal RTA is more commonly autosomal recessive and has been associated with mutations in the basolateral sodium-bicarbonate cotransporter (NBCe1). Mutations in this transporter lead to reduced activity and/or trafficking, thus disrupting the normal bicarbonate reabsorption process of the proximal tubules. As an isolated defect for bicarbonate transport, proximal RTA is rare and is more often associated with the Fanconi syndrome characterized by urinary wastage of solutes like phosphate, uric acid, glucose, amino acids, low-molecular-weight proteins as well as bicarbonate. A vast array of rare tubular disorders may cause proximal RTA but most commonly it is induced by drugs. With the exception of carbonic anhydrase inhibitors which cause isolated proximal RTA, drug-induced proximal RTA is associated with Fanconi syndrome. Drugs that have been recently recognized to cause severe proximal RTA with Fanconi syndrome include ifosfamide, valproic acid and various antiretrovirals such as Tenofovir particularly when given to human immunodeficiency virus patients receiving concomitantly protease inhibitors such as ritonavir or reverse transcriptase inhibitors such as didanosine.
Collapse
Affiliation(s)
- Syed K Haque
- Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
43
|
Faguer S, Mayeur N, Casemayou A, Pageaud AL, Courtellemont C, Cartery C, Fournie GJ, Schanstra JP, Tack I, Bascands JL, Chauveau D. Hnf-1β transcription factor is an early hif-1α-independent marker of epithelial hypoxia and controls renal repair. PLoS One 2013; 8:e63585. [PMID: 23704921 PMCID: PMC3660442 DOI: 10.1371/journal.pone.0063585] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 04/08/2013] [Indexed: 01/19/2023] Open
Abstract
Epithelial repair following acute kidney injury (AKI) requires epithelial-mesenchyme-epithelial cycling associated with transient re-expression of genes normally expressed during kidney development as well as activation of growth factors and cytokine-induced signaling. In normal kidney, the Hnf-1β transcription factor drives nephrogenesis, tubulogenesis and epithelial homeostasis through the regulation of epithelial planar cell polarity and expression of developmental or tubular segment-specific genes. In a mouse model of ischemic AKI induced by a 2-hours hemorrhagic shock, we show that expression of this factor is tightly regulated in the early phase of renal repair with a biphasic expression profile (early down-regulation followed by transient over-expression). These changes are associated to tubular epithelial differentiation as assessed by KSP-cadherin and megalin-cubilin endocytic complex expression analysis. In addition, early decrease in Hnf1b expression is associated with the transient over-expression of one of its main target genes, the suppressor of cytokine signaling Socs3, which has been shown essential for renal repair. In vitro, hypoxia induced early up-regulation of Hnf-1β from 1 to 24 hours, independently of the hypoxia-inducible factor Hif-1α. When prolonged, hypoxia induced Hnf-1β down-regulation while normoxia led to Hnf-1β normalization. Last, Hnf-1β down-regulation using RNA interference in HK-2 cells led to phenotype switch from an epithelial to a mesenchyme state. Taken together, we showed that Hnf-1β may drive recovery from ischemic AKI by regulating both the expression of genes important for homeostasis control during organ repair and the state of epithelial cell differentiation.
Collapse
MESH Headings
- Acute Kidney Injury/genetics
- Acute Kidney Injury/pathology
- Acute Kidney Injury/physiopathology
- Animals
- Biomarkers/metabolism
- Cell Hypoxia/drug effects
- Cell Hypoxia/genetics
- Cell Line
- Disease Models, Animal
- Endocytosis/drug effects
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation/drug effects
- Hepatocyte Nuclear Factor 1-beta/antagonists & inhibitors
- Hepatocyte Nuclear Factor 1-beta/genetics
- Hepatocyte Nuclear Factor 1-beta/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Kidney Tubules, Proximal/physiopathology
- Mice
- Mice, Inbred C57BL
- Prolyl-Hydroxylase Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Shock, Hemorrhagic/complications
- Shock, Hemorrhagic/pathology
- Shock, Hemorrhagic/physiopathology
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Stanislas Faguer
- Département de Néphrologie et Transplantation d'organes, CHU Rangueil, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zareifar S, Jafari H, Geramizadeh B, Basiratnia M, Golafshan H, Cohan N, Mehravar Z, Hamidi R. The evaluation of cisplatin effect on tubular function in children on chemotherapy. Pediatr Hematol Oncol 2013; 30:18-24. [PMID: 23163346 DOI: 10.3109/08880018.2012.737093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The dose limiting side effect of cisplatin is nephrotoxicity. The aim of this study was to investigate tubular function in children who have received cisplatin and forced diuresis. We performed a cohort study on 20 children under 15 years of age with various type of malignancy on cisplatin-based chemotherapy. Twenty-four-hour urine was collected in three periods: before the first, third, and fifth doses of cisplatin administration to check urine for sodium (Na), magnesium (Mg), uric acid, creatinine (Cr), phosphorus (P), calcium (Ca), beta-2 microglobulin, and N-acetyl-beta-D-glucosaminidase (NAG) levels. At the same time, blood samples were taken to check serum Cr, Na, Mg, Ca, P, and uric acid levels. Then, we compared the mean of glomerular filtration rate (GFR); fraction excretions (FE,%) of Na, Mg, and uric acid; tubular phosphorous reabsorption (TPR,%), 24-hour urine Ca (mg); urine beta-2 microglobulin (mcg/mL); and NAG (IU/L) in three periods of cisplatin administration. The FE of Na, Mg, and urine beta-2 microglobulin increased after administration of cisplatin but TPR, FE, uric acid, and NAG decreased in the 2nd and 3rd period compared to 1st period. GFR revealed a little change that was not significant. Urine calcium was decreased significantly in the second and third periods of cisplatin administration. Since the patients were hydrated for forced diuresis and received magnesium sulfate to prevent nephrotoxicity, we did not see significant tubular dysfunction. But we saw that urine calcium excretion decreased after cisplatin injection without any change in serum calcium in spite of preventive measures.
Collapse
Affiliation(s)
- Soheila Zareifar
- Hematology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wettersten HI, Weiss RH. Applications of metabolomics for kidney disease research: from biomarkers to therapeutic targets. Organogenesis 2013; 9:11-8. [PMID: 23538740 DOI: 10.4161/org.24322] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Metabolomics is one of the relative newcomers of the omics techniques and is likely the one most closely related to actual real-time disease pathophysiology. Hence, it has the power to yield not only specific biomarkers but also insight into the pathophysiology of disease. Despite this power, metabolomics as applied to kidney disease is still in its early adolescence and has not yet reached the mature stage of clinical application, i.e., specific biomarker and therapeutic target discovery. On the other hand, the insight gained from hints into what makes these diseases tick, as is evident from the metabolomics pathways which have been found to be altered in kidney cancer, are now beginning to bear fruit in leading to potential therapeutic targets. It is quite likely that, with greater numbers of clinical materials and with more investigators jumping into the field, metabolomics may well change the course of kidney disease research.
Collapse
Affiliation(s)
- Hiromi I Wettersten
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA, USA
| | | |
Collapse
|
46
|
Ahn JM, You SJ, Lee YM, Oh SW, Ahn SY, Kim S, Chin HJ, Chae DW, Na KY. Hypoxia-inducible factor activation protects the kidney from gentamicin-induced acute injury. PLoS One 2012; 7:e48952. [PMID: 23145036 PMCID: PMC3493596 DOI: 10.1371/journal.pone.0048952] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/03/2012] [Indexed: 01/28/2023] Open
Abstract
Gentamicin nephrotoxicity is one of the most common causes of acute kidney injury (AKI). Hypoxia-inducible factor (HIF) is effective in protecting the kidney from ischemic and toxic injury. Increased expression of HIF-1α mRNA has been reported in rats with gentamicin-induced renal injury. We hypothesizd that we could study the role of HIF in gentamicin-induced AKI by modulating HIF activity. In this study, we investigated whether HIF activation had protective effects on gentamicin-induced renal tubule cell injury. Gentamicin-induced AKI was established in male Sprague-Dawley rats. Cobalt was continuously infused into the rats to activate HIF. HK-2 cells were pre-treated with cobalt or dimethyloxalylglycine (DMOG) to activate HIF and were then exposed to gentamicin. Cobalt or DMOG significantly increased HIF-1α expression in rat kidneys and HK-2 cells. In HK-2 cells, HIF inhibited gentamicin-induced reactive oxygen species (ROS) formation. HIF also protected these cells from apoptosis by reducing caspase-3 activity and the amount of cleaved caspase-3, and -9 proteins. Increased expression of HIF-1α reduced the number of gentamicin-induced apoptotic cells in rat kidneys and HK-2 cells. HIF activation improved the creatinine clearance and proteinuria in gentamicin-induced AKI. HIF activation also ameliorated the extent of histologic injury and reduced macrophage infiltration into the tubulointerstitium. In gentamicin-induced AKI, the activation of HIF by cobalt or DMOG attenuated renal dysfunction, proteinuria, and structural damage through a reduction of oxidative stress, inflammation, and apoptosis in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Jeong-myung Ahn
- Department of Internal Medicine, Maryknoll Hospital, Busan, Korea
| | - Sun Jin You
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yun-Mi Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Se-Won Oh
- Department of Internal Medicine, Eulji General Hospital, Seongnam, Korea
| | - Shin-young Ahn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Seoul National University College of Medicine, Seoul, Korea
| | - Ho Jun Chin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Wan Chae
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Seoul National University College of Medicine, Seoul, Korea
| | - Ki Young Na
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
47
|
Pérez-Santiago J, Diez-Alarcia R, Callado LF, Zhang JX, Chana G, White CH, Glatt SJ, Tsuang MT, Everall IP, Meana JJ, Woelk CH. A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia. J Psychiatr Res 2012; 46:1464-74. [PMID: 22954356 DOI: 10.1016/j.jpsychires.2012.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/16/2022]
Abstract
Small cohort sizes and modest levels of gene expression changes in brain tissue have plagued the statistical approaches employed in microarray studies investigating the mechanism of schizophrenia. To combat these problems a combined analysis of six prior microarray studies was performed to facilitate the robust statistical analysis of gene expression data from the dorsolateral prefrontal cortex of 107 patients with schizophrenia and 118 healthy subjects. Multivariate permutation tests identified 144 genes that were differentially expressed between schizophrenia and control groups. Seventy of these genes were identified as differentially expressed in at least one component microarray study but none of these individual studies had the power to identify the remaining 74 genes, demonstrating the utility of a combined approach. Gene ontology terms and biological pathways that were significantly enriched for differentially expressed genes were related to neuronal cell-cell signaling, mesenchymal induction, and mitogen-activated protein kinase signaling, which have all previously been associated with the etiopathogenesis of schizophrenia. The differential expression of BAG3, C4B, EGR1, MT1X, NEUROD6, SST and S100A8 was confirmed by real-time quantitative PCR in an independent cohort using postmortem human prefrontal cortex samples. Comparison of gene expression between schizophrenic subjects with and without detectable levels of antipsychotics in their blood suggests that the modulation of MT1X and S100A8 may be the result of drug exposure. In conclusion, this combined analysis has resulted in a statistically robust identification of genes whose dysregulation may contribute to the mechanism of schizophrenia.
Collapse
Affiliation(s)
- Josué Pérez-Santiago
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jauhiainen A, Nerman O, Michailidis G, Jörnsten R. Transcriptional and metabolic data integration and modeling for identification of active pathways. Biostatistics 2012; 13:748-61. [PMID: 22699861 DOI: 10.1093/biostatistics/kxs016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With the growing availability of omics data generated to describe different cells and tissues, the modeling and interpretation of such data has become increasingly important. Pathways are sets of reactions involving genes, metabolites, and proteins highlighting functional modules in the cell. Therefore, to discover activated or perturbed pathways when comparing two conditions, for example two different tissues, it is beneficial to use several types of omics data. We present a model that integrates transcriptomic and metabolomic data in order to make an informed pathway-level decision. Since metabolites can be seen as end-points of perturbations happening at the gene level, the gene expression data constitute the explanatory variables in a sparse regression model for the metabolite data. Sophisticated model selection procedures are developed to determine an appropriate model. We demonstrate that the transcript profiles can be used to informatively explain the metabolite data from cancer cell lines. Simulation studies further show that the proposed model offers a better performance in identifying active pathways than, for example, enrichment methods performed separately on the transcript and metabolite data.
Collapse
Affiliation(s)
- Alexandra Jauhiainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
49
|
Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, Vu H, Tu Z, Brem RB, Bumgarner RE, Schadt EE. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol 2012; 10:e1001301. [PMID: 22509135 PMCID: PMC3317911 DOI: 10.1371/journal.pbio.1001301] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/20/2012] [Indexed: 01/22/2023] Open
Abstract
DNA variation can be used as a systematic source of perturbation in segregating populations as a way to infer regulatory networks via the integration of large-scale, high-dimensional molecular profiling data. Cells employ multiple levels of regulation, including transcriptional and translational regulation, that drive core biological processes and enable cells to respond to genetic and environmental changes. Small-molecule metabolites are one category of critical cellular intermediates that can influence as well as be a target of cellular regulations. Because metabolites represent the direct output of protein-mediated cellular processes, endogenous metabolite concentrations can closely reflect cellular physiological states, especially when integrated with other molecular-profiling data. Here we develop and apply a network reconstruction approach that simultaneously integrates six different types of data: endogenous metabolite concentration, RNA expression, DNA variation, DNA–protein binding, protein–metabolite interaction, and protein–protein interaction data, to construct probabilistic causal networks that elucidate the complexity of cell regulation in a segregating yeast population. Because many of the metabolites are found to be under strong genetic control, we were able to employ a causal regulator detection algorithm to identify causal regulators of the resulting network that elucidated the mechanisms by which variations in their sequence affect gene expression and metabolite concentrations. We examined all four expression quantitative trait loci (eQTL) hot spots with colocalized metabolite QTLs, two of which recapitulated known biological processes, while the other two elucidated novel putative biological mechanisms for the eQTL hot spots. It is now possible to score variations in DNA across whole genomes, RNA levels and alternative isoforms, metabolite levels, protein levels and protein state information, protein–protein interactions, and protein–DNA interactions, in a comprehensive fashion in populations of individuals. Interactions among these molecular entities define the complex web of biological processes that give rise to all higher order phenotypes, including disease. The development of analytical approaches that simultaneously integrate different dimensions of data is essential if we are to extract the meaning from large-scale data to elucidate the complexity of living systems. Here, we use a novel Bayesian network reconstruction algorithm that simultaneously integrates DNA variation, RNA levels, metabolite levels, protein–protein interaction data, protein–DNA binding data, and protein–small-molecule interaction data to construct molecular networks in yeast. We demonstrate that these networks can be used to infer causal relationships among genes, enabling the identification of novel genes that modulate cellular regulation. We show that our network predictions either recapitulate known biology or can be prospectively validated, demonstrating a high degree of accuracy in the predicted network.
Collapse
Affiliation(s)
- Jun Zhu
- Sage Bionetworks, Seattle, Washington, United States of America
- * E-mail: (JZ); (EES)
| | - Pavel Sova
- Department of Microbiology, University of Washington, Seattle Washington, United States of America
| | - Qiuwei Xu
- Safety Assessment, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Kenneth M. Dombek
- Department of Microbiology, University of Washington, Seattle Washington, United States of America
| | - Ethan Y. Xu
- Safety Assessment, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Heather Vu
- Safety Assessment, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Zhidong Tu
- Molecular Profiling, Merck Research Laboratories, Boston, Massachusetts, United States of America
| | - Rachel B. Brem
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Roger E. Bumgarner
- Department of Microbiology, University of Washington, Seattle Washington, United States of America
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York City, New York, United States of America
- * E-mail: (JZ); (EES)
| |
Collapse
|
50
|
Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats. Toxicol Appl Pharmacol 2012; 258:124-33. [DOI: 10.1016/j.taap.2011.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/04/2011] [Accepted: 10/21/2011] [Indexed: 02/06/2023]
|