1
|
Eiserich JP, Ott SP, Kadir T, Morrissey BM, Hayakawa KA, La Merrill MA, Cross CE. Quantitative assessment of cyanide in cystic fibrosis sputum and its oxidative catabolism by hypochlorous acid. Free Radic Biol Med 2018; 129:146-154. [PMID: 30213640 DOI: 10.1016/j.freeradbiomed.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
RATIONALE Cystic fibrosis (CF) patients are known to produce cyanide (CN-) although challenges exist in determinations of total levels, the precise bioactive levels, and specificity of its production by CF microflora, especially P. aeruginosa. Our objective was to measure total CN- levels in CF sputa by a simple and novel technique in P. aeruginosa positive and negative adult patients, to review respiratory tract (RT) mechanisms for the production and degradation of CN-, and to interrogate sputa for post-translational protein modification by CN- metabolites. METHODS Sputa CN- concentrations were determined by using a commercially available CN- electrode, measuring levels before and after addition of cobinamide, a compound with extremely high affinity for CN-. Detection of protein carbamoylation was measured by Western blot. MEASUREMENTS AND MAIN RESULTS The commercial CN- electrode was found to overestimate CN- levels in CF sputum in a highly variable manner; cobinamide addition rectified this analytical issue. Although P. aeruginosa positive patients tended to have higher total CN- values, no significant differences in CN- levels were found between positive and negative sputa. The inflammatory oxidant hypochlorous acid (HOCl) was shown to rapidly decompose CN-, forming cyanogen chloride (CNCl) and the carbamoylating species cyanate (NCO-). Carbamoylated proteins were found in CF sputa, analogous to reported findings in asthma. CONCLUSIONS Our studies indicate that CN- is a transient species in the inflamed CF airway due to multiple biosynthetic and metabolic processes. Stable metabolites of CN-, such as cyanate, or carbamoylated proteins, may be suitable biomarkers of overall CN- production in CF airways.
Collapse
Affiliation(s)
- Jason P Eiserich
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States
| | - Sean P Ott
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States
| | - Tamara Kadir
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States
| | - Brian M Morrissey
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States
| | - Keri A Hayakawa
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA 95616, United States
| | - Carroll E Cross
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
2
|
Delporte C, Zouaoui Boudjeltia K, Furtmüller PG, Maki RA, Dieu M, Noyon C, Soudi M, Dufour D, Coremans C, Nuyens V, Reye F, Rousseau A, Raes M, Moguilevsky N, Vanhaeverbeek M, Ducobu J, Nève J, Robaye B, Vanhamme L, Reynolds WF, Obinger C, Van Antwerpen P. Myeloperoxidase-catalyzed oxidation of cyanide to cyanate: A potential carbamylation route involved in the formation of atherosclerotic plaques? J Biol Chem 2018; 293:6374-6386. [PMID: 29496995 DOI: 10.1074/jbc.m117.801076] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 02/20/2018] [Indexed: 01/03/2023] Open
Abstract
Protein carbamylation by cyanate is a post-translational modification associated with several (patho)physiological conditions, including cardiovascular disorders. However, the biochemical pathways leading to protein carbamylation are incompletely characterized. This work demonstrates that the heme protein myeloperoxidase (MPO), which is secreted at high concentrations at inflammatory sites from stimulated neutrophils and monocytes, is able to catalyze the two-electron oxidation of cyanide to cyanate and promote the carbamylation of taurine, lysine, and low-density lipoproteins. We probed the role of cyanide as both electron donor and low-spin ligand by pre-steady-state and steady-state kinetic analyses and analyzed reaction products by MS. Moreover, we present two further pathways of carbamylation that involve reaction products of MPO, namely oxidation of cyanide by hypochlorous acid and reaction of thiocyanate with chloramines. Finally, using an in vivo approach with mice on a high-fat diet and carrying the human MPO gene, we found that during chronic exposure to cyanide, mimicking exposure to pollution and smoking, MPO promotes protein-bound accumulation of carbamyllysine (homocitrulline) in atheroma plaque, demonstrating a link between cyanide exposure and atheroma. In summary, our findings indicate that cyanide is a substrate for MPO and suggest an additional pathway for in vivo cyanate formation and protein carbamylation that involves MPO either directly or via its reaction products hypochlorous acid or chloramines. They also suggest that chronic cyanide exposure could promote the accumulation of carbamylated proteins in atherosclerotic plaques.
Collapse
Affiliation(s)
- Cédric Delporte
- From the Laboratory of Pharmaceutical Chemistry and.,Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- the Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - Paul G Furtmüller
- the Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria
| | - Richard A Maki
- Torrey Pines Pharmaceuticals, Del Mar, California 92014.,the Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Marc Dieu
- the Laboratory of Cellular Biology and
| | | | - Monika Soudi
- the Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria
| | - Damien Dufour
- From the Laboratory of Pharmaceutical Chemistry and.,Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Catherine Coremans
- From the Laboratory of Pharmaceutical Chemistry and.,Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Vincent Nuyens
- the Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | | | - Alexandre Rousseau
- the Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | | | | | - Michel Vanhaeverbeek
- the Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - Jean Ducobu
- the Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - Jean Nève
- From the Laboratory of Pharmaceutical Chemistry and
| | - Bernard Robaye
- the Institute of Interdisciplinary Research, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Sciences, Université Libre de Bruxelles, 6041 Gosselies, Belgium, and
| | - Luc Vanhamme
- the Laboratory of Molecular Parasitology, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Sciences, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Wanda F Reynolds
- the Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Christian Obinger
- the Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria
| | - Pierre Van Antwerpen
- From the Laboratory of Pharmaceutical Chemistry and .,Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Giles GI, Nasim MJ, Ali W, Jacob C. The Reactive Sulfur Species Concept: 15 Years On. Antioxidants (Basel) 2017; 6:antiox6020038. [PMID: 28545257 PMCID: PMC5488018 DOI: 10.3390/antiox6020038] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/21/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022] Open
Abstract
Fifteen years ago, in 2001, the concept of “Reactive Sulfur Species” or RSS was advocated as a working hypothesis. Since then various organic as well as inorganic RSS have attracted considerable interest and stimulated many new and often unexpected avenues in research and product development. During this time, it has become apparent that molecules with sulfur-containing functional groups are not just the passive “victims” of oxidative stress or simple conveyors of signals in cells, but can also be stressors in their own right, with pivotal roles in cellular function and homeostasis. Many “exotic” sulfur-based compounds, often of natural origin, have entered the fray in the context of nutrition, ageing, chemoprevention and therapy. In parallel, the field of inorganic RSS has come to the forefront of research, with short-lived yet metabolically important intermediates, such as various sulfur-nitrogen species and polysulfides (Sx2−), playing important roles. Between 2003 and 2005 several breath-taking discoveries emerged characterising unusual sulfur redox states in biology, and since then the truly unique role of sulfur-dependent redox systems has become apparent. Following these discoveries, over the last decade a “hunt” and, more recently, mining for such modifications has begun—and still continues—often in conjunction with new, innovative and complex labelling and analytical methods to capture the (entire) sulfur “redoxome”. A key distinction for RSS is that, unlike oxygen or nitrogen, sulfur not only forms a plethora of specific reactive species, but sulfur also targets itself, as sulfur containing molecules, i.e., peptides, proteins and enzymes, preferentially react with RSS. Not surprisingly, today this sulfur-centred redox signalling and control inside the living cell is a burning issue, which has moved on from the predominantly thiol/disulfide biochemistry of the past to a complex labyrinth of interacting signalling and control pathways which involve various sulfur oxidation states, sulfur species and reactions. RSS are omnipresent and, in some instances, are even considered as the true bearers of redox control, perhaps being more important than the Reactive Oxygen Species (ROS) or Reactive Nitrogen Species (RNS) which for decades have dominated the redox field. In other(s) words, in 2017, sulfur redox is “on the rise”, and the idea of RSS resonates throughout the Life Sciences. Still, the RSS story isn’t over yet. Many RSS are at the heart of “mistaken identities” which urgently require clarification and may even provide the foundations for further scientific revolutions in the years to come. In light of these developments, it is therefore the perfect time to revisit the original hypotheses, to select highlights in the field and to question and eventually update our concept of “Reactive Sulfur Species”.
Collapse
Affiliation(s)
- Gregory I Giles
- Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, Saarbruecken D-66123, Germany.
| | - Wesam Ali
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, Saarbruecken D-66123, Germany.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, Saarbruecken D-66123, Germany.
| |
Collapse
|
4
|
Chandler JD, Day BJ. Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health. Free Radic Res 2015; 49:695-710. [PMID: 25564094 DOI: 10.3109/10715762.2014.1003372] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Thiocyanate (SCN(-)) is a ubiquitous molecule in mammalian biology, reaching up to mM concentrations in extracellular fluids. Two- electron oxidation of SCN(-) by H2O2 produces hypothiocyanous acid (HOSCN), a potent anti-microbial species. This reaction is catalyzed by chordate peroxidases (e.g., myeloperoxidase and lactoperoxidase), occurring in human secretory mucosa, including the oral cavity, airway, and alimentary tract, and regulates resident and transient flora as part of innate immunity. Increasing SCN(-) levels limits the concentrations of a family of 2-electron oxidants (H2O2, hypohalous acids, and haloamines) in favor of HOSCN formation, altering the oxidative impact on host tissue by substitution of repairable thiol and selenol oxidations instead of biomolecule degradation. This fine-tuning of inflammatory oxidation paradoxically associates with maintained host defense and decreased host injury during infections, due in part to phylogenetic differences in the thioredoxin reductase system between mammals and their pathogens. These differences could be exploited by pharmacologic use of SCN(-). Recent preclinical studies have identified anti-microbial and anti-inflammatory effects of SCN(-) in pulmonary and cardiovascular animal models, with implications for treatment of infectious lung disease and atherogenesis. Further research is merited to expand on these findings and identify other diseases where SCN(-) may be of use. High oral bioavailability and an increased knowledge of the biochemical effects of SCN(-) on a subset of pro-inflammatory reactions suggest clinical utility.
Collapse
|
5
|
Kalmár J, Lente G, Fábián I. Detailed Kinetics and Mechanism of the Oxidation of Thiocyanate Ion (SCN–) by Peroxomonosulfate Ion (HSO5–). Formation and Subsequent Oxidation of Hypothiocyanite Ion (OSCN–). Inorg Chem 2013; 52:2150-6. [DOI: 10.1021/ic302544y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- József Kalmár
- Department of Inorganic
and Analytical Chemistry, University of Debrecen, P.O. Box 21, Debrecen H-4010, Hungary
| | - Gábor Lente
- Department of Inorganic
and Analytical Chemistry, University of Debrecen, P.O. Box 21, Debrecen H-4010, Hungary
| | - István Fábián
- Department of Inorganic
and Analytical Chemistry, University of Debrecen, P.O. Box 21, Debrecen H-4010, Hungary
| |
Collapse
|
6
|
|
7
|
Abstract
Hypothiocyanous acid (HOSCN) is produced in biological systems by the peroxidase-catalyzed reaction of thiocyanate (SCN(-)) with H(2)O(2). This oxidant plays an important role in the human immune system, owing to its potent bacteriostatic properties. Significant amounts of HOSCN are also formed by immune cells under inflammatory conditions, yet the reactivity of this oxidant with host tissue is poorly characterized. Traditionally, HOSCN has been viewed as a mild oxidant, which is innocuous to mammalian cells. Indeed, recent studies show that the presence of SCN(-) in airways has a protective function, by preventing the formation of other, more damaging, inflammatory oxidants. However, there is an increasing body of evidence that challenges this dogma, showing that the selectivity of HOSCN for specific thiol-containing cellular targets results in the initiation of significant cellular damage. This propensity to induce cellular dysfunction is gaining considerable interest, particularly in the cardiovascular field, as smokers have elevated plasma SCN(-), the precursor for HOSCN. This review will outline the beneficial and detrimental aspects of HOSCN formation in biological systems.
Collapse
Affiliation(s)
- Tessa J Barrett
- Inflammation Group, The Heart Research Institute , 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia
| | | |
Collapse
|
8
|
Kalmár J, Woldegiorgis KL, Biri B, Ashby MT. Mechanism of Decomposition of the Human Defense Factor Hypothiocyanite Near Physiological pH. J Am Chem Soc 2011; 133:19911-21. [DOI: 10.1021/ja2083152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- József Kalmár
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kelemu L. Woldegiorgis
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bernadett Biri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Michael T. Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
9
|
Xulu BA, Ashby MT. Small molecular, macromolecular, and cellular chloramines react with thiocyanate to give the human defense factor hypothiocyanite. Biochemistry 2010; 49:2068-74. [PMID: 20085320 PMCID: PMC2831154 DOI: 10.1021/bi902089w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thiocyanate reacts noncatalytically with myeloperoxidase-derived HOCl to produce hypothiocyanite (OSCN(-)), thereby potentially limiting the propensity of HOCl to inflict host tissue damage that can lead to inflammatory diseases. However, the efficiency with which SCN(-) captures HOCl in vivo depends on the concentration of SCN(-) relative to other chemical targets. In blood plasma, where the concentration of SCN(-) is relatively low, proteins may be the principal initial targets of HOCl, and chloramines are a significant product. Chloramines eventually decompose to irreversibly damage proteins. In the present study, we demonstrate that SCN(-) reacts efficiently with chloramines in small molecules, in proteins, and in Escherichia coli cells to give OSCN(-) and the parent amine. Remarkably, OSCN(-) reacts faster than SCN(-) with chloramines. These reactions of SCN(-) and OSCN(-) with chloramines may repair some of the damage that is inflicted on protein amines by HOCl. Our observations are further evidence for the importance of secondary reactions during the redox cascades that are associated with oxidative stress by hypohalous acids.
Collapse
Affiliation(s)
- Bheki A. Xulu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Michael T. Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|