1
|
Hudacova E, Abaffy P, Kaplan MM, Krausova M, Kubista M, Machon O. Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis. Bone 2024; 190:117297. [PMID: 39461490 DOI: 10.1016/j.bone.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of Meis2-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.
Collapse
Affiliation(s)
- Erika Hudacova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12000 Prague, Czech Republic.
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Mehmet Mahsum Kaplan
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Michaela Krausova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| |
Collapse
|
2
|
Fabik J, Psutkova V, Machon O. Meis2 controls skeletal formation in the hyoid region. Front Cell Dev Biol 2022; 10:951063. [PMID: 36247013 PMCID: PMC9554219 DOI: 10.3389/fcell.2022.951063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
A vertebrate skull is composed of many skeletal elements which display enormous diversity of shapes. Cranial bone formation embodies a multitude of processes, i.e., epithelial-mesenchymal induction, mesenchymal condensation, and endochondral or intramembranous ossification. Molecular pathways determining complex architecture and growth of the cranial skeleton during embryogenesis are poorly understood. Here, we present a model of the hyoid apparatus development in Wnt1-Cre2-induced Meis2 conditional knock-out (cKO) mice. Meis2 cKO embryos develop an aberrant hyoid apparatus—a complete skeletal chain from the base of the neurocranium to lesser horns of the hyoid, resembling extreme human pathologies of the hyoid-larynx region. We examined key stages of hyoid skeletogenesis to obtain a complex image of the hyoid apparatus formation. Lack of Meis2 resulted in ectopic loci of mesenchymal condensations, ectopic cartilage and bone formation, disinhibition of skeletogenesis, and elevated proliferation of cartilage precursors. We presume that all these mechanisms contribute to formation of the aberrant skeletal chain in the hyoid region. Moreover, Meis2 cKO embryos exhibit severely reduced expression of PBX1 and HAND2 in the hyoid region. Altogether, MEIS2 in conjunction with PBX1 and HAND2 affects mesenchymal condensation, specification and proliferation of cartilage precursors to ensure development of the anatomically correct hyoid apparatus.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Ondrej Machon,
| |
Collapse
|
3
|
Wang Q, Duan M, Liao J, Xie J, Zhou C. Are Osteoclasts Mechanosensitive Cells? J Biomed Nanotechnol 2021; 17:1917-1938. [PMID: 34706793 DOI: 10.1166/jbn.2021.3171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Skeleton metabolism is a process in which osteoclasts constantly remove old bone and osteoblasts form new osteoid and induce mineralization; disruption of this balance may cause diseases. Osteoclasts play a key role in bone metabolism, as osteoclastogenesis marks the beginning of each bone remodeling cycle. As the only cell capable of bone resorption, osteoclasts are derived from the monocyte/macrophage hematopoietic precursors that terminally adhere to mineralized extracellular matrix, and they subsequently break down the extracellular compartment. Bone is generally considered the load-burdening tissue, bone homeostasis is critically affected by mechanical conductions, and the bone cells are mechanosensitive. The functions of various bone cells under mechanical forces such as chondrocytes and osteoblasts have been reported; however, the unique bone-resorbing osteoclasts are less studied. The oversuppression of osteoclasts in mechanical studies may be because of its complicated differentiation progress and flexible structure, which increases difficulty in targeting mechanical structures. This paper will focus on recent findings regarding osteoclasts and attempt to uncover proposed candidate mechanosensing structures in osteoclasts including podosome-associated complexes, gap junctions and transient receptor potential family (ion channels). We will additionally describe possible mechanotransduction signaling pathways including GTPase ras homologue family member A (RhoA), Yes-associated protein/transcriptional co-activator with PDZ-binding motif (TAZ), Ca2+ signaling and non-canonical Wnt signaling. According to numerous studies, evaluating the possible influence of various physical environments on osteoclastogenesis is conducive to the study of bone homeostasis.
Collapse
Affiliation(s)
- Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Jingfeng Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Hu Z, Riquelme MA, Gu S, Jiang JX. Regulation of Connexin Gap Junctions and Hemichannels by Calcium and Calcium Binding Protein Calmodulin. Int J Mol Sci 2020; 21:E8194. [PMID: 33147690 PMCID: PMC7663298 DOI: 10.3390/ijms21218194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022] Open
Abstract
Connexins are the structural components of gap junctions and hemichannels that mediate the communication and exchange of small molecules between cells, and between the intracellular and extracellular environment, respectively. Connexin (Cx) 46 is predominately expressed in lens fiber cells, where they function in maintaining the homeostasis and transparency of the lens. Cx46 mutations are associated with impairment of channel function, which results in the development of congenital cataracts. Cx46 gap junctions and hemichannels are closely regulated by multiple mechanisms. Key regulators of Cx46 channel function include Ca2+ and calmodulin (CaM). Ca2+ plays an essential role in lens homeostasis, and its dysregulation causes cataracts. Ca2+ associated CaM is a well-established inhibitor of gap junction coupling. Recent studies suggest that elevated intracellular Ca2+ activates Cx hemichannels in lens fiber cells and Cx46 directly interacts with CaM. A Cx46 site mutation (Cx46-G143R), which is associated with congenital Coppock cataracts, shows an increased Cx46-CaM interaction and this interaction is insensitive to Ca2+, given that depletion of Ca2+ reduces the interaction between CaM and wild-type Cx46. Moreover, inhibition of CaM function greatly reduces the hemichannel activity in the Cx46 G143R mutant. These research findings suggest a new regulatory mechanism by which enhanced association of Cx46 with CaM leads to the increase in hemichannel activity and dysregulation may lead to cataract development. In this review, we will first discuss the involvement of Ca2+/CaM in lens homeostasis and pathology, and follow by providing a general overview of Ca2+/CaM in the regulation of Cx46 gap junctions. We discuss the most recent studies concerning the molecular mechanism of Ca2+/CaM in regulating Cx46 hemichannels. Finally, we will offer perspectives of the impacts of Ca2+/CaM and dysregulation on Cx46 channels and vice versa.
Collapse
Affiliation(s)
- Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA;
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Manuel A. Riquelme
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (S.G.)
| | - Sumin Gu
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (S.G.)
| | - Jean X. Jiang
- Departments of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (S.G.)
| |
Collapse
|
5
|
Giffin JL, Gaitor D, Franz-Odendaal TA. The Forgotten Skeletogenic Condensations: A Comparison of Early Skeletal Development Amongst Vertebrates. J Dev Biol 2019; 7:jdb7010004. [PMID: 30717314 PMCID: PMC6473759 DOI: 10.3390/jdb7010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 01/13/2023] Open
Abstract
The development of a skeletogenic condensation is perhaps the most critical yet considerably overlooked stage of skeletogenesis. Described in this comprehensive review are the mechanisms that facilitate skeletogenic condensation formation, growth, and maintenance to allow for overt differentiation into a skeletal element. This review discusses the current knowledge of gene regulation and characterization of skeletogenic condensations in the chicken, mouse, zebrafish, and other developmental models. We limited our scope to condensations that give rise to the bones and cartilages of the vertebrate skeleton, with a particular focus on craniofacial and limb bud regions. While many of the skeletogenic processes are similar among vertebrate lineages, differences are apparent in the site and timing of the initial epithelial⁻mesenchymal interactions as well as in whether the condensation has an osteogenic or chondrogenic fate, both within and among species. Further comparative studies are needed to clarify and broaden the existing knowledge of this intricate phenomenon.
Collapse
Affiliation(s)
- Jennifer L Giffin
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
| | - Danielle Gaitor
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada.
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
6
|
Li H, Daculsi R, Grellier M, Bareille R, Bourget C, Amedee J. Role of neural-cadherin in early osteoblastic differentiation of human bone marrow stromal cells cocultured with human umbilical vein endothelial cells. Am J Physiol Cell Physiol 2010; 299:C422-30. [PMID: 20664068 DOI: 10.1152/ajpcell.00562.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In our previous studies, roles of gap junction and vascular endothelial growth factor in the cross-talking of human bone marrow stromal cells (HBMSCs) and human umbilical vein endothelial cells (HUVECs) have been extensively studied. The present study focused on the investigation of the roles of neural (N)-cadherin in early differentiation of HBMSCs in direct-contact cocultures with HUVECs for 24 and 48 h. Quantitative real-time polymerase chain reaction, immunofluorescence, Western blot, as well as functional studies were applied to perform the studies at both protein and gene levels. Results showed that cocultured cells expressed much higher N-cadherin than monocultured cells after 24 and 48 h of culture. We observed that N-cadherin concentrated in the membrane of cocultured HBMSCs (co-HBMSCs) while distributed within the cytoplasm of monocultured HBMSCs, which indicated that the cell-cell adhesion was improved between cocultured cells. In addition, more beta-catenin was found to translocate into the cocultured cells nuclei and more T cell factor-1 (TCF-1) were detected in cocultured cells than in the monocultured cells. Moreover, mRNA levels of early osteoblastic markers including alkaline phosphatase (ALP) and type I collagen (Col-I) of co-HBMSCs were significantly upregulated, whereas neutralization of N-cadherin led to a downregulation of ALP and Col-I in both of the HBMSCs and co-HBMSCs compared with untreated cells. Taking our findings together it can be concluded that cocultures of HBMSCs with HUVECs increased N-cadherin expression and improved cell-cell adhesion. Whether this applies only to osteoprogenitor cells or to all the cell types in the culture will need to be determined by further studies. Subsequently, signaling transduction might be induced with the participation of beta-catenin and TCF-1. With the N-cadherin-mediated cell-cell adhesion and signaling transductions, the early osteoblastic differentiation of co-HBMSCs was significantly upregulated.
Collapse
Affiliation(s)
- Haiyan Li
- INSERM U577, Bordeaux and University Victor Segalen Bordeaux 2, Bordeaux F33076, France.
| | | | | | | | | | | |
Collapse
|
7
|
Atz ME, Rollins B, Vawter MP. NCAM1 association study of bipolar disorder and schizophrenia: polymorphisms and alternatively spliced isoforms lead to similarities and differences. Psychiatr Genet 2007; 17:55-67. [PMID: 17413444 PMCID: PMC2077086 DOI: 10.1097/ypg.0b013e328012d850] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The neural cell adhesion molecule (NCAM1) is a multifunction transmembrane protein involved in synaptic plasticity, neurodevelopment, and neurogenesis. Multiple NCAM1 proteins were differentially altered in bipolar disorder and schizophrenia. Single nucleotide polymorphisms (SNPs) in the NCAM1 gene were significantly associated with bipolar disorder in the Japanese population. Bipolar disorder and schizophrenia may share common vulnerability or susceptibility risk factors for shared features in each disorder. METHODS Both SNPs and splice variants in the NCAM1 gene were analysed in bipolar disorder and schizophrenia. A case-control study design for association of SNPs and differential exon expression in the NCAM1 gene was used. RESULTS A genotypic association between bipolar disorder and SNP b (rs2303377 near mini-exon b) and a suggestive association between schizophrenia and SNP 9 (rs646558) were found. Three of the two marker haplotypes for SNP 9 and SNP b showed varying frequencies between bipolar and controls (P<0.0001) as well as between schizophrenia and controls (P<0.0001). There were nine NCAM1 transcripts present in postmortem brain samples that involve alternative splicing of NCAM1 mini-exons (a, b, c) and the secreted (SEC) exon. Significant differences in the amounts of four alternatively spliced isoforms were found between NCAM1 SNP genotypes. In exploratory analysis, the c-SEC alternative spliced isoform was significantly decreased in bipolar disorder compared to controls for NCAM1 SNP b heterozygotes (P=0.013). CONCLUSIONS Diverse NCAM1 transcripts were found with possibly different functions. The results suggest that SNPs within NCAM1 contribute differential risk for both bipolar disorder and schizophrenia possibly by alternative splicing of the gene.
Collapse
Affiliation(s)
- Mary E Atz
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | | | | |
Collapse
|
8
|
Matemba SF, Lie A, Ransjö M. Regulation of osteoclastogenesis by gap junction communication. J Cell Biochem 2006; 99:528-37. [PMID: 16639710 DOI: 10.1002/jcb.20866] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Receptor activator of NF-kappaB ligand (RANKL) is crucial in osteoclastogenesis but signaling events involved in osteoclast differentiation are far from complete and other signals may play a role in osteoclastogenesis. A more direct pathway for cellular crosstalk is provided by gap junction intercellular channel, which allows adjacent cells to exchange second messengers, ions, and cellular metabolites. Here we have investigated the role of gap junction communication in osteoclastogenesis in mouse bone marrow cultures. Immunoreactive sites for the gap junction protein connexin 43 (Cx43) were detected in the marrow stromal cells and in mature osteoclasts. Carbenoxolone (CBX) functionally blocked gap junction communication as demonstrated by a scrape loading Lucifer Yellow dye transfer technique. CBX caused a dose-dependent inhibition (significant > or = 90 microM) of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells formed in 7- to 8-day marrow cultures stimulated by parathyroid hormone (PTH; 10 nM) or forskolin (FSK; 1 microM). Furthermore, CBX (100 microM) significantly inhibited prostaglandin E2 (PGE2; 10 microM) and 1,25(OH)2-vitamin D3 stimulated osteoclast differentiation in the mouse bone marrow cultures. Consequently, quantitative real-time polymerase chain reaction (PCR) analysis demonstrated that CBX downregulated the expression of osteoclast phenotypic markers, but without having any significant effects on RANK, RANKL, and osteoprotegerin (OPG) mRNA expression. However, the results demonstrated that CBX significantly inhibits RANKL-stimulated (100 ng/ml) osteoclastogenesis in the mouse bone marrow cultures. Taken together, our results suggests that gap junctional diffusion of messenger molecules interacts with signaling pathways downstream RANKL in osteoclast differentiation. Further studies are required to define the precise mechanisms and molecular targets involved.
Collapse
Affiliation(s)
- Stephen F Matemba
- Department of Odontology, Division of Oral Cell Biology, Umeå University, SE 901 87, Umeå, Sweden
| | | | | |
Collapse
|
9
|
Frosch KH, Barvencik F, Viereck V, Lohmann CH, Dresing K, Breme J, Brunner E, Stürmer KM. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J Biomed Mater Res A 2003; 68:325-34. [PMID: 14704974 DOI: 10.1002/jbm.a.20010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purpose of the current study was to investigate the effect of different diameters of cylindrical titanium channels on human osteoblasts. Titanium samples having continuous drill channels with diameters of 300, 400, 500, 600, and 1000 microm were put into osteoblast cell cultures that were isolated from 12 adult human trauma patients. Cell migration into the drill channels was investigated by transmitted-light microscopy. The DNA content in the drill channels was measured photometrically, collagen type I production was analyzed by enzyme-linked immunosorbent assay (ELISA) and osteocalcin gene expression by reverse transcriptase-polymerase chain reaction (RT-PCR). Formation of mineralized tissue was assessed by microradiographs of histological sections. Within 20 days, cells grew an average of 838 microm (+/-128 microm) into the drill channels with a diameter of 600 microm and were significantly faster (p < 0.05) than in all other channels. Cells produced significantly more osteocalcin messenger RNA (mRNA) in 600-microm channels (p < 0.05) than they did in 1000-microm channels and demonstrated the highest osteogenic differentiation. The channel diameter did not influence collagen type I production. The highest cell density was found in 300-microm channels (p < 0.05). The DNA content of the channels linearly decreased with increasing channel diameters. After 40 days of culture, the proportion of mineralized tissue at the mouth section amounted to 6% in 300-microm channels and to 9-11% in 400-600-microm channels. In 1000-microm channels, only traces of mineralization were detected. Our data suggest that the diameter of cylindrical titanium channels has a significant effect on migration, gene expression, and mineralization of human osteoblasts.
Collapse
Affiliation(s)
- Karl-Heinz Frosch
- Department of Trauma Surgery, Plastic and Reconstructive Surgery, Georg-August-University Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Cell-cell adhesion mediated by cadherins is essential for the function of bone forming cells during osteogenesis. Here, the evidence that N-cadherin is an important regulator of osteoblast differentiation and osteogenesis is reviewed. Osteoblasts express a limited number of cadherins, including the classic N-cadherin. The expression profile of N-cadherin in osteoblasts during bone formation in vivo and in vitro suggests a role of this molecule in osteogenesis. Functional studies using neutralizing antibodies or antisense oligonucleotides indicate that N-cadherin is involved in the control the expression of osteoblast marker gene expression and differentiation. Cleavage of N-cadherin during osteoblast apoptosis also suggests a role of N-cadherin-mediated-cell-cell adhesion in osteoblast survival. Hormonal and local factors that regulate osteoblast function also regulate N-cadherin expression and subsequent cell-cell adhesion associated with osteoblast differentiation or survival. Signaling mechanisms involved in N-cadherin-mediated cell-cell adhesion and osteoblast gene expression have also been identified. Alterations of N-cadherin expression are associated with abnormal osteoblast differentiation and osteogenesis in pathological conditions. These findings indicate that N-cadherin plays a role in normal and pathological bone formation and provide some insight into the process involved in N-cadherin-mediated cell-cell adhesion and differentiation in osteoblasts.
Collapse
Affiliation(s)
- Pierre J Marie
- INSERM U 349, affiliated CNRS, Biology and Pathology of Osteoblast, Lariboisière Hospital, Paris, France.
| |
Collapse
|
11
|
Goldstein AS. Effect of seeding osteoprogenitor cells as dense clusters on cell growth and differentiation. TISSUE ENGINEERING 2001; 7:817-27. [PMID: 11749737 DOI: 10.1089/107632701753337753] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One approach for forming tissue equivalents involves seeding of cells into porous scaffolds followed by culture in vitro. Within this paradigm, the strategy by which cells are initially seeded may dictate the ultimate properties of the tissue equivalent. In particular, low cell densities may suffer from poor intercellular communication, whereas high densities may result in an unfavorable microenvironment due to transport limitations. A third alternative is to seed cells as dense clusters, which might benefit from intercellular contact without the high nutrient demand. To test this approach, planar substrates were seeded with 10(4) osteoprogenitor marrow stromal cells either as a diffuse subconfluent dispersion (2.6 x 10(3) cells/cm(2)) or as a single dense cluster (8 x 10(4) cells/cm(2)). In this study, the densely clustered cells demonstrated significantly diminished cell growth and collagen synthesis. However, a significantly higher level of alkaline phosphatase activity--a measure of bone-forming potential--and moderately more mineralization were observed with these dense cultures. These findings show that clustering can enhance the differentiation phase while diminishing the proliferating phase of these diploid cells without requiring large cell numbers. Thus, this seeding strategy may improve the quality of engineered tissues.
Collapse
Affiliation(s)
- A S Goldstein
- Department of Chemical Engineering, Virginia Polytechnic Institute, Blacksburg, Virginia 24061-0211, USA.
| |
Collapse
|
12
|
Gramsch B, Gabriel HD, Wiemann M, Grümmer R, Winterhager E, Bingmann D, Schirrmacher K. Enhancement of connexin 43 expression increases proliferation and differentiation of an osteoblast-like cell line. Exp Cell Res 2001; 264:397-407. [PMID: 11262196 DOI: 10.1006/excr.2000.5145] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone cells form a functional syncytium as they are coupled by gap junctions composed mainly of connexin 43 (Cx43). To further understand the role of Cx43 in bone cell growth and differentiation, we stably transfected Cx45-expressing UMR 106-01 cells with Cx43 using an expression vector containing rat Cx43 cDNA. Three stably transfected clones were analyzed, all of which showed altered expression of Cx43 and/or Cx45 as was obvious from immunocytochemistry and Northern blotting. Double whole-cell patch clamping revealed single-channel conductances of 20 (Cx45) and 60 pS (Cx43). The overexpression of Cx43 led to an increase in dye coupling concomitant with elevated gap-junctional conductance. The phenotype of the transfected clones was characterized by an increased proliferation (4- to 7-fold) compared to controls. Moreover, a transfectant clone with 10- to 12-fold enhanced Cx43 expression showed a significantly increased calcium content of the extracellular matrix and enlarged mineralization nodules, while alkaline phosphatase was moderately increased. We conclude that enhanced gap-junctional coupling via Cx43 significantly promotes proliferation and differentiation of UMR cells.
Collapse
Affiliation(s)
- B Gramsch
- Department of Physiology, University of Essen, Essen, D-45122, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Tenascin-C (TN-C) is a modular and multifunctional extracellular matrix (ECM) glycoprotein that is exquisitely regulated during embryonic development and in adult tissue remodeling. TN-C gene transcription is controlled by intracellular signals that are generated by multiple soluble factors, integrins and mechanical forces. These external cues are interpreted by particular DNA control elements that interact with different classes of transcription factors to activate or repress TN-C expression in a cell type- and differentiation-dependent fashion. Among the transcriptional regulators of the TN-C gene that have been identified, the homeobox family of proteins has emerged as a major player. Downstream from TN-C, intracellular signals that are relayed via specific cell surface receptors often impart contrary cellular functions, even within the same cell type. A key to understanding this behavior may lie in the dual ability of TN-C-enriched extracellular matrices to generate intracellular signals, and to define unique cellular morphologies that modulate these signal transduction pathways. Thus, despite the contention that TN-C null mice appear to develop and act normally, TN-C biology continues to provide a wealth of information regarding the complex nature of the ECM in development and disease.
Collapse
Affiliation(s)
- P L Jones
- Pediatric Cardiology Research, Abramson Research Center, Children's Hospital of Philadelphia & The University of Pennsylvania School of Medicine, 34th Street and Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | | |
Collapse
|
14
|
Hsu M, Andl T, Li G, Meinkoth JL, Herlyn M. Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci 2000; 113 ( Pt 9):1535-42. [PMID: 10751145 DOI: 10.1242/jcs.113.9.1535] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reduced gap junction activity has long been implicated in tumorigenesis. To elucidate the potential role of intercellular communication in melanoma development, we examined gap junctional capability of melanocytic cells from various stages of tumor progression in coculture models using dye transfer assays. Normal melanocytes coupled with keratinocytes by gap junctional formation, whereas melanoma cells did not. Instead, melanoma cells communicated among themselves and with fibroblasts. This switch in communication partners coincided with a shift from E-cadherin to N-cadherin expression during melanoma development. Forced expression of E-cadherin by adenoviral gene transfer in N-cadherin-expressing melanoma cells restored gap junctional compatibility with keratinocytes. Our data suggest that (1) melanocyte transformation is associated with loss of the pre-existing gap junctional activity with keratinocytes but a concomitant gain of communication with a newly juxtaposed cell type, the fibroblasts, (2) the specificity of gap junctional formation during melanoma development is determined by the cadherin profile on the melanocytic cells and (3) the overall gap junctional activity of melanocytic cells is not reduced with transformation.
Collapse
Affiliation(s)
- M Hsu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|