1
|
Morales J, Pawle RH, Akkilic N, Luo Y, Xavierselvan M, Albokhari R, Calderon IAC, Selfridge S, Minns R, Takiff L, Mallidi S, Clark HA. DNA-Based Photoacoustic Nanosensor for Interferon Gamma Detection. ACS Sens 2019; 4:1313-1322. [PMID: 30973005 DOI: 10.1021/acssensors.9b00209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tracking protein levels in the body is vital in both research and medicine, where understanding their physiological roles provides insight into their regulation in homeostasis and diseases. In medicine, protein levels are actively sampled since they continuously fluctuate, reflecting the status of biological systems and provide insight into patient health. One such protein is interferon gamma, a clinically relevant protein with immunoregulatory functions that play critical roles against infection. New tools for continuously monitoring protein levels in vivo are invaluable in monitoring real-time conditions of patients to allow better care. Here, we developed a DNA-based nanosensor for the photoacoustic detection of interferon gamma. This work demonstrates how we transformed a simple DNA motif, receptors, and a novel phthalocyanine dye into a proof-of-concept photoacoustic nanosensor for protein detection. Surface plasmon resonance kinetic analysis demonstrated that the nanosensor is responsive and reversible to interferon gamma with an affinity in the nanomolar range, KD1 = 167 nM and KD2 = 316 nM. As a reporter, our design includes a novel phthalocyanine-based photoacoustic dye that stacks in a J-aggregate, causing a 22.5% increase in signal. Upon receptor binding, the DNA structure bends to induce phthalocyanine dye stacking, resulting in a 55% increase in photoacoustic signal in the presence of 10 μM interferon gamma. This proof-of-concept nanosensor is a novel approach to the development of a photoacoustic sensor and may be adapted for other proteins of interest in the future for in vivo tracking.
Collapse
Affiliation(s)
- Jennifer Morales
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Robert H. Pawle
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Namik Akkilic
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Yi Luo
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Marvin Xavierselvan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Rayan Albokhari
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Isen Andrew C. Calderon
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Scott Selfridge
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Richard Minns
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Larry Takiff
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Heather A. Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Jelsing J, Vrang N, van Witteloostuijn SB, Mark M, Klein T. The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves β-cell mass in non-obese diabetic mice. J Endocrinol 2012; 214:381-7. [PMID: 22761275 DOI: 10.1530/joe-11-0479] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent data indicate that dipeptidyl peptidase 4 (DPP4) inhibitors have anti-inflammatory and β-cell-sparing effects in animal models of type 1 diabetes. To evaluate the effects of the DPP4 inhibitor linagliptin on β-cell mass and insulinitis, we examined the progression of diabetes (blood glucose >11 mmol/l) in non-obese diabetic (NOD) mice with terminal stereological assessment of cellular pancreatic changes. Female NOD mice were fed a normal chow diet or a diet containing linagliptin 0.083 g/kg chow for 60 days. At study end, the incidence of diabetes in linagliptin-treated mice was reduced by almost 50% compared with vehicle (10 of 31 mice vs 18 of 30 mice, P=0.021). The total islet mass and total β-cell mass, identified by insulin immunoreactivity, were greater in non-diabetic linagliptin-treated mice compared with non-diabetic vehicle-treated mice (P<0.01 for both) but were greatly reduced in diabetic mice irrespective of treatment. No changes were seen in the α, δ and γ endocrine cell pool. Moreover, the total mass of lymphocyte insulinitis was significantly reduced in linagliptin-treated mice compared with vehicle. The data indicate that linagliptin treatment delays the onset of diabetes in NOD mice by protecting β-cell mass.
Collapse
|
3
|
Lin M, Yin N, Murphy B, Medof ME, Segerer S, Heeger PS, Schröppel B. Immune cell-derived c3 is required for autoimmune diabetes induced by multiple low doses of streptozotocin. Diabetes 2010; 59:2247-52. [PMID: 20584999 PMCID: PMC2927947 DOI: 10.2337/db10-0044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The complement system contributes to autoimmune injury, but its involvement in promoting the development of autoimmune diabetes is unknown. In this study, our goal was to ascertain the role of complement C3 in autoimmune diabetes. RESEARCH DESIGN AND METHODS Susceptibility to diabetes development after multiple low-dose streptozotocin treatment in wild-type (WT) and C3-deficient mice was analyzed. Bone marrow chimeras, luminex, and quantitative reverse transcription PCR assays were performed to evaluate the phenotypic and immunologic impact of C3 in the development of this diabetes model. RESULTS Coincident with the induced elevations in blood glucose levels, we documented alternative pathway complement component gene expression within the islets of the diabetic WT mice. When we repeated the experiments with C3-deficient mice, we observed complete resistance to disease, as assessed by the absence of histologic insulitis and the absence of T-cell reactivity to islet antigens. Studies of WT chimeras bearing C3-deficient bone marrow cells showed that bone marrow cell-derived C3, and not serum C3, is involved in the induction of diabetes in this model. CONCLUSIONS The data reveal a key role for immune cell-derived C3 in the pathogenesis of murine multiple low-dose streptozotocin-induced diabetes and support the concept that immune cell mediated diabetes is in part complement-dependent.
Collapse
Affiliation(s)
- Marvin Lin
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
| | - Na Yin
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York
| | - Barbara Murphy
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
- Transplantation Institute, Mount Sinai School of Medicine, New York, New York
| | - M. Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Stephan Segerer
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Peter S. Heeger
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
- Transplantation Institute, Mount Sinai School of Medicine, New York, New York
| | - Bernd Schröppel
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
- Transplantation Institute, Mount Sinai School of Medicine, New York, New York
- Corresponding author: Bernd Schröppel,
| |
Collapse
|
4
|
Newly weaned nonobese diabetic mice show heightened early diabetes sensitivity to multiple low doses of streptozotocin than nondiabetes-prone CD-1 mice: initial beta-cell damage a key trigger for type 1 diabetes? Pancreas 2008; 37:e8-e19. [PMID: 18580436 DOI: 10.1097/mpa.0b013e3181661b1b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES We determined if newly weaned female nonobese diabetic (NOD) mice show greater diabetes sensitivity to dose-adjusted regimens of multiple low doses of streptozotocin (Stz) than nondiabetes-prone CD-1 mice. METHODS Female NOD mice received 5 daily doses of Stz from day 21 (0, 5, 10, 15, 20, 30, and 40 mg/kg body weight) and CD-1 mice 20, 30, and 40 mg. RESULTS : Streptozotocin, at the 15-, 20-, 30-, and 40-mg dose, induced rapid diabetes in NOD mice. By day 100, 90% to 95% of NOD mice became diabetic after the 40- and 30-mg dose and 33% to 40% with the 15- and 20-mg dose. In comparison, only about 50% and 33% of CD-1 mice developed diabetes with the 40- and 30-mg dose, respectively, and 5.5% with the 20-mg dose. In NOD mice, the 20-mg dose also partially suppressed spontaneous diabetes. All diabetic mice displayed insulitis, variable immunostaining for insulin, and redistribution of glucagon and somatostatin cells. Glucose transporter-2 was markedly attenuated in selective beta cells. CONCLUSIONS Newly weaned female NOD mice show heightened early sensitivity to low doses of Stz than CD-1 mice. At diabetes, several beta cells remain and show variable immunostaining for insulin and an attenuated expression for glucose transporter-2. Specific low doses of Stz may also suppress spontaneous diabetes.
Collapse
|
5
|
Kaminski A, Kaminski ER, Morgan NG. Pre-incubation with interleukin-4 mediates a direct protective effect against the loss of pancreatic beta-cell viability induced by proinflammatory cytokines. Clin Exp Immunol 2007; 148:583-8. [PMID: 17403060 PMCID: PMC1941919 DOI: 10.1111/j.1365-2249.2007.03375.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Loss of pancreatic beta-cells in type I diabetes is associated with an increase in T helper 1 (Th1) proinflammatory cytokines in the islet milieu, with a concomitant reduction in Th2 anti-inflammatory cytokines. In animal models, manoeuvres designed to polarize Th1 responses towards Th2, particularly involving interleukin (IL)-4, have been shown to protect against insulitis and diabetes. The aim of this study was to determine whether IL-4 can exert a direct effect on beta-cell viability. The rat pancreatic beta-cell line, BRIN-BD11, was used. IL-4R mRNA expression was assayed by reverse transcription-polymerase chain reaction and DNA sequencing and protein expression measured using anti-IL-4R antibodies and confocal microscopy. Cells were pretreated in vitro with IL-4, incubated with IL-1beta and interferon (IFN)-gamma and DNA fragmentation and nitrite production analysed by flow cytometry and Griess assay, respectively. Expression of type I (IL-4R alpha and common gamma-chain) and type II (IL-4R alpha, IL-13R alpha-1) IL-4R mRNA transcripts, together with cell surface expression of IL-4R, was demonstrated. Pre-incubation with IL-4 reduced significantly cell death induced by IL-1beta alone or by a combination of IL-1beta and IFN-gamma, although this was not accompanied by a reduced production of nitrite. The protective effect of IL-4 was not seen when all three cytokines were added simultaneously. These results demonstrate, for the first time, expression of IL-4 receptor components on rat pancreatic beta-cells and reveal a direct protective effect on the loss of viability mediated by proinflammatory cytokines when beta-cells are pre-incubated with IL-4.
Collapse
Affiliation(s)
- A Kaminski
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Plymouth, UK
| | | | | |
Collapse
|
6
|
Redd S, Ginn S, Ross JM. Fas and Fas ligand immunolocalization in pancreatic islets of NOD mice during spontaneous and cyclophosphamide-accelerated diabetes. THE HISTOCHEMICAL JOURNAL 2002; 34:1-12. [PMID: 12365794 DOI: 10.1023/a:1021321522826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During insulin-dependent diabetes mellitus, immune cells which infiltrate pancreatic islets mediate beta cell destruction over a prolonged asymptomatic prediabetic period. The molecular mechanisms of beta cell death in vivo remain unresolved. At least two major molecular processes of destruction have been proposed. One involves the Fas-FasL (Fas-Fas ligand) system and the other, the perforin pathway. Here, dual-label immunohistochemistry was employed to examine the intra-islet expression, distribution and cellular sources of Fas and FasL in the NOD mouse, during spontaneous diabetes (days 21, 40 and 90) and following acceleration of diabetes with cyclophosphamide (days 0, 4, 7, 11 and 14 after cyclophosphamide administration). The expression of the proteins was correlated with advancing disease. FasL was expressed constitutively in most beta cells but not in glucagon or somatostatin cells or islet inflammatory cells and paralleled the loss of insulin immunolabelling with advancing disease. It was also expressed in beta cells of non-diabetes prone CD-1 and C57BL/6 mice from a young age (day 21). Strong immunolabelling for Fas was first observed in extra-islet macrophages and those close to the islet in NOD and non-diabetes-prone mice. During spontaneous and cyclophosphamide diabetes, it was observed in a higher proportion of islet infiltrating macrophages than CD4 and CD8 T cells, concomitant with advancing insulitis. In cyclophosphamide-treated mice, the proportion of Fas-positive intra-islet CD4 and CD8 T cells at day 14 (with and without diabetes) was considerably higher than at days 0, 4, 7 and 11. At days 11 and 14, a proportion of Fas-positive intra-islet macrophages co-expressed interleukin-1beta and inducible nitric oxide synthase. Fas was not detectable in beta cells and other islet endocrine cells during spontaneous and cyclophosphamide induced diabetes. Our results show constitutive expression of FasL in beta cells in the NOD mouse and predominant expression of Fas in intra-islet macrophages and to a lesser extent in T cells prior to diabetes onset. Interleukin-1beta in intra-islet macrophages may induce Fas and inducible nitric oxide synthase expression in an autocrine and paracrine manner and mediate beta cell destruction or even death of some macrophages and T cells. However, other mechanisms of beta cell destruction during spontaneous and cyclophosphamide-accelerated diabetes and independent of Fas-FasL, require examination.
Collapse
Affiliation(s)
- S Redd
- School of Biological Sciences, University of Auckland, New Zealand
| | | | | |
Collapse
|
7
|
Kommajosyula S, Reddy S, Nitschke K, Kanwar JR, Karanam M, Krissansen GW. Leukocytes infiltrating the pancreatic islets of nonobese diabetic mice are transformed into inactive exiles by combinational anti‐cell adhesion therapy. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.4.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Sharada Kommajosyula
- Department of Molecular Medicine and University of Auckland, Auckland, New Zealand
| | - Shiva Reddy
- Department of Pediatrics, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | - Kristina Nitschke
- Department of Pediatrics, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | - Jagat R. Kanwar
- Department of Molecular Medicine and University of Auckland, Auckland, New Zealand
| | - Muralidhar Karanam
- Department of Pediatrics, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
8
|
Reddy S, Young M, Ginn S. Immunoexpression of interleukin-1beta in pancreatic islets of NOD mice during cyclophosphamide-accelerated diabetes: co-localization in macrophages and endocrine cells and its attenuation with oral nicotinamide. THE HISTOCHEMICAL JOURNAL 2001; 33:317-27. [PMID: 11758808 DOI: 10.1023/a:1012422821187] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During insulin-dependent diabetes mellitus, islet invading immune cells destroy beta cells over a prolonged asymptomatic pre-diabetic period. Cytokines synthesised and secreted by specific immune cells within the islet infiltrate may be crucial effectors of beta cell destruction or protection during the disease. Interleukin-1beta may be a key cytokine which may act in concert with other cytokines in initiating and/or promoting beta cell destruction. We have examined this hypothesis in NOD mice by assessing the intra-islet expression and co-localization of interleukin-1beta at different time-points following cyclophosphamide administration. We have also tested the effects of long-term oral nicotinamide given to NOD mice in suppressing intra-islet expression of the cytokine in this accelerated model. Cyclophosphamide was administered to day 95 female NOD mice. Pancreatic tissues were examined by dual-label confocal immunofluorescence microscopy for the expression and co-localization of interleukin-1beta at days 0, 4, 7, 11 and at onset of diabetes (day 14). Diabetes developed in 7/11 mice 14 days after administration of cyclophosphamide while nicotinamide completely prevented the disease. At day 0, interleukin-1beta immunolabelling was observed in selective intra-islet macrophages, several somatostatin cells and in a few beta cells. However, at day 4, it was seen mostly in somatostatin and some beta cells. At day 7, an increasing number of interleukin-1beta cells were observed within the islets and co-localized to several somatostatin cells, beta cells and macrophages. The mean number of intra-islet interleukin-1beta cells reached a peak at day 11 and was significantly higher than at day 7 (p = 0.05) and at day 14 (onset of diabetes; p = 0.03). At day 11, interleukin-1beta immunolabelling was also present in selective macrophages which co-expressed inducible nitric oxide synthase. At onset of diabetes, some macrophages, residual beta cells and somatostatin cells showed immunolabelling for the cytokine. Exposure of NOD mice to oral nicotinamide was associated with a considerably reduced expression of interleukin-1beta cells within the islet at day 11 (p = 0.002). We conclude that cylophosphamide treatment enhances the expression of interleukin-1beta in selective macrophages, somatostatin and beta cells during the course of the disease. Its expression reaches a maximum immediately prior to onset of diabetes. Interleukin-1beta present in intra-islet macrophages, somatostatin and beta cells may influence its expression by autocrine and paracrine means. Interleukin-1beta expression within islet macrophages may also up-regulate inducible nitric oxide synthase within the same macrophage or adjacent macrophage populations. These intra-islet molecular events may corroborate with other local cytotoxic processes leading to beta cell destruction. Oral nicotinamide may attenuate intra-islet expression of interleukin-1beta and thus inducible nitric oxide synthase during prevention of Type 1 diabetes in this animal model. The expression of interleukin-1beta in specific islet endocrine cell-types shown in this study requires further investigation.
Collapse
Affiliation(s)
- S Reddy
- Division of Paediatrics and the Liggins Institute for Medical Research, University of Auckland School of Medicine, New Zealand
| | | | | |
Collapse
|