1
|
Sheeley MP, Kiesel VA, Andolino C, Lanman NA, Donkin SS, Hursting SD, Wendt MK, Teegarden D. 1α,25-dihydroxyvitamin D reduction of MCF10A-ras cell viability in extracellular matrix detached conditions is dependent on regulation of pyruvate carboxylase. J Nutr Biochem 2022; 109:109116. [DOI: 10.1016/j.jnutbio.2022.109116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
2
|
Bajbouj K, Al-Ali A, Shafarin J, Sahnoon L, Sawan A, Shehada A, Elkhalifa W, Saber-Ayad M, Muhammad J, Elmoselhi AB, Guraya S, Hamad M. Vitamin D Exerts Significant Antitumor Effects by Suppressing Vasculogenic Mimicry in Breast Cancer Cells. Front Oncol 2022; 12:918340. [PMID: 35747793 PMCID: PMC9210804 DOI: 10.3389/fonc.2022.918340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundNumerous clinical and experimental observations have alluded to the substantial anti-neoplastic role of vitamin D in breast cancer (BC), primarily by inducing apoptosis and affecting metastasis. Tumor progression and resistance to chemotherapy have been linked to vasculogenic mimicry (VM), which represents the endothelial-independent formation of microvascular channels by cancer cells. However, the effect of vitamin D on VM formation in BC has not been thoroughly investigated. This study examined the impact of 1α,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D, on the expression of major factors involved in BC migration, invasion, and VM formation.Experimental MethodsPublicly available transcriptomic datasets were used to profile the expression status of the key VM markers in vitamin D-treated BC cells. The in silico data were validated by examining the expression and activity of the key factors that are involved in tumor progression and MV formation in hormone-positive MCF-7 and aggressive triple‐negative MDA-MB-231 BC cells after treatment with calcitriol.Results and DiscussionsThe bioinformatics analysis showed that tumor VM formation-enriched pathways were differentially downregulated in vitamin D-treated cells when compared with control counterparts. Treatment of BC cells with calcitriol resulted in increased expression of tissue inhibitors of metalloproteinases (TIMPs 1 and 2) and decreased content and gelatinolytic activity of matrix metalloproteinases (MMPs 2 and 9). Furthermore, calcitriol treatment reduced the expression of several pro-MV formation regulators including vascular endothelial growth factor (VEGF), tumor growth factor (TGF-β1), and amphiregulin. Eventually, this process resulted in a profound reduction in cell migration and invasion following the treatment of BC cells with calcitriol when compared to the controls. Finally, the formation of VM was diminished in the aggressive triple‐negative MDA-MB-231 cancer cell line after calcitriol treatment.ConclusionOur findings demonstrate that vitamin D mediates its antitumor effects in BC cells by inhibiting and curtailing their potential for VM formation.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Khuloud Bajbouj,
| | - Abeer Al-Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Lina Sahnoon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Sawan
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Shehada
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Medical Pharmacology Department, Cairo University, Cairo, Egypt
| | - Jibran Sualeh Muhammad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Adel B. Elmoselhi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Salman Y. Guraya
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Vitamin D May Protect against Breast Cancer through the Regulation of Long Noncoding RNAs by VDR Signaling. Int J Mol Sci 2022; 23:ijms23063189. [PMID: 35328609 PMCID: PMC8950893 DOI: 10.3390/ijms23063189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Dietary vitamin D3 has attracted wide interest as a natural compound for breast cancer prevention and therapy, supported by in vitro and animal studies. The exact mechanism of such action of vitamin D3 is unknown and may include several independent or partly dependent pathways. The active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D, calcitriol), binds to the vitamin D receptor (VDR) and induces its translocation to the nucleus, where it transactivates a myriad of genes. Vitamin D3 is involved in the maintenance of a normal epigenetic profile whose disturbance may contribute to breast cancer. In general, the protective effect of vitamin D3 against breast cancer is underlined by inhibition of proliferation and migration, stimulation of differentiation and apoptosis, and inhibition of epithelial/mesenchymal transition in breast cells. Vitamin D3 may also inhibit the transformation of normal mammary progenitors into breast cancer stem cells that initiate and sustain the growth of breast tumors. As long noncoding RNAs (lncRNAs) play an important role in breast cancer pathogenesis, and the specific mechanisms underlying this role are poorly understood, we provided several arguments that vitamin D3/VDR may induce protective effects in breast cancer through modulation of lncRNAs that are important for breast cancer pathogenesis. The main lncRNAs candidates to mediate the protective effect of vitamin D3 in breast cancer are lncBCAS1-4_1, AFAP1 antisense RNA 1 (AFAP1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein-coding RNA 511 (LINC00511), LINC00346, small nucleolar RNA host gene 6 (SNHG6), and SNHG16, but there is a rationale to explore several other lncRNAs.
Collapse
|
4
|
Segovia-Mendoza M, García-Quiroz J, Díaz L, García-Becerra R. Combinations of Calcitriol with Anticancer Treatments for Breast Cancer: An Update. Int J Mol Sci 2021; 22:12741. [PMID: 34884550 PMCID: PMC8657847 DOI: 10.3390/ijms222312741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical, clinical, and epidemiological studies indicate that vitamin D3 (VD) deficiency is a risk factor for the development of breast cancer. Underlying mechanisms include the ability of calcitriol to induce cell differentiation, inhibit oncogenes expression, and modify different signaling pathways involved in the control of cell proliferation. In addition, calcitriol combined with different kinds of antineoplastic drugs has been demonstrated to enhance their beneficial effects in an additive or synergistic fashion. However, a recognized adjuvant regimen based on calcitriol for treating patients with breast cancer has not yet been fully established. Accordingly, in the present work, we review and discuss the preclinical and clinical studies about the combination of calcitriol with different oncological drugs, aiming to emphasize its main therapeutic benefits and opportunities for the treatment of this pathology.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Bernhardt SM, Borges VF, Schedin P. Vitamin D as a Potential Preventive Agent For Young Women's Breast Cancer. Cancer Prev Res (Phila) 2021; 14:825-838. [PMID: 34244152 DOI: 10.1158/1940-6207.capr-21-0114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Clinical studies backed by research in animal models suggest that vitamin D may protect against the development of breast cancer, implicating vitamin D as a promising candidate for breast cancer prevention. However, despite clear preclinical evidence showing protective roles for vitamin D, broadly targeted clinical trials of vitamin D supplementation have yielded conflicting findings, highlighting the complexity of translating preclinical data to efficacy in humans. While vitamin D supplementation targeted to high-risk populations is a strategy anticipated to increase prevention efficacy, a complimentary approach is to target transient, developmental windows of elevated breast cancer risk. Postpartum mammary gland involution represents a developmental window of increased breast cancer promotion that may be poised for vitamin D supplementation. Targeting the window of involution with short-term vitamin D intervention may offer a simple, cost-effective approach for the prevention of breast cancers that develop postpartum. In this review, we highlight epidemiologic and preclinical studies linking vitamin D deficiency with breast cancer development. We discuss the underlying mechanisms through which vitamin D deficiency contributes to cancer development, with an emphasis on the anti-inflammatory activity of vitamin D. We also discuss current evidence for vitamin D as an immunotherapeutic agent and the potential for vitamin D as a preventative strategy for young woman's breast cancer.
Collapse
Affiliation(s)
- Sarah M Bernhardt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Virginia F Borges
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon. .,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.,Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
6
|
Varghese JE, Balasubramanian B, Velayuthaprabhu S, Thirunavukkarasu V, Rengarajan RL, Murugesh E, Manikandan P, Arun M, Anand AV. Therapeutic effects of vitamin D and cancer: An overview. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jisha Elsa Varghese
- Department of Human Genetics and Molecular Biology Bharathiar University Tamil Nadu India
| | | | | | | | | | - Easwaran Murugesh
- Nutritional Improvement of Crops International Centre for Genetic Engineering and Biotechnology New Delhi India
| | | | - Meyyazhagan Arun
- Department of Life Sciences CHRIST (Deemed to be University) Karnataka India
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Biology Bharathiar University Tamil Nadu India
| |
Collapse
|
7
|
AlAli M, Alqubaisy M, Aljaafari MN, AlAli AO, Baqais L, Molouki A, Abushelaibi A, Lai KS, Lim SHE. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021; 26:molecules26092540. [PMID: 33925346 PMCID: PMC8123587 DOI: 10.3390/molecules26092540] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/27/2022] Open
Abstract
Nutraceuticals are essential food constituents that provide nutritional benefits as well as medicinal effects. The benefits of these foods are due to the presence of active compounds such as carotenoids, collagen hydrolysate, and dietary fibers. Nutraceuticals have been found to positively affect cardiovascular and immune system health and have a role in infection and cancer prevention. Nutraceuticals can be categorized into different classes based on their nature and mode of action. In this review, different classifications of nutraceuticals and their potential therapeutic activity, such as anti-cancer, antioxidant, anti-inflammatory and anti-lipid activity in disease will be reviewed. Moreover, the different mechanisms of action of these products, applications, and safety upon consumers including current trends and future prospect of nutraceuticals will be included.
Collapse
Affiliation(s)
- Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Aisha Abushelaibi
- Dubai Colleges, Higher Colleges of Technology, Dubai 16062, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
- Correspondence: or ; Tel.: +971-56-389-3757
| |
Collapse
|
8
|
Yu X, Liu B, Zhang N, Wang Q, Cheng G. Immune Response: A Missed Opportunity Between Vitamin D and Radiotherapy. Front Cell Dev Biol 2021; 9:646981. [PMID: 33928081 PMCID: PMC8076745 DOI: 10.3389/fcell.2021.646981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Radiotherapy (RT) is a mainstay treatment in several types of cancer and acts by mediating various forms of cancer cell death, although it is still a large challenge to enhance therapy efficacy. Radiation resistance represents the main cause of cancer progression, therefore, overcoming treatment resistance is now the greatest challenge for clinicians. Increasing evidence indicates that immune response plays a role in reprogramming the radiation-induced tumor microenvironment (TME). Intriguingly, radiation-induced immunosuppression possibly overwhelms the ability of immune system to ablate tumor cells. This induces an immune equilibrium, which, we hypothesize, is an opportunity for radiosensitizers to make actions. Vitamin D has been reported to act in synergistic with RT by potentiating antiproliferative effect induced by therapeutics. Additionally, vitamin D can also regulate the TME and may even lead to immunostimulation by blocking immunosuppression following radiation. Previous reviews have focused on vitamin D metabolism and epidemiological trials, however, the synergistic effect of vitamin D and existing therapies remains unknown. This review summarizes vitamin D mediated radiosensitization, radiation immunity, and vitamin D-regulated TME, which may contribute to more successful vitamin D-adjuvant radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Guanghui Cheng
- Department of Radiation Oncology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Li Z, Wu L, Zhang J, Huang X, Thabane L, Li G. Effect of Vitamin D Supplementation on Risk of Breast Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Nutr 2021; 8:655727. [PMID: 33869269 PMCID: PMC8049142 DOI: 10.3389/fnut.2021.655727] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Objective: Laboratory findings indicated that vitamin D might have a potent protective effect on breast cancer, but epidemiology studies reported conflicting results. The aim of the study was to conduct a systematic review and meta-analysis to clarify the efficacy of vitamin D supplementation on risk of breast cancer. Methods: MEDLINE, EMBASE, The Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, and abstracts of three major conferences were searched (up to December 8, 2020). Parallel randomized controlled trials (RCTs) examining the efficacy of vitamin D supplementation on risk of breast cancer or change of mammography compared with placebo in females were included. Data were meta-analyzed using a random-effects model. Bayesian meta-analysis was conducted to synthesize the results using data from observational studies as priors. Results: Seven RCTs were identified for effect of vitamin D on risk of breast cancer, with 19,137 females included for meta-analysis. No statistically significant effect of vitamin D on risk of breast cancer was found in classical random-effects meta-analysis (risk ratio = 1.04, 95% confidence interval: 0.84–1.28, p = 0.71). When Bayesian meta-analyses were conducted, results remained non-significant. There was no statistically significant effect of vitamin D on mammography density observed: mean difference = 0.46, 95% confidence interval: −2.06 to 2.98, p = 0.72. Conclusion: There is insufficient evidence to support the efficacy of vitamin D supplementation in breast cancer risk and change of mammography density. The protective effect of vitamin D on risk of breast cancer from previous observational studies may be overestimated. Systematic Review Registration: PROSPERO, identifier CRD42019138718.
Collapse
Affiliation(s)
- Ziyi Li
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Liangzhi Wu
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junguo Zhang
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xin Huang
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Guowei Li
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Negri M, Gentile A, de Angelis C, Montò T, Patalano R, Colao A, Pivonello R, Pivonello C. Vitamin D-Induced Molecular Mechanisms to Potentiate Cancer Therapy and to Reverse Drug-Resistance in Cancer Cells. Nutrients 2020; 12:nu12061798. [PMID: 32560347 PMCID: PMC7353389 DOI: 10.3390/nu12061798] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing interest in studying the role of vitamin D in cancer has been provided by the scientific literature during the last years, although mixed results have been reported. Vitamin D deficiency has been largely associated with various types of solid and non-solid human cancers, and the almost ubiquitous expression of vitamin D receptor (VDR) has always led to suppose a crucial role of vitamin D in cancer. However, the association between vitamin D levels and the risk of solid cancers, such as colorectal, prostate and breast cancer, shows several conflicting results that raise questions about the use of vitamin D supplements in cancer patients. Moreover, studies on vitamin D supplementation do not always show improvements in tumor progression and mortality risk, particularly for prostate and breast cancer. Conversely, several molecular studies are in agreement about the role of vitamin D in inhibiting tumor cell proliferation, growth and invasiveness, cell cycle arrest and inflammatory signaling, through which vitamin D may also regulate cancer microenvironment through the activation of different molecular pathways. More recently, a role in the regulation of cancer stem cells proliferation and short non-coding microRNA (miRNAs) expression has emerged, conferring to vitamin D a more crucial role in cancer development and progression. Interestingly, it has been shown that vitamin D is able not only to potentiate the effects of traditional cancer therapy but can even contribute to overcome the molecular mechanisms of drug resistance—often triggering tumor-spreading. At this regard, vitamin D can act at various levels through the regulation of growth of cancer stem cells and the epithelial–mesenchymal transition (EMT), as well as through the modulation of miRNA gene expression. The current review reconsiders epidemiological and molecular literature concerning the role of vitamin D in cancer risk and tumor development and progression, as well as the action of vitamin D supplementation in potentiating the effects of drug therapy and overcoming the mechanisms of resistance often triggered during cancer therapies, by critically addressing strengths and weaknesses of available data from 2010 to 2020.
Collapse
Affiliation(s)
- Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Annalisa Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Tatiana Montò
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Dipartimento di Sanità Pubblica, Università Federico II di Napoli, 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Correspondence:
| |
Collapse
|
11
|
Blasiak J, Pawlowska E, Chojnacki J, Szczepanska J, Fila M, Chojnacki C. Vitamin D in Triple-Negative and BRCA1-Deficient Breast Cancer-Implications for Pathogenesis and Therapy. Int J Mol Sci 2020; 21:E3670. [PMID: 32456160 PMCID: PMC7279503 DOI: 10.3390/ijms21103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Several studies show that triple-negative breast cancer (TNBC) patients have the lowest vitamin D concentration among all breast cancer types, suggesting that this vitamin may induce a protective effect against TNBC. This effect of the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D), can be attributed to its potential to modulate proliferation, differentiation, apoptosis, inflammation, angiogenesis, invasion and metastasis and is supported by many in vitro and animal studies, but its exact mechanism is poorly known. In a fraction of TNBCs that harbor mutations that cause the loss of function of the DNA repair-associated breast cancer type 1 susceptibility (BRCA1) gene, 1,25(OH)2D may induce protective effects by activating its receptor and inactivating cathepsin L-mediated degradation of tumor protein P53 binding protein 1 (TP53BP1), preventing deficiency in DNA double-strand break repair and contributing to genome stability. Similar effects can be induced by the interaction of 1,25(OH)2D with proteins of the growth arrest and DNA damage-inducible 45 (GADD45) family. Further studies on TNBC cell lines with exact molecular characteristics and clinical trials with well-defined cases are needed to determine the mechanism of action of vitamin D in TNBC to assess its preventive and therapeutic potential.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michal Fila
- Department of Neurology, Polish Mother Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| |
Collapse
|
12
|
Carlberg C, Muñoz A. An update on vitamin D signaling and cancer. Semin Cancer Biol 2020; 79:217-230. [DOI: 10.1016/j.semcancer.2020.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
|
13
|
Hossain S, Liu Z, Wood RJ. Histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human breast cancer cells. J Food Biochem 2019; 44:e13114. [PMID: 31846091 DOI: 10.1111/jfbc.13114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
It is relatively unknown how dietary bioactive compound, sulforaphane, in partnership with active vitamin D3, 1,25(OH)2D3, regulates vitamin D-dependent gene expression in breast cancer (BC). It has been suggested that the combination of various bioactive components with vitamins is crucial for their potential anticancer activities. METHODS This study employed a combinatorial chemopreventive strategy to investigate the impact of dietary histone deacetylase (HDAC) inhibitor, that is, sulforaphane on chromatin remodeling in BC. To understand the epigenetics-mediated changes in gene expression, MCF-7 cells were exposed for 24 hr to 1,25(OH)2D3 (100nM) either alone or in combination with L-sulforaphane and TSA (20μM and 1μM, respectively) at 70% confluency. Changes in VDR, CYP24A1, CYP27B1, and TRPV6 gene expressions were quantified using real-time PCR-based assays. HDAC inhibitor activity was assessed using HDAC I/II assay that measured global changes in acetylation status. Cell viability was measured using ATP and MT assays. Clonogenic and migration assays were performed to analyze the ability of single cells to grow into colonies and % closure (migration ability) upon treatments, respectively. Results were expressed as ΔCT ± standard error of means (SEM) from One-way ANOVA analyses for mRNA expressions and mean ± SEM for all other assays. RESULTS In MCF-7 cells, treatment with 1,25(OH)2D3 tended to decrease VDR (13 ± 0.4) and CYP27B1 (12 ± 0.96), while significantly increased TRPV6 (p = .02, 14 ± 0.1) and CYP24A1 (p < .0001, 0.38 ± 0.12) expression. D alone and D + TSA group had the opposite effects on HDAC inhibition from SFN alone, D + SFN, and TSA alone. The clonogenic assay showed a significant decrease in colony formation with no colonies for D + TSA (p < .03) and TSA alone groups (p < .03). Cell viability tended to decrease with D alone and in combination with TSA. CONCLUSION These data suggest that the effects of 1,25(OH)2D3 and sulforaphane are selective and gene-specific in MCF-7 cells. PRACTICAL APPLICATIONS Breast cancer (BC) affects a large number of the U.S. population each year. Like most cancers, nutrition does play a role in the prevention of BC. However, dietary advice that includes reducing alcohol intake, red meat, and saturated fat consumption, while increasing the intake of heart-healthy fats, dietary fiber, and lean protein, etc., is difficult to apply to all cancers from a preventative standpoint. Vitamin D has been implicated in BC, mostly as a protective factor, with mixed findings. This research focuses on the role of vitamin D as a protective intervention in human BC, along with a dietary bioactive compound-sulforaphane. The idea is to combine the known benefits of a micronutrient with potential benefits of the bioactive compound to establish a stronger intervention against BC progression, irrespective of the subtype.
Collapse
Affiliation(s)
| | - Zhenhua Liu
- Department of Nutrition, University of Massachusetts, Amherst, MA, USA
| | - Richard J Wood
- Department of Nutrition, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
14
|
Verma A, Schwartz Z, Boyan BD. 24R,25-dihydroxyvitamin D 3 modulates tumorigenicity in breast cancer in an estrogen receptor-dependent manner. Steroids 2019; 150:108447. [PMID: 31302113 DOI: 10.1016/j.steroids.2019.108447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023]
Abstract
Vitamin D has long been prescribed as a supplement to breast cancer patients. This is partially motivated by data indicating that low serum vitamin D, measured as 25-hydroxyvitamin D3 [25(OH)D3], is associated with worsened cancer prognosis and decreased survival rates in cancer patients. However, clinical studies investigating the role of vitamin D supplementation in breast cancer treatment are largely inconclusive. One reason for this may be that many of these studies ignore the complexity of the vitamin D metabolome and the effects of these metabolites at the cellular level. Once ingested, vitamin D is metabolized into 37 different metabolites, including 25(OH)D3, which is the metabolite actually measured clinically, as well as 1,25(OH)2D3 and 24,25(OH)2D3. Recent work by our lab and others has demonstrated a role for 24R,25(OH)2D3, in the modulation of breast cancer tumors via an estrogen receptor α-dependent mechanism. This review highlights the importance of considering estrogen receptor status in vitamin d-associated prognostic studies of breast cancer and proposes a potential mechanism for 24R,25(OH)2D3 signaling in breast cancer cells.
Collapse
Affiliation(s)
- Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78249, United States
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
15
|
Abstract
Signaling through the vitamin D receptor has been shown to be biologically active and important in a number of preclinical studies in prostate and other cancers. Epidemiologic data also indicate that vitamin D signaling may be important in the cause and prognosis of prostate and other cancers. These data indicate that perturbation of vitamin D signaling may be a target for the prevention and treatment of prostate cancer. Large studies of vitamin D supplementation will be required to determine whether these observations can be translated into prevention strategies. This paper reviews the available data in the use of vitamin D compounds in the treatment of prostate cancer. Clinical data are limited which support the use of vitamin D compounds in the management of men with prostate cancer. However, clinical trials guided by existing preclinical data are limited.
Collapse
Affiliation(s)
- Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, Fairfax, VA 22037, USA
| | | |
Collapse
|
16
|
Verma A, Cohen DJ, Schwartz N, Muktipaty C, Koblinski JE, Boyan BD, Schwartz Z. 24R,25-Dihydroxyvitamin D 3 regulates breast cancer cells in vitro and in vivo. Biochim Biophys Acta Gen Subj 2019; 1863:1498-1512. [PMID: 31125679 DOI: 10.1016/j.bbagen.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Epidemiological studies indicate high serum 25(OH)D3 is associated with increased survival in breast cancer patients. Pre-clinical studies attributed this to anti-tumorigenic properties of its metabolite 1α,25(OH)2D3. However, 1α,25(OH)2D3 is highly calcemic and thus has a narrow therapeutic window. Here we propose another metabolite, 24R,25(OH)2D3, as an alternative non-calcemic vitamin D3 supplement. METHODS NOD-SCID-IL2γR null female mice with MCF7 breast cancer xenografts in the mammary fat pad were treated with 24R,25(OH)2D3 and changes in tumor burden and metastases were assessed. ERα66+ MCF7 and T47D cells, and ERα66- HCC38 cells were treated with 24R,25(OH)2D3in vitro to assess effects on proliferation and apoptosis. Effects on migration and metastatic markers were assessed in MCF7. RESULTS 24R,25(OH)2D3 reduced MCF7 tumor growth and metastasis in vivo. In vitro results indicate that this was not due to an anti-proliferative effect; 24R,25(OH)2D3 stimulated DNA synthesis in MCF7 and T47D. In contrast, markers of invasion and metastasis were decreased. 24R,25(OH)2D3 caused dose-dependent increases in apoptosis in MCF7 and T47D, but not HCC38 cells. Inhibitors to palmitoylation, caveolae integrity, phospholipase-D, and estrogen receptors (ER) demonstrate that 24R,25(OH)2D3 acts on MCF7 cells through caveolae-associated, phospholipase D-dependent mechanisms via cross-talk with ERs. CONCLUSION These results indicate that 24R,25(OH)2D3 shows promise in treatment of breast cancer by stimulating tumor apoptosis and reducing metastasis. GENERAL SIGNIFICANCE 24R,25(OH)2D3 regulates breast cancer cell survival through ER-associated mechanisms similar to 24R,25(OH)2D3 effects on chondrocytes. Thus, 24R,25(OH)2D3 may modulate cell survival in other estrogen-responsive cell types, and its therapeutic potential should be investigated in ER-associated pathologies.
Collapse
Affiliation(s)
- Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA.
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA.
| | - Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Tchernichovsky St 59, Kfar Saba 4428164, Israel; Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel; Department of Otolaryngology/Head and Neck Surgery, University of North Caroline Chapel Hill, 170 Manning Drive, Chapel Hill, NC 27599, USA
| | - Chandana Muktipaty
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA.
| | - Jennifer E Koblinski
- Department of Pathology, Virginia Commonwealth University, 401 N 13th Street, Richmond, VA 23298, USA; Massey Cancer Center, 401 College Street, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA; Massey Cancer Center, 401 College Street, Virginia Commonwealth University, Richmond, VA 23298, USA; Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Drive NW, Georgia Institute of Technology, Atlanta, VA, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, 8210 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
17
|
Vitamin D3 constrains estrogen's effects and influences mammary epithelial organization in 3D cultures. Sci Rep 2019; 9:7423. [PMID: 31092845 PMCID: PMC6520380 DOI: 10.1038/s41598-019-43308-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin D3 (vitD3) and its active metabolite, calcitriol (1,25-(OH)2D3), affect multiple tissue types by interacting with the vitamin D receptor (VDR). Although vitD3 deficiency has been correlated with increased incidence of breast cancer and less favorable outcomes, randomized clinical trials have yet to provide conclusive evidence on the efficacy of vitD3 in preventing or treating breast cancer. Additionally, experimental studies are needed to assess the biological plausibility of these outcomes. The mammary gland of VDR KO mice shows a florid phenotype revealing alterations of developmental processes that are largely regulated by mammotropic hormones. However, most research conducted on vitD3's effects used 2D cell cultures and supra-physiological doses of vitD3, conditions that spare the microenvironment in which morphogenesis takes place. We investigated the role of vitD3 in mammary epithelial morphogenesis using two 3D culture models. VitD3 interfered with estrogen's actions on T47D human breast cancer cells in 3D differently at different doses, and recapitulated what is observed in vivo. Also, vitD3 can act autonomously and affected the organization of estrogen-insensitive MCF10A cells in 3D collagen matrix by influencing collagen fiber organization. Thus, vitD3 modulates mammary tissue organization independent of its effects on cell proliferation.
Collapse
|
18
|
Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm Sin B 2019; 9:203-219. [PMID: 30972274 PMCID: PMC6437556 DOI: 10.1016/j.apsb.2018.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor cells along with a small proportion of cancer stem cells exist in a stromal microenvironment consisting of vasculature, cancer-associated fibroblasts, immune cells and extracellular components. Recent epidemiological and clinical studies strongly support that vitamin D supplementation is associated with reduced cancer risk and favorable prognosis. Experimental results suggest that vitamin D not only suppresses cancer cells, but also regulates tumor microenvironment to facilitate tumor repression. In this review, we have outlined the current knowledge on epidemiological studies and clinical trials of vitamin D. Notably, we summarized and discussed the anticancer action of vitamin D in cancer cells, cancer stem cells and stroma cells in tumor microenvironment, providing a better understanding of the role of vitamin D in cancer. We presently re-propose vitamin D to be a novel and economical anticancer agent.
Collapse
Key Words
- 1,25(OH)2D3, 1α,25-dihydroxyvitamin D3
- 1α,25-Dihydroxyvitamin D3
- 25(OH)D, 25-hydroxyvitamin D
- CAF, cancer-associated fibroblast
- CRC, colorectal cancer
- CSC, cancer stem cell
- Cancer stem cell
- Cancer-associated fibroblast
- DBP/GC, vitamin D-binding protein
- ESCC, esophageal squamous cell carcinoma
- GI, gastrointestinal
- NSCLC, non-small cell lung cancer
- PC, pancreatic adenocarcinoma
- PG, prostaglandin
- PSC, pancreatic stellate cells
- TDEC, tumor derived endothelial cell
- TIC, tumor initiating cell
- TIL, tumor-infiltrating lymphocyte
- TME, tumor microenvironment
- Tumor microenvironment
- Tumor-derived endothelial cell
- Tumor-infiltrating lymphocyte
- VDR, vitamin D receptor
- VDRE, VDR element
- VEGF, vascular endothelial growth factor
- Vitamin D
Collapse
|
19
|
Zendehdel A, Arefi M. Molecular evidence of role of vitamin D deficiency in various extraskeletal diseases. J Cell Biochem 2019; 120:8829-8840. [PMID: 30609168 DOI: 10.1002/jcb.28185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Role of vitamin D is not only limited to skeletal system but various other systems of the body, such as immune system, endocrine system, and cardiopulmonary system. MATERIALS AND METHODS It is supported by the confirmations of systems-wide expression of vitamin D receptor (VDR), endocrinal effect of calcitriol, and its role in immune responses. RESULTS Expression of VDR in various systems, immunoregulatory and hormonal response of vitamin D and deficiency of vitamin D may establish various pathologies in the body. CONCLUSION This review provides molecular evidence of relation of vitamin D with extra skeletal.
Collapse
Affiliation(s)
- Abolfazl Zendehdel
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arefi
- Department of Clinical Toxicology, School of Medicine, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Fathi N, Ahmadian E, Shahi S, Roshangar L, Khan H, Kouhsoltani M, Maleki Dizaj S, Sharifi S. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed Pharmacother 2018; 109:391-401. [PMID: 30399574 DOI: 10.1016/j.biopha.2018.10.102] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oral cancer is known as one of the most common cancers, with a poor prognosis, related to delayed clinical diagnosis, either due to the lack of particular biomarkers related to the disease or costly therapeutic alternatives. Vitamin D executes its functions by interacting with the vitamin D receptor (VDR), both in healthy and diseased individuals, including oral cancer. This review discusses the role of vitamin D and VDR on tumorigenesis, emphasizing on oral cancer. Furthermore, regulation of VDR expression, mechanisms of anticancer effects of calcitriol, oral cancer chemoresistance and its relation with VDR and polymorphisms of VDR gene will be discussed. The manuscript is prepared mainly using the information collected from PubMed and MEDLINE.
Collapse
Affiliation(s)
- Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cells Research Center, Tabriz University of Medical Sciences, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali khan university, Mardan, 23200, Pakistan
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Cakici C, Yigitbasi T, Ayla S, Karimkhani H, Bayramoglu F, Yigit P, Kilic E, Emekli N. Dose-dependent effects of vitamin 1,25(OH)2D3 on oxidative stress and apoptosis. J Basic Clin Physiol Pharmacol 2018; 29:271-279. [PMID: 29420306 DOI: 10.1515/jbcpp-2017-0121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Background The purpose of this study is to examine the dose-dependent effects of vitamin 1,25(OH)2D3 on apoptosis and oxidative stress. Methods In this study, 50 male Balb/c mice were used as control and experiment groups. The mice were divided into 5 groups each consisting of 10 mice. Calcitriol was intraperitoneally administered as low dose, medium dose, medium-high dose and high dose vitamin D groups (at 0.5, 1, 5 and 10 μg/kg, respectively), for three times a week during 14 days. At the end of the study, annexin V was measured by enzyme-linked immunosorbent assay method, and total antioxidant capacity and total oxidant status values were measured by colorimetric method in serum. Hematoxylin eosin staining was performed in liver tissues and periodic acid schiff staining was performed in kidney tissues. Results While comparing the results of medium-high dose (5 μg/kg) and high dose (10 μg/kg) vitamin D administration to that of the control group, it was observed that serum antioxidant status and annexin V levels decreased and glomerular mesenchial matrix ratio increased in kidney (p<0.05). In addition to these findings, in the group receiving high dose vitamin D (10 μg/kg), it was observed that the damage to the liver increased together with the the oxidative stress index values (p<0.05). Conclusions As a result, this study was the first in the literature to report that use of high-dose vitamin D (10 μg/kg) results in oxidant effect, rather than being an antioxidant, and causes severe histopathological toxicity in the liver and kidney.
Collapse
Affiliation(s)
- Cagri Cakici
- Biochemistry Department, Faculty of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Turkan Yigitbasi
- Biochemistry Department, Faculty of Medicine, Istanbul Medipol University, Ekinciler street No: 19 Kavacık, Beykoz/Istanbul, Turkey
| | - Sule Ayla
- Histology and Embryology Department, Faculty of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Hadi Karimkhani
- Biochemistry Department, Faculty of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Feyza Bayramoglu
- Biochemistry Department, Faculty of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Pakize Yigit
- Biostatistics and Medical Informatics Department, Faculty of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Ertugrul Kilic
- Physiology Department, Faculty of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Nesrin Emekli
- Biochemistry Department, Faculty of Medicine, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| |
Collapse
|
22
|
Trump DL. Calcitriol and cancer therapy: A missed opportunity. Bone Rep 2018; 9:110-119. [PMID: 30591928 PMCID: PMC6303233 DOI: 10.1016/j.bonr.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
The vitamin D receptor is expressed in most tissues of the body - and the cancers that arise from those tissues. The vitamin D signaling pathway is active in those tissues and cancers. This is at least consistent with the hypothesis that perturbing this signaling may have a favorable effect on the genesis and growth of cancers. Epidemiologic data indicate that vitamin D signaling may be important in the initiation and outcome of a number of types of cancer. Many studies have shown that calcitriol (1,25 dihydroxycholecalciferol) and other vitamin D compounds have antiproliferative, pro-apoptotic, anti-cell migration and antiangiogenic activity in a number of preclinical studies in many different cancer types. Unfortunately, the assessment of the activity of calcitriol or other vitamin D analogues in the treatment of cancer, as single agents or in combination with other anticancer agents has been stymied by the failure to adhere to commonly accepted principles of drug development and clinical trials conduct.
Collapse
Affiliation(s)
- Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, Fairfax, VA 22037, United States of America
| |
Collapse
|
23
|
Lundqvist J, Kirkegaard T, Laenkholm AV, Duun-Henriksen AK, Bak M, Feldman D, Lykkesfeldt AE. Williams syndrome transcription factor (WSTF) acts as an activator of estrogen receptor signaling in breast cancer cells and the effect can be abrogated by 1α,25-dihydroxyvitamin D 3. J Steroid Biochem Mol Biol 2018; 177:171-178. [PMID: 28610873 DOI: 10.1016/j.jsbmb.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/28/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022]
Abstract
A majority of estrogen receptor positive (ER+) breast cancers are growth stimulated by estrogens. The ability to inhibit the ER signaling pathway is therefore of critical importance in the current treatment of ER+ breast cancers. It has been reported that 1α,25-dihydroxyvitamin D3 down-regulates the expression of the CYP19A1 gene, encoding the aromatase enzyme that catalyzes the synthesis of estradiol. Furthermore, 1α,25-dihydroxyvitamin D3 has also been reported to down-regulate the expression of estrogen receptor α (ERα), the main mediator of ER signaling. This study reports a novel transcription factor critical to 1α,25-dihydroxyvitamin D3-mediated regulation of estrogenic signaling in MCF-7 breast cancer cells. We have investigated the molecular mechanisms for the 1α,25-dihydroxyvitamin D3-mediated down-regulation of CYP19A1 and ERα gene expression in human MCF-7 breast cancer cells and found that Williams syndrome transcription factor (WSTF) plays a key role by binding to the promoters of CYP19A1 and ERα. Although sometimes reported as an inhibitor of gene expression, we found that WSTF acts as an activator of the promoter activity of both CYP19A1 and ERα. Silencing of WSTF by siRNA transfection resulted in decreased aromatase-dependent cell growth as well as decreased ER signaling in the cells. When cells were treated with 1α,25-dihydroxyvitamin D3, WSTF was dissociated from the promoters and the promoter activities of CYP19A1 and ERα were decreased. We have measured the expression of WSTF in ER-positive tumor-samples from breast cancer patients and found that WSTF is expressed in the majority of the investigated samples and that the expression is higher in cancer tissue than in normal tissue. However, we were not able to show any significant association between the WSTF expression in the tumor and the disease free and overall survival in this patient group who have received adjuvant tamoxifen treatment, nor between the WSTF expression and the expression of ERα, progesterone receptor or HER2. The major conclusions of this study are that WSTF acts as an activator of ER signaling in MCF-7 breast cancer cells, that this action can be inhibited by 1α,25-dihydroxyvitamin D3, and that the expression of WSTF is higher in breast cancer tissue than in normal tissue. WSTF may by a new target for treatment of estrogen-dependent breast cancer cell growth.
Collapse
Affiliation(s)
- Johan Lundqvist
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark; Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, P.O. Box 7028, SE-750 07 Uppsala, Sweden.
| | - Tove Kirkegaard
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Anne-Vibeke Laenkholm
- Department of Surgical Pathology, Zealand University Hospital, Ingemannsvej 48, DK-4200 Slagelse, Denmark
| | - Anne Katrine Duun-Henriksen
- Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Martin Bak
- Department of Pathology, Odense University Hospital, Odense, DK-5000 Denmark
| | - David Feldman
- Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Anne E Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| |
Collapse
|
24
|
Bong YS, Assefnia S, Tuohy T, Neklason DW, Burt RW, Ahn J, Bueno De Mesquita PJ, Byers SW. A role for the vitamin D pathway in non-intestinal lesions in genetic and carcinogen models of colorectal cancer and in familial adenomatous polyposis. Oncotarget 2018; 7:80508-80520. [PMID: 27768599 PMCID: PMC5348337 DOI: 10.18632/oncotarget.12768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
Vitamin D is implicated in the etiology of cancers of the gastrointestinal tract, usually characterized by alteration in the APC/β-catenin/TCF tumor suppressor pathway. The vitamin D receptor (VDR) is also implicated in cardiovascular and skin diseases as well as in immunity. Activated VDR can indirectly alter β-catenin nuclear localization and directly suppress β-catenin/TCF mediated transcriptional activity. We treated VDR null mice with the carcinogen azoxymethane (AOM) and generated mice bearing a mutated APC (hypomorph) on a VDR null background (Apc1638N/+Vdr−/−). VDR null mice do not develop GI or extra-colonic tumors but loss of VDR decreased intestinal tumor latency and increased progression to adenocarcinoma in both models. AOM treatment of VDR null mice also caused squamous cell carcinoma of the anus. Although levels and distribution of total or activated β-catenin in the epithelial component of tumors were unaffected by loss of VDR, β-catenin dependent cyclin D1 expression was affected suggesting a direct VDR effect on β-catenin co-activator activity. Extra-colonic mucosa manifestations in Apc1638N/+Vdr−/− animals included increased nuclear β-catenin in submucosal stromal cells, spleno- and cardiomegaly and large epidermoid cysts characteristic of the FAP variant, Gardner's syndrome. Consistent with this, SNPs in the VDR, vitamin D binding protein and CYP24 as well as mutations in APC distal to codon 850 were strongly associated with Gardners syndrome in a cohort of 457 FAP patients, This work suggests that alterations in the vitamin D/VDR axis are important in Gardner's syndrome, as well as in the etiology of anal cancer.
Collapse
Affiliation(s)
- Yong-Sik Bong
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Shahin Assefnia
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Therese Tuohy
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Deborah W Neklason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Randall W Burt
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Paul J Bueno De Mesquita
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Stephen W Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States of America
| |
Collapse
|
25
|
Chimento A, Casaburi I, Avena P, Trotta F, De Luca A, Rago V, Pezzi V, Sirianni R. Cholesterol and Its Metabolites in Tumor Growth: Therapeutic Potential of Statins in Cancer Treatment. Front Endocrinol (Lausanne) 2018; 9:807. [PMID: 30719023 PMCID: PMC6348274 DOI: 10.3389/fendo.2018.00807] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Cholesterol is essential for cell function and viability. It is a component of the plasma membrane and lipid rafts and is a precursor for bile acids, steroid hormones, and Vitamin D. As a ligand for estrogen-related receptor alpha (ESRRA), cholesterol becomes a signaling molecule. Furthermore, cholesterol-derived oxysterols activate liver X receptors (LXRs) or estrogen receptors (ERs). Several studies performed in cancer cells reveal that cholesterol synthesis is enhanced compared to normal cells. Additionally, high serum cholesterol levels are associated with increased risk for many cancers, but thus far, clinical trials with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have had mixed results. Statins inhibit cholesterol synthesis within cells through the inhibition of HMG-CoA reductase, the rate-limiting enzyme in the mevalonate and cholesterol synthetic pathway. Many downstream products of mevalonate have a role in cell proliferation, since they are required for maintenance of membrane integrity; signaling, as some proteins to be active must undergo prenylation; protein synthesis, as isopentenyladenine is an essential substrate for the modification of certain tRNAs; and cell-cycle progression. In this review starting from recent acquired findings on the role that cholesterol and its metabolites fulfill in the contest of cancer cells, we discuss the results of studies focused to investigate the use of statins in order to prevent cancer growth and metastasis.
Collapse
|
26
|
Sabzichi M, Mohammadian J, Mohammadi M, Jahanfar F, Movassagh Pour AA, Hamishehkar H, Ostad-Rahimi A. Vitamin D-Loaded Nanostructured Lipid Carrier (NLC): A New Strategy for Enhancing Efficacy of Doxorubicin in Breast Cancer Treatment. Nutr Cancer 2017; 69:840-848. [DOI: 10.1080/01635581.2017.1339820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mehdi Sabzichi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jahanfar
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
27
|
Vaughan-Shaw PG, O'Sullivan F, Farrington SM, Theodoratou E, Campbell H, Dunlop MG, Zgaga L. The impact of vitamin D pathway genetic variation and circulating 25-hydroxyvitamin D on cancer outcome: systematic review and meta-analysis. Br J Cancer 2017; 116:1092-1110. [PMID: 28301870 PMCID: PMC5396104 DOI: 10.1038/bjc.2017.44] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vitamin D has been linked with improved cancer outcome. This systematic review and meta-analysis investigates the relationship between cancer outcomes and both vitamin D-related genetic variation and circulating 25-hydroxyvitamin D (25OHD) concentration. METHODS A systematic review and meta-analysis of papers until November 2016 on PubMed, EMBASE and Web of Science pertaining to association between circulating vitamin D level, functionally relevant vitamin D receptor genetic variants and variants within vitamin D pathway genes and cancer survival or disease progression was performed. RESULTS A total of 44 165 cases from 64 studies were included in meta-analyses. Higher 25OHD was associated with better overall survival (hazard ratio (HR=0.74, 95% CI: 0.66-0.82) and progression-free survival (HR=0.84, 95% CI: 0.77-0.91). The rs1544410 (BsmI) variant was associated with overall survival (HR=1.40, 95% CI: 1.05-1.75) and rs7975232 (ApaI) with progression-free survival (HR=1.29, 95% CI: 1.02-1.56). The rs2228570 (FokI) variant was associated with overall survival in lung cancer patients (HR=1.29, 95% CI: 1.0-1.57), with a suggestive association across all cancers (HR=1.26, 95% CI: 0.96-1.56). CONCLUSIONS Higher 25OHD concentration is associated with better cancer outcome, and the observed association of functional variants in vitamin D pathway genes with outcome supports a causal link. This analysis provides powerful background rationale to instigate clinical trials to investigate the potential beneficial effect of vitamin D in the context of stratification by genotype.
Collapse
Affiliation(s)
- P G Vaughan-Shaw
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, UK
| | - F O'Sullivan
- Department of Public Health and Primary Care, Trinity College Dublin, Dublin 24, Republic of Ireland
| | - S M Farrington
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, UK
| | - E Theodoratou
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, UK
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH164UX, UK
| | - H Campbell
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, UK
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH164UX, UK
| | - M G Dunlop
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, UK
| | - L Zgaga
- Department of Public Health and Primary Care, Trinity College Dublin, Dublin 24, Republic of Ireland
| |
Collapse
|
28
|
Bandera Merchan B, Morcillo S, Martin-Nuñez G, Tinahones FJ, Macías-González M. The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J Steroid Biochem Mol Biol 2017; 167:203-218. [PMID: 27913313 DOI: 10.1016/j.jsbmb.2016.11.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/31/2022]
Abstract
In the last two decades vitamin D (VD) research has demonstrated new extraskeletal actions of this pre-hormone, suggesting a protective role of this secosteroid in the onset, progression and prognosis of several chronic noncommunicable diseases, such as cardiovascular disease, diabetes mellitus or cancer. Regarding carcinogenesis, both preclinical and epidemiological evidence available show oncoprotective actions of VD and its receptor, the VDR. However, in late neoplastic stages the VD system (VDS) seems to be less functional, which appears to be due to an epigenetic silencing of the system. In preclinical experimental studies, VD presents oncoprotective actions through modulation of inflammation, cell proliferation, cell differentiation, angiogenesis, invasive and metastatic potential, apoptosis, miRNA expression regulation and modulation of the Hedgehog signalling pathway. Moreover, epidemiological evidence points towards an oncoprotective role of vitamin D and VDR in colorectal cancer. This association is more controversial with breast, ovarian and prostate cancers, although with a few adverse effects. Nonetheless, we should consider other factors to determine the benefit of increased serum concentration of VD. Much of the epidemiological evidence is still inconclusive, and we will have to wait for new, better-designed ongoing RCTs and their results to discern the real effect of vitamin D in cancer risk reduction and therapy. The objective of this literature review is to offer an up-to-date analysis of the role of the VD and VDR, in the onset, progression and prognosis of all types of cancer. We further discuss the available literature and suggest new hypotheses and future challenges in the field of VD research.
Collapse
Affiliation(s)
- Borja Bandera Merchan
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain
| | - Sonsoles Morcillo
- CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Gracia Martin-Nuñez
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain
| | - Francisco José Tinahones
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain; CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Macías-González
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain; CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
29
|
Zhang X, Harbeck N, Jeschke U, Doisneau-Sixou S. Influence of vitamin D signaling on hormone receptor status and HER2 expression in breast cancer. J Cancer Res Clin Oncol 2016; 143:1107-1122. [PMID: 28025696 DOI: 10.1007/s00432-016-2325-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Breast cancer is a significant global public health issue. It is the leading cause of death among women around the world, with an incidence increasing annually. In recent years, there has been more and more information in the literature regarding a protective role of vitamin D in cancer. Increasingly preclinical and clinical studies suggest that vitamin D optimal levels can reduce the risk of breast cancer development and regulate cancer-related pathways. METHOD In this review, we focus on the importance of vitamin D in breast cancers, discussing especially the influence of vitamin D signaling on estrogen receptor and human epidermal growth factor receptor 2 (HER2), two major biomarkers of breast cancer today. CONCLUSION We discuss the possibility of actual and future targeted therapeutic approaches for vitamin D signaling in breast cancer.
Collapse
Affiliation(s)
- Xi Zhang
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Nadia Harbeck
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Udo Jeschke
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Sophie Doisneau-Sixou
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany. .,Faculté des Sciences Pharmaceutiques, Université Paul Sabatier Toulouse III, 31062, Toulouse Cedex 09, France.
| |
Collapse
|
30
|
Cadeau C, Fournier A, Mesrine S, Clavel-Chapelon F, Fagherazzi G, Boutron-Ruault MC. Postmenopausal breast cancer risk and interactions between body mass index, menopausal hormone therapy use, and vitamin D supplementation: Evidence from the E3N cohort. Int J Cancer 2016; 139:2193-200. [PMID: 27451078 DOI: 10.1002/ijc.30282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/15/2016] [Indexed: 11/08/2022]
Abstract
Experimental studies suggest protective effects of vitamin D on breast carcinogenesis, but epidemiological evidence is not conclusive. Body mass index (BMI) has been shown to modulate the effect of supplementation on the vitamin D status, but its potential influence on the relationship with breast cancer risk has been little studied. We investigated a potential interaction between BMI and vitamin D supplementation on breast cancer risk while considering an already reported interaction between vitamin D supplementation and menopausal hormone therapy (MHT) use. Vitamin D supplementation was prospectively investigated in 57,403 postmenopausal women from the French E3N cohort including 2,482 incident breast cancer cases diagnosed between 1995 and 2008. Multivariable hazard ratios (HR) for primary invasive breast cancer and 95% confidence intervals (CI) were estimated using Cox models. Among MHT ever users, vitamin D supplementation was associated with decreased breast cancer risk, similarly across BMI strata (Phomogeneity = 0.83). Among MHT never users, ever vitamin D supplementation was associated with increased postmenopausal breast cancer risk in women with baseline BMI <25 kg/m(2) (HR = 1.51, 95% CI: 1.13, 2.02), but not in women with higher BMI (0.98, 95% CI: 0.62, 1.56), Phomogeneity = 0.12. In conclusion, our findings suggest that vitamin D supplementation may reduce the excess breast cancer risk in MHT users, but draw attention on a potential risk in postmenopausal women not exposed to high exogenous or endogenous hormones, i.e. non-overweight MHT-non users, especially in the present context of increasing vitamin D supplement use and decreasing MHT use.
Collapse
Affiliation(s)
- Claire Cadeau
- CESP, INSERM, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif Cedex, F-94805, France.,Gustave Roussy, Villejuif Cedex, F-94805, France
| | - Agnès Fournier
- CESP, INSERM, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif Cedex, F-94805, France.,Gustave Roussy, Villejuif Cedex, F-94805, France
| | - Sylvie Mesrine
- CESP, INSERM, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif Cedex, F-94805, France.,Gustave Roussy, Villejuif Cedex, F-94805, France
| | - Françoise Clavel-Chapelon
- CESP, INSERM, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif Cedex, F-94805, France.,Gustave Roussy, Villejuif Cedex, F-94805, France
| | - Guy Fagherazzi
- CESP, INSERM, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif Cedex, F-94805, France.,Gustave Roussy, Villejuif Cedex, F-94805, France
| | - Marie-Christine Boutron-Ruault
- CESP, INSERM, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif Cedex, F-94805, France. .,Gustave Roussy, Villejuif Cedex, F-94805, France.
| |
Collapse
|
31
|
Li J, Luco AL, Ochietti B, Fadhil I, Camirand A, Reinhardt TA, St-Arnaud R, Muller W, Kremer R. Tumoral Vitamin D Synthesis by CYP27B1 1-α-Hydroxylase Delays Mammary Tumor Progression in the PyMT-MMTV Mouse Model and Its Action Involves NF-κB Modulation. Endocrinology 2016; 157:2204-16. [PMID: 27119753 DOI: 10.1210/en.2015-1824] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biologically active vitamin D (1,25-dihydroxycholecalciferol or 1,25(OH)2D) is synthetized from inactive prohormone 25-hydroxycholecalciferol (25(OH)D) by the enzyme CYP27B1 1-α-hydroxylase in kidney and several extrarenal tissues including breast. Although the development of breast cancer has been linked to inadequate vitamin D status, the importance of bioactive vitamin D production within tumors themselves is not fully understood. To investigate the role of tumoral vitamin D production in mammary epithelial cell progression to breast cancer, we conducted a Cre-loxP-mediated Cyp27b1 gene ablation in the mammary epithelium of the polyoma middle T antigen-mouse mammary tumor virus (PyMT-MMTV) mouse breast cancer model. Targeted ablation of Cyp27b1 was accompanied by significant acceleration in initiation of spontaneous mammary tumorigenesis. In vivo, cell proliferation, angiogenesis, cell cycle progression, and survival markers were up-regulated in tumors by Cyp27b1 ablation, and apoptosis was decreased. AK thymoma (AKT) phosphorylation and expression of several components of nuclear factor κB (NF-κB), integrin, and signal transducer and activator of transcription 3 (STAT3) signaling pathways were increased in Cyp27b1-ablated tumors compared with nonablated controls. In vitro, 1,25(OH)2D treatment induced a strong antiproliferative action on tumor cells from both ablated and nonablated mice, accompanied by rapid disappearance of NF-κB p65 from the nucleus and segregation in the cytoplasm. In contrast, treatment with the metabolic precursor 25(OH)D was only effective against cells from nonablated mice. 25(OH)D did not inhibit growth of Cyp27b1-ablated cells, and their nuclear NF-κB p65 remained abundant. Our findings demonstrate that in-tumor CYP27B1 1-α-hydroxylase activity plays a crucial role in controlling early oncogene-mediated mammary carcinogenesis events, at least in part by modulating tumoral cell NF-κB p65 nuclear translocation.
Collapse
Affiliation(s)
- Jiarong Li
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Aimée-Lee Luco
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Benoît Ochietti
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Ibtihal Fadhil
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Anne Camirand
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Timothy A Reinhardt
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - René St-Arnaud
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - William Muller
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Richard Kremer
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| |
Collapse
|
32
|
Marcinkowska E, Wallace GR, Brown G. The Use of 1α,25-Dihydroxyvitamin D₃ as an Anticancer Agent. Int J Mol Sci 2016; 17:E729. [PMID: 27187375 PMCID: PMC4881551 DOI: 10.3390/ijms17050729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/22/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022] Open
Abstract
The notion that vitamin D can influence the incidence of cancer arose from epidemiological studies. The major source of vitamin D in the organism is skin production upon exposure to ultra violet-B. The very first observation of an inverse correlation between exposure of individuals to the sun and the likelihood of cancer was reported as early as 1941. In 1980, Garland and Garland hypothesised, from findings from epidemiological studies of patients in the US with colon cancer, that vitamin D produced in response to sun exposure is protective against cancer as opposed to sunlight per se. Later studies revealed inverse correlations between sun exposure and the occurrence of prostate and breast cancers. These observations prompted laboratory investigation of whether or not vitamin D had an effect on cancer cells. Vitamin D is not active against cancer cells, but the most active metabolite 1α,25-dihydroxyvitamin D₃ (1,25D) has profound biological effects. Here, we review the anticancer action of 1,25D, clinical trials of 1,25D to date and the prospects of the future therapeutic use of new and low calcaemic analogues.
Collapse
Affiliation(s)
- Ewa Marcinkowska
- Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Graham R Wallace
- Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Geoffrey Brown
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
33
|
Simmons KM, Beaudin SG, Narvaez CJ, Welsh J. Gene Signatures of 1,25-Dihydroxyvitamin D3 Exposure in Normal and Transformed Mammary Cells. J Cell Biochem 2016; 116:1693-711. [PMID: 25736056 DOI: 10.1002/jcb.25129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/06/2015] [Indexed: 01/24/2023]
Abstract
To elucidate potential mediators of vitamin D receptor (VDR) action in breast cancer, we profiled the genomic effects of its ligand 1,25-dihydroxyvitamin D3 (1,25D) in cells derived from normal mammary tissue and breast cancer. In non-transformed hTERT-HME cells, 483 1,25D responsive entities in 42 pathways were identified, whereas in MCF7 breast cancer cells, 249 1,25D responsive entities in 31 pathways were identified. Only 21 annotated genes were commonly altered by 1,25D in both MCF7 and hTERT-HME cells. Gene set enrichment analysis highlighted eight pathways (including senescence/autophagy, TGFβ signaling, endochondral ossification, and adipogenesis) commonly altered by 1,25D in hTERT-HME and MCF7 cells. Regulation of a subset of immune (CD14, IL1RL1, MALL, CAMP, SEMA6D, TREM1, CSF1, IL33, TLR4) and metabolic (ITGB3, SLC1A1, G6PD, GLUL, HIF1A, KDR, BIRC3) genes by 1,25D was confirmed in hTERT-HME cells and similar changes were observed in another comparable non-transformed mammary cell line (HME cells). The effects of 1,25D on these genes were retained in HME cells expressing SV40 large T antigen but were selectively abrogated in HME cells expressing SV40 + RAS and in MCF7 cells. Integration of the datasets from hTERT-HME and MCF7 cells with publically available RNA-SEQ data from 1,25D treated SKBR3 breast cancer cells enabled identification of an 11-gene signature representative of 1,25D exposure in all three breast-derived cell lines. Four of these 11 genes (CYP24A1, CLMN, EFTUD1, and SERPINB1) were also identified as 1,25D responsive in human breast tumor explants, suggesting that this gene signature may prove useful as a biomarker of vitamin D exposure in breast tissue.
Collapse
Affiliation(s)
- Katrina M Simmons
- University at Albany Cancer Research Center, Biomedical Sciences, University at Albany, Rensselaer, New York, 12144
| | - Sarah G Beaudin
- University at Albany Cancer Research Center, Biomedical Sciences, University at Albany, Rensselaer, New York, 12144
| | - Carmen J Narvaez
- University at Albany Cancer Research Center, Biomedical Sciences, University at Albany, Rensselaer, New York, 12144
| | - JoEllen Welsh
- University at Albany Cancer Research Center, Biomedical Sciences, University at Albany, Rensselaer, New York, 12144.,Cancer Research Center and the Departments of Biomedical Sciences and Environmental Health Sciences, SUNY Albany, Rensselaer, New York, 12144
| |
Collapse
|
34
|
Swami S, Krishnan AV, Williams J, Aggarwal A, Albertelli MA, Horst RL, Feldman BJ, Feldman D. Vitamin D mitigates the adverse effects of obesity on breast cancer in mice. Endocr Relat Cancer 2016; 23:251-64. [PMID: 26817629 PMCID: PMC4889430 DOI: 10.1530/erc-15-0557] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 01/12/2023]
Abstract
Obesity is an established risk factor for postmenopausal breast cancer (BCa), insulin resistance, and vitamin D deficiency, and all contribute to increased synthesis of mammary estrogens, the drivers of estrogen receptor-positive (ER+) BCa growth. As both dietary vitamin D and calcitriol treatments inhibit breast estrogen synthesis and signaling, we hypothesized that vitamin D would be especially beneficial in mitigating the adverse effects of obesity on ER+BCa. To assess whether obesity exerted adverse effects on BCa growth and whether vitamin D compounds could reduce these unfavorable effects, we employed a diet-induced obesity (DIO) model in ovariectomized C57BL/6 mice. Breast tumor cells originally from syngeneic Mmtv-Wnt1 transgenic mice were then implanted into the mammary fat pads of lean and obese mice. DIO accelerated the initiation and progression of the mammary tumors. Treatments with either calcitriol or dietary vitamin D reduced the adverse effects of obesity causing a delay in tumor appearance and inhibiting continued tumor growth. Beneficial actions of treatments with vitamin D or calcitriol on BCa and surrounding adipose tissue included repressed Esr1, aromatase, and Cox2 expression; decreased tumor-derived estrogen and PGE2; reduced expression of leptin receptors; and increased adiponectin receptors. We demonstrate that vitamin D treatments decreased insulin resistance, reduced leptin, and increased adiponectin signaling and also regulated the LKB1/AMPK pathway contributing to an overall decrease in local estrogen synthesis in the obese mice. We conclude that calcitriol and dietary vitamin D, acting by multiple interrelated pathways, mitigate obesity-enhanced BCa growth in a postmenopausal setting.
Collapse
Affiliation(s)
- Srilatha Swami
- Department of Medicine-EndocrinologyStanford University School of Medicine, Stanford, CA, USA
| | - Aruna V Krishnan
- Department of Pediatrics-EndocrinologyStanford University School of Medicine, Stanford, CA, USA
| | - Jasmaine Williams
- Department of Pediatrics-EndocrinologyStanford University School of Medicine, Stanford, CA, USA Cancer Biology ProgramStanford University School of Medicine, Stanford, CA, USA
| | - Abhishek Aggarwal
- Department of Pediatrics-EndocrinologyStanford University School of Medicine, Stanford, CA, USA
| | - Megan A Albertelli
- Department of Comparative MedicineStanford University School of Medicine, Stanford, CA, USA
| | | | - Brian J Feldman
- Department of Pediatrics-EndocrinologyStanford University School of Medicine, Stanford, CA, USA Cancer Biology ProgramStanford University School of Medicine, Stanford, CA, USA Institute for Stem Cell Biology and Regenerative MedicineStanford University School of Medicine, Stanford, CA, USA Stanford Cancer InstituteStanford University School of Medicine, Stanford, CA, USA
| | - David Feldman
- Department of Medicine-EndocrinologyStanford University School of Medicine, Stanford, CA, USA Stanford Cancer InstituteStanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
35
|
Abstract
Diet may play a role in both promoting and inhibiting human breast cancer development. In this review, nutritional risk factors such as consumption of dietary fat, meat, fiber, and alcohol, and intake of phytoestrogen, vitamin D, iron, and folate associated with breast cancer are reviewed. These nutritional factors have a variety of associations with breast cancer risk. Type of fat consumed has different effects on risk of breast cancer: consumption of meat is associated with heterocyclic amine (HCA) exposure; different types of plant fiber have various effects on breast cancer risk; alcohol consumption may increase the risk of breast cancer by producing acetaldehyde and reactive oxygen species (ROS); intake of phytoestrogen may reduce risk of breast cancer through genomic and non-genomic action; vitamin D can reduce the risk of breast cancer by inhibiting the process of cancer invasion and metastasis; intake of dietary iron may lead to oxidative stress, DNA damage, and lipid peroxidation; and lower intake of folate may be linked to a higher risk of breast cancer.
Collapse
|
36
|
Kubis AM, Piwowar A. The new insight on the regulatory role of the vitamin D3 in metabolic pathways characteristic for cancerogenesis and neurodegenerative diseases. Ageing Res Rev 2015; 24:126-37. [PMID: 26238411 DOI: 10.1016/j.arr.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Apart from the classical function of regulating intestinal, bone and kidney calcium and phosphorus absorption as well as bone mineralization, there is growing evidence for the neuroprotective function of vitamin D3 through neuronal calcium regulation, the antioxidative pathway, immunomodulation and detoxification. Vitamin D3 and its derivates influence directly or indirectly almost all metabolic processes such as proliferation, differentiation, apoptosis, inflammatory processes and mutagenesis. Such multifactorial effects of vitamin D3 can be a profitable source of new therapeutic solutions for two radically divergent diseases, cancer and neurodegeneration. Interestingly, an unusual association seems to exist between the occurrence of these two pathological states, called "inverse comorbidity". Patients with cognitive dysfunctions or dementia have considerably lower risk of cancer, whereas survivors of cancer have lower prevalence of central nervous system (CNS) disorders. To our knowledge, there are few publications analyzing the role of vitamin D3 in biological pathways existing in carcinogenic and neuropathological disorders.
Collapse
Affiliation(s)
- Adriana Maria Kubis
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland.
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland
| |
Collapse
|
37
|
Suares A, Russo de Boland A, Verstuyf A, Boland R, González-Pardo V. The proapoptotic protein Bim is up regulated by 1α,25-dihydroxyvitamin D3 and its receptor agonist in endothelial cells and transformed by viral GPCR associated to Kaposi sarcoma. Steroids 2015; 102:85-91. [PMID: 26254608 DOI: 10.1016/j.steroids.2015.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/13/2015] [Accepted: 08/01/2015] [Indexed: 12/12/2022]
Abstract
We have previously shown that 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] and its less calcemic analog TX 527 induce apoptosis via caspase-3 activation in endothelial cells (SVEC) and endothelial cells transformed by the viral G protein-coupled receptor associated to Kaposi sarcoma (vGPCR). In this work, we studied whether intrinsic apoptotic pathway could be activated by changing the balance between anti and pro-apoptotic proteins. Time response qRT-PCR analysis demonstrated that the mRNA level of anti-apoptotic gene Bcl-2 decreased after 12h and increased after 48h treatment with 1α,25(OH)2D3 or TX 527 in SVEC and vGPCR cells, whereas its protein level remained unchanged through time. mRNA levels of pro-apoptotic gene Bax significantly increased only in SVEC after 24 and 48h treatment with 1α,25(OH)2D3 and TX 527 although its protein levels remained unchanged in both cell lines. Bim mRNA and protein levels increased in SVEC and vGPCR cells. Bim protein increase by 1α,25(OH)2D3 and TX 527 was abolished when the expression of vitamin D receptor (VDR) was suppressed. On the other hand, Bortezomib (0.25-1nM), an inhibitor of NF-κB pathway highly activated in vGPCR cells, increased Bim protein levels and induced caspase-3 cleavage. Altogether, these results indicate that 1α,25(OH)2D3 and TX 527 trigger apoptosis by Bim protein increase which turns into the activation of caspase-3 in SVEC and vGPCR cells. Moreover, this effect is mediated by VDR and involves NF-κB pathway inhibition in vGPCR.
Collapse
Affiliation(s)
| | | | - Annemieke Verstuyf
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
38
|
Cadeau C, Fournier A, Mesrine S, Clavel-Chapelon F, Fagherazzi G, Boutron-Ruault MC. Interaction between current vitamin D supplementation and menopausal hormone therapy use on breast cancer risk: evidence from the E3N cohort. Am J Clin Nutr 2015; 102:966-73. [PMID: 26354532 DOI: 10.3945/ajcn.114.104323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/30/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Experimental studies suggest protective effects of vitamin D on breast carcinogenesis, particularly on estrogen receptor-positive tumors. Epidemiologic data are less conclusive. OBJECTIVE Our objective was to investigate the association between postmenopausal breast cancer risk and current or past vitamin D supplementation overall and according to the use of menopausal hormone therapy (MHT). DESIGN Between 1995 and 2008, 2482 invasive breast cancer cases were diagnosed among 57,403 postmenopausal women from the E3N prospective cohort during 581,085 person-years. Vitamin D supplementation was assessed from biennially self-administered questionnaires sent in 1995, 2000, 2002, and 2005 and from medico-administrative data on drug reimbursements since 2004. Multivariable HRs for primary invasive breast cancer and 95% CIs were estimated by using Cox models. RESULTS A decreased postmenopausal breast cancer risk was associated with current (HR: 0.82; 95% CI: 0.69, 0.97) but not past (HR: 1.10; 95% CI: 0.92, 1.31) vitamin D supplementation (P-homogeneity = 0.02). The association with current vitamin D supplementation differed according to MHT use: ever users (HR: 0.74; 95% CI: 0.60, 0.90) and never users (HR: 1.13; 95% CI: 0.89, 1.56); P-homogeneity = 0.02. CONCLUSIONS In this observational study, current vitamin D supplementation, mostly taken daily and combined with calcium, was associated with a decreased postmenopausal breast cancer risk in MHT users. These findings should be confirmed before considering vitamin D supplementation to partly balance the MHT-associated increased breast cancer risk.
Collapse
Affiliation(s)
- Claire Cadeau
- Inserm, Centre for Research in Epidemiology and Population Health, Nutrition, Hormones and Women's Health Team, Villejuif Cedex, France; Université Paris-Sud, Villejuif Cedex, France; and Gustave Roussy, Villejuif Cedex, France
| | - Agnès Fournier
- Inserm, Centre for Research in Epidemiology and Population Health, Nutrition, Hormones and Women's Health Team, Villejuif Cedex, France; Université Paris-Sud, Villejuif Cedex, France; and Gustave Roussy, Villejuif Cedex, France
| | - Sylvie Mesrine
- Inserm, Centre for Research in Epidemiology and Population Health, Nutrition, Hormones and Women's Health Team, Villejuif Cedex, France; Université Paris-Sud, Villejuif Cedex, France; and Gustave Roussy, Villejuif Cedex, France
| | - Françoise Clavel-Chapelon
- Inserm, Centre for Research in Epidemiology and Population Health, Nutrition, Hormones and Women's Health Team, Villejuif Cedex, France; Université Paris-Sud, Villejuif Cedex, France; and Gustave Roussy, Villejuif Cedex, France
| | - Guy Fagherazzi
- Inserm, Centre for Research in Epidemiology and Population Health, Nutrition, Hormones and Women's Health Team, Villejuif Cedex, France; Université Paris-Sud, Villejuif Cedex, France; and Gustave Roussy, Villejuif Cedex, France
| | - Marie-Christine Boutron-Ruault
- Inserm, Centre for Research in Epidemiology and Population Health, Nutrition, Hormones and Women's Health Team, Villejuif Cedex, France; Université Paris-Sud, Villejuif Cedex, France; and Gustave Roussy, Villejuif Cedex, France
| |
Collapse
|
39
|
Brakta S, Diamond JS, Al-Hendy A, Diamond MP, Halder SK. Role of vitamin D in uterine fibroid biology. Fertil Steril 2015; 104:698-706. [PMID: 26079694 PMCID: PMC4561014 DOI: 10.1016/j.fertnstert.2015.05.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To provide a detailed summary of current scientific knowledge on uterine fibroids (leiomyomas) in vitro and in in vivo animal models, as well as to postulate the potential role of vitamin D3 as an effective, inexpensive, safe, long-term treatment option for uterine fibroids. DESIGN PubMed search articles were used to identify the most relevant studies on uterine fibroids, as well as effects of vitamin D3 on uterine fibroid cells and fibroid tumor growth in in vivo animal models. SETTING University research laboratory. PATIENT(S) Not applicable. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Not applicable. RESULT(S) Despite numerous publications available on uterine fibroids, information about the role that vitamin D3 plays in the regulation of uterine fibroids is limited. Most of the recent vitamin D3-related studies on uterine fibroids were published from our group. Recent studies have demonstrated that vitamin D deficiency plays a significant role in the development of uterine fibroids. Our recent studies have demonstrated that vitamin D3 reduces leiomyoma cell proliferation in vitro and leiomyoma tumor growth in in vivo animal models. These results postulate the potential role of vitamin D3 for an effective, safe, nonsurgical medical treatment option for uterine fibroids. CONCLUSION(S) This article reviews human and animal studies and uncovers new possibilities for understanding the vitamin D-based therapeutic option for an effective, safe, long-term treatment of uterine fibroids. On the basis of these results, a clinical trial with vitamin D3 or a hypocalcemic analog, paricalcitol, may be warranted for nonsurgical medical treatment of uterine fibroids.
Collapse
Affiliation(s)
- Soumia Brakta
- Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, Georgia
| | - Justin S Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, Georgia
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, Georgia
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, Georgia
| | - Sunil K Halder
- Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, Georgia.
| |
Collapse
|
40
|
Al-Hendy A, Diamond MP, El-Sohemy A, Halder SK. 1,25-dihydroxyvitamin D3 regulates expression of sex steroid receptors in human uterine fibroid cells. J Clin Endocrinol Metab 2015; 100:E572-82. [PMID: 25625804 PMCID: PMC4399292 DOI: 10.1210/jc.2014-4011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Uterine fibroids (UFs) are the most common benign tumors in premenopausal women. In this study, we evaluated the effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] for the treatment of UFs. OBJECTIVE To determine the role of 1,25(OH)2D3 on the expression of sex steroid receptors in human UF cells. DESIGN Human UFs and their adjacent myometrium were analyzed for expression of estrogen receptor (ER)-α, progesterone receptor (PR)-A, and PR-B, as well as members of the steroid receptor coactivator (SRC) family. Immortalized human uterine fibroid (human uterine leiomyoma [HuLM]) cells were treated with 1,25(OH)2D3 and assayed for the expression and localization of the aforementioned receptors and SRCs using Western blot, immunohistochemistry, immunofluorescence, and immunoprecipitation assays. MAIN OUTCOME MEASURES We discovered a correlation between reduced levels of vitamin D receptor (VDR) and increased levels of ER-α, PR-A, and PR-B in these tissues. We evaluated the effects of 1,25(OH)2D3 on the regulation of the aforementioned sex steroid receptors. RESULTS We observed an inverse correlation between the up-regulated ER-α, PR-A, and PR-B and expression of VDR in UFs. Treatment with 1,25(OH)2D3 significantly decreased levels of ER-α, PR-A, and PR-B, as well as SRCs in HuLM cells (P < .05). In contrast, 1,25(OH)2D3 self-induced its own VDR, which resulted in an induction of VDR-retinoid X receptor-α complex in HuLM cells. Together, these results suggest that 1,25(OH)2D3 functions as an antagonist of sex steroid hormone receptors in HuLM cells. CONCLUSIONS 1,25(OH)2D3 functions as a potent antiestrogenic/antiprogesteronic agent that may have utility as a novel therapeutic option for UF.
Collapse
Affiliation(s)
- Ayman Al-Hendy
- Department of Obstetrics and Gynecology (A.A.-H., M.P.D., S.K.H.), Georgia Regents University, Medical College of Georgia, Augusta, Georgia 30912; and Department of Nutritional Sciences (A.E.-S.), University of Toronto, Toronto, Canada M5S 3E2
| | | | | | | |
Collapse
|
41
|
Beaudin SG, Robilotto S, Welsh J. Comparative regulation of gene expression by 1,25-dihydroxyvitamin D3 in cells derived from normal mammary tissue and breast cancer. J Steroid Biochem Mol Biol 2015; 148:96-102. [PMID: 25239595 PMCID: PMC4760099 DOI: 10.1016/j.jsbmb.2014.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022]
Abstract
Previous genomic profiling of immortalized, non-tumorigenic human breast epithelial cells identified a set of 1,25-dihydroxyvitamin D3 (1,25D) regulated genes with potential relevance to breast cancer prevention. In this report, we characterized the effect of 1,25D on a subset of these genes in six cell lines derived from mammary tissue and breast cancers. Non-tumorigenic cell lines included hTERT-HME1, HME and MCF10A cells which are often used to model normal breast epithelial cells. Breast cancer cell lines included MCF7 cells (a model of early stage, estrogen-dependent disease), DCIS.com cells (a derivative of MCF10A cells that models in situ breast cancer) and Hs578T cells (a model of metastatic disease). All of these cell lines express the vitamin D receptor (VDR) and exhibit anti-cancer responses to 1,25D such as changes in proliferation, apoptosis, metabolism, or invasion. Our comparative data demonstrate highly variable responses to 1,25D (100nM, 24h) between the cell lines. In both hTERT-HME1 and HME cell lines, CYP24A1, SLC1A1 and ITGB3 were up-regulated whereas KDR, GLUL and BIRC3 were down-regulated in response to 1,25D. In contrast, no changes in SLC1A1, ITGB3 or GLUL expression were detected in 1,25D treated MCF10A cells although KDR and BIRC3 were down-regulated by 1,25D. The effects of 1,25D on these genes in the breast cancer cell lines were blunted, with the DCIS.com cells exhibiting the most similar responses to the immortalized hTERT-HME1 and HME cells. The differences in cellular responses were not due to general impairment in VDR function as robust CYP24A1 induction was observed in all cell lines. Thus, our data indicate that the genomic changes induced by 1,25D are highly cell-type specific even in model cell lines derived from the same tissue. The implication of these findings is that genomic responses to changes in vitamin D status in vivo are likely to be distinct from individual to individual, particularly in neoplastic tissue. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Sarah G Beaudin
- Cancer Research Center, Rensselaer, NY 12144, United States; Department of Biomedical Sciences, Rensselaer, NY 12144, United States
| | | | - JoEllen Welsh
- Cancer Research Center, Rensselaer, NY 12144, United States; Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, United States.
| |
Collapse
|
42
|
Segovia-Mendoza M, Díaz L, González-González ME, Martínez-Reza I, García-Quiroz J, Prado-Garcia H, Ibarra-Sánchez MJ, Esparza-López J, Larrea F, García-Becerra R. Calcitriol and its analogues enhance the antiproliferative activity of gefitinib in breast cancer cells. J Steroid Biochem Mol Biol 2015; 148:122-31. [PMID: 25510900 DOI: 10.1016/j.jsbmb.2014.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/06/2014] [Accepted: 12/10/2014] [Indexed: 01/26/2023]
Abstract
Coexpression of EGFR and HER2 has been associated with poor disease outcome, high rates of metastasis and resistance to conventional treatments in breast cancer. Gefitinib, a tyrosine kinase inhibitor, reduces both cell proliferation and tumor growth of breast cancer cells expressing EGFR and/or HER2. On the other hand, calcitriol and some of its synthetic analogs are important antineoplastic agents in different breast cancer subtypes. Herein, we evaluated the effects of the combined treatment of gefitinib with calcitriol or its analogs on cell proliferation in breast cancer cells. The presence of EGFR, HER2 and vitamin D receptor were evaluated by Western blot in two established breast cancer cell lines: SUM-229PE, SKBR3 and a primary breast cancer-derived cell line. The antiproliferative effects of gefitinib alone or in combination with calcitriol and its analogs, calcipotriol and EB1089, were assessed by growth assay using a DNA content-based method. Inhibitory concentrations on cell proliferation were calculated by non-linear regression analysis using sigmoidal fitting of dose-response curves. Pharmacological effects of the drug combinations were calculated by the Chou-Talalay method. Phosphorylation of ERK1/2 MAPK was evaluated by Western blot. Gene expression of EGFR, HER2 and BIM was assessed by real time PCR. BIM protein levels were analyzed in cells by flow cytometry. The effects of the drugs alone or combinated on cell cycle phases were determined using propidium iodide. Apoptosis was evaluated by detection of subG1 peak and determination of active caspase 3 by flow cytometry. Gefitinib, calcitriol, calcipotriol and EB1089 inhibited cell proliferation in a dose dependent manner. The combinations of gefitinib with calcitriol or its analogs were more effective to inhibit cell growth than each compound alone in all breast cancer cells studied. The gene expression of EGFR and HER2 was downregulated and not affected, respectively, by the combined treatment. Furthermore, phosphorylation of ERK 1/2 was inhibited a greater extent in co-treated cells than in the cells treated with alone compounds. The combination of gefitinib with calcitriol or their synthetic analogs induced apoptosis in SUM-229PE cells, this was shown by the significant upregulation of BIM protein levels, higher percentages of cells in subG1 peak and increase of caspase 3-positive cells. The combination of gefitinib with calcitriol or their synthetic analogs resulted in a greater antiproliferative effect than with either of the agents alone in EGFR and HER2 positive breast cancer cells. The mechanistic explanation for these results includes downregulation of MAPK signaling pathway, decrease of cells in G2/M phase and induction of apoptosis mediated by upregulation of BIM and activation of caspase 3. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Sección XVI, Tlalpan 14000, México, D.F., Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Cuidad Universitaria 3000, Coyoacán 04360, México, D.F, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Sección XVI, Tlalpan 14000, México, D.F., Mexico
| | - María Elena González-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Sección XVI, Tlalpan 14000, México, D.F., Mexico
| | - Isela Martínez-Reza
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Sección XVI, Tlalpan 14000, México, D.F., Mexico
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Sección XVI, Tlalpan 14000, México, D.F., Mexico
| | - Heriberto Prado-Garcia
- Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Sección XVI, Tlalpan 14080, México, D.F., Mexico
| | - María J Ibarra-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Sección XVI, Tlalpan 14000, México, D.F., Mexico
| | - José Esparza-López
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Sección XVI, Tlalpan 14000, México, D.F., Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Sección XVI, Tlalpan 14000, México, D.F., Mexico
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Sección XVI, Tlalpan 14000, México, D.F., Mexico.
| |
Collapse
|
43
|
Zeichner SB, Koru-Sengul T, Shah N, Liu Q, Markward NJ, Montero AJ, Glück S, Silva O, Ahn ER. Improved clinical outcomes associated with vitamin D supplementation during adjuvant chemotherapy in patients with HER2+ nonmetastatic breast cancer. Clin Breast Cancer 2014; 15:e1-11. [PMID: 25241299 DOI: 10.1016/j.clbc.2014.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vitamin D (VD) supplementation has pleiotropic effects that extend beyond their impact on bone health, including the disruption of downstream VD receptor signaling and human epidermal growth factor receptor 2 (HER2) signaling through the ErbB2/AKT/ERK pathway. In the present study, we examined our institutional experience with patients having nonmetastatic HER2-positive (HER(+)) breast cancer and hypothesized that those patients who received VD supplementation during neoadjuvant chemotherapy would have improved long-term outcomes. PATIENTS AND METHODS We performed a retrospective review of all patients (n = 308) given trastuzumab-based chemotherapy between 2006 and 2012 at the University of Miami/Sylvester Comprehensive Cancer Center (UM/SCCC). We identified 2 groups of patients for comparison-those who received VD supplementation during neoadjuvant chemotherapy (n = 134) and those who did not (n = 112). Univariate and multivariate Cox proportional hazard regression models were fitted to overall survival (OS) and disease-free survival (DFS). RESULTS More than half of the patients received VD during neoadjuvant chemotherapy (54.5%), with 60% receiving a dose < 10,000 units/wk and 33.3% having a VD deficiency at the start of therapy. In our final multivariate model, VD use was associated with improved DFS (hazard ratio [HR], 0.36; 95% confidence interval [CI], 0.15-0.88; P = .026], whereas larger tumor size was associated with worse DFS (HR, 3.52; 95% CI, 1.06-11.66; P = .04). There were no differences in OS based on any of the categories, including VD use, tumor size, number of metastatic lymph nodes, age at diagnosis, or lymphovascular invasion (LVI). CONCLUSION VD supplementation in patients with nonmetastatic HER2(+) breast cancer is associated with improved DFS.
Collapse
Affiliation(s)
- Simon B Zeichner
- Department of Hematology and Oncology, Emory Winship Cancer Center, Atlanta, GA.
| | - Tulay Koru-Sengul
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL; Sylvester Comprehensive Cancer Center at University of Miami Miller School of Medicine, Miami, FL
| | - Nikesh Shah
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Qingyun Liu
- Department of Psychology, University of Miami Miller School of Medicine, Miami, FL
| | | | - Alberto J Montero
- Department of Solid Tumor Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Stefan Glück
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Sylvester Comprehensive Cancer Center at University of Miami Miller School of Medicine, Miami, FL
| | - Orlando Silva
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Sylvester Comprehensive Cancer Center at University of Miami Miller School of Medicine, Miami, FL
| | - Eugene R Ahn
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Sylvester Comprehensive Cancer Center at University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
44
|
Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer 2014; 14:342-57. [PMID: 24705652 DOI: 10.1038/nrc3691] [Citation(s) in RCA: 879] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D is not really a vitamin but the precursor to the potent steroid hormone calcitriol, which has widespread actions throughout the body. Calcitriol regulates numerous cellular pathways that could have a role in determining cancer risk and prognosis. Although epidemiological and early clinical trials are inconsistent, and randomized control trials in humans do not yet exist to conclusively support a beneficial role for vitamin D, accumulating results from preclinical and some clinical studies strongly suggest that vitamin D deficiency increases the risk of developing cancer and that avoiding deficiency and adding vitamin D supplements might be an economical and safe way to reduce cancer incidence and improve cancer prognosis and outcome.
Collapse
Affiliation(s)
- David Feldman
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Aruna V Krishnan
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Srilatha Swami
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Edward Giovannucci
- Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Brian J Feldman
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
45
|
Santos-Martínez N, Díaz L, Ordaz-Rosado D, García-Quiroz J, Barrera D, Avila E, Halhali A, Medina-Franco H, Ibarra-Sánchez MJ, Esparza-López J, Camacho J, Larrea F, García-Becerra R. Calcitriol restores antiestrogen responsiveness in estrogen receptor negative breast cancer cells: a potential new therapeutic approach. BMC Cancer 2014; 14:230. [PMID: 24678876 PMCID: PMC3972996 DOI: 10.1186/1471-2407-14-230] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Approximately 30% of breast tumors do not express the estrogen receptor (ER) α, which is necessary for endocrine therapy approaches. Studies are ongoing in order to restore ERα expression in ERα-negative breast cancer. The aim of the present study was to determine if calcitriol induces ERα expression in ER-negative breast cancer cells, thus restoring antiestrogen responses. METHODS Cultured cells derived from ERα-negative breast tumors and an ERα-negative breast cancer cell line (SUM-229PE) were treated with calcitriol and ERα expression was assessed by real time PCR and western blots. The ERα functionality was evaluated by prolactin gene expression analysis. In addition, the effects of antiestrogens were assessed by growth assay using the XTT method. Gene expression of cyclin D1 (CCND1), and Ether-à-go-go 1 (EAG1) was also evaluated in cells treated with calcitriol alone or in combination with estradiol or ICI-182,780. Statistical analyses were determined by one-way ANOVA. RESULTS Calcitriol was able to induce the expression of a functional ERα in ER-negative breast cancer cells. This effect was mediated through the vitamin D receptor (VDR), since it was abrogated by a VDR antagonist. Interestingly, the calcitriol-induced ERα restored the response to antiestrogens by inhibiting cell proliferation. In addition, calcitriol-treated cells in the presence of ICI-182,780 resulted in a significant reduction of two important cell proliferation regulators CCND1 and EAG1. CONCLUSIONS Calcitriol induced the expression of ERα and restored the response to antiestrogens in ERα-negative breast cancer cells. The combined treatment with calcitriol and antiestrogens could represent a new therapeutic strategy in ERα-negative breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rocío García-Becerra
- Departments of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No, 15, Tlalpan 14000 México, México.
| |
Collapse
|
46
|
Catherino WH, Eltoukhi HM, Al-Hendy A. Racial and ethnic differences in the pathogenesis and clinical manifestations of uterine leiomyoma. Semin Reprod Med 2013; 31:370-9. [PMID: 23934698 PMCID: PMC4170830 DOI: 10.1055/s-0033-1348896] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Uterine leiomyomas are the most common benign gynecologic condition. The prevalence is three times more common among women of African ethnicity. Disparity in this disease is evidenced by earlier age of onset, greater severity of symptoms, and different response to treatment. Although the pathogenesis of disease development is not completely known, growing evidence focuses on investigating the molecular mechanisms in disease development and the influence of ethnicity. Variation in the expression levels or function of estrogen and progesterone receptors, polymorphism of genes involved in estrogen synthesis and/or metabolism (COMT, CYP17), retinoic acid nuclear receptors (retinoid acid receptor-α, retinoid X receptor-α), and aberrant expression of micro-RNAs (miRNAs) are some of the molecular mechanisms that may be involved. Nutritional factors, such as vitamin D deficiency, might also contribute to the higher incidence in dark skinned populations who are also commonly suffer from hypovitaminosis D. Culture and environmental difference might have a role in disease development. Further analysis and better understanding of these mechanisms will provide insight into the molecular basis of racial disparities in leiomyoma formation and will help to develop new innovations in leiomyoma treatment.
Collapse
Affiliation(s)
- William H. Catherino
- Program in Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Heba M. Eltoukhi
- Program in Reproductive and Adult Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Department of Obstetrics and Gynecology, Suez Canal University, Ismailia, Egypt
| | - Ayman Al-Hendy
- Center for Women Health Research, Department of Obstetrics and Gynecology, Meharry Medical College, Nashville, Tennessee
| |
Collapse
|
47
|
Krishnan AV, Swami S, Feldman D. Equivalent anticancer activities of dietary vitamin D and calcitriol in an animal model of breast cancer: importance of mammary CYP27B1 for treatment and prevention. J Steroid Biochem Mol Biol 2013; 136:289-95. [PMID: 22939886 PMCID: PMC3554854 DOI: 10.1016/j.jsbmb.2012.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/09/2012] [Indexed: 01/24/2023]
Abstract
Calcitriol [1,25(OH)2D3], the hormonally active form of vitamin D exerts anti-proliferative, pro-apoptotic, anti-inflammatory effects and other anticancer actions in breast cancer (BCa) cell cultures and animal models of BCa. Our research is focused on investigating the potential beneficial effects of dietary vitamin D3 compared to calcitriol and the underlying mechanisms in BCa treatment and chemoprevention. We recently found that dietary vitamin D3 exhibits significant tumor inhibitory effects in xenograft models of BCa that are equivalent to those elicited by the administration of the active hormone calcitriol. At the easily achievable dose tested in our studies, dietary vitamin D3 exhibited substantial tumor inhibitory activity and, unlike calcitriol, did not cause hypercalcemia demonstrating its relative safety. We found elevations in circulating calcitriol as well as increased CYP27B1 expression in the tumor and the intestine in tumor-bearing mice ingesting a vitamin D3-supplemented diet. We hypothesize that the elevation in circulating 25(OH)D induced by dietary vitamin D3 supplements stimulates local synthesis of calcitriol in the mammary tumor microenvironment and the ensuing paracrine/autocrine actions play a major role in the anticancer activity of dietary vitamin D3. Our findings suggest that the endocrine activity of calcitriol derived from tumor and other extra-renal sources such as the intestine, probably also plays a role in mediating the anticancer effects of dietary vitamin D3. Thus it appears that multiple sites of 1α-hydroxylation contribute to the anticancer effects of dietary vitamin D3. Our data strongly suggest that dietary vitamin D will be useful in the chemoprevention and treatment of BCa since it is a safe, economical and easily available nutritional agent that is equivalent to calcitriol in exerting anticancer effects, at least in mouse models. Furthermore, adequate vitamin D nutrition and avoidance of vitamin D deficiency appear to be important in reducing BCa risk. These findings warrant clinical trials in BCa patients and in women at high risk for BCa to evaluate the benefits of dietary vitamin D3 supplementation. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
| | | | - David Feldman
- Address correspondence and reprint requests to: David Feldman, MD, Stanford University School of Medicine, 300 Pasteur Drive, Room S025, Stanford CA 94305-5103, Fax: 650 725 7085,
| |
Collapse
|
48
|
Vitamin D Deficiency in Early Life and the Potential Programming of Cardiovascular Disease in Adulthood. J Cardiovasc Transl Res 2013; 6:588-603. [DOI: 10.1007/s12265-013-9475-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/14/2013] [Indexed: 01/17/2023]
|
49
|
MART-10, a New Generation of Vitamin D Analog, Is More Potent than 1α,25-Dihydroxyvitamin D(3) in Inhibiting Cell Proliferation and Inducing Apoptosis in ER+ MCF-7 Breast Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:310872. [PMID: 23304196 PMCID: PMC3530235 DOI: 10.1155/2012/310872] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/21/2012] [Indexed: 01/25/2023]
Abstract
Hormone antagonist therapy for estrogen receptor positive (ER+) breast cancer patients post radical surgery and radiation therapy has a poor prognosis and also causes bone loss. 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is a potent antitumor agent in pre-clinical studies, but caused hypercalcemia when its effective antitumor doses were used. Therefore, we investigated the effects of a less-calcemic 1α,25(OH)2D3 analog, 19-nor-2α-(3-hydroxypropyl)-1α,25-dihydroxyvitamin D3 (MART-10), on ER+MCF-7 cells. We demonstrate that MART-10 is 500- to 1000-fold more potent than 1α,25(OH)2D3 in inhibiting cell growth in a dose- and time-dependent manner. MART-10 is also much more potent in arresting MCF-7cell cycle progression at G0/G1 phase as compared to 1α,25(OH)2D3, possibly mediated by a greater induction of p21 and p27 expression. Moreover, MART-10 is more active than 1α,25(OH)2D3 in causing cell apoptosis, likely through a higher BAX/Bcl expression ratio and the subsequent cytochrome C release from mitochondria to cytosol. Based on our in vitro findings, MART-10 could be a promising vitamin D analog for the potential treatment of breast cancer, for example, ER+ patients, to decrease the tumor relapse rate and the side effect on bone caused by antihormone regimens. Thus, further in vivo animal study is warranted.
Collapse
|
50
|
Krishnan AV, Swami S, Feldman D. The potential therapeutic benefits of vitamin D in the treatment of estrogen receptor positive breast cancer. Steroids 2012; 77:1107-12. [PMID: 22801352 PMCID: PMC3429709 DOI: 10.1016/j.steroids.2012.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/11/2012] [Accepted: 06/26/2012] [Indexed: 01/08/2023]
Abstract
Calcitriol (1,25-dihydroxyvitamin D(3)), the hormonally active form of vitamin D, inhibits the growth of many malignant cells including breast cancer (BCa) cells. The mechanisms of calcitriol anticancer actions include cell cycle arrest, stimulation of apoptosis and inhibition of invasion, metastasis and angiogenesis. In addition we have discovered new pathways of calcitriol action that are especially relevant in inhibiting the growth of estrogen receptor positive (ER+) BCa cells. Calcitriol suppresses COX-2 expression and increases that of 15-PGDH thereby reducing the levels of inflammatory prostaglandins (PGs). Our in vitro and in vivo studies show that calcitriol decreases the expression of aromatase, the enzyme that catalyzes estrogen synthesis selectively in BCa cells and in the mammary adipose tissue surrounding BCa, by a direct repression of aromatase transcription via promoter II as well as an indirect effect due to the reduction in the levels of PGs, which are major stimulator of aromatase transcription through promoter II. Calcitriol down-regulates the expression of ERα and thereby attenuates estrogen signaling in BCa cells including the proliferative stimulus provided by estrogens. Thus the inhibition of estrogen synthesis and signaling by calcitriol and its anti-inflammatory actions will play an important role in inhibiting ER+BCa. We hypothesize that dietary vitamin D would exhibit similar anticancer activity due to the presence of the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) in breast cells ensuring conversion of circulating 25-hydroxyvitamin D to calcitriol locally within the breast micro-environment where it can act in a paracrine manner to inhibit BCa growth. Cell culture and in vivo data in mice strongly suggest that calcitriol and dietary vitamin D would play a beneficial role in the prevention and/or treatment of ER+BCa in women.
Collapse
Affiliation(s)
| | | | - David Feldman
- Address correspondence and reprint requests to: David Feldman, MD, Stanford University School of Medicine, 300 Pasteur Drive, Room S025, Stanford CA 94305-5103, Fax: 650 725 7085,
| |
Collapse
|