1
|
Gong RF, Zhang ZH, Sun TT, Zhao YX, Fang W. YTHDF3 modulates the progression of breast cancer cells by regulating FGF2 through m 6A methylation. Front Cell Dev Biol 2024; 12:1438515. [PMID: 39372951 PMCID: PMC11449838 DOI: 10.3389/fcell.2024.1438515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Breast cancer (BC) is a prevailing malignancy among women, and its inconspicuous development contributes significantly to mortality. The RNA N6-methyladenosine (m6A) modification represents an emerging mechanism for gene expression regulation, with the active involvement of the YTH N6-methyladenosine RNA binding protein 3 (YTHDF3) in tumor progression across multiple cancer types. Nonetheless, its precise function in breast cancer necessitates further investigation. Methods The expression of YTHDF3 in both cell lines and patient tissues was examined using Western blotting, reverse transcription quantitative PCR (RT-qPCR), and immunohistochemistry (IHC) techniques. Bioinformatics analysis of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and transcriptome RNA sequencing (RNA-seq) data was employed to screen for the target genes of YTHDF3. The main focus of this study was to investigate the in vitro biological functions of YTHDF3. The specific binding of YTHDF3 to its target genes and its correlation with m6A methylation were studied through RNA pull-down, RNA immunoprecipitation, and co-immunoprecipitation experiments. The protein regulatory mechanisms of downstream genes of YTHDF3 were assessed using protein stability analysis. Furthermore, the biological functions of YTHDF3 and its target genes in breast cancer cells were validated through CRISPR-Cas9 technology and rescue experiments. Results By constructing a risk model using the TCGA database, YTHDF3 was identified as a high-risk factor among m6A methylation factors. Subsequent investigations revealed its elevated expression in various subtypes of breast cancer, accompanied by poor prognosis. MeRIP-seq analysis further revealed fibroblast growth factor 2 (FGF2) as a downstream gene of YTHDF3. Knockdown of YTHDF3 in breast cancer cells led to significant inhibition of cell self-renewal, migration, and invasion abilities in vitro. Mechanistically, YTHDF3 specifically recognized the methylated transcript of FGF2 within its coding sequence (CDS) region, leading to the inhibition of FGF2 protein degradation. Moreover, depletion of FGF2 markedly suppressed the biological functions of breast cancer cells, while reducing FGF2 expression in YTHDF3-overexpressing breast cancer cell lines substantially alleviated the malignant progression. Conclusions In summary, our study elucidates the role of YTHDF3 as an oncogene in maintaining FGF2 expression in BC cells through an m6A-dependent mechanism. Additionally, we provide a potential biomarker panel for prognostic prediction in BC.
Collapse
Affiliation(s)
- R. F. Gong
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Z. H. Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - T. T. Sun
- The Affiliated Cancer Hospital of Guizhou Medical University, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Y. X. Zhao
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Wen Fang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
3
|
Pérez Piñero C, Giulianelli S, Lamb CA, Lanari C. New Insights in the Interaction of FGF/FGFR and Steroid Receptor Signaling in Breast Cancer. Endocrinology 2022; 163:6491899. [PMID: 34977930 DOI: 10.1210/endocr/bqab265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/19/2022]
Abstract
Luminal breast cancer (BrCa) has a favorable prognosis compared with other tumor subtypes. However, with time, tumors may evolve and lead to disease progression; thus, there is a great interest in unraveling the mechanisms that drive tumor metastasis and endocrine resistance. In this review, we focus on one of the many pathways that have been involved in tumor progression, the fibroblast growth factor/fibroblast growth factor receptor (FGFR) axis. We emphasize in data obtained from in vivo experimental models that we believe that in luminal BrCa, tumor growth relies in a crosstalk with the stromal tissue. We revisited the studies that illustrate the interaction between hormone receptors and FGFR. We also highlight the most frequent alterations found in BrCa cell lines and provide a short review on the trials that use FGFR inhibitors in combination with endocrine therapies. Analysis of these data suggests there are many players involved in this pathway that might be also targeted to decrease FGF signaling, in addition to specific FGFR inhibitors that may be exploited to increase their efficacy.
Collapse
Affiliation(s)
- Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
- Instituto de Biología de Organismos Marinos, IBIOMAR-CCT CENPAT-CONICET, U9120ACD Puerto Madryn, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| |
Collapse
|
4
|
Yang B, Li L, Tong G, Zeng Z, Tan J, Su Z, Liu Z, Lin J, Gao W, Chen J, Zeng S, Wu G, Li L, Zhu S, Liu Q, Lin L. Circular RNA circ_001422 promotes the progression and metastasis of osteosarcoma via the miR-195-5p/FGF2/PI3K/Akt axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:235. [PMID: 34271943 PMCID: PMC8283840 DOI: 10.1186/s13046-021-02027-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/23/2021] [Indexed: 01/01/2023]
Abstract
Background Circular RNAs (circRNAs) are involved in diverse processes that drive cancer development. However, the expression landscape and mechanistic function of circRNAs in osteosarcoma (OS) remain to be studied. Methods Bioinformatic analysis and high-throughput RNA sequencing tools were employed to identify differentially expressed circRNAs between OS and adjacent noncancerous tissues. The expression level of circ_001422 in clinical specimens and cell lines was measured using qRT-PCR. The association of circ_001422 expression with the clinicopathologic features of 55 recruited patients with OS was analyzed. Loss- and gain-of-function experiments were conducted to explore the role of circ_001422 in OS cells. RNA immunoprecipitation, fluorescence in situ hybridization, bioinformatics database analysis, RNA pulldown assays, dual-luciferase reporter assays, mRNA sequencing, and rescue experiments were conducted to decipher the competitive endogenous RNA regulatory network controlled by circ_001422. Results We characterized a novel and abundant circRNA, circ_001422, that promoted OS progression. Circ_001422 expression was dramatically increased in OS cell lines and tissues compared with noncancerous samples. Higher circ_001422 expression correlated with more advanced clinical stage, larger tumor size, higher incidence of distant metastases and poorer overall survival in OS patients. Circ_001422 knockdown markedly repressed the proliferation and metastasis and promoted the apoptosis of OS cells in vivo and in vitro, whereas circ_001422 overexpression exerted the opposite effects. Mechanistically, competitive interactions between circ_001422 and miR-195-5p elevated FGF2 expression while also initiating PI3K/Akt signaling. These events enhanced the malignant characteristics of OS cells. Conclusions Circ_001422 accelerates OS tumorigenesis and metastasis by modulating the miR-195-5p/FGF2/PI3K/Akt axis, implying that circ_001422 can be therapeutically targeted to treat OS. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02027-0.
Collapse
Affiliation(s)
- Bingsheng Yang
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lutao Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ge Tong
- Department of Medical Ultrasonics, Guangdong Province Key Laboratory of Hepatology Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, China
| | - Jianye Tan
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zexin Su
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhengwei Liu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jiezhao Lin
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wenwen Gao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guofeng Wu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lin Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shuang Zhu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qiuzhen Liu
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
5
|
Miao T, Little AC, Aronshtam A, Marquis T, Fenn SL, Hristova M, Krementsov DN, van der Vliet A, Spees JL, Oldinski RA. Internalized FGF-2-Loaded Nanoparticles Increase Nuclear ERK1/2 Content and Result in Lung Cancer Cell Death. NANOMATERIALS 2020; 10:nano10040612. [PMID: 32230722 PMCID: PMC7221911 DOI: 10.3390/nano10040612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
Innovative cancer treatments, which improve adjuvant therapy and reduce adverse events, are desperately needed. Nanoparticles provide controlled intracellular biomolecule delivery in the absence of activating external cell surface receptors. Prior reports suggest that intracrine signaling, following overexpression of basic fibroblast growth factor (FGF-2) after viral transduction, has a toxic effect on diseased cells. Herein, the research goals were to (1) encapsulate recombinant FGF-2 within stable, alginate-based nanoparticles (ABNs) for non-specific cellular uptake, and (2) determine the effects of ABN-mediated intracellular delivery of FGF-2 on cancer cell proliferation/survival. In culture, human alveolar adenocarcinoma basal epithelial cell line (A549s) and immortalized human bronchial epithelial cell line (HBE1s) internalized ABNs through non-selective endocytosis. Compared to A549s exposed to empty (i.e., blank) ABNs, the intracellular delivery of FGF-2 via ABNs significantly increased the levels of lactate dehydrogenase, indicating that FGF-2-ABN treatment decreased the transformed cell integrity. Noticeably, the nontransformed cells were not significantly affected by FGF-2-loaded ABN treatment. Furthermore, FGF-2-loaded ABNs significantly increased nuclear levels of activated-extracellular signal-regulated kinase ½ (ERK1/2) in A549s but had no significant effect on HBE1 nuclear ERK1/2 expression. Our novel intracellular delivery method of FGF-2 via nanoparticles resulted in increased cancer cell death via increased nuclear ERK1/2 activation.
Collapse
Affiliation(s)
- Tianxin Miao
- Bioengineering Program, College of Engineering and Mathematical Sciences, Larner College of Medicine, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA (S.L.F.)
| | - Andrew C. Little
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA; (A.C.L.); (A.v.d.V.)
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Alexander Aronshtam
- Department of Medicine, Stem Cell Core, Larner College of Medicine, University of Vermont, Colchester, VT 05446, USA; (A.A.); (T.M.)
| | - Taylor Marquis
- Department of Medicine, Stem Cell Core, Larner College of Medicine, University of Vermont, Colchester, VT 05446, USA; (A.A.); (T.M.)
| | - Spencer L. Fenn
- Bioengineering Program, College of Engineering and Mathematical Sciences, Larner College of Medicine, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA (S.L.F.)
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA;
| | - Albert van der Vliet
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA; (A.C.L.); (A.v.d.V.)
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Jeffrey L. Spees
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA; (A.C.L.); (A.v.d.V.)
- Department of Medicine, Stem Cell Core, Larner College of Medicine, University of Vermont, Colchester, VT 05446, USA; (A.A.); (T.M.)
- Correspondence: (J.L.S.); (R.A.O.); Tel.: +1-802-656-2388 (J.L.S.); +1-802-656-3338 (R.A.O.); Fax: +1-802-656-8932 (J.L.S.); +1-802-656-3358 (R.A.O.)
| | - Rachael A. Oldinski
- Bioengineering Program, College of Engineering and Mathematical Sciences, Larner College of Medicine, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA (S.L.F.)
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
- Materials Science Program, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
- Correspondence: (J.L.S.); (R.A.O.); Tel.: +1-802-656-2388 (J.L.S.); +1-802-656-3338 (R.A.O.); Fax: +1-802-656-8932 (J.L.S.); +1-802-656-3358 (R.A.O.)
| |
Collapse
|
6
|
Miura K, Oba T, Hamanaka K, Ito KI. FGF2-FGFR1 pathway activation together with thymidylate synthase upregulation is induced in pemetrexed-resistant lung cancer cells. Oncotarget 2019; 10:1171-1192. [PMID: 30838090 PMCID: PMC6383826 DOI: 10.18632/oncotarget.26622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 01/09/2019] [Indexed: 11/25/2022] Open
Abstract
Pemetrexed (MTA) is a folate antimetabolite used for treating non-small cell lung cancer. To elucidate the mechanisms of pemetrexed resistance in lung cancer, we established pemetrexed-resistant sublines in PC9 (mutant EGFR) and H1993 (wild-type EGFR) lung adenocarcinoma cell lines (PC9-MTA, H1993-MTA). Gene expression profile comparison by microarray analyses revealed enhanced fibroblast growth factor 2 (FGF2) and FGF receptor 1 (FGFR1) expression, confirmed by Western blotting, enzyme-linked immunosorbent assay, and reverse transcription-polymerase chain reaction. ERK phosphorylation was increased in PC9-MTA but decreased in H1993-MTA along with decreased downstream signaling molecule phosphorylation. Cellular morphological change from epithelial to spindle-shape together with increased mesenchymal marker protein expression was observed in H1993-MTA. SiRNA-mediated FGF2 knockdown partially restored pemetrexed sensitivity in both lines, whereas anti-FGFR1 inhibitor PD173074 restored pemetrexed sensitivity in PC9-MTA. FGF2 or FGFR1 inhibition decreased pERK levels in PC9-MTA but increased pEGFR levels together with downstream signaling molecule activation and reversed epithelial-mesenchymal transition marker protein expression in H1993-MTA. Although thymidylate synthase strongly facilitates the development of pemetrexed resistance, our results reveal involvement of the FGF2-FGFR1 pathway in pemetrexed resistance in lung cancer cells and suggest that cellular function alterations induced by FGF2-FGFR1 pathway activation depend on the innate feature of cancer cells.
Collapse
Affiliation(s)
- Kentaro Miura
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Takaaki Oba
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazutoshi Hamanaka
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ken-Ichi Ito
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
7
|
Fuster-Matanzo A, Manferrari G, Marchetti B, Pluchino S. Wnt3a promotes pro-angiogenic features in macrophages in vitro: Implications for stroke pathology. Exp Biol Med (Maywood) 2017; 243:22-28. [PMID: 29199847 DOI: 10.1177/1535370217746392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Wnt3a is implicated in several key cellular processes and its expression has been reported in different cell types. Here, we report a novel function for Wnt3a in macrophages, whose exposure to this ligand shifts them towards a pro-angiogenic phenotype capable, under oxygen and glucose deprivation, of inducing in vitro tubular pattern structures in endothelial cells resembling capillary-like vasculature. These newly acquired angiogenetic features also include increased proliferation and migration and surprisingly, an increase in cell death. This work provides a new link between Wnt3a and macrophage-mediated angiogenesis under glucose and oxygen deprivation in vitro, which are worth further investigation in pathological conditions including stroke, where the stimulation of the angiogenic process might help to recovery after tissue injury Impact statement This work provides a new link between Wnt3a and macrophage-mediated angiogenesis under glucose and oxygen deprivation in vitro. Our results reveal how Wnt3a shifts macrophages towards a pro-angiogenic phenotype, which is able-in absence of both glucose and oxygen-of inducing angiogenesis in vitro, thus pointing to a synergy between the activation of the pathway and the hypoxia scenario. This work also demonstrates that modulation of cell death is key in order to explain the observed angiogenic effects. We consider all these findings of significant importance, since no connection between Wnt3a, macrophages, and angiogenesis has been established so far. Furthermore, we do believe that this work provides new and interesting results, with Wnt signaling pathway emerging as an interesting target mediating beneficial outcomes during the inflammatory response undoubtedly linked to stroke pathology, where angiogenesis has been already proposed as a potential mechanism to promote recovery after the injury.
Collapse
Affiliation(s)
- Almudena Fuster-Matanzo
- 1 Department of Clinical Neurosciences - Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, 151895 University of Cambridge , Cambridge CB2 0HA, UK
| | - Giulia Manferrari
- 1 Department of Clinical Neurosciences - Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, 151895 University of Cambridge , Cambridge CB2 0HA, UK
| | - Bianca Marchetti
- 2 Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology Section, University of Catania Medical School, Catania 95125, Italy.,3 OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, Troina 94018 (EN), Italy
| | - Stefano Pluchino
- 1 Department of Clinical Neurosciences - Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute and NIHR Biomedical Research Centre, 151895 University of Cambridge , Cambridge CB2 0HA, UK
| |
Collapse
|
8
|
Todorović-Raković N, Radulovic M, Vujasinović T, Rabi ZA, Milovanović J, Nikolić-Vukosavljević D. bFGF in tumor tissue independently prognosticates disease outcome of a natural course of invasive breast cancer. Cancer Biomark 2017; 20:151-158. [DOI: 10.3233/cbm-170022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Akl MR, Nagpal P, Ayoub NM, Tai B, Prabhu SA, Capac CM, Gliksman M, Goy A, Suh KS. Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget 2016; 7:44735-44762. [PMID: 27007053 PMCID: PMC5190132 DOI: 10.18632/oncotarget.8203] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/10/2016] [Indexed: 12/30/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling is essential for normal and cancer biology. Mammalian FGF family members participate in multiple signaling pathways by binding to heparan sulfate and FGF receptors (FGFR) with varying affinities. FGF2 is the prototype member of the FGF family and interacts with its receptor to mediate receptor dimerization, phosphorylation, and activation of signaling pathways, such as Ras-MAPK and PI3K pathways. Excessive mitogenic signaling through the FGF/FGFR axis may induce carcinogenic effects by promoting cancer progression and increasing the angiogenic potential, which can lead to metastatic tumor phenotypes. Dysregulated FGF/FGFR signaling is associated with aggressive cancer phenotypes, enhanced chemotherapy resistance and poor clinical outcomes. In vitro experimental settings have indicated that extracellular FGF2 affects proliferation, drug sensitivity, and apoptosis of cancer cells. Therapeutically targeting FGF2 and FGFR has been extensively assessed in multiple preclinical studies and numerous drugs and treatment options have been tested in clinical trials. Diagnostic assays are used to quantify FGF2, FGFRs, and downstream signaling molecules to better select a target patient population for higher efficacy of cancer therapies. This review focuses on the prognostic significance of FGF2 in cancer with emphasis on therapeutic intervention strategies for solid and hematological malignancies.
Collapse
Affiliation(s)
- Mohamed R. Akl
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Poonam Nagpal
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Betty Tai
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Sathyen A. Prabhu
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Catherine M. Capac
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Matthew Gliksman
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andre Goy
- Lymphoma Division, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - K. Stephen Suh
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
10
|
Liu X, Luo D, Yang N. Cytosolic Low Molecular Weight FGF2 Orchestrates RIG-I-Mediated Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:4943-52. [PMID: 26466960 DOI: 10.4049/jimmunol.1501503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor (FGF)2,which is one of the 22 members of the FGF family, functions as an extracellular molecule involved in canonical receptor tyrosine kinase signaling. It has been implicated in angiogenesis and the development of the CNS. In this article, we reveal that cytosolic low m.w. isoform (LMW) FGF2 (18 kDa), not its secreted form, plays an unexpected role in the innate immune response. Cytosolic LMW FGF2 directly associated with inactivated RIG-I under physiological conditions, which enhanced RIG-I protein stability, thereby maintaining basal RIG-I levels. However, during RIG-I activation induced by viral RNA, cytosolic FGF2 bound to the caspase recruitment domains of activated RIG-I, which blocked RIG-I-MAVS complex formation. LMW FGF2 deficiency increased type I IFN production, whereas the overexpression of LMW FGF2 exerted the opposite effect. Cytosolic LMW FGF2 functions as a negative regulator in RIG-I-mediated antiviral signaling. This work provides insight into the role of FGF2 in innate immune response.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; and
| | - Deyan Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; and
| | - Ning Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
11
|
Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis. Clin Sci (Lond) 2015; 129:147-58. [PMID: 25735814 DOI: 10.1042/cs20140390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chondrosarcoma, a common malignant tumour, develops in bone. Effective adjuvant therapy remains inadequate for treatment, meaning poor prognosis. It is imperative to explore novel remedies. Angiogenesis is a rate-limiting step in progression that explains neovessel formation for blood supply in the tumour microenvironment. Numerous studies indicate that EPCs (endothelial progenitor cells) promote angiogenesis and contribute to tumour growth. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis, and correlates with tumorigenesis. However, the role of bFGF in angiogenesis-related tumour progression by recruiting EPCs in human chondrosarcoma is rarely discussed. In the present study, we found that bFGF induced VEGF (vascular endothelial growth factor) expression via the FGFR1 (fibroblast growth factor receptor 1)/c-Src/p38/NF-κB (nuclear factor κB) signalling pathway in chondrosarcoma cells, thereby triggering angiogenesis of endothelial progenitor cells. Our in vivo data revealed that tumour-secreted bFGF promotes angiogenesis in both mouse plug and chick CAM (chorioallantoic membrane) assays. Xenograft mouse model data, due to bFGF-regulated angiogenesis, showed the bFGF regulates angiogenesis-linked tumour growth. Finally, bFGF was highly expressed in chondrosarcoma patients compared with normal cartilage, positively correlating with VEGF expression and tumour stage. The present study reveals a novel therapeutic target for chondrosarcoma progression.
Collapse
|
12
|
Calderon MR, Verway M, Benslama RO, Birlea M, Bouttier M, Dimitrov V, Mader S, White JH. Ligand-dependent corepressor contributes to transcriptional repression by C2H2 zinc-finger transcription factor ZBRK1 through association with KRAB-associated protein-1. Nucleic Acids Res 2014; 42:7012-27. [PMID: 24829459 PMCID: PMC4066800 DOI: 10.1093/nar/gku413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We identified a novel interaction between ligand-dependent corepressor (LCoR) and the corepressor KRAB-associated protein-1 (KAP-1). The two form a complex with C2H2 zinc-finger transcription factor ZBRK1 on an intronic binding site in the growth arrest and DNA-damage-inducible α (GADD45A) gene and a novel site in the fibroblast growth factor 2 (FGF2) gene. Chromatin at both sites is enriched for histone methyltransferase SETDB1 and histone 3 lysine 9 trimethylation, a repressive epigenetic mark. Depletion of ZBRK1, KAP-1 or LCoR led to elevated GADD45A and FGF2 expression in malignant and non-malignant breast epithelial cells, and caused apoptotic death. Loss of viability could be rescued by simultaneous knockdowns of FGF2 and transcriptional coregulators or by blocking FGF2 function. FGF2 was not concurrently expressed with any of the transcriptional coregulators in breast malignancies, suggesting an inverse correlation between their expression patterns. We propose that ZBRK1, KAP-1 and LCoR form a transcriptional complex that silences gene expression, in particular FGF2, which maintains breast cell viability. Given the broad expression patterns of both LCoR and KAP-1 during development and in the adult, this complex may have several regulatory functions that extend beyond cell survival, mediated by interactions with ZBRK1 or other C2H2 zinc-finger proteins.
Collapse
Affiliation(s)
- Mario R Calderon
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Mark Verway
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Radia Ouelaa Benslama
- Department of Biochemistry, Université de Montréal, Montreal, QC, Canada Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Mirela Birlea
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Montreal, QC, Canada
| | | | - Vassil Dimitrov
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Sylvie Mader
- Department of Biochemistry, Université de Montréal, Montreal, QC, Canada Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Montreal, QC, Canada
| | - John H White
- Department of Physiology, McGill University, Montreal, QC, Canada Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Luo W, Yu Y, Wang R, He D, Wang C, Zeng X, Chen X, Tan X, Huang T, Wu X. P7 peptides targeting bFGF sensitize colorectal cancer cells to CPT-11. Int J Mol Med 2013; 33:194-200. [PMID: 24190390 DOI: 10.3892/ijmm.2013.1547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/04/2013] [Indexed: 11/06/2022] Open
Abstract
The low survival rate of patients with colorectal cancer (CRC) is mainly due to the drug resistance of tumor cells to chemotherapeutic agents. It has been reported that basic fibroblast growth factor (bFGF) is an essential factor involved in the epigenetic mechanisms of drug resistance, which provides a novel potential target for improving the sensitivity of tumor cells to chemotherapeutic agents. In this study, we first demonstrate that a novel bFGF antagonist, peptide P7, previously isolated by phage display technology, reversed bFGF-induced resistance to irinotecan hydrochloride (CPT-11), and counteracted the anti-apoptotic effects of bFGF on CPT-11-treated HT-29 cells. Further experiments indicated that the inhibition of Akt activation, the suppression of bFGF internalization, the increase in the Bax to Bcl-2 ratio and the downregulation of cytokeratin 8 (CK8) by P7 may contribute to the counteracting of the anti-apoptotic effects of bFGF, and further reversal of bFGF-induced resistance to CPT-11. Our results suggest that peptide P7 may have therapeutic potential in CRC as a sensitizer to chemotherapeutic agents by targeting bFGF.
Collapse
Affiliation(s)
- Wu Luo
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, Guangdong, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Several observations have led us to a new hypothesis for cancer mechanism. First, that cancer appears only on those multicellular organisms with complicated wound-healing capacities. Second, that wounds considered as risk factors can be identified in all cancers in clinics. And finally, that oncogene activation appears not only in cancer, but also in normal physiology and noncancer pathology processes. Our proposed hypothesis is that cancer is a natural wound healing-related process, which includes oncogene activations, cytokine secretions, stem cell recruitment differentiation, and tissue remodeling. Wounds activate oncogenes of some cells and the latter secrete cytokines to recruit stem cells to heal the wounds. However, if the cause of the wound or if the wound persists, such as under the persistent UV and carcinogen exposures, the continuous wound healing process will lead to a clinical cancer mass. There is no system in nature to stop or reverse the wound healing process in the middle stage when the wound exists. The outcome of the cancer mechanism is either healing the wound or exhausting the whole system (death). The logic of this cancer mechanism is consistent with the rationales of the other physiological metabolisms in the body-for survival. This hypothesis helps to understand many cancer mysteries derived from the mutation theory, such as why cancer only exists in a small proportion of multicellular organisms, although they are all under potential mutation risks during DNA replications. The hypothesis can be used to interpret and guide cancer prevention, recurrence, metastasis, in vitro and in vivo studies, and personalized treatments.
Collapse
Affiliation(s)
- Xiaolong Meng
- Breast Medical Oncology Department, MD Anderson Cancer Center, 1155 Hermann Pressler Dr., Houston, TX 77030 USA
| | - Jie Zhong
- Neurosurgery Department, MD Anderson Cancer Center, 1400 Holcombe Blvd., Houston, TX 77030 USA
| | - Shuying Liu
- Breast Medical Oncology Department, MD Anderson Cancer Center, 1155 Hermann Pressler Dr., Houston, TX 77030 USA
| | - Mollianne Murray
- Systems Biology Department, MD Anderson Cancer Center, 7435 Fannin St., Houston, TX 77054 USA
| | - Ana M. Gonzalez-Angulo
- Breast Medical Oncology Department, MD Anderson Cancer Center, 1155 Hermann Pressler Dr., Houston, TX 77030 USA
| |
Collapse
|
15
|
Dubrovska A, Hartung A, Bouchez LC, Walker JR, Reddy VA, Cho CY, Schultz PG. CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer 2012; 107:43-52. [PMID: 22644306 PMCID: PMC3389396 DOI: 10.1038/bjc.2012.105] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Tamoxifen is commonly used for breast cancer therapy. However, tamoxifen resistance is an important clinical problem. Continuous treatment with conventional therapy may contribute to cancer progression in recurring cancers through the accumulation of drug-resistant cancer progenitors. Methods: To investigate signalling mechanisms important for the maintenance and viability of drug-resistant cancer progenitors, we used microarray analysis, PCR array for genes involved in cancer drug resistance and metabolism, flow cytometry, soft agar colony formation assay, in vivo tumourigenicity assay and immunohistochemical analysis using tamoxifen-sensitive and tamoxifen-resistant breast cancer MCF7 cells. Results: Downregulation of CXCR4 signalling by small molecule antagonist AMD3100 specifically inhibits growth of progenitor cell population in MCF7(TAM-R) cells both in vitro and in vivo. Microarray analysis revealed aryl hydrocarbon receptor (AhR) signalling as one of the top networks that is differentially regulated in MCF7(TAM-R) and MCF7 xenograft tumours treated with AMD3100. Further, small molecule antagonists of AhR signalling specifically inhibit the progenitor population in MCF7(TAM-R) cells and growth of MCF7(TAM-R) xenografts in vivo. Conclusion: The chemokine receptor CXCR4 maintains a cancer progenitor population in tamoxifen-resistant MCF7 cells through AhR signalling and could be a putative target for the treatment of tamoxifen-resistant breast cancers.
Collapse
Affiliation(s)
- A Dubrovska
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kao S, Mo J, Baird A, Eliceiri BP. Basic fibroblast growth factor in an animal model of spontaneous mammary tumor progression. Oncol Rep 2012; 27:1807-14. [PMID: 22407271 DOI: 10.3892/or.2012.1710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 02/06/2012] [Indexed: 12/25/2022] Open
Abstract
Although basic fibroblast growth factor (FGF2) was the first pro-angiogenic molecule discovered, it has numerous activities on the growth and differentiation of non-vascular cell types. FGF2 is both stimulatory and inhibitory, depending on the cell type evaluated, the experimental design used and the context in which it is tested. Here, we investigated the effects of manipulating endogenous FGF2 on the development of mammary cancer to determine whether its endogenous contribution in vivo is pro- or anti-tumorigenic. Specifically, we examined the effects of FGF2 gene dosing in a cross between a spontaneous breast tumor model (PyVT+ mice) and FGF2-/- (FGF KO) mice. Using these mice, the onset and progression of mammary tumors was determined. As predicted, female FGF2 WT mice developed mammary tumors starting around 60 days after birth and by 80 days, 100% of FGF2 WT female mice had mammary tumors. In contrast, 80% of FGF2 KO female mice had no palpable tumors until nearly three weeks later (85 days) at times when 100% of the WT cohort was tumor positive. All FGF KO mice were tumor-bearing by 115 days. When we compared the onset of mammary tumor development and the tumor progression curves between FGF het and FGF KO mice, we observed a difference, which suggested a gene dosing effect. Analysis of the tumors demonstrated that there were significant differences in tumor size depending on FGF2 status. The delay in tumor onset supports a functional role for FGF2 in mammary tumor progression, but argues against an essential role for FGF2 in overall mammary tumor progression.
Collapse
Affiliation(s)
- Steven Kao
- Department of Surgery, School of Medicine, University of California San Diego, MC 8236, San Diego, CA 92103, USA
| | | | | | | |
Collapse
|
17
|
Chatterjee M, van Golen KL. Farnesyl transferase inhibitor treatment of breast cancer cells leads to altered RhoA and RhoC GTPase activity and induces a dormant phenotype. Int J Cancer 2010; 129:61-9. [PMID: 20824700 DOI: 10.1002/ijc.25655] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/19/2010] [Indexed: 11/11/2022]
Abstract
Farnesyl transferase inhibitors (FTIs) were shown to be effective in modulating tumor growth in Ras-transformed tumor cells. Recent studies have focused on Rho GTPases as putative targets of FTI action. Previously, we demonstrated that FTIs were effective in inhibiting the growth and invasiveness of RhoC GTPase-overexpressing inflammatory breast cancer (IBC) cells however, RhoC activity was increased. In this study, we examine the mechanisms of FTI action on breast cancer cells in culture through modulation of RhoC and RhoA GTPases. We found that FTI inhibition of breast cancer cell growth was reversible and resembled what has been described for an in vitro model of tumor cell dormancy. On FTI treatment, levels of active RhoA decreased significantly, whereas levels of active RhoC increased 3.8-fold. We studied the role of these two GTPases in a fibronectin and basic FGF-induced model of breast cancer cell dormancy. Hypoactivation of RhoA and hyperactivation of RhoC were seen to induce morphology and growth changes consistent with tumor cell dormancy in culture. In addition, the JNK/SAPK pathway was induced on FTI treatment. A pharmacologic inhibitor of the JNK/SAPK pathway significantly reduced the number of dormant cells. This study has implications for the use of FTIs as therapeutic agents as well as potential mechanisms for breast cancer cell dormancy.
Collapse
Affiliation(s)
- Moumita Chatterjee
- Laboratory of Cytoskeletal Physiology, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
18
|
MacFarlane LA, Murphy PR. Regulation of FGF-2 by an endogenous antisense RNA: Effects on cell adhesion and cell-cycle progression. Mol Carcinog 2010; 49:1031-44. [DOI: 10.1002/mc.20686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 2009; 9:639-51. [PMID: 19508171 DOI: 10.2174/156800909789057006] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 05/02/2009] [Indexed: 12/13/2022]
Abstract
Biological processes that drive cell growth are exciting targets for cancer therapy. The fibroblast growth factor (FGF) signaling network plays a ubiquitous role in normal cell growth, survival, differentiation, and angiogenesis, but has also been implicated in tumor development. Elucidation of the roles and relationships within the diverse FGF family and of their links to tumor growth and progression will be critical in designing new drug therapies to target FGF receptor (FGFR) pathways. Recent studies have shown that FGF can act synergistically with vascular endothelial growth factor (VEGF) to amplify tumor angiogenesis, highlighting that targeting of both the FGF and VEGF pathways may be more efficient in suppressing tumor growth and angiogenesis than targeting either factor alone. In addition, through inducing tumor cell survival, FGF has the potential to overcome chemotherapy resistance highlighting that chemotherapy may be more effective when used in combination with FGF inhibitor therapy. Furthermore, FGFRs have variable activity in promoting angiogenesis, with the FGFR-1 subgroup being associated with tumor progression and the FGFR-2 subgroup being associated with either early tumor development or decreased tumor progression. This review highlights the growing knowledge of FGFs in tumor cell growth and survival, including an overview of FGF intracellular signaling pathways, the role of FGFs in angiogenesis, patterns of FGF and FGFR expression in various tumor types, and the role of FGFs in tumor progression.
Collapse
Affiliation(s)
- M Korc
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | |
Collapse
|
20
|
Barrios J, Wieder R. Dual FGF-2 and intergrin alpha5beta1 signaling mediate GRAF-induced RhoA inactivation in a model of breast cancer dormancy. CANCER MICROENVIRONMENT 2009; 2:33-47. [PMID: 19308677 PMCID: PMC2787927 DOI: 10.1007/s12307-009-0019-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 01/14/2009] [Indexed: 12/25/2022]
Abstract
Interactions with the bone marrow stroma regulate dormancy and survival of breast cancer micrometastases. In an in vitro model of dormancy in the bone marrow, we previously demonstrated that estrogen-dependent breast cancer cells are partially re-differentiated by FGF-2, re-express integrin α5β1 lost with malignant transformation and acquire an activated PI3K/Akt pathway. Ligation of integrin α5β1 by fibronectin and activation of the PI3K pathway both contribute to survival of these dormant cells. Here, we investigated mechanisms responsible for the dormant phenotype. Experiments demonstrate that integrin α5β1 controls de novo cytoskeletal rearrangements, cell spreading, focal adhesion kinase rearrangement to the cell perimeter and recruitment of a RhoA GAP known as GRAF. This results in the inactivation of RhoA, an effect which is necessary for the stabilization of cortical actin. Experiments also demonstrate that activation of the PI3K pathway by FGF-2 is independent of integrin α5β1 and is also required for cortical actin reorganization, GRAF membrane relocalization and RhoA inactivation. These data suggest that GRAF-mediated RhoA inactivation and consequent phenotypic changes of dormancy depend on dual signaling by FGF-2-initiated PI3K activation and through ligation of integrin α5β1 by fibronectin.
Collapse
Affiliation(s)
- Judith Barrios
- Department of Medicine, UMDNJ-New Jersey Medical School-University Hospital Cancer Center, 185 South Orange Avenue, CCH1216, Newark, NJ 07103 USA
| | - Robert Wieder
- Department of Medicine, UMDNJ-New Jersey Medical School-University Hospital Cancer Center, 185 South Orange Avenue, CCH1216, Newark, NJ 07103 USA
| |
Collapse
|
21
|
Ma C, Bower KA, Chen G, Shi X, Ke ZJ, Luo J. Interaction between ERK and GSK3beta mediates basic fibroblast growth factor-induced apoptosis in SK-N-MC neuroblastoma cells. J Biol Chem 2008; 283:9248-56. [PMID: 18263590 DOI: 10.1074/jbc.m707316200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Ewing's sarcoma family of tumors (ESFT) includes Ewing's sarcoma (ES), Askin's tumor of the chest wall, and peripheral primitive neuroectodermal tumor. Basic fibroblast growth factor (FGF2) suppresses the growth of ESFT cells and causes their apoptosis. The underlying mechanism is unclear. Using a human peripheral primitive neuroectodermal tumor cell line, SK-N-MC, we demonstrated FGF2 stimulated phosphorylation of ERK1 and ERK2 (pERK1/2) and GSK3beta (pGSK3beta(Tyr-216)), all of which were primarily retained in the cytoplasm. FGF2 promoted the association between ERK and pGSK3beta(Tyr-216). Inhibitors for GSK3beta (TDZD and LiCl) and ERK (PD98059) protected cells from FGF2-induced apoptosis. On the other hand, inhibitors of GSK3beta, but not PD98059 decreased ERK/pGSK3beta(Tyr-216) association and caused a nuclear translocation of pERK1/2. Similarly, expression of a kinase-deficient (K85R) GSK3beta or GSK3beta-small interfering RNA inhibited FGF2-regulated ERK/pGSK3beta(Tyr-216) association and translocated pERK to the nucleus. Both K85R GSK3beta and small interfering RNA offered protection against FGF2-induced cell death. In contrast, overexpression of wild-type GSK3beta sensitized cells to FGF2 cytotoxicity. Hydrogen peroxide and ethanol enhanced FGF2-stimulated pGSK3beta(Tyr-216), ERK/pGSK3beta(Tyr-216) association, and cytoplasmic retention of pERK1/2. As a result, they potentiated FGF2-induced cell death. Taken together, our results suggested that FGF2-induced accumulation of pERK1/2 in the cytoplasm is toxic for SK-N-MC cells. The formation of an ERK.GSK3beta complex retained pERK1/2 in the cytoplasm. In contrast, disruption of the ERK.GSK3beta complex resulted in nuclear translocation of pERK1/2 and offered protection.
Collapse
Affiliation(s)
- Cuiling Ma
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506, USA
| | | | | | | | | | | |
Collapse
|
22
|
Com E, Lagadec C, Page A, El Yazidi-Belkoura I, Slomianny C, Spencer A, Hammache D, Rudkin BB, Hondermarck H. Nerve growth factor receptor TrkA signaling in breast cancer cells involves Ku70 to prevent apoptosis. Mol Cell Proteomics 2007; 6:1842-54. [PMID: 17617666 DOI: 10.1074/mcp.m700119-mcp200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nerve growth factor (NGF)-tyrosine kinase receptor TrkA plays a critical role in various neuronal and non-neuronal cell types by regulating cell survival, differentiation, and proliferation. In breast cancer cells, TrkA stimulation results in the activation of cellular growth, but downstream signaling largely remains to be described. Here we used a proteomics-based approach to identify partners involved in TrkA signaling in breast cancer cells. Wild type and modified TrkA chimeric constructs with green fluorescent protein were transfected in MCF-7 cells, and co-immunoprecipitated proteins were separated by SDS-PAGE before nano-LC-MS/MS analysis. Several TrkA putative signaling partners were identified among which was the DNA repair protein Ku70, which is increasingly reported for its role in cell survival and carcinogenesis. Physiological interaction of Ku70 with endogenous TrkA was induced upon NGF stimulation in non-transfected cells, and co-localization was observed with confocal microscopy. Mass spectrometry analysis and Western blotting of phosphotyrosine immunoprecipitates demonstrated the induction of Ku70 tyrosine phosphorylation upon NGF stimulation. Interestingly no interaction between TrkA and Ku70 was detected in PC12 cells in the absence or presence of NGF, suggesting that it is not involved in the initiation of neuronal differentiation. In breast cancer cells, RNA interference indicated that whereas Ku70 depletion had no direct effect on cell survival, it induced a strong potentiation of apoptosis in TrkA-overexpressing cells. In conclusion, TrkA signaling appears to be proapoptotic in the absence of Ku70, and this protein might therefore play a role in the long time reported ambivalence of tyrosine kinase receptors that can exhibit both anti- and eventually proapoptotic activities.
Collapse
Affiliation(s)
- Emmanuelle Com
- INSERM ERI-8 (JE-2488), Growth factor signaling in breast cancer. Functional proteomics, University of Sciences and Technologies Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xian W, Schwertfeger KL, Rosen JM. Distinct roles of fibroblast growth factor receptor 1 and 2 in regulating cell survival and epithelial-mesenchymal transition. Mol Endocrinol 2007; 21:987-1000. [PMID: 17284663 DOI: 10.1210/me.2006-0518] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two related receptor tyrosine kinases (RTKs), fibroblast growth factor receptor 1 and 2 (FGFR1 and FGFR2), exert distinct effects during carcinogenesis. To examine FGFR1 and FGFR2 signaling in polarized epithelia, we have developed an in vitro three-dimensional HC11 mouse mammary epithelial cell culture model combined with a chemically inducible FGFR (iFGFR) dimerization system. Although activation of both RTKs led to reinitiation of cell proliferation and loss of cell polarity, only iFGFR1 activation induced cell survival and epithelial to mesenchymal transition. In contrast, iFGFR2 activation induced cell apoptosis even in the cells in direct contact with the extracellular matrix. Activation of iFGFR2, but not iFGFR1, led to rapid receptor down-regulation and transient activation of downstream signaling, which were partially rescued by Cbl small interfering RNA knockdown or the proteasome inhibitor lactacystin. Importantly, inhibition of proteasome activity in iFGFR2-activated structures led to epithelial to mesenchymal transition and invasive phenotypes resembling those observed after iFGFR1 activation. These studies demonstrate, for the first time, that the duration of downstream signaling determines the distinct phenotypes mediated by very homologous RTKs in three-dimensional cultures.
Collapse
MESH Headings
- Acetylcysteine/analogs & derivatives
- Acetylcysteine/pharmacology
- Animals
- Apoptosis
- Cell Culture Techniques
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- Cysteine Proteinase Inhibitors/pharmacology
- Epithelium/pathology
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/enzymology
- Mesoderm/pathology
- Mice
- Mice, Transgenic
- Phenotype
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- Proto-Oncogene Proteins c-cbl/antagonists & inhibitors
- Proto-Oncogene Proteins c-cbl/genetics
- RNA, Small Interfering/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/agonists
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 2/agonists
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/physiology
Collapse
Affiliation(s)
- Wa Xian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
24
|
Korah R, Das K, Lindy ME, Hameed M, Wieder R. Coordinate loss of fibroblast growth factor 2 and laminin 5 expression during neoplastic progression of mammary duct epithelium. Hum Pathol 2007; 38:154-60. [PMID: 16996573 DOI: 10.1016/j.humpath.2006.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 07/04/2006] [Accepted: 07/07/2006] [Indexed: 11/18/2022]
Abstract
Branching morphogenesis in mammary ducts is associated with the expression of a number of proteins. These include laminin 5 and basic fibroblast growth factor (FGF)-2. Both proteins are lost with malignant transformation of mammary epithelium and have causal roles in branching morphogenesis in breast cancer cells in vitro. The in vivo relationships of these proteins with each other and with the loss of branched structures and mammary ductal dedifferentiation are not known. We carried out indirect fluorescence staining on subsets of archived pathologic samples from 55 patients, with a total of 140 pathologic entities, many with multiple stages of dedifferentiation present on the same cut, using antibodies to fibroblast growth factor-2 (FGF-2), fibroblast growth factor receptor-1 (FGFR1), and laminin 5 to determine expression. We also used Western blots to detect laminin 5 expression in MCF-7, T-47D, and MDA-MB-231 cells transfected with vectors constitutively expressing FGF-2 and immunofluorescence staining of matrix proteins deposited by these cells to determine export and accumulation of laminin 5. FGF-2 and laminin 5 expression were found throughout benign and atypical dedifferentiation in mammary tissue samples and were lost primarily with transformation to invasive cancer. FGFR1 was expressed in all cell types. Cancer cells enforced to express FGF-2 did not have detectable laminin 5 on Western blot, but matrix proteins deposited in culture did stain positive, suggesting accumulation of exported laminin 5. Data suggest roles for FGF-2 and laminin 5 in ductal integrity during mammary carcinogenesis, with loss of expression corresponding to loss of ductal structure. In vitro data suggest FGF-2 as causal in laminin 5 expression and export. Down-regulation of FGF-2 during transformation may contribute to loss of laminin 5 expression.
Collapse
Affiliation(s)
- Reju Korah
- Division of Oncology/Hematology, Department of Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
25
|
Gan Y, Wientjes MG, Au JLS. Expression of basic fibroblast growth factor correlates with resistance to paclitaxel in human patient tumors. Pharm Res 2006; 23:1324-31. [PMID: 16741658 DOI: 10.1007/s11095-006-0136-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 01/26/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Preclinical results indicate acidic fibroblast growth factor (aFGF) and basic FGF (bFGF) present in solid tumors as a cause of broad-spectrum chemoresistance, whereas earlier clinical studies suggest that bFGF expression is associated with opposing outcomes in patients. We investigated the relationship between FGF expression and paclitaxel activity in tumors from bladder, breast, head and neck, ovarian, and prostate cancer patients. MATERIALS AND METHODS Tumors (n = 96) were maintained in three-dimensional histocultures, retaining tumor-stromal interaction. Bladder tumors were treated with paclitaxel for 2 h, and the other tumors for 24 h. Antiproliferative and proapoptotic effects of paclitaxel were quantified and correlated with expression of aFGF, bFGF, P-glycoprotein (Pgp), p53, and bcl-2. RESULTS Fifty-one percent (49/96) and 63% (61/96) of tumors showed aFGF and bFGF staining, respectively. aFGF expression was positively correlated with tumor stage (p < 0.01), and bFGF expression with tumor grade and Pgp expression (p < 0.05). Paclitaxel inhibited antiproliferation in 86% of tumors (83/96), with an average inhibition of 46 +/- 19% (mean +/- SD) in the responding tumors. Paclitaxel also induced apoptosis in 96% of tumors (92/96), with an average apoptotic index of 12 +/- 7% in the responding tumors. aFGF expression did not correlate with tumor sensitivity to paclitaxel, whereas bFGF expression showed an inverse correlation (p < 0.01). bFGF expression was a stronger predictor of paclitaxel resistance compared to Pgp, p53, or Bcl-2. CONCLUSION These results support a role of bFGF in paclitaxel resistance in human patient tumors.
Collapse
Affiliation(s)
- Yuebo Gan
- College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
26
|
Yi M, Belcastro R, Shek S, Luo D, Post M, Tanswell AK. Fibroblast growth factor-2 and receptor-1alpha(IIIc) regulate postnatal rat lung cell apoptosis. Am J Respir Crit Care Med 2006; 174:581-9. [PMID: 16728710 DOI: 10.1164/rccm.200511-1718oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Fibroblast growth factor receptor-1alpha(IIIc) [FGF-R1alpha(IIIc)] regulates recovery of neonatal rat lung growth, after 95% oxygen-mediated growth arrest. Its role in normal postnatal alveologenesis is unknown. OBJECTIVE To determine if FGF-R1alpha(IIIc) regulates normal postnatal alveologenesis. METHODS Truncated soluble FGF-R1alpha(IIIc) or neutralizing antibodies to FGF-1 or FGF-2 were injected intraperitoneally into 3-d-old rats. The pups were killed at Day 7 for studies of alveolar development. MEASUREMENTS AND MAIN RESULTS Injected, truncated soluble FGF-R1alpha(IIIc) inhibited phosphorylation of the endogenous FGF-R1, and downstream pathway, and paradoxically increased lung DNA content and tissue fraction while inhibiting lung cell DNA synthesis. The increase in tissue thickness was due to reduced apoptosis, as indicated by reductions in cleaved effector caspases 3 and 7. Inhibition of the intrinsic apoptosis pathway was suggested by decreases in the proapoptotic protein Bax and mitochondrial cytochrome c release, and an increase in the antiapoptotic protein Bcl-x(L). Injected antibodies to FGF-1 and FGF-2 had no effect on DNA synthesis, but both increased Bcl-x(L) content and decreased cytochrome c release and cleaved caspase-7 protein expression. However, only injection of the antibody to FGF-2 replicated the increased tissue fraction and inhibited apoptosis observed with the injection of truncated soluble FGF-R1alpha(IIIc). CONCLUSIONS Inhibition of ligand binding, most likely of FGF-2, to the FGF-R1alpha(IIIc) inhibits normal postnatal lung cell apoptosis.
Collapse
Affiliation(s)
- Man Yi
- Canadian Institute of Health Research Group in Lung Development, Lung Biology Programme, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Song S, Yu B, Wei Y, Wientjes MG, Au JLS. Low-dose suramin enhanced paclitaxel activity in chemotherapy-naive and paclitaxel-pretreated human breast xenograft tumors. Clin Cancer Res 2005; 10:6058-65. [PMID: 15447990 DOI: 10.1158/1078-0432.ccr-04-0595] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We reported induction of broad-spectrum chemoresistance by acidic and basic fibroblast growth factors and chemosensitization by their nonspecific inhibitor suramin at nontoxic and subtherapeutic doses. This study evaluated whether low-dose suramin enhances paclitaxel activity in chemotherapy-naïve and paclitaxel-pretreated human MCF7 breast xenograft tumors in mice. Suramin, 10 mg/kg, and/or paclitaxel, 15 mg/kg, were administered intravenously, twice weekly for 2 to 3 weeks. In addition to conventional end points [tumor size change, median survival time (MST)], we also used clinically relevant end points [partial (PR) and complete response rates (CR); progressive disease (PD); stable disease (SD); time to tumor progression (TTP)]. In chemotherapy-naïve mice, the control and suramin groups showed identical TTP (3 days) and MST (21 days). Single-agent paclitaxel produced 47% PR and 24% CR, and prolonged both TTP and MST to 73 days. The addition of suramin further improved the total response rate to 100% with a dramatically greater 63% CR, shortened the time to attain PR and CR, and prolonged TTP and MST to > or =136 days. In the paclitaxel-pretreated group, single-agent paclitaxel resulted in 67% SD and 33% PD, whereas the combination produced 50% PR and 50% SD. Suramin also significantly enhanced the apoptotic effect of paclitaxel in tumors. In conclusion, suramin improved the activity of paclitaxel in both chemotherapy-naïve and paclitaxel-pretreated animals, without enhancing host toxicity (< or =10% body weight loss in all groups). These data have led to the initiation of phase I/II trials of paclitaxel and low-dose suramin combination in advanced metastatic breast cancer patients.
Collapse
Affiliation(s)
- SaeHeum Song
- College of Pharmacy and James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
28
|
Thomas-Mudge RJ, Okada-Ban M, Vandenbroucke F, Vincent-Salomon A, Girault JM, Thiery JP, Jouanneau J. Nuclear FGF-2 facilitates cell survival in vitro and during establishment of metastases. Oncogene 2004; 23:4771-9. [PMID: 15122340 DOI: 10.1038/sj.onc.1207638] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nuclear-targeted high molecular weight 24 kDa fibroblast growth factor 2 (FGF-2) may induce specific cell functions through intracrine mechanisms. The role of nuclear FGF-2 on the metastatic potential of carcinoma cells was examined by conditional FGF-2 expression, which demonstrated that spontaneous metastasis in nude mice is a direct consequence of its expression. The lung colonizing capacities of fluorescent nuclear FGF-2-expressing cells following intravenous injection was also investigated. All cells reaching the lung extravasated as soon as 5 min following injection with similar in vivo behavior during the first 24 h. However, after 2 days, dramatic differences were observed between the FGF-2 and parental cells: most control cells underwent apoptosis, while the FGF-2-producing cells instigated a survival program and proliferated. Therefore, sustained apoptosis in vivo prevents growth of metastatic foci, while nuclear FGF-2 induction of a survival program is responsible for growth of the lung metastases. In vitro serum deprivation assays also established that 24 kDa FGF-2 expression improves carcinoma cell survival. This study provides both in vitro and in vivo evidence that the role of the nuclear 24 kDa FGF-2 isoform in carcinoma is the promotion of cell survival, thereby defining its association with poor prognosis in some human carcinomas.
Collapse
Affiliation(s)
- Rachel J Thomas-Mudge
- UMR144 CNRS, Institut Curie, Research Division, 26 rue d'Ulm, 75248 Paris 05, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Coleman AB. Positive and negative regulation of cellular sensitivity to anti-cancer drugs by FGF-2. Drug Resist Updat 2003; 6:85-94. [PMID: 12729806 DOI: 10.1016/s1368-7646(03)00023-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of resistance to chemotherapy by tumor cells remains a constant limitation to the treatment of cancer. Over the last several years, fibroblast growth factor-2 (FGF-2) has emerged as a growth factor that is capable of modifying the sensitivity of normal and tumor cells to anti-cancer drugs. FGF-2 can produce both drug resistance and drug sensitization in different cell types treated with a variety of cytotoxic agents. An understanding of the differential cellular trafficking and biological activities of the multiple FGF-2 isoforms will help in determining the circumstances under which FGF-2 acts to inhibit versus potentiate drug action. Recent advances suggest that expression of FGF-2 in tumor cells is involved with loss of response to chemotherapy in vivo. Thus, the manipulation of FGF-2 activities to increase the effectiveness of chemotherapeutic agents may have important clinical implications.
Collapse
Affiliation(s)
- Aaron B Coleman
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
30
|
Hsiung R, Zhu W, Klein G, Qin W, Rosenberg A, Park P, Rosato E, Sauter E. High basic fibroblast growth factor levels in nipple aspirate fluid are correlated with breast cancer. Cancer J 2002; 8:303-10. [PMID: 12184408 DOI: 10.1097/00130404-200207000-00006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The angiogenic basic fibroblast growth factor (bFGF) and vascular endothelial growth factor are important in malignant breast epithelial growth. Nipple aspirate fluid (NAF) is a physiologic fluid collected noninvasively that contains proteins secreted by the breast ductal epithelium and may contain markers of breast cancer. The purpose of this study was to determine whether high concentrations of bFGF and vascular endothelial growth factor in NAF would be associated with in situ and invasive breast cancer, and whether prostate-specific antigen, a marker in NAF associated with breast cancer, would improve our ability to determine which subjects had the disease. METHODS Both bivariate and multivariate analyses were performed to determine the effects of race, menopausal status, bFGF concentration, and prostate-specific antigen on cancer risk. Bivariate analysis was also performed to determine the relationship between vascular endothelial growth factor concentration and cancer risk. RESULTS Mean NAF bFGF levels were higher in women with breast cancer than in those without (19.2 vs 1.74 ng/g). Vascular endothelial growth factor was not associated with breast cancer. Race and menopausal status did not significantly affect the relationship between bFGF and cancer risk. bFGF, race, and menopausal status were each independent predictors of breast cancer, with bFGF being the most important. With knowledge of all three variables, the model was 89.9% sensitive and 69.0% specific in predicting which women had breast cancer. Adding prostate-specific antigen increased the sensitivity to 90.9% and the specificity to 83.3%. In subjects with NAF bFGF > 150 ng/g and prostate-specific antigen < 100 ng/g, 94.1% (32/34) of subjects had cancer. For women with NAF prostate-specific antigen > 100 ng/ g and bFGF < 150 ng/g, 90.5% were cancer free. CONCLUSIONS bFGF concentration in NAF is directly associated with breast cancer, regardless of race and menopausal status. NAF bFGF may prove helpful in the early detection of breast cancer.
Collapse
Affiliation(s)
- Robbin Hsiung
- Department of Surgery, Thomas Jefferson University Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Long E, Capuco AV, Wood DL, Sonstegard T, Tomita G, Paape MJ, Zhao X. Escherichia coli induces apoptosis and proliferation of mammary cells. Cell Death Differ 2001; 8:808-16. [PMID: 11526434 DOI: 10.1038/sj.cdd.4400878] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2001] [Revised: 02/28/2001] [Accepted: 02/28/2001] [Indexed: 12/11/2022] Open
Abstract
Mammary cell apoptosis and proliferation were assessed after injection of Escherichia coli into the left mammary quarters of six cows. Bacteriological analysis of foremilk samples revealed coliform infection in the injected quarters of four cows. Milk somatic cell counts increased in these quarters and peaked at 24 h after bacterial injection. Body temperature also increased, peaking at 12 h postinjection. The number of apoptotic cells was significantly higher in the mastitic tissue than in the uninfected control. Expression of Bax and interleukin-1beta converting enzyme increased in the mastitic tissue at 24 h and 72 h postinfection, whereas Bcl-2 expression decreased at 24 h but did not differ significantly from the control at 72 h postinfection. Induction of matrix metalloproteinase-9, stromelysin-1 and urokinase-type plasminogen activator was also observed in the mastitic tissue. Moreover, cell proliferation increased in the infected tissue. These results demonstrate that Escherichia coli-induced mastitis promotes apoptosis and cell proliferation.
Collapse
Affiliation(s)
- E Long
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Bryckaert M, Guillonneau X, Hecquet C, Perani P, Courtois Y, Mascarelli F. Regulation of proliferation-survival decisions is controlled by FGF1 secretion in retinal pigmented epithelial cells. Oncogene 2000; 19:4917-29. [PMID: 11039909 DOI: 10.1038/sj.onc.1203872] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor 1 (FGF1) induces proliferation and differentiation in a wide variety of cells of mesodermal and neuroectodermal origin. FGF1 has no 'classical' signal sequence to direct its secretion, and there has been considerable debate concerning FGF1 secretion and its role in the biological activities of FGF1. We investigated the effects of FGF1 secretion and the signalling induced by signal peptide (SP)-containing FGFI and SP-less FGF1, on the proliferation and the apoptosis in retinal pigmented epithelial (RPE) cells. Primary RPE cell cultures were transfected with FGF1 (FGF1 cells) and SP-FGF1 (SP-FGF1 cells) cDNAs. SP-FGF1 cells secreted large amount of FGF1 and actively proliferated, whereas FGF1 and control cells did not. Secreted FGF1 induced short-term activation of both FGFR1 and ERK2, which were required for cell proliferation. In contrast, SP-FGF1 cells stopped secreting FGF1 and died rapidly, if cultured in the absence of serum. Surprisingly, FGF1 cells, but not control cells, secreted FGF1 and were resistant to apoptosis induced by serum depletion. Secreted FGF1 induced long-term activation of FGFR1 and ERK2, which was necessary to induce a constant and high level of Bcl-x production, and to induce cell survival in FGFI cells. Downregulation of ERK2 and Bcl-x increased apoptosis. Thus, the proliferation and survival activities of FGF1 depend on the secretion of FGF1 which is determined by the cell culture conditions. Cell proliferation was SP-dependent, whereas cell survival was not. The signal peptide controls the level and duration, 'whispering or shouting', of ERK2 activation cells which determines FGF1 biological function and may have important implications for anti-degenerative and anti-proliferative treatments.
Collapse
Affiliation(s)
- M Bryckaert
- INSERM U. 348, IFR Circulation, Paris, France
| | | | | | | | | | | |
Collapse
|