1
|
Song Y, Kurose A, Li R, Takeda T, Onomura Y, Koga T, Mutoh J, Ishida T, Tanaka Y, Ishii Y. Ablation of Selenbp1 Alters Lipid Metabolism via the Pparα Pathway in Mouse Kidney. Int J Mol Sci 2021; 22:ijms22105334. [PMID: 34069420 PMCID: PMC8159118 DOI: 10.3390/ijms22105334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice under dioxin-free conditions. Accordingly, we conducted a mouse metabolomics analysis under non-dioxin-treated conditions. DNA microarray analysis was performed based on observed changes in lipid metabolism-related factors. The results showed fluctuations in the expression of numerous genes. Real-time RT-PCR confirmed the decreased expression levels of the cytochrome P450 4a (Cyp4a) subfamily, known to be involved in fatty acid ω- and ω-1 hydroxylation. Furthermore, peroxisome proliferator-activated receptor-α (Pparα) and retinoid-X-receptor-α (Rxrα), which form a heterodimer with Pparα to promote gene expression, were simultaneously reduced. This indicated that reduced Cyp4a expression was mediated via decreased Pparα and Rxrα. In line with this finding, increased levels of leukotrienes and prostaglandins were detected. Conversely, decreased hydrogen peroxide levels and reduced superoxide dismutase (SOD) activity supported the suppression of the renal expression of Sod1 and Sod2 in Selenbp1-deficient mice. Therefore, we infer that ablation of Selenbp1 elicits oxidative stress caused by increased levels of superoxide anions, which alters lipid metabolism via the Pparα pathway.
Collapse
Affiliation(s)
- Yingxia Song
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Atsushi Kurose
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Renshi Li
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
| | - Yuko Onomura
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Takayuki Koga
- Laboratory of Hygienic Chemistry, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan;
| | - Junpei Mutoh
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Daigakudori 1-1-1, Sanyo-Onoda 756-0884, Japan;
| | - Takumi Ishida
- School of Pharmacy, International University of Health and Welfare Fukuoka, Ohkawa, Fukuoka 831-8501, Japan;
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Correspondence: ; Tel.: +81-92-642-6586
| |
Collapse
|
2
|
Pizent A, Lazarus M, Kovačić J, Tariba Lovaković B, Brčić Karačonji I, Živković Semren T, Sekovanić A, Orct T, Branović-Čakanić K, Brajenović N, Jurič A, Miškulin I, Škrgatić L, Stasenko S, Mioč T, Jurasović J, Piasek M. Cigarette Smoking during Pregnancy: Effects on Antioxidant Enzymes, Metallothionein and Trace Elements in Mother-Newborn Pairs. Biomolecules 2020; 10:E892. [PMID: 32532134 PMCID: PMC7356311 DOI: 10.3390/biom10060892] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
The effect of maternal smoking as a source of exposure to toxic metals Cd and Pb on superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity, metallothionein (MT), Cd, Pb, Cu, Fe, Mn, Se and Zn concentrations were assessed in maternal and umbilical cord blood and placenta in 74 healthy mother-newborn pairs after term delivery. Sparse discriminant analysis (SDA) was used to identify elements with the strongest impact on the SOD, GPx and MT in the measured compartments, which was then quantified by multiple regression analysis. SOD activity was lower in maternal and cord plasma, and higher in the placenta of smokers compared to non-smokers, whereas GPx activity and MT concentration did not differ between the groups. Although active smoking during pregnancy contributed to higher maternal Cd and Pb concentrations, its contribution to the variability of SOD, GPx or MT after control for other elements identified by SDA was not significant. However, an impaired balance in the antioxidant defence observed in the conditions of relatively low-to-moderate exposure levels to Cd and Pb could contribute to an increased susceptibility of offspring to oxidative stress and risk of disease development later in life. Further study on a larger number of subjects will help to better understand complex interactions between exposure to toxic elements and oxidative stress related to maternal cigarette smoking.
Collapse
Affiliation(s)
- Alica Pizent
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | - Maja Lazarus
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | - Jelena Kovačić
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | - Blanka Tariba Lovaković
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | - Irena Brčić Karačonji
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | - Tanja Živković Semren
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | - Tatjana Orct
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | | | - Nataša Brajenović
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | - Andreja Jurič
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | - Iva Miškulin
- University Hospital Centre, 10000 Zagreb, Croatia; (I.M.); (L.Š.)
| | - Lana Škrgatić
- University Hospital Centre, 10000 Zagreb, Croatia; (I.M.); (L.Š.)
| | - Sandra Stasenko
- Merkur University Hospital, 10000 Zagreb, Croatia; (S.S.); (T.M.)
| | - Tatjana Mioč
- Merkur University Hospital, 10000 Zagreb, Croatia; (S.S.); (T.M.)
| | - Jasna Jurasović
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| | - Martina Piasek
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (A.P.); (J.K.); (B.T.L.); (I.B.K.); (T.Ž.S.); (A.S.); (T.O.); (N.B.); (A.J.); (J.J.); (M.P.)
| |
Collapse
|
3
|
Farries G, Bryan K, McGivney CL, McGettigan PA, Gough KF, Browne JA, MacHugh DE, Katz LM, Hill EW. Expression Quantitative Trait Loci in Equine Skeletal Muscle Reveals Heritable Variation in Metabolism and the Training Responsive Transcriptome. Front Genet 2019; 10:1215. [PMID: 31850069 PMCID: PMC6902038 DOI: 10.3389/fgene.2019.01215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 01/10/2023] Open
Abstract
While over ten thousand genetic loci have been associated with phenotypic traits and inherited diseases in genome-wide association studies, in most cases only a relatively small proportion of the trait heritability is explained and biological mechanisms underpinning these traits have not been clearly identified. Expression quantitative trait loci (eQTL) are subsets of genomic loci shown experimentally to influence gene expression. Since gene expression is one of the primary determinants of phenotype, the identification of eQTL may reveal biologically relevant loci and provide functional links between genomic variants, gene expression and ultimately phenotype. Skeletal muscle (gluteus medius) gene expression was quantified by RNA-seq for 111 Thoroughbreds (47 male, 64 female) in race training at a single training establishment sampled at two time-points: at rest (n = 92) and four hours after high-intensity exercise (n = 77); n = 60 were sampled at both time points. Genotypes were generated from the Illumina Equine SNP70 BeadChip. Applying a False Discovery Rate (FDR) corrected P-value threshold (PFDR < 0.05), association tests identified 3,583 cis-eQTL associated with expression of 1,456 genes at rest; 4,992 cis-eQTL associated with the expression of 1,922 genes post-exercise; 1,703 trans-eQTL associated with 563 genes at rest; and 1,219 trans-eQTL associated with 425 genes post-exercise. The gene with the highest cis-eQTL association at both time-points was the endosome-associated-trafficking regulator 1 gene (ENTR1; Rest: PFDR = 3.81 × 10-27, Post-exercise: PFDR = 1.66 × 10-24), which has a potential role in the transcriptional regulation of the solute carrier family 2 member 1 glucose transporter protein (SLC2A1). Functional analysis of genes with significant eQTL revealed significant enrichment for cofactor metabolic processes. These results suggest heritable variation in genomic elements such as regulatory sequences (e.g. gene promoters, enhancers, silencers), microRNA and transcription factor genes, which are associated with metabolic function and may have roles in determining end-point muscle and athletic performance phenotypes in Thoroughbred horses. The incorporation of the eQTL identified with genome and transcriptome-wide association may reveal useful biological links between genetic variants and their impact on traits of interest, such as elite racing performance and adaptation to training.
Collapse
Affiliation(s)
- Gabriella Farries
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Kenneth Bryan
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - Paul A McGettigan
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Katie F Gough
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John A Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lisa Michelle Katz
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Emmeline W Hill
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,Research and Development, Plusvital Ltd., Dublin, Ireland
| |
Collapse
|
4
|
Company R, Antúnez O, Cosson RP, Serafim A, Shillito B, Cajaraville M, Bebianno MJ, Torreblanca A. Protein expression profiles in Bathymodiolus azoricus exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:621-630. [PMID: 30658297 DOI: 10.1016/j.ecoenv.2019.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Proteomic changes in the "gill-bacteria complex" of the hydrothermal vent mussel B. azoricus exposed to cadmium in pressurized chambers ((Incubateurs Pressurises pour l'Observation en Culture d'Animaux Marins Profonds - IPOCAMP) were analyzed and compared with the non-exposed control group. 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) showed that less than 1.5% of the proteome of mussels and symbiotic bacteria were affected by a short-term (24 h) Cd exposure. Twelve proteins of the more abundant differentially expressed proteins of which six were up-regulated and six were down-regulated were excised, digested and identified by mass spectrometry. The identified proteins included structural proteins (actin/actin like proteins), metabolic proteins (calreticulin/calnexin, peptidyl-prolyl cis-trans isomerase, aminotransferase class-III, electron transfer flavoprotein, proteasome, alpha-subunit and carbonic anhydrase) and stress response proteins (chaperone protein htpG, selenium-binding protein and glutathione transferases). All differently expressed proteins are tightly connected to Cd exposure and are affected by oxidative stress. It was also demonstrated that B. azoricus was well adapted to Cd contamination therefore B. azoricus from hydrothermal vent areas may be considered a good bioindicator.
Collapse
Affiliation(s)
- Rui Company
- CIMA, University of Algarve, Faculty of Marine and Environmental Sciences, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Oreto Antúnez
- Department of Functional Biology, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Richard P Cosson
- EA 2160 - MMS (Mer, Molécules, Santé) Biologie Marine - ISOMer, University of Nantes BP 92208, F-44322 Nantes cedex 3, France
| | - Angela Serafim
- CIMA, University of Algarve, Faculty of Marine and Environmental Sciences, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bruce Shillito
- UMR 7138, Systématique Adaptation et Evolution, CNRS/MNHN/IRD/UPMC,University Pierre et Marie Curie, Paris, France
| | - Miren Cajaraville
- Laboratory of Cell Biology and Histology, Department of Zoology and Cell Biology, University of the Basque Country, P.O BOX 644, E-48080 Bilbao, Spain
| | - Maria João Bebianno
- CIMA, University of Algarve, Faculty of Marine and Environmental Sciences, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Amparo Torreblanca
- Department of Functional Biology, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Hu X, Chandler JD, Fernandes J, Orr ML, Hao L, Uppal K, Neujahr DC, Jones DP, Go YM. Selenium supplementation prevents metabolic and transcriptomic responses to cadmium in mouse lung. Biochim Biophys Acta Gen Subj 2018; 1862:2417-2426. [PMID: 29656123 DOI: 10.1016/j.bbagen.2018.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The protective effect of selenium (Se) on cadmium (Cd) toxicity is well documented, but underlying mechanisms are unclear. METHODS Male mice fed standard diet were given Cd (CdCl2, 18 μmol/L) in drinking water with or without Se (Na2SeO4, 20 μmol/L) for 16 weeks. Lungs were analyzed for Cd concentration, transcriptomics and metabolomics. Data were analyzed with biostatistics, bioinformatics, pathway enrichment analysis, and combined transcriptome-metabolome-wide association study. RESULTS Mice treated with Cd had higher lung Cd content (1.7 ± 0.4 pmol/mg protein) than control mice (0.8 ± 0.3 pmol/mg protein) or mice treated with Cd and Se (0.4 ± 0.1 pmol/mg protein). Gene set enrichment analysis of transcriptomics data showed that Se prevented Cd effects on inflammatory and myogenesis genes and diminished Cd effects on several other pathways. Similarly, Se prevented Cd-disrupted metabolic pathways in amino acid metabolism and urea cycle. Integrated transcriptome and metabolome network analysis showed that Cd treatment had a network structure with fewer gene-metabolite clusters compared to control. Centrality measurements showed that Se counteracted changes in a group of Cd-responsive genes including Zdhhc11, (protein-cysteine S-palmitoyltransferase), Ighg1 (immunoglobulin heavy constant gamma-1) and associated changes in metabolite concentrations. CONCLUSION Co-administration of Se with Cd prevented Cd increase in lung and prevented Cd-associated pathway and network responses of the transcriptome and metabolome. Se protection against Cd toxicity in lung involves complex systems responses. GENERAL SIGNIFICANCE Environmental Cd stimulates proinflammatory and profibrotic signaling. The present results indicate that dietary or supplemental Se could be useful to mitigate Cd toxicity.
Collapse
Affiliation(s)
- Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael L Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Li Hao
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - David C Neujahr
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Morales-Prieto N, Ruiz-Laguna J, Abril N. Dietary Se supplementation partially restores the REDOX proteomic map of M. spretus liver exposed to p,p ′-DDE. Food Chem Toxicol 2018; 114:292-301. [DOI: 10.1016/j.fct.2018.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 12/29/2022]
|
7
|
Toman R, Tunegová M. Selenium, cadmium and diazinon insecticide in tissues of rats after peroral exposure. POTRAVINARSTVO 2017. [DOI: 10.5219/827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The concentrations of selenium (Se), cadmium (Cd) and diazinon (DZN) in selected tissues of rats after an oral administration in various combinations were analyzed. Male rats were orally dosed with diazinon (40 mg.L-1), diazinon (40 mg.L-1) +selenium (5 mg.L-1), diazinon (40 mg.L-1) +cadmium (30 mg.L-1), and diazinon (40 mg.L-1) +selenium (5 mg.L-1) +cadmium (30 mg.L-1) in drinking water. After 90 days of per oral administration of compounds, the samples of liver, kidney, muscle tissue (m. quadriceps femoris), and adipose tissue were collected. The content of DZN was analyzed using Gas Chromatography - Mass Spectrometry (GC-MS), Cd was analyzed using an Electrothermal Atomic Absorption Spectrometry (ETAAS) and Se using a Hydride Generation Atomic Absorption Spectrometry (HG-AAS) methods. Cadmium significantly increased in liver and kidney after DZN +Cd and DZN +Se +Cd administration. Se significantly increased in liver of DZN +Se, DZN +Se +Cd and DZN +Cd exposed rats, in kidney of DZN +Se and DZN +Se +Cd and DZN +Cd, and in muscle of DZN +Se +Cd group. Highest DZN content was found in the adipose tissue in DZN, DZN +Cd and DZN +Se +Cd but not in combined exposure with Se. Anyway, the differences between the control and experimental groups were not significant. The results indicate that cadmium and selenium accumulate mainly in liver, kidney and selenium also in muscle after p.o. administration but diazinon concentrations increases were not signifcant. The co-administration of diazinon, Se and Cd affects the content of these compounds in the organism and the accumulation rate depends on the combination of administered compounds. Diazinon and cadmium could contribute to the selenium redistribution in the organism after the peroral intake.
Collapse
|
8
|
Eyice Ö, Myronova N, Pol A, Carrión O, Todd JD, Smith TJ, Gurman SJ, Cuthbertson A, Mazard S, Mennink-Kersten MA, Bugg TD, Andersson KK, Johnston AW, Op den Camp HJ, Schäfer H. Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. ISME JOURNAL 2017; 12:145-160. [PMID: 29064480 PMCID: PMC5739008 DOI: 10.1038/ismej.2017.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/07/2017] [Accepted: 07/27/2017] [Indexed: 12/05/2022]
Abstract
Oxidation of methanethiol (MT) is a significant step in the sulfur cycle. MT is an intermediate of metabolism of globally significant organosulfur compounds including dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS), which have key roles in marine carbon and sulfur cycling. In aerobic bacteria, MT is degraded by a MT oxidase (MTO). The enzymatic and genetic basis of MT oxidation have remained poorly characterized. Here, we identify for the first time the MTO enzyme and its encoding gene (mtoX) in the DMS-degrading bacterium Hyphomicrobium sp. VS. We show that MTO is a homotetrameric metalloenzyme that requires Cu for enzyme activity. MTO is predicted to be a soluble periplasmic enzyme and a member of a distinct clade of the Selenium-binding protein (SBP56) family for which no function has been reported. Genes orthologous to mtoX exist in many bacteria able to degrade DMS, other one-carbon compounds or DMSP, notably in the marine model organism Ruegeria pomeroyi DSS-3, a member of the Rhodobacteraceae family that is abundant in marine environments. Marker exchange mutagenesis of mtoX disrupted the ability of R. pomeroyi to metabolize MT confirming its function in this DMSP-degrading bacterium. In R. pomeroyi, transcription of mtoX was enhanced by DMSP, methylmercaptopropionate and MT. Rates of MT degradation increased after pre-incubation of the wild-type strain with MT. The detection of mtoX orthologs in diverse bacteria, environmental samples and its abundance in a range of metagenomic data sets point to this enzyme being widely distributed in the environment and having a key role in global sulfur cycling.
Collapse
Affiliation(s)
- Özge Eyice
- School of Life Sciences, University of Warwick, Coventry, UK.,School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tom J Smith
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Stephen J Gurman
- Department of Physics and Astronomy, University of Leicester, Leicester, UK
| | | | - Sophie Mazard
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Monique Ash Mennink-Kersten
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Timothy Dh Bugg
- Department of Chemistry, University of Warwick, Coventry, UK
| | | | | | - Huub Jm Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
9
|
Lee EK, Shin YJ, Park EY, Kim ND, Moon A, Kwack SJ, Son JY, Kacew S, Lee BM, Bae ON, Kim HS. Selenium-binding protein 1: a sensitive urinary biomarker to detect heavy metal-induced nephrotoxicity. Arch Toxicol 2016; 91:1635-1648. [PMID: 27578022 DOI: 10.1007/s00204-016-1832-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 11/24/2022]
Abstract
Identifying novel biomarkers to detect nephrotoxicity is clinically important. Here, we attempted to identify new biomarkers for mercury-induced nephrotoxicity and compared their sensitivity to that of traditional biomarkers in animal models. Comparative proteomics analysis was performed in kidney tissues of Sprague-Dawley rats after oral treatment with HgCl2 (0.1, 1, or 5 mg/kg/day) for 21 days. Kidney cortex tissues were analyzed by two-dimensional gel electrophoresis/matrix-assisted laser desorption/ionization, and differentially expressed proteins were identified. The corresponding spots were quantitated by RT-PCR. Selenium-binding protein 1 (SBP1) was found to be the most markedly upregulated protein in the kidney cortex of rats after HgCl2 administration. However, blood urea nitrogen, serum creatinine, and glucose levels increased significantly only in the 1 or 5 mg/kg HgCl2-treated groups. A number of urinary excretion proteins, including kidney injury molecule-1, clusterin, monocyte chemoattractant protein-1, and β-microglobulin, increased dose-dependently. Histopathological examination revealed severe proximal tubular damage in high-dose (5 mg/kg) HgCl2-exposed groups. In addition, urinary excretion of SBP1 significantly increased in a dose-dependent manner. To confirm the critical role of SBP1 as a biomarker for nephrotoxicity, normal kidney proximal tubular cells were treated with HgCl2, CdCl2, or cisplatin for 24 h. SBP1 levels significantly increased in conditioned media exposed to nephrotoxicants, but decreased in cell lysates. Our investigations suggest that SBP1 may play a critical role in the pathological processes underlying chemical-induced nephrotoxicity. Thus, urinary excretion of SBP1 might be a sensitive and specific biomarker to detect early stages of kidney injury.
Collapse
Affiliation(s)
- Eui Kyung Lee
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Young-Jun Shin
- College of Pharmacy, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Eun Young Park
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Nam Deuk Kim
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Aree Moon
- College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea
| | - Seung Jun Kwack
- Department of Biochemistry and Health Science, Changwon National University, Gyeongnam, 641-773, Republic of Korea
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, 426-791, Republic of Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
10
|
Interaction between cadmium (Cd), selenium (Se) and oxidative stress biomarkers in healthy mothers and its impact on birth anthropometric measures. Int J Hyg Environ Health 2015; 218:66-90. [DOI: 10.1016/j.ijheh.2014.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 01/13/2023]
|
11
|
Copat C, Vinceti M, D'Agati MG, Arena G, Mauceri V, Grasso A, Fallico R, Sciacca S, Ferrante M. Mercury and selenium intake by seafood from the Ionian Sea: A risk evaluation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:87-92. [PMID: 24433795 DOI: 10.1016/j.ecoenv.2013.11.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/07/2013] [Accepted: 11/13/2013] [Indexed: 06/03/2023]
Abstract
The subject of the present study is the evaluation of the concentrations of mercury (Hg) and selenium (Se) in fish and shellfish from the Gulf of Catania (Ionian Sea) and the assessment of related risk-based consumption limits per single contaminant in adults and children. In contrast to the potential harm from Hg, Se is an essential element that is normally found in high levels in seafood. If the amount of Hg is high enough, it could bind Se and irreversibly inhibit selenium-dependent enzymes. Thus, adequate levels of Se need to be available to replace the amount of Se lost to Hg sequestration, thereby maintaining normal selenoprotein synthesis. Hg analysis was conducted using a flow injection analysis system coupled with an atomic adsorption spectrometer, and Se analysis was conducted using an inductively coupled plasma mass spectrometry (ICP-MS). Of the trace elements investigated, only Hg has a limit set by the European Community for human consumption, and this was never exceeded. Nevertheless, based on Target Hazard Quotient (THQ) over 1, and on the Estimated Daily Intake per meal (EDIm) higher than the Provisional Tolerable Intake (PTI) suggested by the Joint FAO/WHO Expert Committee on Food Additive (JECFA), Hg oral exposure derived from consumption of the benthonic fish and of the bigger pelagic fish species analyzed, could follow the occurrence of systemic effects. Se was found always in molar excess respect to Hg in all pelagic fish and in the shellfish, nearly equimolar in the benthonic fish. Determining the evidence that foods, such as pelagic fish, with high molar excess of Se, could contribute to replace the amount of Se bound to Hg and thereby maintaining normal selenoprotein synthesis, is useful for a better understanding of the seafood safety.
Collapse
Affiliation(s)
- Chiara Copat
- Environmental and Food Hygiene Laboratory (LIAA), Department of Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Marco Vinceti
- Department of Diagnostic and Clinical Medicine and of Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Grazia D'Agati
- Environmental and Food Hygiene Laboratory (LIAA), Department of Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Giovanni Arena
- Environmental and Food Hygiene Laboratory (LIAA), Department of Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Valeria Mauceri
- Environmental and Food Hygiene Laboratory (LIAA), Department of Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Alfina Grasso
- Environmental and Food Hygiene Laboratory (LIAA), Department of Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Roberto Fallico
- Environmental and Food Hygiene Laboratory (LIAA), Department of Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Salvatore Sciacca
- Environmental and Food Hygiene Laboratory (LIAA), Department of Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| |
Collapse
|
12
|
Bernotiene R, Ivanoviene L, Sadauskiene I, Liekis A, Ivanov L. The effects of cadmium chloride and sodium selenite on protein synthesis in mouse liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:1261-1265. [PMID: 24211594 DOI: 10.1016/j.etap.2013.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
The study aimed at evaluating the effects of cadmium and selenite ions on protein synthesis and metallothioneins content in mice liver after 2 h, 8 h, 24 h and 14 days of exposure. Our studies revealed that cadmium suppressed protein synthesis after 2 h and 24 h, but activated after 8h and 14 days. Also, the endogenous mRNA translation were reduced under any exposure to cadmium, meanwhile, metallothioneins content was decreased after 2 h, but then was progressively increasing up to 492% after 14 days. Meantime, selenite did not influence metallothioneins content, caused mild activation of protein synthesis, and slightly suppressed the endogenous mRNA translation. The combined treatments with cadmium and selenite favored toward resisting of protein synthesis to cadmium after 2 h and 24 h of intoxication. Besides, selenite also protected translation against cadmium in cell-free systems, but did not attenuate effects of cadmium on metallothioneins content.
Collapse
Affiliation(s)
- Rasa Bernotiene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50009 Kaunas, Lithuania.
| | | | | | | | | |
Collapse
|
13
|
Trabelsi H, Azzouz I, Ferchichi S, Tebourbi O, Sakly M, Abdelmelek H. Nanotoxicological evaluation of oxidative responses in rat nephrocytes induced by cadmium. Int J Nanomedicine 2013; 8:3447-53. [PMID: 24043937 PMCID: PMC3771854 DOI: 10.2147/ijn.s49323] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to investigate the interaction of cadmium chloride with mineral
elements in rat nephrocytes in terms of the biosynthesis of nanocomplexes. The results show that
selenium supplementation enhanced cadmium accumulation in kidneys. Analysis of the fluorescence
revealed an increase in red fluorescence in the kidneys of rats co-exposed to cadmium and selenium.
Interestingly, X-ray diffraction measurements carried out on kidney fractions of co-exposed rats
point to the biosynthesis of cadmium selenide and/or sulfide nanoparticles (about 62 nm in size).
Oxidative stress assays showed the ability of selenium to reduce lipid peroxidation and to restore
glutathione peroxidase and superoxide dismutase activity in kidneys. Hence, cadmium complexation
with selenium and sulfur at a nanoscale level could reduce oxidative stress induced by cadmium in
kidneys.
Collapse
Affiliation(s)
- Hamdi Trabelsi
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Tunisia
| | | | | | | | | | | |
Collapse
|
14
|
Lu Y, Zhang A, Li C, Zhang P, Su X, Li Y, Mu C, Li T. The link between selenium binding protein from Sinonovacula constricta and environmental pollutions exposure. FISH & SHELLFISH IMMUNOLOGY 2013; 35:271-277. [PMID: 23664910 DOI: 10.1016/j.fsi.2013.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/30/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Selenium binding proteins (SeBPs) play a crucial role in controlling the oxidation/reduction in many physiological processes. Here we reported the isolation and characterization of a cDNA of SeBP gene from Sinonovacula constricta (denoted as ScSeBP). The full-length cDNA of ScSeBP was of 2345 bp, consisting of a 5'UTR of 246 bp, a 3' UTR of 626 bp, and a complete ORF of 1473 bp encoding a polypeptide with 491 amino acid residues. The predicted molecular mass of deduced amino acid of ScSeBP was 54.85 kDa and the theoretical pI was 6.44. Tissue distribution analysis of the ScSeBP revealed that the mRNA transcripts of ScSeBP were constitutively expressed in all examined tissues with the higher expressions in gill, gonad and the haemocytes. The temporal expression of ScSeBP in gill and haemocytes after B[α]P and heavy metals exposure were recorded by qPCR. B[α]P exposure at 0.5 and 5 mg L(-1) caused significant increase in mRNA expression of ScSeBP in haemocytes, but down-regulated ScSeBP mRNA expression in gill. Concerning heavy metals stresses, the suppressed expression patterns were detected in gill and haemocyte except lower concentration of PbCl2 exposure in haemocytes at 12 h. All our results indicated that ScSeBP was one of key effectors in mediating B[α]P and heavy metals exposure.
Collapse
Affiliation(s)
- Yali Lu
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Selenium-binding protein 1: its physiological function, dependence on aryl hydrocarbon receptors, and role in wasting syndrome by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochim Biophys Acta Gen Subj 2013; 1830:3616-24. [PMID: 23500078 DOI: 10.1016/j.bbagen.2013.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Selenium-binding protein 1 (Selenbp1) is suggested to play a role in tumor suppression, and may be involved in the toxicity produced by dioxin, an activator of aryl hydrocarbon receptors (AhR). However, the mechanism or likelihood is largely unknown because of the limited information available about the physiological role of Selenbp1. METHODS To address this issue, we generated Selenbp1-null [Selenbp1 (-/-)] mice, and examined the toxic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in this mouse model. RESULTS Selenbp1 (-/-) mice exhibited only a few differences from wild-type mice in their apparent phenotypes. However, a DNA microarray experiment showed that many genes including Notch1 and Cdk1, which are known to be enhanced in ovarian carcinoma, are also increased in the ovaries of Selenbp1 (-/-) mice. Based on the different responses to TCDD between C57BL/6J and DBA/2J strains of mice, the expression of Selenbp1 is suggested to be under the control of AhR. However, wasting syndrome by TCDD occurred equally in Selenbp1 (-/-) and (+/+) mice. CONCLUSIONS The above pieces of evidence suggest that 1) Selenbp1 suppresses the expression of tumor-promoting genes although a reduction in Selenbp1 alone is not very serious as far as the animals are concerned; and 2) Selenbp1 induction by TCDD is neither a pre-requisite for toxicity nor a protective response for combating TCDD toxicity. GENERAL SIGNIFICANCE Selenbp1 (-/-) mice exhibit little difference in their apparent phenotype and responsiveness to dioxin compared with the wild-type. This may be due to the compensation of Selenbp1 function by a closely-related protein, Selenbp2.
Collapse
|
16
|
Malomo SO, Ore A, Yakubu MT. In vitro and in vivo antioxidant activities of the aqueous extract of Celosia argentea leaves. Indian J Pharmacol 2011; 43:278-85. [PMID: 21713091 PMCID: PMC3113379 DOI: 10.4103/0253-7613.81519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 02/10/2011] [Accepted: 02/23/2011] [Indexed: 11/17/2022] Open
Abstract
Objective: The aqueous extract of Celosia argentea var. cristata L. leaves at 100, 200, and 400 mg/kg body weight (b.w.) was investigated against cadmium (Cd)-induced oxidative stress in Wistar rats. The in vitro antioxidant of the extract was evaluated using ammonium thiocyanate, reducing power, and membrane stabilizing models. Materials and Methods: For the in vivo study, 30 male rats (Rattus norvegicus) weighing 138.02 ± 7.02 g were completely randomized into 6 groups (A–F) of 5 animals each. Animals in groups A and B received 0.5 ml of distilled water and the same volume containing 8 mg/kg b.w. of Cd, respectively, for 7 days orally. Animals in groups C, D, E, and F were treated like those in group B except that they received 100 mg/kg b.w. of ascorbic acid, and 100, 200, and 400 mg/kg b.w. of the extract, respectively, in addition to Cd. Results: Phytochemical screening revealed the presence of alkaloids (0.61%), saponins (2.93%), cardiac glycosides (0.21%), cardenolides (0.20%), phenolics (3.26%), and flavonoids (2.38%). A total of 10 mg/ml of the extract inhibited linoleic acid oxidation by 67.57%. The highest reducing power was 100 mg/ml as against 10 mg/ml for ascorbic acid. In addition, 2 mg/ml of the extract produced a membrane stabilizing activity of 63.49% as against 77.46% for indomethacin. Compared with the distilled water control group, the administration of Cd alone significantly (P < 0.05) decreased the alkaline phosphatase activity of the rat liver and brain. This decrease was accompanied by a corresponding increase in the serum enzyme. The simultaneous administration of the extract and Cd produced an enzyme activity that compared favorably (P > 0.05) with the animals that received Cd and ascorbic acid. In addition, the reduction in the superoxide dismutase and catalase activity of the liver and brain of the animals, serum uric acid, albumin and bilirubin, and also the increase in the serum malondialdehyde content in animals treated with Cd alone was attenuated by the extract; the values compared well (P > 0.05) with those simultaneously administered with Cd and ascorbic acid. Conclusion: Overall, the results indicated that the aqueous extract of C. argentea leaves attenuated Cd-induced oxidative stress in the animals, with the best result at 400 mg/kg b.w. The antioxidant activity of the extract may be attributed to the phenolic and flavonoid components of the extract. The induction of antioxidant enzymes and scavenging of free radicals may account for the mechanism of action of the extract as an antioxidant.
Collapse
Affiliation(s)
- S O Malomo
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | | | | |
Collapse
|
17
|
Wu CL, Zhang WB, Mai KS, Liang XF, Xu W, Wang J, Ma HM. Molecular cloning, characterization and mRNA expression of selenium-binding protein in abalone (Haliotis discus hannai Ino): Response to dietary selenium, iron and zinc. FISH & SHELLFISH IMMUNOLOGY 2010; 29:117-125. [PMID: 20211737 DOI: 10.1016/j.fsi.2010.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 02/23/2010] [Accepted: 02/26/2010] [Indexed: 05/28/2023]
Abstract
Selenium-binding protein (SEBP) is believed to play crucial role in controlling the oxidation/reduction in the physiological processes. In this study, the cDNA of selenium-binding protein from abalone Haliotis discus hannai Ino (HdhSEBP) was cloned by homology cloning and rapid amplification of cDNA ends (RACE) technique. The full length of HdhSEBP cDNA was 2071 bp, consisting of a 5' untranslated region (UTR) of 55 bp, a 3' UTR of 522 bp, and an open reading frame (ORF) of 1494 bp. The deduced protein has 497 amino acid residues with a calculated molecular mass of 55.6 kDa and a predicted isoelectric point of 5.47. BLAST analysis reveals that HdhSEBP shares high identities with other known SEBPs from mammal, bird, fish and mollusk, etc. The mRNA expression patterns of HdhSEBP in hepatopancreas and haemocytes were measured by real-time PCR in abalone fed with nine different diets containing graded levels of selenium (0, 1 and 50 mg kg(-1)), iron (0, 65 and 1300 mg kg(-1)) and zinc (0, 35 and 700 mg kg(-1)) for 20 weeks, respectively. The results showed that the expression of the HdhSEBP mRNA increased and reached the maximum at optimal dietary selenium (1 mg kg(-1)), iron (65 mg kg(-1)) and zinc (35 mg kg(-1)), respectively. Deficient or excessive level of dietary selenium, iron or zinc, respectively, leaded to significant depression of HdhSEBP mRNA. It is concluded that the expression levels of HdhSEBP are affected by dietary selenium, iron or zinc.
Collapse
Affiliation(s)
- Cheng-Long Wu
- The Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Chakravarti B, Seshi B, Ratanaprayul W, Dalal N, Lin L, Raval A, Chakravarti DN. Proteome profiling of aging in mouse models: differential expression of proteins involved in metabolism, transport, and stress response in kidney. Proteomics 2009; 9:580-97. [PMID: 19184973 DOI: 10.1002/pmic.200700208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aging is a time-dependent complex biological phenomenon observed in various organs and organelles of all living organisms. To understand the molecular mechanism of age-associated functional loss in aging kidneys, we have analyzed the expression of proteins in the kidneys of young (19-22 wk) and old (24 months) C57/BL6 male mice using 2-DE followed by LC-MS/MS. We found that expression levels of 49 proteins were upregulated (p < or = 0.05), while that of only ten proteins were downregulated (p < or = 0.05) due to aging. The proteins identified belong to three broad functional categories: (i) metabolism (e.g., aldehyde dehydrogenase family, ATP synthase beta-subunit, malate dehydrogenase, NADH dehydrogenase (ubiquinone), hydroxy acid oxidase 2), (ii) transport (e.g., transferrin), and (iii) chaperone/stress response (e.g., Ig-binding protein, low density lipoprotein receptor-related protein associated protein 1, selenium-binding proteins (SBPs)). Some proteins with unknown functions were also identified as being differentially expressed. ATP synthase beta subunit, transferrin, fumarate hydratase, SBPs, and albumin are present in multiple forms, possibly arising due to proteolysis or PTMs. The above functional categories suggest specific mechanisms and pathways for age-related kidney degeneration.
Collapse
Affiliation(s)
- Bulbul Chakravarti
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Jihen EH, Imed M, Fatima H, Abdelhamid K. Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat: histology and Cd accumulation. Food Chem Toxicol 2008; 46:3522-7. [PMID: 18824208 DOI: 10.1016/j.fct.2008.08.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 07/22/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED To assess the co-effect of Se and Zn on Cd accumulation in the liver and kidney and on their histology, male rats were exposed either to Cd, Cd+Zn, Cd+Se, or Cd+Zn+Se in their drinking water, during 35 days. Exposure to Cd resulted in its accumulation in the liver and kidney. In the Cd-Zn and Cd-Zn-Se groups, Cd contents in the two organs were significantly (p < 0.01) higher than those in the Cd group. Se did not induce any significant difference in hepatic and renal concentrations of Cd in comparison to Cd-treated group. Light microscopic examination indicated severe histological changes in the two organs under Cd influence. Se or Zn partially alleviated the damage observed in the liver. The same effect was remarked in the kidney with Se, but no differences in the renal histological structure have been observed between the Zn-Cd and the control groups. With Se and Zn simultaneous treatment during Cd exposure, the observed morphological changes had practically disappeared from the liver, but were only reduced in the kidney. CONCLUSION Se and Zn can have a cooperative effect in the protection against Cd-induced structural damage in the liver but not in the kidney.
Collapse
Affiliation(s)
- El Heni Jihen
- Unité de Recherche: Eléments Traces, Radicaux Libres, Antioxydants, Pathologies Humaines et Environnement, Département de Biophysique, Faculté de Médecine de Monastir, Tunisie.
| | | | | | | |
Collapse
|
20
|
Agalou A, Spaink HP, Roussis A. Novel interaction of selenium-binding protein with glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase of Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:847-856. [PMID: 32689295 DOI: 10.1071/fp05312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 05/16/2006] [Indexed: 06/11/2023]
Abstract
The metabolic role and regulation of selenium, particularly in plants, is poorly understood. One of the proteins probably involved in the metabolic regulation of this element is the selenium-binding protein (SBP) with homologues present across prokaryotic and eukaryotic species. The high degree of conservation of SBP in different organisms suggests that this protein may play a role in fundamental biological processes. In order to gain insight into the biochemical function of SBP in plants we used the yeast two-hybrid system to identify proteins that potentially interact with an Arabidopsis thaliana (L.) Heynh. homologue. Among the putative binding partners of SBP, a NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a fructose-bisphosphate aldolase (FBA) were found as reliable positive candidates. The interaction of these proteins with SBP was confirmed by in vitro binding assays. Previous findings in Escherichia coli, demonstrated the direct binding of selenium to both GAPDH and aldolase. Therefore our results reveal the interaction, at least in pairs, of three proteins that are possibly linked to selenium and suggest the existence of a protein network consisting of at least SBP, GAPDH and FBA, triggered by or regulating selenium metabolism in plant cells.
Collapse
Affiliation(s)
- Adamantia Agalou
- Institute of Biology, Clusius Laboratory, Leiden University, Wassenaarseweg 64, 2333AL Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Clusius Laboratory, Leiden University, Wassenaarseweg 64, 2333AL Leiden, The Netherlands
| | - Andreas Roussis
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333AL Leiden, The Netherlands. Current address: Agricultural University of Athens, Department of Agricultural Biotechnology, Iera odos 75, 118 55 Athens, Greece
| |
Collapse
|
21
|
Miyaguchi K. Localization of selenium-binding protein at the tips of rapidly extending protrusions. Histochem Cell Biol 2004; 121:371-6. [PMID: 15108003 DOI: 10.1007/s00418-004-0623-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
Cell protrusive motility underlies cell fundamental biological processes such as cell growth, locomotion, and migration. Here I showed that selenium-binding protein (SBP) was exclusively located at the leading edges of rapidly growing protrusions in newly plated T98G glioma cells, and at the growing tips of the neurites in SH-SY5Y neuroblastoma cells. Double staining by anti-SBP antibody and deoxyribonuclease (DNase I) that labels monomeric G-actin or phalloidin that labels filamentous F-actin showed that the SBP-positive area was overstained by DNase I but, surprisingly, was not stained by phalloidin. When the cells were incubated with chemicals which block actin polymerization or activity of phosphatidylinositol 3-kinase, recruitment of SBP and G-actin at the cell margin was still observed, showing that their recruitment precedes actin polymerization. Taken together, I suggest that SBP may be involved in the initial sequential events in rapid cell outgrowth, such as determining direction of cell outgrowth and recruitment of actin monomer.
Collapse
Affiliation(s)
- Katsuyuki Miyaguchi
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan,
| |
Collapse
|
22
|
Mizoguchi E, Xavier RJ, Reinecker HC, Uchino H, Bhan AK, Podolsky DK, Mizoguchi A. Colonic epithelial functional phenotype varies with type and phase of experimental colitis. Gastroenterology 2003; 125:148-61. [PMID: 12851880 DOI: 10.1016/s0016-5085(03)00665-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Colonic crypt elongation occurs during both chronic colitis and in the recovery phase of acute colitis. The impact of these alterations on epithelial cell functions is not fully defined. METHODS DNA microarray analysis of freshly isolated colonic epithelial cells (CECs) from acute and chronic colitis was performed, and the results were confirmed by reverse transcription polymerase chain reaction. Localization of the selected molecules was examined by immunohistochemistry using newly generated antibodies. The function of selected molecules detected in this study was examined by administering the specific inhibitors in dextran sodium sulfate (DSS) colitis. RESULTS Several detoxification-associated molecules, which contribute to prevent inflammation by regulating physiological balance under normal conditions, were markedly down-regulated, and anti-inflammatory molecules, which are not normally expressed, were up-regulated in the CEC under the chronic colitis. Among the detoxification-associated molecules, carbonic anhydrase IV was specifically down-regulated in CEC of Th2- but not Th1-mediated colitis. Functionally, inhibition of carbonic anhydrase activity led to the enhancement of recovery from DSS-induced acute colitis by directly stimulating CEC proliferation. Increased expression of regeneration-associated molecules such as regenerating gene-III gamma was detectable in the CEC of acute and chronic colitis but not in the recovery phase of colitis. The expression of this molecule was restricted in surface epithelium and upper crypts but not lower crypts. CONCLUSIONS These studies suggest that functional alterations, which result in either the exacerbation or the suppression of colitis, coexist in the CEC during chronic colitis. CEC functions are likely to be differentially regulated in the context of the stage and mechanism of colitis.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Center for the Study of Inflammatory Bowel Diseases and Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Flemetakis E, Agalou A, Kavroulakis N, Dimou M, Martsikovskaya A, Slater A, Spaink HP, Roussis A, Katinakis P. Lotus japonicus gene Ljsbp is highly conserved among plants and animals and encodes a homologue to the mammalian selenium-binding proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:313-322. [PMID: 12026169 DOI: 10.1094/mpmi.2002.15.4.313] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have isolated and characterized a Lotus japonicus gene (Ljsbp) encoding a putative polypeptide with striking homology to the mammalian 56-kDa selenium-binding protein (SBP). cDNA clones homologous to LjSBP were also isolated from soybean, Medicago sativa, and Arabidopsis thaliana. Comparative expression studies in L japonicus and A. thaliana showed that sbp transcripts are present in various tissues and at different levels. Especially in L japonicus nodules and seedpods and A. thaliana siliques, sbp expression appears to be developmentally up-regulated. sbp Gene transcripts were localized by in situ hybridization in the infected cells and vascular bundles of young nodules, while in mature nodules, low levels of expression were only detected in the parenchymatous cells. Expression of sbp transcripts in young seedpods and siliques was clearly visible in vascular tissues and embryos, while in embryos, low levels of expression were detected in the root epidermis and the vascular bundles. Polyclonal antibodies raised against a truncated LjSBP recombinant protein recognized a polypeptide of about 60 kDa in nodule extracts. Immunohistochemical experiments showed that accumulation of LjSBP occurred in root hairs, in the root epidermis above the nodule primordium, in the phloem of the vasculature, and abundantly in the infected cells of young nodules. Irrespective of the presence of rhizobia, expression of SBP was also observed in root tips, where it was confined in the root epidermis and protophloem cells. We hypothesize that LjSBP may have more than one physiological role and can be implicated in controlling the oxidation/reduction status of target proteins, in vesicular Golgi transport, or both.
Collapse
Affiliation(s)
- Emmanouil Flemetakis
- Agricultural University of Athens, Department of Agricultural Biotechnology, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ishida T, Tasaki K, Fukuda A, Ishii Y, Oguri K. Induction of a cytosolic 54 kDa protein in rat liver that is highly homologous to selenium-binding protein. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1998; 6:249-255. [PMID: 21781901 DOI: 10.1016/s1382-6689(98)00042-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/1998] [Revised: 09/29/1998] [Accepted: 10/12/1998] [Indexed: 05/31/2023]
Abstract
We have previously shown that a 54 kDa protein in rat liver is highly homologous to selenium-binding protein (SeBP) or acetaminophen-binding protein (APBP) in mice and is highly inducible by treatment with 3,3',4,4',5-pentachlorobiphenyl or 3-methylcholanthrene. In this study, we examine the effect of six typical inducers, 3-methylcholanthrene (MC), isosafrole (ISO), phenobarbital (PB), dexamethasone (DEX), clofibrate (CLO), pyrazole (PYR) and butylated hydroxytoluene (BHT), on the expression level of this 54 kDa protein. Male Wistar rats were given each inducer following a predetermined schedule. Among these inducers, the 54 kDa protein was inducible by MC and BHT. The response to MC and BHT was compared with that of NAD(P)H: quinone oxidoreductase and ethoxyresorufin O-deethylase activities. The induction mechanisms and physiological role of the 54 kDa protein are discussed in the light of our results.
Collapse
Affiliation(s)
- T Ishida
- Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|