1
|
Sharma P, Ganguly M, Doi A. Synergism between copper and silver nanoclusters induces fascinating structural modifications, properties, and applications. NANOSCALE 2024; 16:18666-18683. [PMID: 39302164 DOI: 10.1039/d4nr03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Among the group 11 transition metal elements, Cu and Ag are widely studied due to their cost effectiveness and easy availability. However, the synergism between copper and silver is also very promising, exhibiting intriguing structures, properties, and applications. Nanoclusters, which are missing links between atoms and nanoparticles, are highly fluorescent due to their discrete energy levels. Their fluorescence can be efficiently tuned because of the synergistic behaviour of copper and silver. Furthermore, their fluorescence can be selectively altered in the presence of various analytes and sensing platforms, as reported by various groups. Moreover, copper clusters can be utilized for sensing silver while silver nanoclusters can be utilized for sensing ionic copper due to the strong interaction between copper and silver. Furthermore, DFT studies have been performed to understand the structural modification due to CuAg synergism. A concise summary of the synergism between copper and silver can open a new window of research for young scientists venturing into the field of environmental nanoscience.
Collapse
Affiliation(s)
- Priyanka Sharma
- Solar Energy Conversion and Nanomaterials Laboratory, Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India.
| | - Mainak Ganguly
- Solar Energy Conversion and Nanomaterials Laboratory, Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India.
| | - Ankita Doi
- Department of BioSciences, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India
| |
Collapse
|
2
|
Park SY, Kim KY, Gwak DS, Shin SY, Jun DY, Kim YH. L-Cysteine mitigates ROS-induced apoptosis and neurocognitive deficits by protecting against endoplasmic reticulum stress and mitochondrial dysfunction in mouse neuronal cells. Biomed Pharmacother 2024; 180:117538. [PMID: 39393330 DOI: 10.1016/j.biopha.2024.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
Oxidative stress and mitochondrial dysfunction play critical roles in neurodegenerative diseases. Glutathione (GSH), a key brain antioxidant, helps to neutralize reactive oxygen species (ROS) and maintain redox balance. We investigated the effectiveness of L-cysteine (L-Cys) in preventing apoptosis induced by the ROS generator 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) in mouse hippocampal neuronal HT22 cells, as well as alleviating memory and cognitive impairments caused by the GSH synthesis inhibitor L-buthionine sulfoximine (BSO) in mice. DMNQ-induced apoptotic events in HT22 cells, including elevated cytosolic and mitochondrial ROS levels, DNA fragmentation, endoplasmic reticulum stress, and mitochondrial damage-mediated apoptotic pathways were dose-dependently abrogated by L-Cys (0.5-2 mM). The reduced intracellular GSH level, caused by DMNQ treatment, was restored by L-Cys cotreatment. Although L-Cys did not significantly restore GSH in the presence of BSO, it prevented DMNQ-induced ROS elevation, mitochondrial damage, and apoptosis. Furthermore, compared to N-acetylcysteine and GSH, L-Cys had higher 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid radical-scavenging activity. L-Cys also restored mitochondrial respiration capacity in DMNQ-treated HT22 cells by reversing mitochondrial fission-fusion dynamic balance. BSO administration (500 mg/kg/day) in mice led to neuronal deficits, including memory and cognitive impairments, which were effectively mitigated by oral L-Cys (15 or 30 mg/kg/day). L-Cys also reduced BSO-induced ROS levels in the mice hippocampus and cortex. These findings suggest that even though it does not contribute to intracellular GSH synthesis, exogenous L-Cys protects neuronal cells against oxidative stress-induced mitochondrial damage and apoptosis, by acting as a ROS scavenger, which is beneficial in ameliorating neurocognitive deficits caused by oxidative stress.
Collapse
Affiliation(s)
- Shin Young Park
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ki Yun Kim
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dong Seol Gwak
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Youn Jun
- AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young Ho Kim
- Laboratory of Immunobiology, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; AT-31 BIO Inc., Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Liu X, Lu X, Li X, Zhang M, Xue L, Yang S, Hu R, Cui Y, Jiang X, Sun G. Highly selective fluorescent probe for cysteine via a tandem reaction and its bioimaging application in HeLa cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125223. [PMID: 39348738 DOI: 10.1016/j.saa.2024.125223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/24/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Cysteine, as a vital endogenous small molecule mercaptan, plays a crucial role in various physiological processes. The high sensitivity and selectivity of fluorescent probes provide a method to monitor cysteine, which is helpful to understand the mechanism of cysteine in physiological processes more comprehensively. However, the detection of cysteine can be interfered by other small molecule biothiols. Therefore, the design of fluorescent probe based on the structural characteristics and reactivity of cysteine has become research focus currently. Given the biological compatibilities, biological targets, the metabolic pathway of 3-hydoxythalidomide, and its unique fluorescent properties, herein, we have designed a chemodosimeter, 2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl acrylate, for the detection of cysteine based on a tandem reaction of thiol-ene click chemistry and aminolysis involving 3-hydroxythalidomide as a parent compound. Experimental data exhibited that the probe showed unique selectivity and sensitivity for cysteine over other amino acid and biothiols. In addition, the fluorescent intensity at 511 nm increased linearly as a function of cysteine concentration in the range of 0-6 × 10-7 M (regression factor, R2 = 0.999), with a limit of detection of 6.1 nM. The sensing mechanism was confirmed through 1H NMR titration and density functional theory calculations. Additionally, the probe was also successfully utilized for the detection of cysteine in sewage and for bioimaging in HeLa cells.
Collapse
Affiliation(s)
- Xiaolei Liu
- Institute for Smart Materials and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Xiangxiang Lu
- Institute for Smart Materials and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Li
- Institute for Smart Materials and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Miaomiao Zhang
- Institute for Smart Materials and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Xue
- Institute for Smart Materials and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shuaijun Yang
- Institute for Smart Materials and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Riming Hu
- Institute for Smart Materials and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yu Cui
- Institute for Smart Materials and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xuchuan Jiang
- Institute for Smart Materials and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Guoxin Sun
- Institute for Smart Materials and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
4
|
Liu RX, Song DK, Zhang YY, Gong HX, Jin YC, Wang XS, Jiang YL, Yan YX, Lu BN, Wu YM, Wang M, Li XB, Zhang K, Liu SB. L-Cysteine: A promising nutritional supplement for alleviating anxiety disorders. Neuroscience 2024; 555:213-221. [PMID: 39089569 DOI: 10.1016/j.neuroscience.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Anxiety disorders are prevalent chronic psychological disease with complex pathogenic mechanisms. Current anxiolytics have limited efficacy and numerous side effects in many anxiety patients, highlighting the urgent need for new therapies. Recent research has been focusing on nutritional supplements, particularly amino acids, as potential therapies for anxiety disorders. Among these, L-Cysteine plays a crucial role in various biological processes. L-Cysteine exhibits antioxidant properties that can enhance the antioxidant functions of the central nervous system (CNS). Furthermore, metabolites of L-cysteine, such as glutathione and hydrogen sulfide have been shown to alleviate anxiety through distinct molecular mechanisms. Long-term administration of L-Cysteine has anxiolytic, antidepressant, and memory-improving effects. L-Cysteine depletion can lead to increased oxidative stress in the brain. This review delves into the potential mechanisms of L-Cysteine and its main products, glutathione (GSH) and hydrogen sulfide (H2S) in the management of anxiety and related diseases.
Collapse
Affiliation(s)
- Rui-Xia Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ying-Ying Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Heng-Xin Gong
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Chen Jin
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Shaanxi, Xi'an 710038, China
| | - Yu-Xuan Yan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bei-Ning Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Ruparell A, Alexander JE, Eyre R, Carvell-Miller L, Leung YB, Evans SJM, Holcombe LJ, Heer M, Watson P. Glycine supplementation can partially restore oxidative stress-associated glutathione deficiency in ageing cats. Br J Nutr 2024; 131:1947-1961. [PMID: 38418414 PMCID: PMC11361917 DOI: 10.1017/s0007114524000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Intracellular levels of glutathione, the major mammalian antioxidant, are reported to decline with age in several species. To understand whether ageing affects circulating glutathione levels in cats, blood was sampled from two age groups, < 3 years and > 9 years. Further, to determine whether dietary supplementation with glutathione precursor glycine (GLY) affects glutathione concentrations in senior cats (> 8 years), a series of free GLY inclusion level dry diets were fed. Subsequently, a 16-week GLY feeding study was conducted in senior cats (> 7 years), measuring glutathione, and markers of oxidative stress. Whole blood and erythrocyte total, oxidised and reduced glutathione levels were significantly decreased in senior cats, compared with their younger counterparts (P ≤ 0·02). The inclusion level study identified 1·5 % free GLY for the subsequent dry diet feeding study. Significant increases in erythrocyte total and reduced glutathione were observed between senior cats fed supplemented and control diets at 4 weeks (P ≤ 0·03; maximum difference of 1·23 µM). Oxidative stress markers were also significantly different between groups at 8 (P = 0·004; difference of 0·68 nG/ml in 8-hydroxy-2'-deoxyguanosine) and 12 weeks (P ≤ 0·049; maximum difference of 0·62 nG/mG Cr in F2-isoprostane PGF2α). Senior cats have lower circulating glutathione levels compared with younger cats. Feeding senior cats a complete and balanced dry diet supplemented with 1·5 % free GLY for 12 weeks elevated initial erythrocyte glutathione and altered markers of oxidative stress. Dietary supplementation with free GLY provides a potential opportunity to restore age-associated reduction in glutathione in cats.
Collapse
Affiliation(s)
- Avika Ruparell
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | | | - Ryan Eyre
- Royal Canin Pet Health and Nutrition Centre, 6574 State Route 503N, Lewisburg, OH, USA
| | | | - Y. Becca Leung
- Royal Canin Research & Development Center, Aimargues, France
| | | | - Lucy J. Holcombe
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | - Martina Heer
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| |
Collapse
|
6
|
Wang Y, Li M, Yu H, Chen Y, Cui M, Ji M, Yang F. A Near-Infrared Fluorescent Dye with Tunable Emission Wavelength and Stokes Shift as a High-Sensitivity Cysteine Nanoprobe for Monitoring Ischemic Stroke. ACS NANO 2024; 18:15978-15990. [PMID: 38847448 DOI: 10.1021/acsnano.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Sulfur-substituted dicyanomethylene-4H-chromene (DCM) derivatives based on the intramolecular charge transfer (ICT) mechanism were designed as near-infrared (NIR) fluorescent dyes. Using the Knoevenagel condensation method, the S-DCM-OH(835) fluorescence dye was synthesized, which had an emission wavelength exceeding 800 nm and 220 nm of a Stokes shift. Compared to commercial ICG, S-DCM-OH(835) was not only synchronized in emission wavelength but also far superior in Stokes shifts. These advantages made the design of S-DCM-NIR(835) based on this dye potentially valuable for biological applications. Based on this chemical structure, a fluorescent S-DCM-NIR(835) nanoprobe with a mean diameter of 17.69 nm was fabricated as the NIR imaging nanoprobe. Results showed that the nanoprobe maintained the high-specificity identification of cysteine (Cys) via the Michael addition reaction, with the detection limitation of 0.11 μM endogenous Cys. More importantly, in an ischemic stroke mouse model, the S-DCM-NIR(835) nanoprobe could monitor the Cys concentration change at stroke lesion due to the disruption of Cys metabolism under the ischemic stroke condition. Such a S-DCM-NIR(835) nanoprobe could not only differentiate the severity of the ischemic stroke using response time but also quantify the concentration of Cys in real-time in vivo.
Collapse
Affiliation(s)
- Yuesong Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Mingxi Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Haoli Yu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yan Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Mengyuan Cui
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Min Ji
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| |
Collapse
|
7
|
Harders AR, Spellerberg P, Dringen R. Exogenous Substrates Prevent the Decline in the Cellular ATP Content of Primary Rat Astrocytes During Glucose Deprivation. Neurochem Res 2024; 49:1188-1199. [PMID: 38341839 PMCID: PMC10991069 DOI: 10.1007/s11064-024-04104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Brain astrocytes are well known for their broad metabolic potential. After glucose deprivation, cultured primary astrocytes maintain a high cellular ATP content for many hours by mobilizing endogenous substrates, but within 24 h the specific cellular ATP content was lowered to around 30% of the initial ATP content. This experimental setting was used to test for the potential of various exogenous substrates to prevent a loss in cellular ATP in glucose deprived astrocytes. The presence of various extracellular monocarboxylates, purine nucleosides or fatty acids prevented the loss of ATP from glucose-deprived astrocytes. Of the 20 proteinogenic amino acids, only alanine, aspartate, glutamate, glutamine, lysine or proline maintained high ATP levels in starved astrocytes. Among these amino acids, proline was found to be the most potent one to prevent the ATP loss. The astrocytic consumption of proline as well as the ability of proline to maintain a high cellular ATP content was prevented in a concentration-dependent manner by the proline dehydrogenase inhibitor tetrahydro-2-furoic acid. Analysis of the concentration-dependencies obtained by considering the different carbon content of the applied substrates revealed that fatty acids and proline are more potent than glucose and monocarboxylates as exogenous substrates to prevent ATP depletion in glucose-deprived astrocytes. These data demonstrate that cultured astrocytes can utilise a wide range of extracellular substrates as fuels to support mitochondrial ATP regeneration and identify proline as potent exogenous substrate for the energy metabolism of starved astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Paul Spellerberg
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
8
|
Xie Y, Lv X, Li Z, Li Y, Li H. A Enhanced Fluorescent Probe for Simultaneous Detection and Discrimination of Hydrogen Bisulfite Anions and Glutathione. J Fluoresc 2024:10.1007/s10895-024-03654-4. [PMID: 38457075 DOI: 10.1007/s10895-024-03654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Bisulfite (HSO3-) and biological thiols molecules, such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy), play important roles in organisms. Developing a fluorescent probe that can simultaneously detect and distinguish HSO3- and biological thiols is of great significance. In this study, ethyl(2E,4Z)-5-chloro-2-cyano-5-(7-(diethylamino)-2-oxo-2 H-chromen-3-yl)penta-2,4-dienoate (CCO) as a novel enhanced fluorescence probe was synthesized by integrating coumarin derivatives and ethyl cyanoacetate, which can simultaneous detection and discrimination of hydrogen bisulfite anions and glutathione. The sensing mechanism was elucidated through spectral analysis and some control experiments. In weakly alkaline environments, the probe not only has good selectivity for HSO3- and GSH, but also has a lower detection limits of 0.0179 µM and 0.2034 µM. The probe exhibited fuorescent turn-on for distinguishing with 296 and 28 fold the fluorescent intensity increase at 486 and 505 nm, respectively, through diferent excitation wavelengths. This provides a new method for simultaneous detection and discrimination of HSO3- and biological thiol cell levels and further applications.
Collapse
Affiliation(s)
- Yu Xie
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China
| | - Xiaoci Lv
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China
| | - Zhiwei Li
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China
| | - Yanbo Li
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China
| | - Heping Li
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, No. 960, Wanjiali South Road, Tianxin District, Changsha City, 410114, Hunan Province, China.
| |
Collapse
|
9
|
Zhang Y, Xu C, Sun H, Ai J, Ren M, Kong F. A new lysosome-targeted Cys probe and its application in biology and food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123345. [PMID: 37688878 DOI: 10.1016/j.saa.2023.123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Cysteine (Cys) is a sulfur-containing amino acid that plays an important role in living systems. The most common way to supplement the body with exogenous Cys is through the consumption of Cys-rich foods. Therefore, it is important to detect and analyze Cys in living systems and food samples. However, most of the Cys fluorescent probes developed so far are limited to the detection of the cellular environment only, and very few probes can take into account the detection of Cys in plant roots and food samples. In this paper, a novel fluorescent probe LN-NCS targeting the detection of Cys in lysosomes was designed and synthesized by modifying the naphthalimide fluorophore. The probe LN-NCS has a large Stokes shift (140 nm), low cytotoxicity, low detection limit (16.3 nM), and high selectivity, and probe LN-NCS reacts with Cys to produce the compound LN-NH2 with good fluorescence quantum yield (Ф = 0.81). Probe LN-NCS can be used to detect Cys in cells, zebrafish, plant roots, food samples, and environmental water samples. In addition, by modeling cellular inflammation, we have demonstrated that probe LN-NCS can detect changes in Cys concentration induced by cellular inflammation, providing a potential tool to better study the cellular inflammatory environment.
Collapse
Affiliation(s)
- Yukun Zhang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chen Xu
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Hui Sun
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jindong Ai
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
10
|
Zheng YL, Yu R, Li M, Fan C, Liu L, Zhang H, Kang W, Shi R, Li C, Li Y, Wang J, Zheng X. A dual-channel fluorescence probe for simultaneously visualizing cysteine and viscosity during drug-induced hepatotoxicity. Heliyon 2023; 9:e22276. [PMID: 38053901 PMCID: PMC10694328 DOI: 10.1016/j.heliyon.2023.e22276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Cysteine (Cys), one of the important participants in protecting cells from oxidative stress, is closely associated with the occurrence and development of various diseases. Moreover, cell viscosity as a pivotal microenvironmental parameter has recently attracted increasing attention due to its dominant role in governing intracellular signal transduction and diffusion of reactive metabolites. Thus, simultaneous detection of Cys and viscosity is imperative for investigating their pathophysiological functions and cross-link. Herein we present a mitochondria-targetable dual-channel fluorescence probe ABDSP by grafting the acrylate modified pyridinium unit to dimethylaminobenzene. Whilst the probe is a seemingly simple, it could simultaneously discriminate Cys and viscosity in a fashion of distinguishable signals. Furthermore, the probe was successfully employed for visualizing mitochondrial Cys and viscosity, and probe into their cross-link during acetaminophen-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ya-Long Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Ruixue Yu
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Mengbo Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Cailian Fan
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Li Liu
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Huijie Zhang
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Wenqian Kang
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Run Shi
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Changzhi Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yarui Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jiaqi Wang
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xinhua Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| |
Collapse
|
11
|
Kolińska J, Grzelakowska A, Szala M, Podsiadły R. Comparison of Reactive Sites in 2(1 H)-Quinolone Derivatives for the Detection of Biologically Important Sulfur Compounds. Molecules 2023; 28:5965. [PMID: 37630217 PMCID: PMC10459984 DOI: 10.3390/molecules28165965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Novel fluorescent probes based on 2(1H)-quinolone skeleton containing a malonate group (Q1-Q3) were synthesized and proposed for biothiols detection. Their chemical reactivity toward thiols was compared to the reactivity of derivative having a dicyanovinyl group (Q4) as a reactive site. The detailed photophysical properties of these compounds were assessed through the determination of absorption and fluorescence spectra, fluorescence quantum yield, and fluorescence lifetime. In the presence of biothiols, an increase in the fluorescence intensity of compounds Q1-Q3 and a hypsochromic shift in their emission bands were observed. In contrast, the compound with the dicyanovinyl group (Q4) in the presence of biothiols and cyanide ion showed the quenching of fluorescence, while a fluorescence "turn on" effect was observed toward reactive sulfur species.
Collapse
Affiliation(s)
- Jolanta Kolińska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (A.G.); (M.S.); (R.P.)
| | | | | | | |
Collapse
|
12
|
Yang X, Wang J, Zhang Z, Zhang B, Du X, Zhang J, Wang J. BODIPY-based fluorescent probe for cysteine detection and its applications in food analysis, test strips and biological imaging. Food Chem 2023; 416:135730. [PMID: 36889014 DOI: 10.1016/j.foodchem.2023.135730] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cysteine, as one of semi-essential amino acids, which is absorbed from protein-rich foods and acts considerable role in various physiological processes. Here, we designed and synthesized a BODIPY-based turn-on fluorescent probe BDP-S for detecting Cys. The probe displayed short reaction time (10 min), distinct color response (from blue to pink), large signal noise ratio (3150-fold), high selectivity and sensitivity (LOD = 11.2 nM) toward Cys. Moreover, BDP-S could not only be used for quantitative determination of Cys in food samples, but also be conveniently deposited on the test strips for qualitative detection of Cys. Notably, BDP-S was successfully used for imaging Cys in living cells and in vivo. Consequently, this work provided a hopefully powerful tool for detecting Cys in food samples and complex biological systems.
Collapse
Affiliation(s)
- Xiaokun Yang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| | - Zunlong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Bo Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University Kaifeng 475004, PR China
| | - Xiaolin Du
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University Kaifeng 475004, PR China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
13
|
Wu X, Jiao J, Xia Y, Yan X, Liu Z, Cao Y, Ma L. Case report: A Chinese patient with glutathione synthetase deficiency and a novel glutathione synthase mutation. Front Pediatr 2023; 11:1212405. [PMID: 37576147 PMCID: PMC10413980 DOI: 10.3389/fped.2023.1212405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Glutathione synthetase deficiency (GSSD) is an autosomal-recessive metabolic disorder caused by glutathione synthetase (GSS) gene mutations. No more than 90 cases of GSSD have been reported worldwide; thus, the spectrum of GSS mutations and the genotype-phenotype association remain unclear. Here, we present a severely affected infant carrying a compound heterozygous GSS variation, c.491G > A, and a novel variant of c.1343_1348delTACTTC. We also summarize the clinical manifestations, treatment protocol, prognosis, and genetic characteristics of previously reported GSSD cases in China. In this case study, our patient presented with tachypnea, jaundice, intractable metabolic acidosis, and hemolytic anemia. Urinary-organic acid analysis revealed elevated 5-oxoproline levels. Further, this patient showed improved outcomes owing to early diagnosis and the timely administration of vitamins C and E. Therefore, our study indicates that in clinical cases of unexplained hemolytic anemia and metabolic acidosis, GSSD should be considered. Additionally, genetic testing and antioxidant application might help identify GSSD and improve the prognosis.
Collapse
Affiliation(s)
- Xiaojiao Wu
- Department of Neonatology, Children’s Hospital of Hebei Province, Shijiazhuang, China
- Pediatric Clinical Research Centre of Hebei Province, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Jiancheng Jiao
- Department of Neonatology, Children’s Hospital of Hebei Province, Shijiazhuang, China
- Pediatric Clinical Research Centre of Hebei Province, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Yaofang Xia
- Department of Neonatology, Children’s Hospital of Hebei Province, Shijiazhuang, China
- Pediatric Clinical Research Centre of Hebei Province, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Xiaotong Yan
- Pediatric Clinical Research Centre of Hebei Province, Children's Hospital of Hebei Province, Shijiazhuang, China
- Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Zehao Liu
- Pediatric Clinical Research Centre of Hebei Province, Children's Hospital of Hebei Province, Shijiazhuang, China
- Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Yanyan Cao
- Pediatric Clinical Research Centre of Hebei Province, Children's Hospital of Hebei Province, Shijiazhuang, China
- Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Li Ma
- Department of Neonatology, Children’s Hospital of Hebei Province, Shijiazhuang, China
- Pediatric Clinical Research Centre of Hebei Province, Children's Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
14
|
Zhang J, Abdulkhaleq AMA, Wang J, Zhou X. Rational design of a novel acryl-modified CQDs fluorescent probe for highly selective detection and imaging of cysteine in vitro and in vivo. Mikrochim Acta 2023; 190:331. [PMID: 37501043 DOI: 10.1007/s00604-023-05919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
A novel fluorescent nanoprobe CQDs-O-Acryl has been designed and synthesized to directly and accurately identify Cys over other biothiols in PBS (10 mM, pH 7.4) buffer. The carbon quantum dots (CQDs-OH) (λex/em maxima = 495/525 nm) were fabricated by a solvothermal method using resorcinol as the carbon source. The CQDs-O-Acryl was achieved through covalently grafting the acryloyl group on the surface of carbon quantum dots by nuclear reaction based on static quenching. The structure and morphology of CQDs-OH and CQDs-O-Acryl have been characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and UV-vis absorption spectroscopy. Upon the addition of Cys, the ester bond of CQDs-O-Acryl has been broken, and the free CQDs were released by conjugated addition and cyclization reactions successively, emitting strong green fluorescence at 525 nm (λex = 495 nm). Under the optimized conditions, CQDs-O-Acryl exhibited good sensing of Cys within the range 0.095-16 μM (the LOD of 0.095 μM). Due to the high sensitivity, reliability, fast fluorescence response (10 min), and low toxicity of CQDs-O-Acryl, it was successfully applied to fluorescence imaging of Cys in A549 cells and zebrafish.
Collapse
Affiliation(s)
- Jie Zhang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | | | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Xibin Zhou
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| |
Collapse
|
15
|
Hameed MQ, Hodgson N, Lee HHC, Pascual-Leone A, MacMullin PC, Jannati A, Dhamne SC, Hensch TK, Rotenberg A. N-acetylcysteine treatment mitigates loss of cortical parvalbumin-positive interneuron and perineuronal net integrity resulting from persistent oxidative stress in a rat TBI model. Cereb Cortex 2023; 33:4070-4084. [PMID: 36130098 PMCID: PMC10068300 DOI: 10.1093/cercor/bhac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) increases cerebral reactive oxygen species production, which leads to continuing secondary neuronal injury after the initial insult. Cortical parvalbumin-positive interneurons (PVIs; neurons responsible for maintaining cortical inhibitory tone) are particularly vulnerable to oxidative stress and are thus disproportionately affected by TBI. Systemic N-acetylcysteine (NAC) treatment may restore cerebral glutathione equilibrium, thus preventing post-traumatic cortical PVI loss. We therefore tested whether weeks-long post-traumatic NAC treatment mitigates cortical oxidative stress, and whether such treatment preserves PVI counts and related markers of PVI integrity and prevents pathologic electroencephalographic (EEG) changes, 3 and 6 weeks after fluid percussion injury in rats. We find that moderate TBI results in persistent oxidative stress for at least 6 weeks after injury and leads to the loss of PVIs and the perineuronal net (PNN) that surrounds them as well as of per-cell parvalbumin expression. Prolonged post-TBI NAC treatment normalizes the cortical redox state, mitigates PVI and PNN loss, and - in surviving PVIs - increases per-cell parvalbumin expression. NAC treatment also preserves normal spectral EEG measures after TBI. We cautiously conclude that weeks-long NAC treatment after TBI may be a practical and well-tolerated treatment strategy to preserve cortical inhibitory tone post-TBI.
Collapse
Affiliation(s)
- Mustafa Q Hameed
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Nathaniel Hodgson
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Henry H C Lee
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Andres Pascual-Leone
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Paul C MacMullin
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Ali Jannati
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Sameer C Dhamne
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, United States
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
16
|
Selective colorimetric recognition of cysteine/Fe3+ ions using chalcone derived titanium nanocomposites in aqueous solution and human blood. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Li L, Liu Q, Cai R, Ma Q, Mao G, Zhu N, Liu S. A novel rhodamine-based fluorescent probe for high selectively determining cysteine in lysosomes. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Kinoshita C, Kubota N, Aoyama K. Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. Int J Mol Sci 2022; 23:15076. [PMID: 36499400 PMCID: PMC9740333 DOI: 10.3390/ijms232315076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
19
|
Tan H, Zou Y, Guo J, Chen J, Zhou L. A simple lysosome-targeted fluorescent probe based on flavonoid for detection of cysteine in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121552. [PMID: 35759931 DOI: 10.1016/j.saa.2022.121552] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Cysteine (Cys) is one of the most important biothiols that plays a crucial role in many physiological and pathological processes, and therefore it is of great importance to detect and analyze Cys in subcellular environments, such as in lysosomes. However, only a few fluorescent probes were reported to be capable of detecting Cys in lysosomes selectively. In this wok, we designed and developed a simple, accessible flavone-based fluorescent probe LFA for detecting Cys in lysosomes. Morpholine was employed as the targeting unit for lysosome, and acrylate group was chosen as the Cys-response unit. The probe was easily prepared by a two-step procedure and displayed large Stokes shift, high sensitivity, turn-on response toward Cys over homocysteine (Hcy), glutathione (GSH), and other amino acids. With low cytotoxicity and good cell permeability, the probe could be successfully applied for fluorescence imaging of Cys in living cells. Furthermore, colocalization experiment revealed that lysosomal-targetable ability of LFA was significant. These results indicated that such simple fluorescent probe could provide a promising tool for detection of lysosomal Cys in living biological systems.
Collapse
Affiliation(s)
- Huiya Tan
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, No. 1 Tianqiang Road, Tianhe District, Guangzhou 510620, Guangdong, PR China; Medical Devices Research & Testing Center, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Yake Zou
- Medical Devices Research & Testing Center, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jiaming Guo
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, No. 1 Tianqiang Road, Tianhe District, Guangzhou 510620, Guangdong, PR China
| | - Jiu Chen
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, No. 1 Tianqiang Road, Tianhe District, Guangzhou 510620, Guangdong, PR China
| | - Liping Zhou
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, No. 1 Tianqiang Road, Tianhe District, Guangzhou 510620, Guangdong, PR China.
| |
Collapse
|
20
|
Monitoring the fluctuations of cysteine activity in living cells using a near-infrared fluorescence probe. Talanta 2022; 261:124119. [DOI: 10.1016/j.talanta.2022.124119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
21
|
Peng F, Zhou X, Cheng W, Ma J, Jiang H. A Carbon Dots Probe for Specific Determination of Cysteine based on Inner Filter Effect. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Catalase-mimicking synthetic nano-enzymes can reduce lipopolysaccharide-induced reactive oxygen generation and promote rapid detection of hydrogen peroxide and l-cysteine. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Reactive Sulfur Species (RSS) in Physiological and Pathological Conditions and in Therapy. Antioxidants (Basel) 2022; 11:antiox11081576. [PMID: 36009294 PMCID: PMC9405001 DOI: 10.3390/antiox11081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Sulfur is a multivalent and nonmetallic chemical element with the symbol S and the atomic number 16 [...]
Collapse
|
24
|
Mei Y, Song QH. Real-time, sensitive and simultaneous detection of GSH and Cys/Hcy by 8-substituted phenylselenium BODIPYs: a structure-activity relationship. J Mater Chem B 2022; 10:6009-6017. [PMID: 35880906 DOI: 10.1039/d2tb01189a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time and sensitive detection of biothiols is the key to biomedical research and clinical diagnosis. It is necessary to develop a highly sensitive and selective fluorescent probe for the detection of biothiols. In this paper, we have developed a series of meso-arylselenium BODIPY probes for the rapid and sensitive detection of biothiols and the dual-channel discrimination of GSH and Cys/Hcy. A structure-activity relationship was established from five p-substituted phenylselenium (R = NO2, F, H, OCH3 or N(CH2CH2)2O) BODIPYs. Compared with most reported fluorescent probes, such as meso-BODIPY sulfur ethers, these probes display much lower LODs (∼nM levels) and more rapid responses, which are ascribed to the higher fluorescence efficiencies of the sensing products (Φf = 0.48 for GSH, 0.18 for Cys and 0.14 for Hcy) and the introduction of arylselenium, which is more active than arylthiol. Among them, the best sensing performance is that of probe 2a (R = NO2); therefore, a structure-activity relationship of these fluorescent probes was also obtained. The excellent sensing performance was further revealed in the detection of GSH and Cys/Hcy in live cells.
Collapse
Affiliation(s)
- Yuan Mei
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
25
|
Zheng C, Zhou X, Wang H, Ji M, Wang P. A novel ratiometric fluorescent probe for the detection and imaging of cysteine in living cells. Bioorg Chem 2022; 127:106003. [DOI: 10.1016/j.bioorg.2022.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
|
26
|
Lomont JP, Smith JP. In situ Raman spectroscopy for real time detection of cysteine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121068. [PMID: 35276471 DOI: 10.1016/j.saa.2022.121068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Cysteine serves a wide range of important biological and chemical functions and may have an association to neurodegenerative disease and cancer. Rapid, accurate analytical methods for cysteine detection are thus highly desirable. In this work, we report an investigation into the utility of in situ Raman spectroscopy as a Process Analytical Technology (PAT) for real time monitoring of cysteine. Cysteine concentrations are tracked in real time using Raman spectroscopy across a range of pharmaceutically-relevant concentrations, demonstrating the capability of Raman spectroscopy detection for in situ cysteine monitoring. The concentration range over which this analytical methodology can be applied is successfully established. As such, the results herein serve as a proof-of-principle investigation to demonstrate and evaluate the capabilities of a real time Raman spectroscopic approach for in situ cysteine detection, thus informing the range of important chemical and biological processes to which this approach can be applied. To the best of our knowledge, this is the first report of in situ Raman spectroscopy for real time monitoring of dynamically changing cysteine process concentrations.
Collapse
Affiliation(s)
- Justin P Lomont
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Joseph P Smith
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA 19486, USA.
| |
Collapse
|
27
|
Zhang J, Zhang Y, Guo Q, Wen G, Xiao H, Qi S, Wang Y, Zhang H, Wang L, Sun H. Photoacoustic/Fluorescence Dual-Modality Probe for Biothiol Discrimination and Tumor Diagnosis in Cells and Mice. ACS Sens 2022; 7:1105-1112. [PMID: 35357825 DOI: 10.1021/acssensors.2c00058] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing probes to simultaneously detect and discriminate biothiols is important, yet challenging. Activatable photoacoustic (PA) probes for discriminating biothiols in vivo are still lacking, and this hinders the diagnosis of thiol-related diseases. Herein we present the first PA and fluorescence dual-modality probe MB-NBD for discriminating different biothiol species. The probe has the advantages of both fluorescence imaging and PA imaging (high sensitivity and deep penetration) with distinct signal patterns toward hydrogen sulfide (H2S), cysteine/homocysteine (Cys/Hcy), and glutathione (GSH) treatment. The biothiol-activated product of MB-NBD exhibits enhancements in near-infrared fluorescence (NIRF) at 690 nm and absorbance/PA at 664 nm upon fast reaction, allowing it to selectively detect biothiol species over other reactive species. On the other hand, MB-NBD displays characteristic absorbance enhancement at 547 nm toward H2S, rendering specific detection of H2S. In addition, the specific enhancements in absorbance/PA at 470 nm and fluorescence at 550 nm toward Cys/Hcy treatment endows the probe with the capability of selectively detecting Cys/Hcy. Furthermore, MB-NBD is able to discriminate Cys and GSH by fluorescent imaging in live-cell and ratiometric PA imaging in mice experiments. MB-NBD has been successfully used to diagnose tumors by dual-channel ratiometric PA imaging.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qiang Guo
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Guohua Wen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hanyue Xiao
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Shuo Qi
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421200, China
| | - Yue Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lidai Wang
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
28
|
Stewart A, Glaser E, Mott CA, Bailey WM, Sulllivan PG, Patel S, Gensel J. Advanced Age and Neurotrauma Diminish Glutathione and Impair Antioxidant Defense after Spinal Cord Injury. J Neurotrauma 2022; 39:1075-1089. [PMID: 35373589 PMCID: PMC9347421 DOI: 10.1089/neu.2022.0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Andrew Stewart
- University of Kentucky, Physiology, 741 S. Limestone Street, BBSRB B483, Lexington, Kentucky, United States, 40536-0509,
| | - Ethan Glaser
- University of Kentucky, Physiology, Lexington, Kentucky, United States,
| | - Caitlin A Mott
- University of Kentucky, Physiology, Lexington, Kentucky, United States,
| | - William M Bailey
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Physiology, Lexington, Kentucky, United States
| | - Patrick G Sulllivan
- University of Kentucky College of Medicine, Spinal Cord & Brain Injury Research Cent, 475 BBSRB, Lexington, United States, 40536-0509,
| | - Samir Patel
- University of Kentucky, 4530, Spinal Cord and Brain Injury Research Center, Physiology, Lexington, Kentucky, United States
| | - John Gensel
- University of Kentucky, Physiology, 741 S. Limestone Street, B436 BBSRB, Lexington, Kentucky, United States, 40536-0509
| |
Collapse
|
29
|
Li Y, Liu G, Ji D, He Y, Chen Q, Zhang F, Liu Q. Smartphone-based label-free photoelectrochemical sensing of cysteine with cadmium ion chelation. Analyst 2022; 147:1403-1409. [PMID: 35234782 DOI: 10.1039/d2an00017b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an important amino acid, cysteine is related to the development of various diseases. The quantitative detection of cysteine is of great significance for both disease diagnosis and treatment. The current labeling methods mainly rely on fluorescent probes, making it difficult for quantitative cysteine detection in point-of-care testing (POCT). In this study, we proposed a label-free method for cysteine quantification by novel photoelectrochemical (PEC) sensing using a specific ion chelation probe. An indium tin oxide electrode loaded with nanoscale graphitic carbon nitride (g-C3N4) was used as the PEC electrode and gold nanoparticle modification was performed to further promote the charge transfer efficiency for enhanced photocurrent detection. Cadmium ions (Cd2+) were employed as the specific ion chelation probe for cysteine detection, and the formed Cd2+/cysteine chelate complex served as the electron acceptor for sensitive PEC sensing under low-power LED illumination. A portable PEC system was developed for quantitative detection of cysteine by integrating the PEC sensor, a self-designed detection circuit and a smartphone. The detected photocurrents changed linearly with the cysteine concentrations ranging from 0 μM to 40 μM, and the limit of detection is calculated to be 9.2 μM. To demonstrate the capability of this system, cysteine in spiked urine samples was quantified with a recovery rate of 96.1%-100.57%. This system provides high portability, sufficient accuracy and sensitivity, and greatly reduces the complexity and cost of point-of-care cysteine detection.
Collapse
Affiliation(s)
- Yaru Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Daizong Ji
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Yan He
- Department of Computer, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Qingmei Chen
- Department of Computer, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| |
Collapse
|
30
|
Shaikh DS, Parmar S, Kalia D. Michael addition–elimination–cyclization based turn-on fluorescence (MADELCY TOF) probes for cellular cysteine imaging and estimation of blood serum cysteine and aminoacylase-1. Analyst 2022; 147:3876-3884. [DOI: 10.1039/d2an00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Michael addition–elimination–cyclization based turn-on fluorescence (MADELCY TOF) probes for the highly sensitive estimation of Cys and aminoacylase-1 (ACY-1).
Collapse
Affiliation(s)
- Dastgir Shakil Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Sangeeta Parmar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Dimpy Kalia
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| |
Collapse
|
31
|
Gao Z, Zhang L, Yan M, Liu H, Lu S, Lian H, Zhang P, Zhu J, Jin M. A near-infrared fluorescence turn-on probe based on Michael addition-intramolecular cyclization for specific detection of cysteine and its applications in environmental water and milk samples and living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5369-5376. [PMID: 34734940 DOI: 10.1039/d1ay01341f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to its important biological functions in many physiological and pathological processes, it is necessary to develop efficient and appropriate detection methods for monitoring the levels of Cys in biological systems. Based on this, a novel rhodol-isophorone derivative (RHI) was designed and synthesized as a reaction-based fluorescence probe for specific detection of Cys with high sensitivity and large Stokes shift (155 nm). This probe was composed of an acrylate moiety (recognition group) and a rhodol-isophorone derivative (fluorophore). Probe RHI could react with Cys rapidly (15 min) with a 100-fold fluorescence enhancement. The limit of detection value was calculated to be 0.168 μM. When Cys was added, the color of the probe RHI solution turned from yellow to blue, indicating that Cys could be monitored by the naked eye. In addition, probe RHI was successfully utilized for detecting Cys in environmental water and milk samples. More importantly, the probe could be applied to imaging Cys in living cells with low cytotoxicity and good biocompatibility.
Collapse
Affiliation(s)
- Zhigang Gao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China.
| | - Ling Zhang
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xialin Dadao, 210023, P. R. China.
| | - Minchuan Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China.
| | - Haibo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China.
| | - Shaohui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China.
| | - Huihui Lian
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China.
| | - Peng Zhang
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xialin Dadao, 210023, P. R. China.
| | - Jing Zhu
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xialin Dadao, 210023, P. R. China.
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China.
| |
Collapse
|
32
|
Ma K, Yue Y, Zhao L, Chao J, Yin C. A sequentially activated bioluminescent probe for observation of cellular H 2O 2 production induced by cysteine. Chem Commun (Camb) 2021; 57:10015-10018. [PMID: 34505120 DOI: 10.1039/d1cc04015d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein a caged luciferin probe Cy-Hy as a sequentially activated probe to selectively and sensitively sense L-Cys and H2O2. The probe displayed fluorescence and bioluminescence responses toward the two analytes. Utilizing the present probe, cellular excess L-Cys-induced H2O2 up-regulation was observed for the first time in living MDA-MB-231 cells.
Collapse
Affiliation(s)
- Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Lingling Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Jianbin Chao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
33
|
Xu Z, Si S, Zhang Z, Tan H, Qin T, Wang Z, Wang D, Wang L, Liu B. A fluorescent probe with dual acrylate sites for discrimination of different concentration ranges of cysteine in living cells. Anal Chim Acta 2021; 1176:338763. [PMID: 34399901 DOI: 10.1016/j.aca.2021.338763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 11/15/2022]
Abstract
Monitoring of cysteine (Cys) is of significant importance for studying Cys-involved biological functions and clinically diagnosing Cys-related diseases. Recently, few fluorescent probes with two different reacting sites were reported to be capable of sensing different concentration ranges of Cys with distinct fluorescence signals, particularly suiting for bioimaging. However, due to relative sophisticated synthesis and moderate selectivity, the applications of these probes were still severely restricted. In this work, we proposed a novel probe design strategy by utilizing two same reacting groups, instead of two different reacting groups, to simplify the synthesis route and minimize the interference from competing species. Same reacting groups in a probe with different steric hindrances could exhibit different reactivities to Cys. This probe showed distinguishable fluorescence peak wavelengths towards low and high concentration ranges of Cys, giving green and blue emissions, respectively. Moreover, this probe was successfully applied for monitoring of Cys concentration in living cells. We believe this work provided a simpler strategy for dual-site fluorescent probes to sense difference concentration ranges of Cys, which may inspire more probe design in future.
Collapse
Affiliation(s)
- Zhongyong Xu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China; College of Physics and Optoelectronic Engineering, China
| | - Shufan Si
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Zhijun Zhang
- College of Physics and Optoelectronic Engineering, China; Center for AIE Research, Shenzhen University, Shenzhen, 518060, China
| | - Huiya Tan
- Medical Device Research and Testing Center of South China University of Technology, South China University of Technology, Guangzhou, 510006, China
| | - Tianyi Qin
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Zhonglin Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Dong Wang
- College of Physics and Optoelectronic Engineering, China; Center for AIE Research, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China.
| |
Collapse
|
34
|
Crawford RA, Bowman KR, Cagle BS, Doorn JA. In vitro inhibition of glutathione-S-transferase by dopamine and its metabolites, 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylacetic acid. Neurotoxicology 2021; 86:85-93. [PMID: 34314733 DOI: 10.1016/j.neuro.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Parkinson's disease is characterized by dopamine dyshomeostasis and oxidative stress. The aldehyde metabolite of dopamine, 3,4-dihydroxyphenylacetaldehyde (DOPAL), has been reported to be cytotoxic and capable of protein modification. Protein modification by DOPAL has been implicated in the pathogenesis of Parkinson's disease, but the complete pathology is unknown. Our findings show that DOPAL modifies glutathione S-transferase (GST), an important enzyme in the antioxidant defense system. DOPAL, dopamine, and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), inhibited the activity of GST isolated from N27 dopaminergic cells at an IC50 of 31.46 μM, 82.32 μM, and 260.0 μM, respectively. DOPAL, dopamine, and DOPAC inhibited commercially available equine liver GST at an IC50 of 23.72 μM, 32.17 μM, and 73.70 μM, respectively. This inhibition was time dependent and irreversible. 1 mM ʟ-cysteine or glutathione fully protected GST activity from DOPAL, DA, and DOPAC inhibition. 1 mM carnosine partially protected GST activity from DA inhibition. Furthermore, ʟ-cysteine was found to protect GST by forming a putative thiazolidine conjugate with DOPAL. We conclude that GST inactivation may be a part of the broader etiopathology of Parkinson's disease.
Collapse
Affiliation(s)
- Rachel A Crawford
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Kate R Bowman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Brianna S Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
35
|
Yue J, Wang N, Wang J, Tao Y, Wang H, Liu J, Zhang J, Jiao J, Zhao W. Three asymmetric BODIPY derivatives as fluorescent probes for highly selective and sensitive detection of cysteine in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2908-2914. [PMID: 34156044 DOI: 10.1039/d1ay00740h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biothiols are widely involved in various important physiological activities and play a significant role in maintaining redox homeostasis in living organisms. Herein, we designed and synthesized three new asymmetric fluorescent probes (BDP-S-Ph, BDP-S-ENE and BDP-S-R) to discriminate Cys from Hcy/GSH. These probes reacted with Cys to form meso-amino-BODIPYs via SNAr substitution-rearrangement, thereby inducing a fluorescence turn-on effect. Moreover, they could selectively and sensitively detect Cys in solution with low detection limits (50 nM, 28 nM and 87 nM, respectively). Through comparing the response rates of the three probes to Cys, we concluded that the increase of conformational restrictions led to a decrease in probe reactivity. Besides, the sensing mechanism was demonstrated by mass spectrometry. Furthermore, cell experiments indicated that the probes were able to image exogenous and endogenous Cys through green or red channels in living cells.
Collapse
Affiliation(s)
- Jinlei Yue
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Jiamin Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China. and Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, P. R. China
| | - Yuanfang Tao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Han Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Jinying Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Junrong Jiao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China. and School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
36
|
Pedre B, Barayeu U, Ezeriņa D, Dick TP. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H 2S and sulfane sulfur species. Pharmacol Ther 2021; 228:107916. [PMID: 34171332 DOI: 10.1016/j.pharmthera.2021.107916] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Initially adopted as a mucolytic about 60 years ago, the cysteine prodrug N-acetylcysteine (NAC) is the standard of care to treat paracetamol intoxication, and is included on the World Health Organization's list of essential medicines. Additionally, NAC increasingly became the epitome of an "antioxidant". Arguably, it is the most widely used "antioxidant" in experimental cell and animal biology, as well as clinical studies. Most investigators use and test NAC with the idea that it prevents or attenuates oxidative stress. Conventionally, it is assumed that NAC acts as (i) a reductant of disulfide bonds, (ii) a scavenger of reactive oxygen species and/or (iii) a precursor for glutathione biosynthesis. While these mechanisms may apply under specific circumstances, they cannot be generalized to explain the effects of NAC in a majority of settings and situations. In most cases the mechanism of action has remained unclear and untested. In this review, we discuss the validity of conventional assumptions and the scope of a newly discovered mechanism of action, namely the conversion of NAC into hydrogen sulfide and sulfane sulfur species. The antioxidative and cytoprotective activities of per- and polysulfides may explain many of the effects that have previously been ascribed to NAC or NAC-derived glutathione.
Collapse
Affiliation(s)
- Brandán Pedre
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Daria Ezeriņa
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
37
|
An origin of carotid vasodilation extends along the full extent of the parasympathetic parvicellular reticular region in the rat brainstem. Auton Neurosci 2021; 232:102786. [DOI: 10.1016/j.autneu.2021.102786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/05/2023]
|
38
|
Takemoto Y. Parasympathetic brainstem origin sites of triggered external and internal carotid vasodilation are not distributed topographically in the rat. Neurosci Lett 2021; 755:135904. [PMID: 33894332 DOI: 10.1016/j.neulet.2021.135904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
Cranial parasympathetic activation produces vasodilation in the head and neck region, but little is known about its central and peripheral mechanisms. This study was conducted to examine whether external and internal carotid-vasodilation origin sites triggered by chemical stimulation are distributed topographically in the parasympathetic brainstems of anesthetized rats, and to examine the effects of peripheral receptors on vasodilation. Microinjection of the neuromodulator candidate l-cysteine revealed that external and internal carotid vasodilation-triggering sites were distributed non-topographically along the full extent of the parasympathetic parvocellular reticular formation (PcRt). Intravenous injection of a muscarinic blocker and a nitric oxide synthase inhibitor abolished external carotid vasodilation, suggesting the peripheral involvement of muscarinic and nitric oxide receptors. Further work is needed to fully understand the PcRt mechanisms underlying timely and appropriate vasodilation to support various cranial functions.
Collapse
Affiliation(s)
- Yumi Takemoto
- Department of Physiology II, Graduate School of Biomedical and Health Sciences (Medicine), Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
39
|
Kinoshita C, Aoyama K. The Role of Non-Coding RNAs in the Neuroprotective Effects of Glutathione. Int J Mol Sci 2021; 22:ijms22084245. [PMID: 33921907 PMCID: PMC8073493 DOI: 10.3390/ijms22084245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The establishment of antioxidative defense systems might have been mandatory for most living beings with aerobic metabolisms, because oxygen consumption produces adverse byproducts known as reactive oxygen species (ROS). The brain is especially vulnerable to the effect of ROS, since the brain has large amounts of unsaturated fatty acids, which are a target of lipid oxidation, as well as comparably high-energy consumption compared to other organs that results in ROS release from mitochondria. Thus, dysregulation of the synthesis and/or metabolism of antioxidants-particularly glutathione (GSH), which is one of the most important antioxidants in the human body-caused oxidative stress states that resulted in critical diseases, including neurodegenerative diseases in the brain. GSH plays crucial roles not only as an antioxidant but also as an enzyme cofactor, cysteine storage form, the major redox buffer, and a neuromodulator in the central nervous system. The levels of GSH are precisely regulated by uptake systems for GSH precursors as well as GSH biosynthesis and metabolism. The rapid advance of RNA sequencing technologies has contributed to the discovery of numerous non-coding RNAs with a wide range of functions. Recent lines of evidence show that several types of non-coding RNAs, including microRNA, long non-coding RNA and circular RNA, are abundantly expressed in the brain, and their activation or inhibition could contribute to neuroprotection through the regulation of GSH synthesis and/or metabolism. Interestingly, these non-coding RNAs play key roles in gene regulation and growing evidence indicates that non-coding RNAs interact with each other and are co-regulated. In this review, we focus on how the non-coding RNAs modulate the level of GSH and modify the oxidative stress states in the brain.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-1211 (K.A.)
| | - Koji Aoyama
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-1211 (K.A.)
| |
Collapse
|
40
|
Cai S, Liu C, Jiao X, Zhao L, Zeng X. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells. J Mater Chem B 2021; 8:2269-2274. [PMID: 32100785 DOI: 10.1039/c9tb02609f] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cysteine (Cys) is one of the most important essential biothiols in lysosomes. Highly selective probes for specific detection and imaging of lysosomal Cys over other biological thiols are rare. Herein, we developed a lysosome-targeted near-infrared fluorescent probe SHCy-C based on a novel NIR-emitting thioxanthene-indolium dye. Due to the turn-on fluorescence response elicited by the intramolecular charge transfer (ICT) processes before and after the reaction with Cys, probe SHCy-C exhibits high selectivity and sensitivity (16 nM) for the detection of Cys. More importantly, probe SHCy-C is found to precisely target lysosomes and achieves the "turn-on" detection and imaging of endogenous Cys in lysosomes.
Collapse
Affiliation(s)
- Songtao Cai
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xianshun Zeng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China and Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
41
|
Singh G, Chowdhary K, Singh A, Satija P, Shilpy, Diksha, Suman, Sushma, Mohit. Benzothiazole Encapped Silane and Its Nano Composites for Sequential Detection of Copper Ions and Cysteine in Aqueous Solution. ChemistrySelect 2021. [DOI: 10.1002/slct.202002948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Kavita Chowdhary
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Akshpreet Singh
- Department of Chemistry GGDSD College, Sector-32 Chandigarh India
| | - Pinky Satija
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Shilpy
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Diksha
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Suman
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Sushma
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Mohit
- Department of Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
42
|
Yang S, Wang T, Zhou Y, Shi L, Lu A, Wang Z. Discovery of Cysteine and Its Derivatives as Novel Antiviral and Antifungal Agents. Molecules 2021; 26:E383. [PMID: 33450940 PMCID: PMC7828423 DOI: 10.3390/molecules26020383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
Based on the structure of the natural product cysteine, a series of thiazolidine-4-carboxylic acids were designed and synthesized. All target compounds bearing thiazolidine-4-carboxylic acid were characterized by 1H-NMR, 13C-NMR, and HRMS techniques. The antiviral and antifungal activities of cysteine and its derivatives were evaluated in vitro and in vivo. The results of anti-TMV activity revealed that all compounds exhibited moderate to excellent activities against tobacco mosaic virus (TMV) at the concentration of 500 μg/mL. The compounds cysteine (1), 3-4, 7, 10, 13, 20, 23, and 24 displayed higher anti-TMV activities than the commercial plant virucide ribavirin (inhibitory rate: 40, 40, and 38% at 500 μg/mL for inactivation, curative, and protection activity in vivo, respectively), especially compound 3 (inhibitory rate: 51%, 47%, and 49% at 500 μg/mL for inactivation, curative, and protection activity in vivo, respectively) with excellent antiviral activity emerged as a new antiviral candidate. Antiviral mechanism research by TEM exhibited that compound 3 could inhibit virus assembly by aggregated the 20S protein disk. Molecular docking results revealed that compound 3 with higher antiviral activities than that of compound 24 did show stronger interaction with TMV CP. Further fungicidal activity tests against 14 kinds of phytopathogenic fungi revealed that these cysteine derivatives displayed broad-spectrum fungicidal activities. Compound 16 exhibited higher antifungal activities against Cercospora arachidicola Hori and Alternaria solani than commercial fungicides carbendazim and chlorothalonil, which emerged as a new candidate for fungicidal research.
Collapse
Affiliation(s)
- Shan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Tienan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Yanan Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Li Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
43
|
Takemoto Y. Topographic carotid vasoconstriction in the rostral ventrolateral medulla of rats. Auton Neurosci 2020; 229:102720. [DOI: 10.1016/j.autneu.2020.102720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
|
44
|
Novel cascade reaction-based fluorescent cyanine chemosensor for cysteine detection and bioimaging in living system. Talanta 2020; 219:121291. [DOI: 10.1016/j.talanta.2020.121291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
|
45
|
Dalangin R, Kim A, Campbell RE. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int J Mol Sci 2020; 21:E6197. [PMID: 32867295 PMCID: PMC7503967 DOI: 10.3390/ijms21176197] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Neurotransmission between neurons, which can occur over the span of a few milliseconds, relies on the controlled release of small molecule neurotransmitters, many of which are amino acids. Fluorescence imaging provides the necessary speed to follow these events and has emerged as a powerful technique for investigating neurotransmission. In this review, we highlight some of the roles of the 20 canonical amino acids, GABA and β-alanine in neurotransmission. We also discuss available fluorescence-based probes for amino acids that have been shown to be compatible for live cell imaging, namely those based on synthetic dyes, nanostructures (quantum dots and nanotubes), and genetically encoded components. We aim to provide tool developers with information that may guide future engineering efforts and tool users with information regarding existing indicators to facilitate studies of amino acid dynamics.
Collapse
Affiliation(s)
- Rochelin Dalangin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Anna Kim
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Tao Y, Ji X, Zhang J, Jin Y, Wang N, Si Y, Zhao W. Detecting Cysteine in Bioimaging with a Near‐Infrared Probe Based on a Novel Fluorescence Quenching Mechanism. Chembiochem 2020; 21:3131-3136. [DOI: 10.1002/cbic.202000313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/17/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Yuanfang Tao
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Jinming Campus Kaifeng 475004 P. R. China
| | - Xin Ji
- School of Pharmacy, Institutes of Integrative Medicine Fudan University Shanghai 201203 P. R. China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Jinming Campus Kaifeng 475004 P. R. China
| | - Yue Jin
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Jinming Campus Kaifeng 475004 P. R. China
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Jinming Campus Kaifeng 475004 P. R. China
| | - Yubing Si
- College of Chemistry Zhengzhou University Zhengzhou 450006 P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Jinming Campus Kaifeng 475004 P. R. China
- School of Pharmacy, Institutes of Integrative Medicine Fudan University Shanghai 201203 P. R. China
| |
Collapse
|
47
|
Fang H, Chen Y, Wang Y, Geng S, Yao S, Song D, He W, Guo Z. A dual-modal probe for NIR fluorogenic and ratiometric photoacoustic imaging of Cys/Hcy in vivo. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9688-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Takemoto Y. Muscle vasodilator response via potential adrenaline secretion to L-cysteine microinjected in rostral ventrolateral medulla of rats. Auton Neurosci 2020; 224:102644. [DOI: 10.1016/j.autneu.2020.102644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
|
49
|
Li HW, Lan TJ, Yun CX, Yang KD, Du ZC, Luo XF, Hao EW, Deng JG. Mangiferin exerts neuroprotective activity against lead-induced toxicity and oxidative stress via Nrf2 pathway. CHINESE HERBAL MEDICINES 2020; 12:36-46. [PMID: 36117559 PMCID: PMC9476390 DOI: 10.1016/j.chmed.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hao-wen Li
- Community Health Services Management center, University of Chinese Academy of Sciences – Shenzhen Hospital, Shenzhen 518106, China
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Tai-jin Lan
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chen-xia Yun
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ke-di Yang
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng-cai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xue-fei Luo
- Department of Clinical Laboratory, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Er-wei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jia-gang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
- Corresponding author.
| |
Collapse
|
50
|
Huang H, Ji X, Jiang Y, Zhang C, Kang X, Zhu J, Sun L, Yi L. NBD-based fluorescent probes for separate detection of cysteine and biothiols via different reactivities. Org Biomol Chem 2020; 18:4004-4008. [DOI: 10.1039/d0ob00040j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A NBD-based fluorescent probe is developed to seperately detect Cys and all biothiols via different reactivity.
Collapse
Affiliation(s)
- Haojie Huang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiuru Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Yaqing Jiang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Changyu Zhang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xueying Kang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jiqin Zhu
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Long Yi
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|