1
|
Zalfa F, Manca P, Carotti S, Vallese S, Righi D, Taffon C, Nibid L, Sbaraglia M, Rabitti C, Pantano F, Tonini G, Dei Tos AP, Vincenzi B, Perrone G. A Nanostring gene expression approach identifies aggressive clinical behavior related genes in dedifferentiated liposarcoma. Sci Rep 2025; 15:9204. [PMID: 40097500 PMCID: PMC11914264 DOI: 10.1038/s41598-025-91791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is one of the most common subtypes of soft tissue sarcoma with a highly variable clinical behavior. Despite advanced molecular approaches are exploring the genetic panorama of DDLPS progression, to date the driver genes of the aggressive clinical behavior in DDLPS have not been identified yet. Here, we used a Nanostring nCounter approach to study the gene expression profile of 60 selected genes involved in DDLPS progression, in a cohort of DDLPS with aggressive clinical behavior, in comparison to a cohort of DDLPS with indolent clinical behavior. We identified five genes whose expression is significantly and consistently altered in aggressive compared to indolent DDLPS. Moreover, by a clinical outcome analyses we found MAP3K12 gene expression linked with both a higher risk of metastases and death. We envisage that the identified genes could represent the first genes of a genetic signature able to predict the clinical evolution of a DDLPS.
Collapse
Affiliation(s)
- Francesca Zalfa
- Operative Research Unit of Predictive Molecular Diagnostic, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy.
- Research Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine and Surgery, Università Campus Bio-Medico, Rome, Italy.
| | - Paolo Manca
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Simone Carotti
- Operative Research Unit of Predictive Molecular Diagnostic, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine and Surgery, Università Campus Bio-Medico, Rome, Italy
| | - Silvia Vallese
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Daniela Righi
- Operative Research Unit of Predictive Molecular Diagnostic, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Chiara Taffon
- Operative Research Unit of Anatomical Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Anatomical Pathology, Department of Medicine, Università Campus Bio-Medico, Rome, Italy
| | - Lorenzo Nibid
- Operative Research Unit of Anatomical Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Anatomical Pathology, Department of Medicine, Università Campus Bio-Medico, Rome, Italy
| | - Marta Sbaraglia
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Pathology Unit, University-Hospital of Padua, Padua, Italy
| | - Carla Rabitti
- Operative Research Unit of Anatomical Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Pantano
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Oncology, Department of Medicine and Surgery, Università Campus Bio-Medico, Rome, Italy
| | - Giuseppe Tonini
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Oncology, Department of Medicine and Surgery, Università Campus Bio-Medico, Rome, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Pathology Unit, University-Hospital of Padua, Padua, Italy
| | - Bruno Vincenzi
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Oncology, Department of Medicine and Surgery, Università Campus Bio-Medico, Rome, Italy
| | - Giuseppe Perrone
- Operative Research Unit of Anatomical Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Anatomical Pathology, Department of Medicine, Università Campus Bio-Medico, Rome, Italy
| |
Collapse
|
2
|
Dogan E, Galifi CA, Cecen B, Shukla R, Wood TL, Miri AK. Extracellular matrix regulation of cell spheroid invasion in a 3D bioprinted solid tumor-on-a-chip. Acta Biomater 2024; 186:156-166. [PMID: 39097123 PMCID: PMC11390304 DOI: 10.1016/j.actbio.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an engineered extracellular matrix (ECM) for personalized medicine. The engineered ECM influences the tumor response, and understanding the ECM-tumor relationship accelerates translating tumors-on-chips into drug discovery and development. In this work, we tuned the physical and structural characteristics of ECM in a 3D bioprinted soft-tissue sarcoma microtissue. We formed cell spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR data showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. This work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. This work can contribute to personalized medicine by making more effective, tailored cancer models.
Collapse
Affiliation(s)
- Elvan Dogan
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher A Galifi
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Roshni Shukla
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Amir K Miri
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Mechanical and Industrial Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
3
|
Kulesza M, Kicman A, Motyka J, Guszczyn T, Ławicki S. Importance of Metalloproteinase Enzyme Group in Selected Skeletal System Diseases. Int J Mol Sci 2023; 24:17139. [PMID: 38138968 PMCID: PMC10743273 DOI: 10.3390/ijms242417139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bone tissue is a dynamic structure that is involved in maintaining the homeostasis of the body due to its multidirectional functions, such as its protective, endocrine, or immunological role. Specialized cells and the extracellular matrix (ECM) are responsible for the remodeling of specific bone structures, which alters the biomechanical properties of the tissue. Imbalances in bone-forming elements lead to the formation and progression of bone diseases. The most important family of enzymes responsible for bone ECM remodeling are matrix metalloproteinases (MMPs)-enzymes physiologically present in the body's tissues and cells. The activity of MMPs is maintained in a state of balance; disruption of their activity is associated with the progression of many groups of diseases, including those of the skeletal system. This review summarizes the current understanding of the role of MMPs in bone physiology and the pathophysiology of bone tissue and describes their role in specific skeletal disorders. Additionally, this work collects data on the potential of MMPs as bio-markers for specific skeletal diseases.
Collapse
Affiliation(s)
- Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15267 Bialystok, Poland;
| | - Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| | - Tomasz Guszczyn
- Department of Pediatric Orthopaedics and Traumatology, Medical University of Bialystok, 15274 Bialystok, Poland;
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| |
Collapse
|
4
|
Targetable Pathways in the Treatment of Retroperitoneal Liposarcoma. Cancers (Basel) 2022; 14:cancers14061362. [PMID: 35326514 PMCID: PMC8946646 DOI: 10.3390/cancers14061362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/04/2023] Open
Abstract
Liposarcoma (LPS) is the most prevalent soft tissue sarcoma histological subtype. When it occurs in the abdomen the overall survival rate is as low as 10% at 10 years and is fraught with high rates of recurrence, particularly for the more aggressive dedifferentiated subtype. Surgery remains the mainstay of treatment. Systemic therapies for the treatment of metastatic or unresectable disease have low response rates. Deep understanding of well-differentiated and de-differentiated LPS (WDLPS and DDLPS, respectively) oncologic drivers is necessary for the development of new efficacious targeted therapies for the management of this disease. This review discusses the current treatments under evaluation for retroperitoneal DDLPS and the potential targetable pathways in DDLPS.
Collapse
|
5
|
Damerell V, Ambele MA, Salisbury S, Neumann-Mufweba A, Durandt C, Pepper MS, Prince S. The c-Myc/TBX3 Axis Promotes Cellular Transformation of Sarcoma-Initiating Cells. Front Oncol 2022; 11:801691. [PMID: 35145908 PMCID: PMC8821881 DOI: 10.3389/fonc.2021.801691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
Sarcomas are highly aggressive cancers of mesenchymal origin whose clinical management is highly complex. This is partly due to a lack of understanding of the molecular mechanisms underpinning the transformation of mesenchymal stromal/stem cells (MSCs) which are presumed to be the sarcoma-initiating cells. c-Myc is amplified/overexpressed in a range of sarcomas where it has an established oncogenic role and there is evidence that it contributes to the malignant transformation of MSCs. T-box transcription factor 3 (TBX3) is upregulated by c-Myc in a host of sarcoma subtypes where it promotes proliferation, tumor formation, migration, and invasion. This study investigated whether TBX3 is a c-Myc target in human MSCs (hMSCs) and whether overexpressing TBX3 in hMSCs can phenocopy c-Myc overexpression to promote malignant transformation. Using siRNA, qRT-PCR, luciferase reporter and chromatin-immunoprecipitation assays, we show that c-Myc binds and directly activates TBX3 transcription in hMSCs at a conserved E-box motif. When hMSCs were engineered to stably overexpress TBX3 using lentiviral gene transfer and the resulting cells characterised in 2D and 3D, the overexpression of TBX3 was shown to promote self-renewal, bypass senescence, and enhance proliferation which corresponded with increased levels of cell cycle progression markers (cyclin A, cyclin B1, CDK2) and downregulation of the p14ARF/MDM2/p53 tumor suppressor pathway. Furthermore, TBX3 promoted the migratory and invasive ability of hMSCs which associated with increased levels of markers of migration (Vimentin, SLUG, SNAIL, TWIST1) and invasion (MMP2, MMP9). Transcriptomic analysis revealed that genes upregulated upon TBX3 overexpression overlapped with c-myc targets, were involved in cell cycle progression, and were associated with sarcomagenesis. Together, the data described indicate that the c-Myc/TBX3 oncogenic molecular pathway may be a key mechanism that transforms hMSCs into sarcomas.
Collapse
Affiliation(s)
- Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Melvin Anyasi Ambele
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Shanel Salisbury
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alexis Neumann-Mufweba
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Chrisna Durandt
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Michael Sean Pepper
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- *Correspondence: Sharon Prince,
| |
Collapse
|
6
|
Das B, Sahoo S, Mallick B. HIWI2 induces G2/M cell cycle arrest and apoptosis in human fibrosarcoma via the ROS/DNA damage/p53 axis. Life Sci 2022; 293:120353. [PMID: 35074406 DOI: 10.1016/j.lfs.2022.120353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
Abstract
AIMS Piwi, like RNA-mediated gene silencing 4 (PIWIL4) or HIWI2, are seen deregulated in human cancers and possibly play critical roles in tumorigenesis. It is unknown what role HIWI2 plays in the regulation of fibrosarcoma, an early metastatic lethal type of soft tissue sarcoma (STS). The present study aimed to investigate the role of HIWI2 in the tumorigenesis of fibrosarcoma. MAIN METHODS The expression of HIWI2 in HT1080 fibrosarcoma cells was determined by qRT-PCR and western blotting. The MTT assay, colony formation assay, cell cycle, and PE-AnnexinV/7AAD apoptosis assay using flow cytometry, DNA laddering assay, comet assay, and γH2AX accumulation assay were performed to study the effect of HIWI2 overexpression in HT1080 cells. Further, the effect of silencing of HIWI2 was determined by cell viability assay, transwell migration, and invasion assay. KEY FINDINGS HIWI2 is under-expressed in STS cell lines and tissues, which is associated with poor disease-free survival, disease-specific survival, and progression-free survival of the patients. Overexpression of HIWI2 in HT1080 cells causes DNA damage by increasing intracellular ROS by inhibiting the expression of antioxidant genes (SOD1, SOD2, GPX1, GPX4, and CAT). Furthermore, an increase in H2AX phosphorylation was observed, which activates p53 that promotes p21 expression and caspase-3 activation, leading to G2/M phase cell cycle arrest and apoptosis. HIWI2 silencing, on the contrary, promotes cell growth, migration, and invasion by activating MMP2 and MMP9. SIGNIFICANCE These results are the first to show that HIWI2 acts as a tumor suppressor in fibrosarcoma by modulating the ROS/DNA damage/p53 pathway.
Collapse
Affiliation(s)
- Basudeb Das
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Swapnil Sahoo
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
7
|
Ghazaryan N, Movsisyan N, Macedo JC, Vaz S, Ayvazyan N, Pardo L, Logarinho E. Macrovipera lebetina obtusa Snake Venom as a Modulator of Antitumor Effect in S-180 Sarcoma Mouse Model. Mol Biol 2021. [DOI: 10.1134/s0026893321020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Dashek RJ, Diaz C, Chandrasekar B, Rector RS. The Role of RECK in Hepatobiliary Neoplasia Reveals Its Therapeutic Potential in NASH. Front Endocrinol (Lausanne) 2021; 12:770740. [PMID: 34745017 PMCID: PMC8564138 DOI: 10.3389/fendo.2021.770740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multimorbidity disorder ranging from excess accumulation of fat in the liver (steatosis) to steatohepatitis (NASH) and end-stage cirrhosis, and the development of hepatocellular carcinoma (HCC) in a subset of patients. The defining features of NASH are inflammation and progressive fibrosis. Currently, no pharmaceutical therapies are available for NAFLD, NASH and HCC; therefore, developing novel treatment strategies is desperately needed. Reversion Inducing Cysteine Rich Protein with Kazal motifs (RECK) is a well-known modifier of the extracellular matrix in hepatic remodeling and transition to HCC. More recently, its role in regulating inflammatory and fibrogenic processes has emerged. Here, we summarize the most relevant findings that extend our current understanding of RECK as a regulator of inflammation and fibrosis, and its induction as a potential strategy to blunt the development and progression of NASH and HCC.
Collapse
Affiliation(s)
- Ryan J. Dashek
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Comparative Medicine Program, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Connor Diaz
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Division of Cardiology, Department of Medicine, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, United States
- *Correspondence: R. Scott Rector,
| |
Collapse
|
9
|
Martin E, Acem I, Grünhagen DJ, Bovée JVMG, Verhoef C. Prognostic Significance of Immunohistochemical Markers and Genetic Alterations in Malignant Peripheral Nerve Sheath Tumors: A Systematic Review. Front Oncol 2020; 10:594069. [PMID: 33415076 PMCID: PMC7783392 DOI: 10.3389/fonc.2020.594069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas with dismal prognosis. Pathological and genetic markers may predict more aggressive behavior in MPNSTs but have uncommonly been investigated, and few are used in daily practice. This study reviews the prognostic value of immunohistochemical markers and genetic alterations in MPNST. Methods A systematic search was performed in PubMed and Embase databases according to the PRISMA guidelines. Search terms related to ‘MPNST’ and ‘prognostic’ were used. Studies investigating the association of immunohistochemical markers or genetic alterations with prognosis were included. Qualitative synthesis was performed on all studies. A distinction was made between univariable and multivariable associations. Results Forty-six studies were included after full-text screening. Sixty-seven different immunohistochemical markers were investigated. Absence of S100 and H3K27me3 and high Ki67 and p53 staining was most commonly independently associated with worse survival and disease-free survival. Several genetic alterations were investigated as well with varying association to survival. TP53, CDK4, RASSF1A alterations were independently associated with worse survival, as well as changes in chromosomal length in Xp, 10q, and 16p. Conclusions MPNSTs harbor complex and heterogeneous biology. Immunohistochemical markers and genetic alterations have variable prognostic value. Absence of S100 and H3K27me3 and increased Ki67 can be of prognostic value. Alterations in TP53 or increase in p53 staining may distinguish MPNSTs with worse outcomes. Genetic alterations and staining of other cell cycle regulatory and Ras pathway proteins may also help stratifying patients with worse outcomes. A combination of markers can increase the prognostic value.
Collapse
Affiliation(s)
- Enrico Martin
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ibtissam Acem
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Dirk J Grünhagen
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
10
|
Guan X, Xu Y, Zheng J. Long non‑coding RNA PCAT6 promotes the development of osteosarcoma by increasing MDM2 expression. Oncol Rep 2020; 44:2465-2474. [PMID: 33125146 PMCID: PMC7610325 DOI: 10.3892/or.2020.7813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a severe malignant tumor. Several studies indicated that lncRNA prostate cancer-associated transcript 6 (PCAT6) promoted the development of multiple types of cancers. Studies have also revealed that MDM2 could aggravate tumor symptoms inhibiting P53 expression. However, whether lncRNA PCAT6 could affect the proliferation and metastasis of osteosarcoma cells by regulating P53 expression is unclear. The present study established lncRNA PCAT6-overexpressing osteosarcoma cells. Cell Counting Kit-8, wound healing and Transwell assays were performed to detect the change in proliferation, migration and invasion of these cells, respectively. Subsequently, E3 ubiquitin-protein ligase Mdm2 (MDM2), P53 and P21 expression were determined using western blotting. Finally, MDM2 expression was inhibited and the proliferation, migration and invasion of these cells was determined again. The present study found that the proliferation, migration and invasion of osteosarcoma cells increased following overexpression of lncRNA PCAT6. MDM2 expression was upregulated while the levels of P53 and P21 decreased following overexpression of lncRNA PCAT6. However, the proliferation, migration and invasion of osteosarcoma cells were inhibited following MDM2 knockdown. Additionally, P53 and P21 was rescued following MDM2 knockdown. To conclude, lncRNA PCAT6 promoted the proliferation, migration and invasion of osteosarcoma cells by promoting the expression of MDM2 and suppressing the expression of P53 and P21.
Collapse
Affiliation(s)
- Xiliang Guan
- Department of Orthopaedic Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Jufen Zheng
- The Department of Bone, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| |
Collapse
|
11
|
Wu SH, Chueh FS, Chou YC, Ma YS, Peng SF, Lin CC, Liao CL, Chen PY, Hsia TC, Lien JC. Tetrandrine inhibits cell migration and invasion in human nasopharyngeal carcinoma NPC-TW 039 cells through inhibiting MAPK and RhoA signaling pathways. J Food Biochem 2020; 44:e13387. [PMID: 32720324 DOI: 10.1111/jfbc.13387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 01/11/2023]
Abstract
The objective of this study was to investigate the effects of tetrandrine (TET) on cell migration and invasion of nasopharyngeal carcinoma NPC-TW 039 cells in vitro. TET at 1-10 μM did not change cell morphology and also did not decrease the total cell viability and proliferation in NPC-TW 039 cells. It decreased the cell mobility based on decreased wound closure in NPC-TW 039 cells by wound healing assay. TET suppressed the cell migration and invasion using transwell system. TET reduced MMP-2 activities at 1-10 μM and these effects are in dose-dependently. After exposed to various treatments, TET decreased the levels of p-ERK, p-JNK, p-p38, RhoA, and NF-κB at 48 hr. Based on these findings, we may suggest TET-inhibited cell migration and invasion of NPC-TW 039 cells via the suppression of MAPK and RhoA signaling pathways for inhibiting the MMP-2 and -9 expression in vitro. PRACTICAL APPLICATIONS: Tetrandrine (TET), a bis-benzylisoquinoline alkaloid, is obtained from the dried root of Stephania tetrandra. TET has been shown to induce cancer cell apoptosis on human cancer cells but its anti-metastasis effect on cell migration and invasion of nasopharyngeal carcinoma cells has not been investigated. Our results showed that TET significantly repressed the cell mobility, migration, and invasion of NPC-TW 039 cells in vitro that involved in inhibiting RhoA, Ras accompanying with p38/MAPK signaling pathway. We conclude that TET may be the anticancer agents for nasopharyngeal carcinoma therapy in the future.
Collapse
Affiliation(s)
- Shin-Hwar Wu
- Division of Critical Care Medicine, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chin-Chung Lin
- General Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan
- Department of Chinese Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Executive Yuan, Taichung, Taiwan
| | - Ching-Lung Liao
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Hu C, Chen B, Huang Z, Liu C, Ye L, Wang C, Tong Y, Yang J, Zhao C. Comprehensive profiling of immune-related genes in soft tissue sarcoma patients. J Transl Med 2020; 18:337. [PMID: 32873319 PMCID: PMC7465445 DOI: 10.1186/s12967-020-02512-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Background Immune-related genes (IRGs) have been confirmed to have an important role in tumorigenesis and tumor microenvironment formation. Nevertheless, a systematic analysis of IRGs and their clinical significance in soft tissue sarcoma (STS) patients is lacking. Methods Gene expression files from The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression (GTEx) were used to select differentially expressed genes (DEGs). Differentially expressed immune-related genes (DEIRGs) were determined by matching the DEG and ImmPort gene sets, which were evaluated by functional enrichment analysis. Unsupervised clustering of the identified DEIRGs was conducted, and associations with prognosis, the tumor microenvironment (TME), immune checkpoints, and immune cells were analyzed simultaneously. Two prognostic signatures, one for overall survival (OS) and one for progression free survival (PFS), were established and validated in an independent set. Finally, two transcription factor (TF)-IRG regulatory networks were constructed, and a crucial regulatory axis was validated. Results In total, 364 DEIRGs and four clusters were identified. OS, TME scores, five immune checkpoints, and 12 types of immune cells were found to be significantly different among the four clusters. The two prognostic signatures incorporating 20 DEIRGs showed favorable discrimination and were successfully validated. Two nomograms combining signature and clinical variables were generated. The C-indexes were 0.879 (95%CI 0.832 ~ 0.926) and 0.825 (95%CI 0.776 ~ 0.874) for the OS and PFS signatures, respectively. Finally, TF-IRG regulatory networks were established, and the MYH11-ADM regulatory axis was verified in three independent datasets. Conclusion This comprehensive analysis of the IRG landscape in soft tissue sarcoma revealed novel IRGs related to carcinogenesis and the immune microenvironment. These findings have implications for prognosis and therapeutic responses, which reveal novel potential prognostic biomarkers, promote precision medicine, and provide potential novel targets for immunotherapy.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China.,Qingdao University Medical College, Shandong, 266071, China
| | - Bo Chen
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China.,Wenzhou Medical University, Zhejiang, 325000, China
| | - Zhangheng Huang
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Chuan Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lin Ye
- Wenzhou Medical University, Zhejiang, 325000, China
| | - Cailin Wang
- Wenzhou Medical University, Zhejiang, 325000, China
| | - Yuexin Tong
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Jiaxin Yang
- Wenzhou Medical University, Zhejiang, 325000, China
| | - Chengliang Zhao
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China.
| |
Collapse
|
13
|
Casadei L, Pollock RE. Cracking the riddle of dedifferentiated liposarcoma: is EV-MDM2 a key? Oncoscience 2020; 7:10-13. [PMID: 32258243 PMCID: PMC7105156 DOI: 10.18632/oncoscience.497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is molecularly characterized by wt p53 and MDM2 gene amplification causing MDM2 protein over-production, the key oncogenic process in DDLPS. Commonly located in fat-bearing retroperitoneal areas, almost 60% of DDLPS patients undergo multifocal recurrence, typically amenable to palliative treatment only, and occasionally develop distant metastasis. These factors lead to an abysmal 10% 10 year overall survival rate.
Tumor cell-derived extracellular vesicles (EVs) can facilitate loco-regional malignancy dissemination by depositing molecular factors that participate in the development of pre-metastatic niches for tumor cell implantation and growth. High number of MDM2 DNA molecules was identified within EVs from DDLPS patient serum (ROC vs normal; 0.95) as well as from DDLPS cell lines. This MDM2 DNA could be transferred to preadipocytes (P-a), a major and ubiquitous cellular component of the DDLPS tumor microenvironment (TME), with subsequent P-a production of matrix metalloproteinase 2 (MMP2), a critical component in the metastatic cascade. From here the hypothesis that the DDLPS microenvironment (specifically P-a cells) may participate in DDLPS recurrence events.
Since multifocal loco-regional DDLPS spreading is the main cause of the remarkably high lethality of this disease, a better understanding of the underlying oncogenic processes and their regulatory mechanisms is essential to improve the outcome of this devastating disease.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
14
|
Balsa LM, Quispe P, Baran EJ, Lavecchia MJ, León IE. In silico and in vitro analysis of FAK/MMP signaling axis inhibition by VO-clioquinol in 2D and 3D human osteosarcoma cancer cells. Metallomics 2020; 12:1931-1940. [PMID: 33107537 DOI: 10.1039/d0mt00176g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The study of novel mechanisms of action of vanadium compounds is critical to elucidating the role and importance of these kinds of compounds as antitumor and antimetastatic agents. This work deals with in silico and in vitro studies of one clioquinol oxidovanadium(iv) complex [VO(clioquinol)2], VO(CQ)2, and its regulation of FAK. In particular, we focus on elucidating the relationship of the FAK inhibition, MMP activity and antimetastatic effects of the complex in human bone cancer cells.
Collapse
Affiliation(s)
- Lucia M Balsa
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.Sarcomas are malignant tumors with diverse features when it comes to primary tumor appearance, metastatic potential, and response to treatment. Many of the classic subtypes are mainly composed of malignant cells and are therefore assumed to be committed to autocrine signaling. Some of the tumors are infiltrated by immune cells and contain necrotic areas or excessive amounts of extracellular matrix (ECM) that regulates tissue stiffness and interstitial fluid pressure. Vascular invasion and blood vessel characteristics can in some instances be considered in the prognostic setting.Further insights into the disease-regulatory activities of the sarcoma TME will provide essential knowledge on how to develop successful combination treatments targeting not only malignant cells, but also their routes of nutrition and ability to shield themselves toward existing therapy.
Collapse
|
16
|
Abe K, Yamamoto N, Domoto T, Bolidong D, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Inatani H, Aoki Y, Higuchi T, Taniguchi Y, Yonezawa H, Araki Y, Aiba H, Minamoto T, Tsuchiya H. Glycogen synthase kinase 3β as a potential therapeutic target in synovial sarcoma and fibrosarcoma. Cancer Sci 2019; 111:429-440. [PMID: 31808966 PMCID: PMC7004542 DOI: 10.1111/cas.14271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a rare cancer type. Almost half are unresponsive to multi-pronged treatment and might therefore benefit from biologically targeted therapy. An emerging target is glycogen synthase kinase (GSK)3β, which is implicated in various diseases including cancer. Here, we investigated the expression, activity and putative pathological role of GSK3β in synovial sarcoma and fibrosarcoma, comprising the majority of STS that are encountered in orthopedics. Expression of the active form of GSK3β (tyrosine 216-phosphorylated) was higher in synovial sarcoma (SYO-1, HS-SY-II, SW982) and in fibrosarcoma (HT1080) tumor cell lines than in untransformed fibroblast (NHDF) cells that are assumed to be the normal mesenchymal counterpart cells. Inhibition of GSK3β activity by pharmacological agents (AR-A014418, SB-216763) or of its expression by RNA interference suppressed the proliferation of sarcoma cells and their invasion of collagen gel, as well as inducing their apoptosis. These effects were associated with G0/G1-phase cell cycle arrest and decreased expression of cyclin D1, cyclin-dependent kinase (CDK)4 and matrix metalloproteinase 2. Intraperitoneal injection of the GSK3β inhibitors attenuated the growth of SYO-1 and HT1080 xenografts in athymic mice without obvious detrimental effects. It also mitigated cell proliferation and induced apoptosis in the tumors of mice. This study indicates that increased activity of GSK3β in synovial sarcoma and fibrosarcoma sustains tumor proliferation and invasion through the cyclin D1/CDK4-mediated pathway and enhanced extracellular matrix degradation. Our results provide a biological basis for GSK3β as a new and promising therapeutic target for these STS types.
Collapse
Affiliation(s)
- Kensaku Abe
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Dilireba Bolidong
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Inatani
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yu Aoki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuta Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirotaka Yonezawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshihiro Araki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisaki Aiba
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
17
|
Balsa LM, Ruiz MC, Santa Maria de la Parra L, Baran EJ, León IE. Anticancer and antimetastatic activity of copper(II)-tropolone complex against human breast cancer cells, breast multicellular spheroids and mammospheres. J Inorg Biochem 2019; 204:110975. [PMID: 31911364 DOI: 10.1016/j.jinorgbio.2019.110975] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
Abstract
The goal of this work was to display the anticancer and antimetastatic activity of a copper(II) with tropolone (trp), complex [Cu(trp)2] toward human breast cancer cells in monolayer (2D) and spheroids (3D). Cytotoxicity assays against MCF7 (IC50(complex) = 5.2 ± 1.8 μM, IC50(CDDP) = 19.3 ± 2.1 μM) and MDA-MB-231 (IC50(complex) = 4.0 ± 0.2 μM, IC50(CDDP) = 27.0 ± 1.9 μM) demonstrate that [Cu(trp)2] exert greater antitumor potency than cisplatin (CDDP) on 2D and 3D human breast cancer cell models. Besides, [Cu(trp)2] inhibits cell migration by reducing the metalloproteinases activities and the compound undergoes the breast cancer cells to apoptosis at lower concentrations (2.5-10 μM). Moreover, [Cu(trp)2] overcame CDDP presenting an IC50 value 26-fold more lower against breast multicellular spheroids ((IC50(complex) = 4.9 μM, IC50(CDDP) = 130 μM)). Also, our results showed that [Cu(trp)2] inhibited the cell migration and cell invasion of breast multicellular spheroids, showing that [Cu(trp)2] exhibited antimetastatic properties. On the other hand, [Cu(trp)2] reduced mammosphere forming capacity affecting the size and number of mammospheres. Taken together, [Cu(trp)2] exhibited anticancer and antimetastatic properties on monolayer (2D) and spheroids (3D) derived from human breast cancer cells.
Collapse
Affiliation(s)
- Lucia M Balsa
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Maria C Ruiz
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Lucia Santa Maria de la Parra
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Enrique J Baran
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Ignacio E León
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| |
Collapse
|
18
|
Gonzalez-Molina J, Gramolelli S, Liao Z, Carlson JW, Ojala PM, Lehti K. MMP14 in Sarcoma: A Regulator of Tumor Microenvironment Communication in Connective Tissues. Cells 2019; 8:cells8090991. [PMID: 31466240 PMCID: PMC6770050 DOI: 10.3390/cells8090991] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Sarcomas are deadly malignant tumors of mesenchymal origin occurring at all ages. The expression and function of the membrane-type matrix metalloproteinase MMP14 is closely related to the mesenchymal cell phenotype, and it is highly expressed in most sarcomas. MMP14 regulates the activity of multiple extracellular and plasma membrane proteins, influencing cell–cell and cell–extracellular matrix (ECM) communication. This regulation mediates processes such as ECM degradation and remodeling, cell invasion, and cancer metastasis. Thus, a comprehensive understanding of the biology of MMP14 in sarcomas will shed light on the mechanisms controlling the key processes in these diseases. Here, we provide an overview of the function and regulation of MMP14 and we discuss their relationship with clinical and pre-clinical MMP14 data in both adult and childhood sarcomas.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden.
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Zehuan Liao
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1NY, UK
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
19
|
Casadei L, Calore F, Braggio DA, Zewdu A, Deshmukh AA, Fadda P, Lopez G, Wabitsch M, Song C, Leight JL, Grignol VP, Lev D, Croce CM, Pollock RE. MDM2 Derived from Dedifferentiated Liposarcoma Extracellular Vesicles Induces MMP2 Production from Preadipocytes. Cancer Res 2019; 79:4911-4922. [PMID: 31387924 DOI: 10.1158/0008-5472.can-19-0203] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
Dedifferentiated liposarcoma (DDLPS) is frequently diagnosed late, and patients typically respond poorly to treatments. DDLPS is molecularly characterized by wild-type p53 and amplification of the MDM2 gene, which results in overexpression of MDM2 protein, a key oncogenic process in DDLPS. In this study, we demonstrate that extracellular vesicles derived from patients with DDLPS or from DDLPS cell lines are carriers of MDM2 DNA that can be transferred to preadipocytes, a major and ubiquitous cellular component of the DDLPS tumor microenvironment, leading to impaired p53 activity in preadipocytes and increased proliferation, migration, and production of matrix metalloproteinase 2; treatment with MDM2 inhibitors repressed these effects. Overall, these findings indicate that MDM2 plays a crucial role in DDLPS by enabling cross-talk between tumor cells and the surrounding microenvironment and that targeting vesicular MDM2 could represent a therapeutic option for treating DDLPS. SIGNIFICANCE: Extracellular vesicles derived from dedifferentiated liposarcoma cells induce oncogenic properties in preadipocytes.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Federica Calore
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Danielle A Braggio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Abeba Zewdu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ameya A Deshmukh
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Ohio
| | - Paolo Fadda
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gonzalo Lopez
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine Division of Paediatric Endocrinology and Diabetes Centre for Hormonal Disorders in Children and Adolescents, Ulm University Hospital, Germany
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, Ohio
| | - Jennifer L Leight
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Ohio
| | - Valerie P Grignol
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Dina Lev
- Department of Surgery "B," Sheba Medical Center and The Tel Aviv University, Tel Aviv, Israel
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Raphael E Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
20
|
Tang H, Tang Z, Jiang Y, Wei W, Lu J. Pathological and therapeutic aspects of matrix metalloproteinases: Implications in osteosarcoma. Asia Pac J Clin Oncol 2019; 15:218-224. [PMID: 31111666 DOI: 10.1111/ajco.13165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is one of the most common malignant bone tumors in children and adolescents, and the eighth leading form of childhood cancer. Matrix metalloproteinases (MMPs) are proteolytic enzymes implicated in certain cancers including OS. In this review, we discuss the mechanism of actions of MMPs in progression of OS, and the therapeutic use of MMPs inhibitors in the treatment of OS with subsequent clinical studies and future management. The expression of MMPs is upregulated in cancer cells by a variety of cytokines and growth factors, and upregulation of MMPs induces degradation of the extracellular matrix that contributes to cell proliferation by releasing growth factors. MMPs promote the detachment and migration of endothelial cells, cross the basement membrane as well as invade the surrounding lymphatic vessels and causes cancer metastasis. The use of selective MMP inhibitors with limited side effects might be promising therapeutic strategy in the treatment of OS. More clinical trials are necessary to evaluate the role of selective MMPs inhibitors in the prevention and treatment of OS along with their assessment of toxicity.
Collapse
Affiliation(s)
- Huayan Tang
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, China
| | - Zhaohui Tang
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, China
| | - Yongjun Jiang
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, China
| | - Weisheng Wei
- Department of Orthopaedics, The Central Hospital of Yongzhou, Yongzhou, China
| | - Jian Lu
- Department of Orthopaedics, The Central Hospital of Yongzhou, Yongzhou, China
| |
Collapse
|
21
|
The antitumor efficacy of monomeric disintegrin obtustatin in S-180 sarcoma mouse model. Invest New Drugs 2019; 37:1044-1051. [PMID: 30680583 DOI: 10.1007/s10637-019-00734-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022]
Abstract
Obtustatin, isolated from the Levantine Viper snake venom (Macrovipera lebetina obtusa -MLO), is the shortest known monomeric disintegrin shown to specifically inhibit the binding of the α1β1 integrin to collagen IV. Its oncostatic effect is due to the inhibition of angiogenesis, likely through α1β1 integrin inhibition in endothelial cells. To explore the therapeutic potential of obtustatin, we studied its effect in S-180 sarcoma-bearing mice model in vivo as well as in human dermal microvascular endothelial cells (HMVEC-D) in vitro, and tested anti-angiogenic activity in vivo using the chick embryo chorioallantoic membrane assay (CAM assay). Our in vivo results show that obtustatin inhibits tumour growth by 33%. The expression of vascular endothelial growth factor (VEGF) increased after treatment with obtustatin, but the level of expression of caspase 8 did not change. In addition, our results demonstrate that obtustatin inhibits FGF2-induced angiogenesis in the CAM assay. Our in vitro results show that obtustatin does not exhibit cytotoxic activity in HMVEC-D cells in comparison to in vivo results. Thus, our findings disclose that obtustatin might be a potential candidate for the treatment of sarcoma in vivo with low toxicity.
Collapse
|
22
|
Lagares-Tena L, García-Monclús S, López-Alemany R, Almacellas-Rabaiget O, Huertas-Martínez J, Sáinz-Jaspeado M, Mateo-Lozano S, Rodríguez-Galindo C, Rello-Varona S, Herrero-Martín D, Tirado OM. Caveolin-1 promotes Ewing sarcoma metastasis regulating MMP-9 expression through MAPK/ERK pathway. Oncotarget 2018; 7:56889-56903. [PMID: 27487136 PMCID: PMC5302960 DOI: 10.18632/oncotarget.10872] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/18/2016] [Indexed: 01/19/2023] Open
Abstract
Ewing sarcoma (ES) is a bone and soft tissue sarcoma affecting mostly children and young adults. Caveolin-1 (CAV1) is a well-known target of EWS/FLI1, the main driver of ES, with an oncogenic role in ES. We have previously described how CAV1 is able to induce metastasis in ES via matrix metalloproteinase-9 (MMP-9). In the present study we showed how CAV1 silencing in ES reduced MEK1/2 and ERK1/2 phosphorylation. Accordingly, chemical inhibition of MEK1/2 resulted in reduction in MMP-9 expression and activity that correlated with reduced migration and invasion. IQ Motif Containing GTPase Activating Protein 1 (IQGAP1) silencing reduced MEK1/2 and ERK1/2 phosphorylation and MMP-9 expression. Furthermore, IQGAP1 silenced cells showed a marked decrease in their migratory and invasive capacity. We demonstrated that CAV1 and IQGAP1 localize in close proximity at the cellular edge, thus IQGAP1 could be the connecting node between CAV1 and MEK/ERK in ES metastatic phenotype. Analysis of the phosphorylation profile of CAV1-silenced cells showed a decrease of p-ribosomal protein S6 (RPS6). RPS6 can be phosphorylated by p90 ribosomal S6 kinases (RSK) proteins. CAV1-silenced cells showed reduced levels of p-RSK1 and treatment with U0126 provoked the same effect. Despite not affecting ERK1/2 and RPS6 phosphorylation status neither MMP-9 expression nor activity, RSK1 silencing resulted in a reduced migratory and invasive capacity in vitro and reduced incidence of metastases in vivo in a novel orthotopic model. The present work provides new insights into CAV1-driven metastatic process in ES unveiling novel key nodes.
Collapse
Affiliation(s)
- Laura Lagares-Tena
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Silvia García-Monclús
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roser López-Alemany
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Almacellas-Rabaiget
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Huertas-Martínez
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel Sáinz-Jaspeado
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Silvia Mateo-Lozano
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Carlos Rodríguez-Galindo
- Pediatric Hematology/Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Santiago Rello-Varona
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Herrero-Martín
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Oscar M Tirado
- Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
23
|
Malcherczyk D, Heyse TJ, El-Zayat BF, Kunzke V, Moll R, Fuchs-Winkelmann S, Paletta JRJ. Expression of MMP-9 decreases metastatic potential of Chondrosarcoma: an immunohistochemical study. BMC Musculoskelet Disord 2018; 19:9. [PMID: 29316907 PMCID: PMC5761152 DOI: 10.1186/s12891-017-1920-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023] Open
Abstract
Background Chondrosarcoma is the second most common primary malignant bone tumor. Because of their heterogeneity, with differences in invasive and metastatic behavior, it is important to identify biological markers that will allow for a more accurate estimation of prognosis in patients with these tumors. Matrix metalloproteinases (MMP) play a crucial role in tumor progression, invasion and metastasis. The mechanism of tumor progression dependent of MMPs is complex and influences malignant transformation, angiogenesis and tumor growth at the primary and metastatic sites. The purpose of this study was to investigate immunohistochemicaly the influence of MMP-1, MMP-3, MMP-9 and MMP-13 expression on prognostic parameter in chondrosarcoma. Methods We investigated tissue samples of 28 patients with chondrosarcoma. Immunohistochemical staining to evaluate the expression of MMP-1, MMP-3, MMP-9 and MMP-13 was performed. Subsequently, the expression level was correlated with metastatic potential, histological grading and overall survival in patients with this neoplasm. Results In consideration of semi quantitative scoring 64% of chondrosarcoma were scored as positive for MMP-1, 46% for MMP-3, 61% for MMP-9. The specimens had shown no expression of MMP-13. High expression of MMP-9 was associated with better histological differentiation, decreased metastatic potential and favourable overall survival. No correlation was found for expression of MMP-1, MMP-3 or MMP-13. Conclusions MMP-1, MMP-3 and MMP-9 are expressed in chondrosarcoma. Our findings suggest that the expression of MMP-9 is associated with clinical outcome parameters in chondrosarcoma.
Collapse
Affiliation(s)
- Dominik Malcherczyk
- Center for Orthopedics and Trauma Surgery, University Hospital Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| | - Thomas J Heyse
- Center for Orthopedics and Trauma Surgery, University Hospital Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Bilal F El-Zayat
- Center for Orthopedics and Trauma Surgery, University Hospital Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Vanessa Kunzke
- Center for Orthopedics and Trauma Surgery, University Hospital Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Roland Moll
- Department of Pathology, University Hospital Marburg, Marburg, Germany
| | - Susanne Fuchs-Winkelmann
- Center for Orthopedics and Trauma Surgery, University Hospital Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Jürgen R J Paletta
- Center for Orthopedics and Trauma Surgery, University Hospital Marburg, Baldingerstrasse, 35043, Marburg, Germany
| |
Collapse
|
24
|
Liverani C, La Manna F, Groenewoud A, Mercatali L, Van Der Pluijm G, Pieri F, Cavaliere D, De Vita A, Spadazzi C, Miserocchi G, Bongiovanni A, Recine F, Riva N, Amadori D, Tasciotti E, Snaar-Jagalska E, Ibrahim T. Innovative approaches to establish and characterize primary cultures: an ex vivo 3D system and the zebrafish model. Biol Open 2017; 6:133-140. [PMID: 27895047 PMCID: PMC5312106 DOI: 10.1242/bio.022483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Patient-derived specimens are an invaluable resource to investigate tumor biology. However, in vivo studies on primary cultures are often limited by the small amount of material available, while conventional in vitro systems might alter the features and behavior that characterize cancer cells. We present our data obtained on primary dedifferentiated liposarcoma cells cultured in a 3D scaffold-based system and injected into a zebrafish model. Primary cells were characterized in vitro for their morphological features, sensitivity to drugs and biomarker expression, and in vivo for their engraftment and invasiveness abilities. The 3D culture showed a higher enrichment in cancer cells than the standard monolayer culture and a better preservation of liposarcoma-associated markers. We also successfully grafted primary cells into zebrafish, showing their local migratory and invasive abilities. Our work provides proof of concept of the ability of 3D cultures to maintain the original phenotype of ex vivo cells, and highlights the potential of the zebrafish model to provide a versatile in vivo system for studies with limited biological material. Such models could be used in translational research studies for biomolecular analyses, drug screenings and tumor aggressiveness assays.
Collapse
Affiliation(s)
- Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Federico La Manna
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy.,Leiden University Medical Center, Department of Urology, J-3-100, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Arwin Groenewoud
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333BE, The Netherlands
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Gabri Van Der Pluijm
- Leiden University Medical Center, Department of Urology, J-3-100, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, Forlì 47121, Italy
| | - Davide Cavaliere
- Unit of Surgery and Advanced Oncologic Therapies, Morgagni-Pierantoni Hospital, Forlì 47121, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Nada Riva
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Ewa Snaar-Jagalska
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333BE, The Netherlands
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via P. Maroncelli 40, Meldola 47014, Italy
| |
Collapse
|
25
|
de Necochea-Campion R, Zuckerman LM, Mirshahidi HR, Khosrowpour S, Chen CS, Mirshahidi S. Metastatic biomarkers in synovial sarcoma. Biomark Res 2017; 5:4. [PMID: 28191313 PMCID: PMC5297148 DOI: 10.1186/s40364-017-0083-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
Synovial sarcoma (SS) is an aggressive soft tissue sarcoma (STS) that typically occurs in the extremities near a joint. Metastatic disease is common and usually occurs in the lungs and lymph nodes. Surgical management is the mainstay of treatment with chemotherapy and radiation typically used as adjuvant treatment. Although chemotherapy has a positive impact on survival, the prognosis is poor if metastatic disease occurs. The biology of sarcoma invasion and metastasis remain poorly understood. Chromosomal translocation with fusion of the SYT and SSX genes has been described and is currently used as a diagnostic marker, although the full impact of the fusion is unknown. Multiple biomarkers have been found to be associated with SS and are currently under investigation regarding their pathways and mechanisms of action. Further research is needed in order to develop better diagnostic screening tools and understanding of tumor behavior. Development of targeted therapies that reduce metastatic events in SS, would dramatically improve patient prognosis.
Collapse
Affiliation(s)
- Rosalia de Necochea-Campion
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, 11175 Campus Street, Chan Shun Pavilion 11017, Loma Linda, CA 92354 USA
| | - Lee M Zuckerman
- Department of Orthopaedic Surgery, Loma Linda University Medical Center, 11406 Loma Linda Drive, Suite 218, Loma Linda, CA 92354 USA
| | - Hamid R Mirshahidi
- Division of Hematology/Oncology, Loma Linda University School of Medicine, 11175 Campus Street, Chan Shun Pavilion 11015, Loma Linda, CA 92354 USA
| | | | - Chien-Shing Chen
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, 11175 Campus Street, Chan Shun Pavilion 11017, Loma Linda, CA 92354 USA.,Division of Hematology/Oncology, Loma Linda University School of Medicine, 11175 Campus Street, Chan Shun Pavilion 11015, Loma Linda, CA 92354 USA
| | - Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, 11175 Campus Street, Chan Shun Pavilion 11017, Loma Linda, CA 92354 USA
| |
Collapse
|
26
|
Porcellato I, Menchetti L, Brachelente C, Sforna M, Reginato A, Lepri E, Mechelli L. Feline Injection-Site Sarcoma. Vet Pathol 2016; 54:204-211. [DOI: 10.1177/0300985816677148] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Feline injection-site sarcoma (FISS) is an aggressive tumor believed to arise from the proliferation of fibroblasts and myofibroblasts in areas of chronic inflammation, particularly at sites of injection. Local recurrence is frequent after surgical excision. Gelatinases (MMP-2 and MMP-9) and their inhibitor (TIMP-2) are endopeptidases pivotal in extracellular matrix remodeling and therefore in tumor invasiveness. The aim of this study was to investigate the immunohistochemical expression of MMP-2, MMP-9, and TIMP-2 in FISS to assess their usefulness as prognostic factors. Size, soft tissue sarcoma (STS) grading system, depth of infiltration, surgical margins, and Ki-67 index were evaluated as additional prognostic markers. Twenty-four cases of primary FISS were classified according to clinical follow-up as nonrecurrent (NR, n = 14; 58.3%) and recurrent (R, n = 10; 41.7%). MMP-2, MMP-9, and TIMP-2 were variably expressed in the FISS examined, confirming their role in tumor invasiveness, yet they did not show significant differences between the R and NR groups. These results could be due to different tumor stages or to the multiple activities of these enzymes, not limited to ECM remodeling. The immunohistochemical expression of these enzymes considered alone does not seem to be useful as a prognostic marker. STS grading system, depth of infiltration, surgical margins, and Ki-67 index did not relate to recurrence. Instead, the size of the tumor, measured after formalin fixation, with an optimal cutoff of 3.75 cm (accuracy = 86%; P < .05), and the mitotic count, with an optimal cutoff of 20 mitoses/10 HPF (accuracy = 80%; P < .05), could be evaluated as useful prognostic markers.
Collapse
Affiliation(s)
- I. Porcellato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - L. Menchetti
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - C. Brachelente
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - M. Sforna
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - A. Reginato
- CDVet Diagnostic Laboratory, Via Ugo Guattari, Rome, Italy
| | - E. Lepri
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - L. Mechelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
27
|
Angiosarcoma at the site of nonfunctioning arteriovenous fistula in a kidney transplant recipient. JOURNAL OF VASCULAR SURGERY CASES INNOVATIONS AND TECHNIQUES 2016; 2:53-55. [PMID: 31193419 PMCID: PMC6526302 DOI: 10.1016/j.jvsc.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/05/2016] [Indexed: 01/08/2023]
Abstract
Angiosarcoma is a rare malignant neoplasm of the endothelial cells of blood vessels or lymphatics. We report a case of a 46-year-old male patient with a kidney transplant who developed epithelioid angiosarcoma at the site of a nonfunctioning arteriovenous fistula in the antecubital fossa 3 years after renal transplantation. The patient had skin, soft tissue, and bone metastasis on presentation. He died of systemic metastasis with respiratory failure.
Collapse
|
28
|
O'Neill HL, Cassidy AP, Harris OB, Cassidy JW. BMP2/BMPR1A is linked to tumour progression in dedifferentiated liposarcomas. PeerJ 2016; 4:e1957. [PMID: 27114889 PMCID: PMC4841227 DOI: 10.7717/peerj.1957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/31/2016] [Indexed: 01/30/2023] Open
Abstract
Bone Morphogenic Protein 2 (BMP2) is a multipurpose cytokine, important in the development of bone and cartilage, and with a role in tumour initiation and progression. BMP2 signal transduction is dependent on two distinct classes of serine/threonine kinase known as the type I and type II receptors. Although the type I receptors (BMPR1A and BMPR1B) are largely thought to have overlapping functions, we find tissue and cellular compartment specific patterns of expression, suggesting potential for distinct BMP2 signalling outcomes dependent on tissue type. Herein, we utilise large publicly available datasets from The Cancer Genome Atlas (TCGA) and Protein Atlas to define a novel role for BMP2 in the progression of dedifferentiated liposarcomas. Using disease free survival as our primary endpoint, we find that BMP2 confers poor prognosis only within the context of high BMPR1A expression. Through further annotation of the TCGA sarcoma dataset, we localise this effect to dedifferentiated liposarcomas but find overall BMP2/BMP receptor expression is equal across subsets. Finally, through gene set enrichment analysis we link the BMP2/BMPR1A axis to increased transcriptional activity of the matrisome and general extracellular matrix remodelling. Our study highlights the importance of continued research into the tumorigenic properties of BMP2 and the potential disadvantages of recombinant human BMP2 (rhBMP2) use in orthopaedic surgery. For the first time, we identify high BMP2 expression within the context of high BMPR1A expression as a biomarker of disease relapse in dedifferentiated liposarcomas.
Collapse
Affiliation(s)
- Hannah L O'Neill
- Aberdeen Royal Infirmary, University of Aberdeen , Aberdeen , United Kingdom
| | - Amy P Cassidy
- Aberdeen Royal Infirmary, University of Aberdeen, Aberdeen, United Kingdom; Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Olivia B Harris
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John W Cassidy
- Queens' College, University of Cambridge, Cambridge Cambridgeshire, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
29
|
Kunz P, Sähr H, Lehner B, Fischer C, Seebach E, Fellenberg J. Elevated ratio of MMP2/MMP9 activity is associated with poor response to chemotherapy in osteosarcoma. BMC Cancer 2016; 16:223. [PMID: 26979530 PMCID: PMC4793522 DOI: 10.1186/s12885-016-2266-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 03/10/2016] [Indexed: 11/15/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) are crucially involved in the regulation of multiple stages of cancer progression. Elevated MMP levels have been associated with the development of metastases and poor prognosis in several types of cancer. However, the role of MMPs in osteosarcoma and their prognostic value is still unclear. Available data are conflicting, most likely due to different technical approaches. We hypothesized that in contrast to total mRNA or protein levels frequently analyzed in previous studies the enzymatic activities of MMPs and their inhibitors the tissue inhibitors of matrix metalloproteinases (TIMPs) are closer related to their biological functions. We therefore aimed to evaluate the reliability of different zymography techniques for the quantification of MMP and TIMP activities in osteosarcoma biopsies in order to investigate their distribution, possible regulation and prognostic value. Methods All analyses were done using cryo-conserved osteosarcoma pretreatment biopsies (n = 18). Gene and protein expression of MMPs and TIMPs were analyzed by RT-qPCR and western blot analysis, respectively. Overall MMP activity was analyzed by in situ zymography, individual MMP activities were analyzed by gelatin zymography. Reverse zymography was used to detect and quantify TIMP activities. Results Strong overall MMP activities could be detected in osteosarcoma pretreatment biopsies with MMP2 and MMP9 as predominant active MMPs. In contrast to total RNA or protein expression MMP2 and MMP9 activities showed significant quantitative differences between good and poor responders. While MMP9 activity was high in the good responder group and significantly decreased in the poor responder group, MMP2 activity showed a reverse distribution. Likewise, significant differences were detected concerning the activity of TIMPs resulting in a negative correlation of TIMP1 activity with MMP2 activity (p = 0.044) and negative correlations of TIMP2 and TIMP3 with MMP9 activity (p = 0.007 and p = 0.006). Conclusion In contrast to mRNA or protein levels MMP and TIMP activities showed significant differences between the analyzed good and poor responder groups. A shift from MMP9 to predominant MMP2 activity is associated with poor response to chemotherapy suggesting that the ratio of MMP2/MMP9 activity might be a valuable and easily accessible marker to predict the response to chemotherapy in osteosarcoma.
Collapse
Affiliation(s)
- Pierre Kunz
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany
| | - Heiner Sähr
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany
| | - Burkhard Lehner
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Fischer
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany
| | - Elisabeth Seebach
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Fellenberg
- Clinic for Orthopedics and Trauma Surgery/Spinal Cord Injury Center; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
30
|
Sakurai T, Yoshiga D, Ariyoshi W, Okinaga T, Kiyomiya H, Furuta J, Yoshioka I, Tominaga K, Nishihara T. Essential role of mitogen-activated protein kinases in IL-17A-induced MMP-3 expression in human synovial sarcoma cells. BMC Res Notes 2016; 9:68. [PMID: 26850593 PMCID: PMC4743089 DOI: 10.1186/s13104-016-1892-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/27/2016] [Indexed: 12/30/2022] Open
Abstract
Background The tumor cells were needed to rearrange the extracellular matrix (ECM) and reorganize their cytoskeleton to facilitate the cell motility during the tumor invasion. The proinflammatory cytokine interleukin-17A (IL-17A) is reported to up-regulate tumor invasiveness via ECM degradation by matrix metalloproteinases (MMPs). However the precise effects of IL-17A-dependent invasion remain to be characterized. The aim of this study was to elucidate the mechanisms underlying IL-17A-induced MMP-3 expression in the human synovial sarcoma cells HS-SY-II. Methods HS-SY-II cells were incubated with IL-17A. In some experiments, the cells were pre-incubated with an anti-IL-17 receptor polyclonal antibody (IL-17R Ab) or inhibitors for signaling cascade prior to addition of IL-17A. The expression of MMP-3 was determined by real-time reverse-transcription polymerase chain reaction (RT-PCR) and western blotting. IL-17R expression in HS-SY-II cells was assessed by immunofluorescence microscopy, while the phosphorylation of signaling molecules was measured by western blotting. Results IL-17A increased MMP-3 mRNA and protein expression. HS-SY-II cells express the IL-17R on their surface and blockage of IL-17A-IL-17R binding by IL-17R Ab suppressed IL-17A-mediated induction of MMP-3. IL-17A induced the phosphorylation of three components of the mitogen-activated protein kinase (MAPK) pathway including extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, and c-Jun NH2-terminal kinase (JNK). Pre-treatment of the cells with inhibitors of ERK1/2, p38 MAPK, and JNK attenuated the IL-17A-induced phosphorylation of activator protein-1 (AP-1) subunits and the expression of MMP-3 mRNA. Conclusion Our results indicate an essential role for MAPKs in the induction of MMP-3 in synovial sarcoma cells, through AP-1 activation.
Collapse
Affiliation(s)
- Takuma Sakurai
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan. .,Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Daigo Yoshiga
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Hiroyasu Kiyomiya
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan. .,Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Junya Furuta
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan. .,Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Izumi Yoshioka
- Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| |
Collapse
|
31
|
Role of Helicobacter pylori on cancer of human adipose-derived mesenchymal stem cells and metastasis of tumor cells—an in vitro study. Tumour Biol 2015; 37:3371-8. [DOI: 10.1007/s13277-015-4137-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023] Open
|
32
|
Rocchi L, Caraffi S, Perris R, Mangieri D. The angiogenic asset of soft tissue sarcomas: a new tool to discover new therapeutic targets. Biosci Rep 2014; 34:e00147. [PMID: 25236925 PMCID: PMC4219423 DOI: 10.1042/bsr20140075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/04/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022] Open
Abstract
STS (soft tissue sarcomas) are rare malignant tumours deriving from cells of mesenchymal origin and represent only 1% of all malignant neoplasms. It has been extensively demonstrated that angiogenesis has an important role in cancer malignancy. Particularly, a lot of studies demonstrate the importance of angiogenesis in the development of carcinomas, whereas little is known about the role of angiogenesis in sarcomas and especially in STS. This review aims at summarizing the new discoveries about the nature and the importance of angiogenesis in STS and the new possible therapeutic strategies involved. Only a few studies concerning STS focus on tumour neovascularization and proangiogenic factors and look for a correlation with the patients prognosis/survival. These studies demonstrate that intratumoural MVD (microvessels density) may not accurately represent the angiogenic capacity of STS. Nevertheless, this does not exclude the possibility that angiogenesis could be important in STS. The importance of neoangiogenesis in soft tissue tumours is confirmed by the arising number of publications comparing angiogenesis mediators with clinical features of patients with STS. The efficacy of anti-angiogenic therapies in other types of cancer is well documented. The understanding of the involvement of the angiogenic process in STS, together with the necessity to improve the therapy for this often mortal condition, prompted the exploration of anti-tumour compounds targeting this pathway. In conclusion, this review emphasizes the importance to better understand the mechanisms of angiogenesis in STS in order to subsequently design-specific target therapies for this group of poorly responding tumours.
Collapse
Key Words
- angiogenesis factors
- angiogenesis
- soft tissue sarcomas
- target therapy
- csf, colony-stimulating factor
- ec, endothelial cell
- fgf-2, fibroblast growth factor-2
- mfh, malignant fibrous histiocytoma
- mmp, matrix metalloproteinase
- mtor, mammalian target of rapamycin
- mvd, microvessels density
- pdgfrβ, platelet-derived growth factor beta
- plgf, placental growth factor
- sts, soft tissue sarcomas
- tki, tyrosine kinase inhibitor
- timp, tissue inhibitors of metalloproteinases
- upa, urokinase-type plasminogen activator
- vegf, vascular endothelial growth factor
- vegfr, vegf receptor
- vwf, von-willebrand factor
Collapse
Affiliation(s)
- Laura Rocchi
- *Unità Operativa di Anatomia e Istologia Patologica, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci, 14, 43100-Parma, Italy
| | - Stefano Caraffi
- *Unità Operativa di Anatomia e Istologia Patologica, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci, 14, 43100-Parma, Italy
| | - Roberto Perris
- †COMT–Centro di Oncologia Medica e Traslazionale, Università di Parma, Parco Area delle Scienze 11/A 43100-Parma, Italy
| | - Domenica Mangieri
- *Unità Operativa di Anatomia e Istologia Patologica, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci, 14, 43100-Parma, Italy
- †COMT–Centro di Oncologia Medica e Traslazionale, Università di Parma, Parco Area delle Scienze 11/A 43100-Parma, Italy
| |
Collapse
|
33
|
Potassium channel ether à go-go1 is aberrantly expressed in human liposarcoma and promotes tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:345678. [PMID: 25136578 PMCID: PMC4127296 DOI: 10.1155/2014/345678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
The ether à go-go1 (Eag1) channel is overexpressed in a variety of cancers. However, the expression and function of Eag1 in liposarcoma are poorly understood. In the present study, the mRNA expression of Eag1 in different adipose tissue samples was examined by real-time PCR. Then, the protein expression of Eag1 in 131 different adipose tissues from 109 patients was detected by immunohistochemistry. Next, the associations between Eag1 expression and clinicopathological features of liposarcoma were analyzed. In addition, the effects of Eag1 on liposarcoma cell proliferation and cycle were evaluated by CCK-8, colony formation, xenograft mouse model, and flow cytometry, respectively. Finally, the activation of p38 mitogen-activated protein kinase (MAPK) was detected by Western blot analysis to explain the detailed mechanisms of oncogenic potential of Eag1 in liposarcoma. It was found that Eag1 was aberrantly expressed in over 67% liposarcomas, with a higher frequency than in lipoma, hyperplasia, inflammation, and normal adipose tissues. However, Eag1 expression was not correlated with clinicopathological features of liposarcoma. Eag1 inhibitor imipramine or Eag1-shRNA significantly suppressed the proliferation of liposarcoma cells in vitro and in vivo, accompanying with accumulation of cells in the G1 phase. These results suggest that Eag1 plays an important role in regulating the proliferation and cell cycle of liposarcoma cells and might be a potential therapeutic target for liposarcoma.
Collapse
|
34
|
Oliveira LR, Castilho-Fernandes A, Oliveira-Costa JP, Soares FA, Zucoloto S, Ribeiro-Silva A. CD44+/CD133+ immunophenotype and matrix metalloproteinase-9: Influence on prognosis in early-stage oral squamous cell carcinoma. Head Neck 2014; 36:1718-26. [PMID: 24178866 DOI: 10.1002/hed.23527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate the expression of CD44 and/or CD133 immunophenotypes and the associated effects of matrix metalloproteinase-9 (MMP-9) in early-stage oral squamous cell carcinomas (SCC) to assess their influence on tumor prognosis. METHODS The following data were derived from 150 patients: age, sex, primary anatomic site, smoking status, alcohol intake, recurrence, metastases, histological classification, treatment, disease-free survival (DFS), and overall survival (OS). Immunohistochemical study of CD44, CD133, and MMP-9 expression was performed on a tissue microarray of 150 paraffin blocks of oral SCCs. RESULTS The predominant immunophenotype identified to exhibit a significant correlation with MMP-9 was the CD44+/CD133+. Multivariate analyses identified a significant correlation of OS with surgical treatment and with CD44+/CD133+ immunophenotype. CONCLUSION This investigation demonstrated the prognostic importance of CD44/CD133 expression, which can help improve the prognostic value of surgical treatment for oral SCCs when diagnosed in early stages.
Collapse
Affiliation(s)
- Lucinei R Oliveira
- Vale do Rio Verde University (UninCor), Tres Coraçoes, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Radons J. Inflammatory stress and sarcomagenesis: a vicious interplay. Cell Stress Chaperones 2014; 19:1-13. [PMID: 24046208 PMCID: PMC3857425 DOI: 10.1007/s12192-013-0449-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation represents one of the hallmarks of cancer, but its role in sarcomagenesis has long been overlooked. Sarcomas are a rare and heterogeneous group of tumors of mesenchymal origin accounting for less than 1 % of cancers in adults but 21 % of cancers in the pediatric population. Sarcomas are associated with bad prognosis, and their management requires a multidisciplinary team approach. Several lines of evidence indicate that inflammation has been implicated in sarcomagenesis leading to the activation of the key transcription factors HIF-1, NF- κB, and STAT-3 involved in a complex inflammatory network. In the past years, an increasing number of new targets have been identified in the treatment of sarcomas leading to the development of new drugs that aim to interrupt the vicious connection between inflammation and sarcomagenesis. This article makes a brief overview of preclinical and clinical evidence of the molecular pathways involved in the inflammatory stress response in sarcomagenesis and the most targeted therapies.
Collapse
Affiliation(s)
- Jürgen Radons
- multimmune GmbH c/o Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany,
| |
Collapse
|
36
|
Radons J. The role of inflammation in sarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:259-313. [PMID: 24818727 DOI: 10.1007/978-3-0348-0837-8_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sarcomas encompass a heterogenous group of tumors with diverse pathologically and clinically overlapping features. It is a rarely curable disease, and their management requires a multidisciplinary team approach. Chronic inflammation has emerged as one of the hallmarks of tumors including sarcomas. Classical inflammation-associated sarcomas comprise the inflammatory malignant fibrous histiocytoma and Kaposi sarcoma. The identification of specific chromosomal translocations and important intracellular signaling pathways such as Ras/Raf/MAPK, insulin-like growth factor, PI3K/AKT/mTOR, sonic hedgehog and Notch together with the increasing knowledge of angiogenesis has led to development of targeted therapies that aim to interrupt these pathways. Innovative agents like oncolytic viruses opened the way to design new therapeutic options with encouraging findings. Preclinical evidence also highlights the therapeutic potential of anti-inflammatory nutraceuticals as they can inhibit multiple pathways while being less toxic. This chapter gives an overview of actual therapeutic standards, newest evidence-based studies and exciting options for targeted therapies in sarcomas.
Collapse
Affiliation(s)
- Jürgen Radons
- Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany,
| |
Collapse
|
37
|
Roomi MW, Kalinovsky T, Rath M, Niedzwiecki A. In vitro modulation of MMP-2 and MMP-9 in pediatric human sarcoma cell lines by cytokines, inducers and inhibitors. Int J Oncol 2013; 44:27-34. [PMID: 24190483 PMCID: PMC3867366 DOI: 10.3892/ijo.2013.2159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/08/2013] [Indexed: 11/05/2022] Open
Abstract
The highly aggressive pediatric sarcomas are characterized by high levels of matrix metalloproteinase (MMP)-2 and MMP-9, which play crucial roles in tumor invasion and metastasis by degradation of the extracellular membrane leading to cancer cell spread to distal organs. We examined the effects of cytokines, mitogens, inducers and inhibitors on MMP-2 and -9 expression in osteosarcoma (U2OS) and rhabdomyosarcoma (RD). The selected compounds included natural cytokines and growth factors, as well as chemical compounds applied in therapy of sarcoma and natural compounds that have demonstrated anticancer therapeutic potential. These cell lines were cultured in their respective media to near confluence and the cells were washed with PBS and incubated in serum-free medium with various concentrations of several cytokines, mitogens and inhibitors. After 24 h the media were removed and analyzed for MMP-2 and -9 by gelatinase zymography and quantitated by densitometry. Osteosarcoma and rhabdomyosarcoma showed bands corresponding to MMP-2 and -9 with dose-dependent enhancement of MMP-9 with phorbol 12-myristate 13-acetate (PMA) treatment. Tumor necrosis factor-α, interleukin-1β and LPS enhanced osteosarcoma U2OS MMP-9 secretion but had no effect on MMP-2 secretion. Tumor necrosis factor-α stimulated rhabdomyosarcoma MMP-2 expression, but had no effect on MMP-9 secretion. Doxycycline, epigallocatechin gallate, nutrient mixture (NM), actinomycin-D, cyclohex-amide, retinoic acid and dexamethasone inhibited MMP-2 and -9 in U2OS osteosarcoma cells. PMA-treated RD cells showed dose-response inhibition of MMP-9 by doxycycline and epigallocatechin gallate and both MMPs by NM. Dexamethasone and actinomycin-D showed inhibition of MMP-2 secretion of RD cells. Our results show that cytokines, mitogens and inducers show variable upregulation of U2OS osteosarcoma and RD rhabdomyosarcoma MMP-2 and -9 secretion, and inhibitors demonstrate downregulation under stimulatory conditions, suggesting the application of these agents for the development of effective therapies in pediatric sarcomas.
Collapse
Affiliation(s)
- M W Roomi
- Dr Rath Research Institute, Santa Clara, CA 95050, USA
| | | | | | | |
Collapse
|
38
|
Roomi MW, Kalinovsky T, Monterrey J, Rath M, Niedzwiecki A. In vitro modulation of MMP-2 and MMP-9 in adult human sarcoma cell lines by cytokines, inducers and inhibitors. Int J Oncol 2013; 43:1787-98. [PMID: 24085323 PMCID: PMC3834263 DOI: 10.3892/ijo.2013.2113] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/13/2013] [Indexed: 11/15/2022] Open
Abstract
The highly aggressive adult sarcomas are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9, which play crucial roles in tumor invasion and metastasis by degradation of the extracellular membrane leading to cancer cell spread to distal organs. We examined the effect of cytokines, mitogens, inducers and inhibitors on MMP-2 and MMP-9 secretion in chondrosarcoma (SW-1353), fibrosarcoma (HT-1080), liposarcoma (SW-872) and synovial sarcoma (SW-982) cell lines. The selected compounds included natural cytokines and growth factors, as well as chemical compounds applied in therapy of sarcoma and natural compounds that have demonstrated anticancer therapeutic potential. MMP-2 and MMP-9 secretions were analyzed by gelatinase zymography following 24-h exposure to the tested agents and quantitated by densitometry. Fibrosarcoma, chondrosarcoma, liposarcoma and synovial sarcoma showed bands corresponding to MMP-2 and MMP-9 with dose-dependent enhancement of MMP-9 with phorbol 12-myristate 13-acetate (PMA) treatment. In chondrosarcoma cells, tumor necrosis factor (TNF)-α had a stimulatory effect on MMP-9 and insignificant effect on MMP-2 and interleukin (IL)-1β stimulated MMP-9 and MMP-2. In fibrosarcoma and liposarcoma cells, TNF-α had a profound stimulatory effect on MMP-9, but no effect on MMP-2 and in synovial sarcoma an inhibitory effect on MMP-2 and no effect on MMP-9. IL-1β had a slight inhibitory effect on fibrosarcoma, liposarcoma and synovial sarcoma MMP-2 and MMP-9 except for MMP-9 in synovial sarcoma which showed slight stimulation. Lipopolysaccharide (LPS) stimulated expression of MMP-2 in fibrosarcoma and chondrosarcoma while inhibited it in liposarcoma. Doxycycline, epigallocatechin gallate and the nutrient mixture inhibited MMP-2 and MMP-9 in all cell lines. Actinomycin-D, cyclohexamide, retinoic acid, and dexamethasone inhibited MMP-2 and -9 in chondrosarcoma and fibrosarcoma cells. Our results show that cytokines, mitogens, inducers and inhibitors have an up or down regulatory effect on MMP-2 and MMP-9 expression in adult sarcoma cell lines, suggesting these agents may be effective strategies to treat these cancers.
Collapse
Affiliation(s)
- M W Roomi
- Dr. Rath Research Institute, Santa Clara, CA 95050, USA
| | | | | | | | | |
Collapse
|
39
|
Roomi MW, Kalinovsky T, Niedzwiecki A, Rath M. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in adult human sarcoma cell lines. Int J Oncol 2013; 43:39-49. [PMID: 23661254 PMCID: PMC3742160 DOI: 10.3892/ijo.2013.1934] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/15/2013] [Indexed: 11/16/2022] Open
Abstract
Adult sarcomas are highly aggressive tumors that are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9 secretions that degrade the ECM and basement membrane, allowing cancer cells to spread to distal organs. Proteases play a key role in tumor cell invasion and metastasis by digesting the basement membrane and ECM components. Strong clinical and experimental evidence demonstrates association of elevated levels of u-PA and MMPs with cancer progression, metastasis and shortened patient survival. MMP activities are regulated by specific tissue inhibitors of metalloproteinases (TIMPs). Our main objective was to study the effect of a nutrient mixture (NM) on the activity of u-PA, MMPs and TIMPs in various human adult sarcomas. Human fibrosarcoma (HT-1080), chondrosarcoma (SW-1353), liposarcoma (SW-872), synovial sarcoma (SW-982) and uterine leimyosarcoma (SK-UT-1) cell lines (ATCC) were cultured in their respective media and treated at confluence with NM at 0, 50, 100, 250, 500 and 1,000 μg/ml. Analysis of u-PA activity was carried out by fibrin zymography, MMPs by gelatinase zymography and TIMPs by reverse zymography. Fibrosarcoma, chondrosarcoma, liposarcoma and leiomyosarcoma cancer cell lines expressed u-PA, which was inhibited by NM in a dose-dependent manner. However, no bands corresponding to u-PA were detected for synovial sarcoma cells. On gelatinase zymography, fibrosarcoma, chondrosarcoma, liposarcoma and synovial sarcoma showed bands corresponding to MMP-2 and MMP-9 with enhancement of MMP-9 with PMA (100 ng/ml) treatment. Uterine leiomyosarcoma showed strong bands corresponding to inactive and active MMP-9 and a faint band corresponding to MMP-9 dimer induced with PMA treatment, but no MMP-2 band. NM inhibited their expression in a dose-dependent manner. Activity of TIMPs was upregulated by NM in all cancer cell lines in a dose-dependent manner. Analysis revealed a positive correlation between u-PA and MMPs and a negative correlation between u-PA/MMPs and TIMPs. These findings suggest the therapeutic potential of NM in treatment of adult sarcomas.
Collapse
|
40
|
Expression of ezrin, MMP-9, and COX-2 in 50 chordoma specimens: a clinical and immunohistochemical analysis. Spine (Phila Pa 1976) 2012; 37:E757-67. [PMID: 22228328 DOI: 10.1097/brs.0b013e31824782e1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective study. OBJECTIVE To investigate the immunohistochemical expression profile of ezrin, matrix metalloproteinase-9 (MMP-9), and cyclooxygenase-2 (COX)-2 in chordomas. SUMMARY OF BACKGROUND DATA Ezrin, MMP-9, and COX-2 are expressed in different solid tumors, including chordomas. This study investigates the immunohistochemical expression of the aforementioned biomarkers and the clinical outcome in regard to immunohistochemistry, tumor volume, and localization. METHODS Fifty brachyury-verified chordoma specimens of 34 primary and 16 recurrent tumors of 44 patients were tested for ezrin, MMP-9, and COX-2 as possible therapeutical targets by immunohistochemistry. The clinical evaluation concentrated on tumor location, volume, and age-related data. RESULTS Ezrin expression was detected in 33 of 34 primary chordomas and in 16 of 16 recurrent cases. The primary chordomas located in the sacrum and the spine demonstrated a significantly higher percentage of positively stained tumor cells (P = 0.034) than the skull-based chordomas. An expression of MMP-9 and COX-2 was observed in 33 of 34 primary chordomas and in 16 of 16 recurrences, and in 13 of 34 primary chordomas and in 11 of 16 recurrences, respectively. Patients' survival was significantly influenced by age (P = 0.01), tumor location (P = 0.029), and tumor volume (P = 0.002). A significant positive correlation between tumor volume and the anatomic distance of the chordoma from the skull was calculated (P = 0.00002). CONCLUSION En bloc resection with tumor-free margins is seldom feasible, particularly in the sacrum. Intralesional excisions mostly end in early local recurrence; therefore, the demand for further treatment options is frequently posed. The marked trend of the investigated biomarkers of this study may build a starting point for further investigations as molecular targets for future adjuvant therapies in chordomas. Future multicenter studies on larger patients' series are necessary to elucidate these preliminary data and to test new treatment options for patients with chordomas.
Collapse
|
41
|
de Graaf AJ, Mastrobattista E, Vermonden T, van Nostrum CF, Rijkers DTS, Liskamp RMJ, Hennink WE. Thermosensitive Peptide-Hybrid ABC Block Copolymers Obtained by ATRP: Synthesis, Self-Assembly, and Enzymatic Degradation. Macromolecules 2012. [DOI: 10.1021/ma2024667] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Albert J. de Graaf
- Utrecht Institute for Pharmaceutical
Sciences, Pharmaceutics, Utrecht University, P.O. Box 80.082, 3508TB Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Utrecht Institute for Pharmaceutical
Sciences, Pharmaceutics, Utrecht University, P.O. Box 80.082, 3508TB Utrecht, The Netherlands
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical
Sciences, Pharmaceutics, Utrecht University, P.O. Box 80.082, 3508TB Utrecht, The Netherlands
| | - Cornelus F. van Nostrum
- Utrecht Institute for Pharmaceutical
Sciences, Pharmaceutics, Utrecht University, P.O. Box 80.082, 3508TB Utrecht, The Netherlands
| | - Dirk T. S. Rijkers
- Utrecht Institute for Pharmaceutical Sciences, Medicinal Chemistry & Chemical Biology, Utrecht University, P.O. Box 80.082, 3508TB Utrecht, The Netherlands
| | - Rob M. J. Liskamp
- Utrecht Institute for Pharmaceutical Sciences, Medicinal Chemistry & Chemical Biology, Utrecht University, P.O. Box 80.082, 3508TB Utrecht, The Netherlands
| | - Wim E. Hennink
- Utrecht Institute for Pharmaceutical
Sciences, Pharmaceutics, Utrecht University, P.O. Box 80.082, 3508TB Utrecht, The Netherlands
| |
Collapse
|
42
|
Webster P, Wujanto L, Fisher C, Walker M, Ramakrishnan R, Naresh K, Thomas JM, Papalois V, Crane J, Taube D, Duncan N. Malignancies confined to disused arteriovenous fistulae in renal transplant patients: an important differential diagnosis. Am J Nephrol 2011; 34:42-8. [PMID: 21659738 DOI: 10.1159/000328908] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Swelling in an arteriovenous fistula (AVF) is commonly caused by thrombosis, aneurysm and infection. However, due to the increased risk of malignancy after transplantation, this should also be considered. PATIENTS We discuss 4 patients with malignancy confined to an AVF after renal transplantation presenting in a 2-year period. Angiosarcoma was diagnosed in 3 patients and the other had post-transplant lymphoproliferative disorder (PTLD). Angiosarcoma behaves aggressively and 2 of our patients died within 6 months of diagnosis. There are 6 previous cases and 5 died within 16 months of diagnosis. PTLD at AVFs has not been documented previously. CONCLUSION Malignancy at an AVF is a rare but important differential that can impact significantly on patient morbidity and mortality. Predilection for malignancy at an AVF is not understood. We review the literature and discuss possible aetiologies.
Collapse
|
43
|
Korpi JT, Hagström J, Lehtonen N, Parkkinen J, Sorsa T, Salo T, Laitinen M. Expression of matrix metalloproteinases-2, -8, -13, -26, and tissue inhibitors of metalloproteinase-1 in human osteosarcoma. Surg Oncol 2010; 20:e18-22. [PMID: 20880700 DOI: 10.1016/j.suronc.2010.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
Abstract
Osteosarcoma (OS) is among most common malignant tumour of bone. Matrix metalloproteinases (MMPs) are predominantly associated with poor prognosis of several cancers, although some of them, like MMP-8, seem to have a protective role in some cancers. We analyzed the distribution patterns of MMP-2, -8, -13, -26, and tissue inhibitor of matrix metalloproteinase (TIMP)-1 in 25 OS patients. MMP-2, -8, -13, -26 and TIMP-1 were mostly detected in sarcoma cells. Response to chemotherapy affected the amount of MMP-2, -8, and -13 in resection sections when compared to biopsies: patients with excellent or good response had less positivity to MMP-2 in chemotherapy samples than those with moderate or poor response. We conclude that MMP-2, -8, -13, -26, and TIMP-1 are expressed in OS tissue, and all, except protective MMP-8, were also found in metastases indicating that MMPs and TIMP-1 can participate in the OS progression.
Collapse
Affiliation(s)
- Jarkko T Korpi
- Department of Oral and Maxillofacial Surgery, University Hospital of Oulu, Finland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Lahat G, Tuvin D, Wei C, Wang WL, Pollock RE, Anaya DA, Bekele BN, Corely L, Lazar AJ, Pisters PW, Lev D. Molecular prognosticators of complex karyotype soft tissue sarcoma outcome: a tissue microarray-based study. Ann Oncol 2009; 21:1112-20. [PMID: 19875755 DOI: 10.1093/annonc/mdp459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Molecular markers are currently being utilized as sensitive prognosticators of cancer patient outcome. We sought to identify prognostic biomarkers for complex karyotype soft tissue sarcoma (STS). MATERIALS AND METHODS A large (n = 205) clinically annotated tissue microarray (TMA) was constructed and immunostained for several tumor-related markers. Staining was scored via an automated Ariol image analysis system; data were statistically analyzed to evaluate the correlation of clinicopathological and molecular variables with overall survival (OS) and local recurrence. RESULTS Multivariable analysis identified older age [hazard ratio (HR) 1.62, P < 0.0001], nonextremity location (HR 2.95, P = 0.001), high tumor grade (HR 2.5, P = 0.02), and increased matrix metalloproteinase (MMP) 2 expression (HR 1.74, P = 0.04) as predictors for poor OS. Similarly, older age (HR 1.51, P = 0.008), nonextremity location (HR 4.09, P = 0.001), and increased MMP2 expression (HR 6.28, P = 0.006) were all found to correlate with shorter local recurrence-free interval. High nuclear p53 expression was associated with shorter STS local recurrence-free interval, with a trend toward significance. CONCLUSIONS Data presented indicate that a clinically annotated TMA can be utilized to identify STS-related prognostic markers. Specifically, MMP2 and nuclear p53 should be further evaluated for their potential inclusion in complex karyotype STS staging systems.
Collapse
Affiliation(s)
- G Lahat
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aggarwal BB, Gehlot P. Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 2009; 9:351-69. [PMID: 19665429 PMCID: PMC2730981 DOI: 10.1016/j.coph.2009.06.020] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 02/03/2023]
Abstract
Evidence has emerged in the last two decades that at the molecular level most chronic diseases, including cancer, are caused by a dysregulated inflammatory response. The identification of transcription factors such as NF-kappaB, AP-1 and STAT3 and their gene products such as tumor necrosis factor, interleukin-1, interleukin-6, chemokines, cyclooxygenase-2, 5 lipooxygenase, matrix metalloproteases, and vascular endothelial growth factor, adhesion molecules and others have provided the molecular basis for the role of inflammation in cancer. These inflammatory pathways are activated by tobacco, stress, dietary agents, obesity, alcohol, infectious agents, irradiation, and environmental stimuli, which together account for as much as 95% of all cancers. These pathways have been implicated in transformation, survival, proliferation, invasion, angiogenesis, metastasis, chemoresistance, and radioresistance of cancer, so much so that survival and proliferation of most types of cancer stem cells themselves appear to be dependent on the activation of these inflammatory pathways. Most of this evidence, however, is from preclinical studies. Whether these pathways have any role in prevention, progression, diagnosis, prognosis, recurrence or treatment of cancer in patients, is the topic of discussion of this review. We present evidence that inhibitors of inflammatory biomarkers may have a role in both prevention and treatment of cancer.
Collapse
|
46
|
Ferrari C, Benassi S, Ponticelli F, Gamberi G, Ragazzini P, Pazzaglia L, Balladelli A, Bertoni F, Picci P. Role of MMP-9 and its tissue inhibitor TIMP-1 in human osteosarcomaFindings in 42 patients followed for 1–16 years. ACTA ACUST UNITED AC 2009; 75:487-91. [PMID: 15370596 DOI: 10.1080/00016470410001295-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The activity of matrix metalloproteinases (MMPs) in degrading extracellular matrix is controlled by activation of proenzymes and inhibition of MMP tissue inhibitors (TIMPs). PATIENTS AND METHODS To assess the proteolytic cascade imbalance in malignancy progression, tissue expression and serum levels of MMP-2, MMP-9 and of their inhibitors TIMP-2 and TIMP-1 respectively were evaluated in 42 selected patients with high-grade osteosarcoma (OS). MMP-2, MMP-9, TIMP-2 and TIMP-1 were studied in biopsies by immunohistochemistry and in serum by ELISA test. Patients were subdivided into 3 groups according to their follow up: continuously disease-free, diagnosis of metastasis during follow-up, and metastasis at diagnosis. RESULTS Immunohistochemistry demonstrated an imbalance between MMPs and TIMPs, with a more evident role for MMP-9 than for MMP-2 in tumor progression. TIMP-1 inhibitor in plasma was higher in patients with osteosarcoma than in a control group. This high value of TIMP-1 was particularly evident in the group of patients who later developed metastases and/or local recurrences, and in those with metastases at diagnosis. INTERPRETATION Our findings confirm the protective action of TIMP-1, as MMP inhibitor, but also show its activity as a growth factor underlining its multifunctional role in OS.
Collapse
Affiliation(s)
- Cristina Ferrari
- Laboratory of Oncologic Research, Rizzoli Orthopaedic Institute, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M. Inhibition of cell invasion and MMP production by a nutrient mixture in malignant liposarcoma cell line SW-872. Med Oncol 2008; 24:394-401. [PMID: 17917088 DOI: 10.1007/s12032-007-0022-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 11/30/1999] [Accepted: 04/11/2007] [Indexed: 11/29/2022]
Abstract
Liposarcoma, a malignancy of fat cells, is the most common soft tissue sarcoma. Though rare, poorly differentiated liposarcomas commonly metastasize to lungs and liver, leading to poor prognosis. Prevention of Extracellular matrix (ECM) degradation by inhibition of matrix metalloproteinases (MMPs) activity has been shown to be a promising therapeutic approach to inhibition of cancer progression. A nutrient mixture (NM) containing lysine, proline, ascorbic acid, and green tea extract has shown significant anticancer activity against a number of cancer cell lines. We investigated the effect of NM on liposarcoma cell line SW-872 proliferation (MTT assay), MMP secretion (gelatinase zymography), invasion through Matrigel, and apoptosis and morphology (live green caspase kit and H&E). Liposarcoma cell growth was inhibited by 36 and 61% at 500 and 1,000 microg/ml NM. Zymography demonstrated both MMP-2 and MMP-9 secretion, with PMA-enhanced MMP-9 activity. NM inhibited both MMPs with virtual total inhibition at 500 microg/ml NM. Invasion through Matrigel was inhibited at 100, 500, and 1,000 microg/ml by 44, 75, and 100%, respectively. Dose-dependent apoptosis of liposarcoma cells was evident with NM challenge, with virtually all cells exposed to 1,000 microg/ml NM in late apoptosis. H&E staining did not demonstrate any changes in morphology at lower concentrations. However, some apoptotic changes were evident at higher concentrations. In conclusion, NM significantly inhibited liposarcoma cell growth, MMP activity, and invasion and induced apoptosis in vitro-important parameters for cancer development, suggesting NM as a potential treatment strategy for liposarcoma.
Collapse
Affiliation(s)
- M W Roomi
- Cancer Division, Dr. Rath Research Institute, 1260 Memorex Drive, Santa Clara, CA 95050, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Nowadays, cancer is the first cause of death in the developed world, accounting for 94,000 yearly deaths in Spain. In recent years, advances in the field of molecular cancer biology and cancer therapy have identified a number of potential target molecules that play a critical role in the complex malignant cell transformation process. Since the approval of the first molecularly targeted drug imatinib in 2001, hundreds of novel agents are being investigated as monotherapy or in combination with chemotherapy and/or radiotherapy for the treatment of cancer of the breast, colon and rectum, lung, kidney, and head and neck, among others. Interestingly, molecularly targeted agents are becoming the new standard of care in some malignances such as renal-cell carcinoma and chronic myeloid leukemia. Future research on molecularly targeted therapies will focus on the identification of new drugs and drug targets, improved selection of tumors sensitive to these drugs, and the rational design and optimization of combination therapies.
Collapse
Affiliation(s)
- Aleix Prat
- Servicio de Oncología Médica, Hospital Universitario de la Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, España.
| | | |
Collapse
|
50
|
Scapolan M, Perin T, Wassermann B, Canzonieri V, Colombatti A, Italia F, Spessotto P. Expression profiles in malignant fibrous histiocytomas: clues for differentiating 'spindle cell' and 'pleomorphic' subtypes. Eur J Cancer 2007; 44:298-309. [PMID: 18054831 DOI: 10.1016/j.ejca.2007.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/09/2007] [Indexed: 11/25/2022]
Abstract
We analysed 21 samples of malignant fibrous histiocytoma (MFH) distinguished into the two principal morphological categories ('spindle cell' and the 'pleomorphic' subtypes). The aim of our study was to verify if a distinction between the two subclasses of MFH in terms of expression/activation of protein profiles could support and extend the morphological criteria. For this purpose, we carried out an immunohistochemical and immunoblotting analysis of proteins that could be relevant in sarcoma biology and potential diagnostic and therapeutical targets such as matrix metalloproteinases (MMPs) and molecules related to adhesive and proliferative properties. Our analysis revealed that MMP-1, MMP-9 expression and p27(kip1) cytoplasmic localisation can be considered valid parameters in the classification and potential explanation of the aggressive behaviour of this non-homogeneous group of MFH.
Collapse
Affiliation(s)
- Martina Scapolan
- Experimental Oncology 2, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | | | | | | | | | | | | |
Collapse
|