1
|
Samuelsson AM, Bartolomaeus TUP, Anandakumar H, Thowsen I, Nikpey E, Han J, Marko L, Finne K, Tenstad O, Eckstein J, Berndt N, Kühne T, Kedziora S, Sultan I, Skogstrand T, Karlsen TV, Nurmi H, Forslund SK, Bollano E, Alitalo K, Muller DN, Wiig H. VEGF-B hypertrophy predisposes to transition from diastolic to systolic heart failure in hypertensive rats. Cardiovasc Res 2023; 119:1553-1567. [PMID: 36951047 PMCID: PMC10318391 DOI: 10.1093/cvr/cvad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/04/2022] [Accepted: 01/10/2023] [Indexed: 03/24/2023] Open
Abstract
AIMS Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges. METHODS AND RESULTS Male rats overexpressing the cardiac-specific VEGF-B transgene (VEGF-B TG) were treated for 3 or 6 weeks with deoxycorticosterone-acetate combined with a high-salt (HS) diet (DOCA + HS) to induce hypertension and cardiac damage. Extensive longitudinal echocardiographic studies of HF progression were conducted, starting at baseline. Sham-treated rats served as controls. To evaluate the metabolic alterations associated with HF, cardiac proteomics by mass spectrometry was performed. Hypertrophic non-treated VEGF-B TG hearts demonstrated high oxygen and adenosine triphosphate (ATP) demand with early onset of diastolic dysfunction. Administration of DOCA + HS to VEGF-B TG rats for 6 weeks amplified the progression from cardiac hypertrophy to HF, with a drastic drop in heart ATP concentration. Dobutamine stress echocardiographic analyses uncovered a significantly impaired systolic reserve. Mechanistically, the hallmark of the failing TG heart was an abnormal energy metabolism with decreased mitochondrial ATP, preceding the attenuated cardiac performance and leading to systolic HF. CONCLUSIONS This study shows that the VEGF-B TG accelerates metabolic maladaptation which precedes structural cardiomyopathy in experimental hypertension and ultimately leads to systolic HF.
Collapse
Affiliation(s)
- Anne-Maj Samuelsson
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Jonas Leis vei 65, 5021 Bergen, Norway
| | - Theda Ulrike Patricia Bartolomaeus
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Harithaa Anandakumar
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Irene Thowsen
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| | - Elham Nikpey
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| | - Jianhua Han
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Jonas Leis vei 65, 5021 Bergen, Norway
| | - Lajos Marko
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| | - Johannes Eckstein
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charité-University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nikolaus Berndt
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charite Platz 1, 10117 Berlin, Germany
| | - Titus Kühne
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charite Platz 1, 10117 Berlin, Germany
| | - Sarah Kedziora
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Trude Skogstrand
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| | - Tine V Karlsen
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| | - Harri Nurmi
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Sofia K Forslund
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Entela Bollano
- Department of Cardiology, Sahlgrenska University Hospital, Blå stråket 5, 413 45 Göteborg, Sweden
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Dominik N Muller
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité platz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Potsdamer Straße 58, 10785 Berlin, Germany
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Jonas Leis vei 91, 5020 Bergen, Norway
| |
Collapse
|
2
|
Sarohi V, Chakraborty S, Basak T. Exploring the cardiac ECM during fibrosis: A new era with next-gen proteomics. Front Mol Biosci 2022; 9:1030226. [PMID: 36483540 PMCID: PMC9722982 DOI: 10.3389/fmolb.2022.1030226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
Extracellular matrix (ECM) plays a critical role in maintaining elasticity in cardiac tissues. Elasticity is required in the heart for properly pumping blood to the whole body. Dysregulated ECM remodeling causes fibrosis in the cardiac tissues. Cardiac fibrosis leads to stiffness in the heart tissues, resulting in heart failure. During cardiac fibrosis, ECM proteins get excessively deposited in the cardiac tissues. In the ECM, cardiac fibroblast proliferates into myofibroblast upon various kinds of stimulations. Fibroblast activation (myofibroblast) contributes majorly toward cardiac fibrosis. Other than cardiac fibroblasts, cardiomyocytes, epithelial/endothelial cells, and immune system cells can also contribute to cardiac fibrosis. Alteration in the expression of the ECM core and ECM-modifier proteins causes different types of cardiac fibrosis. These different components of ECM culminated into different pathways inducing transdifferentiation of cardiac fibroblast into myofibroblast. In this review, we summarize the role of different ECM components during cardiac fibrosis progression leading to heart failure. Furthermore, we highlight the importance of applying mass-spectrometry-based proteomics to understand the key changes occurring in the ECM during fibrotic progression. Next-gen proteomics studies will broaden the potential to identify key targets to combat cardiac fibrosis in order to achieve precise medicine-development in the future.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| |
Collapse
|
3
|
Majood M, Rawat S, Mohanty S. Delineating the role of extracellular vesicles in cancer metastasis: A comprehensive review. Front Immunol 2022; 13:966661. [PMID: 36059497 PMCID: PMC9439583 DOI: 10.3389/fimmu.2022.966661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are subcellular messengers that aid in the formation and spread of cancer by enabling tumor-stroma communication. EVs develop from the very porous structure of late endosomes and hold information on both the intrinsic “status” of the cell and the extracellular signals absorbed by the cells from their surroundings. These EVs contain physiologically useful components, including as nucleic acids, lipids, and proteins, which have been found to activate important signaling pathways in tumor and tumor microenvironment (TME) cells, aggravating tumor growth. We highlight critical cell biology mechanisms that link EVS formation to cargo sorting in cancer cells in this review.Sorting out the signals that control EVs creation, cargo, and delivery will aid our understanding of carcinogenesis. Furthermore, we reviewed how cancer development and spreading behaviors are affected by coordinated communication between malignant and non-malignant cells. Herein, we studied the reciprocal exchanges via EVs in various cancer types. Further research into the pathophysiological functions of various EVs in tumor growth is likely to lead to the discovery of new biomarkers in liquid biopsy and the development of tumor-specific therapies.
Collapse
|
4
|
Positron Emission Tomography (PET) with 18F-FGA for Diagnosis of Myocardial Infarction in a Coronary Artery Ligation Model. Mol Imaging 2022; 2022:9147379. [PMID: 35250392 PMCID: PMC8865857 DOI: 10.1155/2022/9147379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Location and extent of necrosis are valuable information in the management of myocardial infarction (MI). Methods. We investigated 2-deoxy-2-18F-fluoro glucaric acid (FGA), a novel infarct-avid agent, for positron emission tomography (PET) of MI. We synthesized FGA from commercially available 18F-fluoro-2-deoxy-2-D-glucose (FDG). MI was induced in mice by permanently occluding the left anterior descending coronary artery. Biodistribution of FGA was assessed 1 h after FGA injection (11 MBq). PET/CT was conducted 1 h, 6 h, 1 d, 3 d, and 4 d after MI. Subcellular compartment of FGA accumulation in necrosis was studied by tracing the uptake of biotin-labeled glucaric acid with streptavidin-HRP in H2O2-treated H9c2 cardiomyoblasts. Streptavidin-reactive protein bands were identified by LC-MS/MS. Results. We obtained a quantitative yield of FGA from FDG within 7 min (
). Cardiac uptake of FGA was significantly higher in MI mice than that in control mice. Imaging after 1 h of FGA injection delineated MI for 3 days after MI induction, with negligible background signal from surrounding tissues. Myocardial injury was verified by tetrazolium staining and plasma troponin (47.63 pg/mL control versus 311.77 pg/mL MI). In necrotic H9c2 myoblasts, biotinylated glucaric acid accumulated in nuclear fraction. LC-MS/MS primarily identified fibronectin in necrotic cells as a putative high fidelity target of glucaric acid. Conclusion. FGA/PET detects infarct early after onset of MI and FGA accumulation in infarct persists for 3 days. Its retention in necrotic cells appears to be a result of interaction with fibronectin that is known to accumulate in injured cardiac tissue.
Collapse
|
5
|
Huang XH, Li JL, Li XY, Wang SX, Jiao ZH, Li SQ, Liu J, Ding J. miR-208a in Cardiac Hypertrophy and Remodeling. Front Cardiovasc Med 2021; 8:773314. [PMID: 34957257 PMCID: PMC8695683 DOI: 10.3389/fcvm.2021.773314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Various stresses, including pressure overload and myocardial stretch, can trigger cardiac remodeling and result in heart diseases. The disorders are associated with high risk of morbidity and mortality and are among the major health problems in the world. MicroRNAs, a class of ~22nt-long small non-coding RNAs, have been found to participate in regulating heart development and function. One of them, miR-208a, a cardiac-specific microRNA, plays key role(s) in modulating gene expression in the heart, and is involved in a broad array of processes in cardiac pathogenesis. Genetic deletion or pharmacological inhibition of miR-208a in rodents attenuated stress-induced cardiac hypertrophy and remodeling. Transgenic expression of miR-208a in the heart was sufficient to cause hypertrophic growth of cardiomyocytes. miR-208a is also a key regulator of cardiac conduction system, either deletion or transgenic expression of miR-208a disturbed heart electrophysiology and could induce arrhythmias. In addition, miR-208a appeared to assist in regulating the expression of fast- and slow-twitch myofiber genes in the heart. Notably, this heart-specific miRNA could also modulate the “endocrine” function of cardiac muscle and govern the systemic energy homeostasis in the whole body. Despite of the critical roles, the underlying regulatory networks involving miR-208a are still elusive. Here, we summarize the progress made in understanding the function and mechanisms of this important miRNA in the heart, and propose several topics to be resolved as well as the hypothetical answers. We speculate that miR-208a may play diverse and even opposite roles by being involved in distinct molecular networks depending on the contexts. A deeper understanding of the precise mechanisms of its action under the conditions of cardiac homeostasis and diseases is needed. The clinical implications of miR-208a are also discussed.
Collapse
Affiliation(s)
- Xing-Huai Huang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jia-Lu Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin-Yue Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shu-Xia Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Han Jiao
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Si-Qi Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jun Liu
- Department of Orthopaedics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Chinese Traditional Medicine, Nanjing, China
| | - Jian Ding
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Alzahrani AM, Rajendran P, Veeraraghavan VP, Hanieh H. Cardiac Protective Effect of Kirenol against Doxorubicin-Induced Cardiac Hypertrophy in H9c2 Cells through Nrf2 Signaling via PI3K/AKT Pathways. Int J Mol Sci 2021; 22:ijms22063269. [PMID: 33806909 PMCID: PMC8004766 DOI: 10.3390/ijms22063269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Kirenol (KRL) is a biologically active substance extracted from Herba Siegesbeckiae. This natural type of diterpenoid has been widely adopted for its important anti-inflammatory and anti-rheumatic properties. Despite several studies claiming the benefits of KRL, its cardiac effects have not yet been clarified. Cardiotoxicity remains a key concern associated with the long-term administration of doxorubicin (DOX). The generation of reactive oxygen species (ROS) causes oxidative stress, significantly contributing to DOX-induced cardiac damage. The purpose of the current study is to investigate the cardio-protective effects of KRL against apoptosis in H9c2 cells induced by DOX. The analysis of cellular apoptosis was performed using the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining assay and measuring the modulation in the expression levels of proteins involved in apoptosis and Nrf2 signaling, the oxidative stress markers. Furthermore, Western blotting was used to determine cell survival. KRL treatment, with Nrf2 upregulation and activation, accompanied by activation of PI3K/AKT, could prevent the administration of DOX to induce cardiac oxidative stress, remodeling, and other effects. Additionally, the diterpenoid enhanced the activation of Bcl2 and Bcl-xL, while suppressing apoptosis marker proteins. As a result, KRL is considered a potential agent against hypertrophy resulting from cardiac deterioration. The study results show that KRL not only activates the IGF-IR-dependent p-PI3K/p-AKT and Nrf2 signaling pathway, but also suppresses caspase-dependent apoptosis.
Collapse
Affiliation(s)
- Abdullah M. Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Correspondence: ; Tel.: +97-0135899543
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India;
| | - Hamza Hanieh
- Department of Medical Analysis, Al-Hussein Bin Talal University, Ma’an 71111, Jordan;
| |
Collapse
|
7
|
Sharifi Kia D, Fortunato R, Maiti S, Simon MA, Kim K. An exploratory assessment of stretch-induced transmural myocardial fiber kinematics in right ventricular pressure overload. Sci Rep 2021; 11:3587. [PMID: 33574400 PMCID: PMC7878470 DOI: 10.1038/s41598-021-83154-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
Right ventricular (RV) remodeling and longitudinal fiber reorientation in the setting of pulmonary hypertension (PH) affects ventricular structure and function, eventually leading to RV failure. Characterizing the kinematics of myocardial fibers helps better understanding the underlying mechanisms of fiber realignment in PH. In the current work, high-frequency ultrasound imaging and structurally-informed finite element (FE) models were employed for an exploratory evaluation of the stretch-induced kinematics of RV fibers. Image-based experimental evaluation of fiber kinematics in porcine myocardium revealed the capability of affine assumptions to effectively approximate myofiber realignment in the RV free wall. The developed imaging framework provides a noninvasive modality to quantify transmural RV myofiber kinematics in large animal models. FE modeling results demonstrated that chronic pressure overload, but not solely an acute rise in pressures, results in kinematic shift of RV fibers towards the longitudinal direction. Additionally, FE simulations suggest a potential protective role for concentric hypertrophy (increased wall thickness) against fiber reorientation, while eccentric hypertrophy (RV dilation) resulted in longitudinal fiber realignment. Our study improves the current understanding of the role of different remodeling events involved in transmural myofiber reorientation in PH. Future experimentations are warranted to test the model-generated hypotheses.
Collapse
Affiliation(s)
- Danial Sharifi Kia
- grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ronald Fortunato
- grid.21925.3d0000 0004 1936 9000Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA USA
| | - Spandan Maiti
- grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA USA
| | - Marc A. Simon
- grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, 623A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15213 USA ,grid.412689.00000 0001 0650 7433Heart and Vascular Institute, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA USA ,grid.412689.00000 0001 0650 7433Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Kang Kim
- grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, 623A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15213 USA ,grid.412689.00000 0001 0650 7433Heart and Vascular Institute, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA USA ,grid.412689.00000 0001 0650 7433Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
8
|
Cole LK, Mejia EM, Sparagna GC, Vandel M, Xiang B, Han X, Dedousis N, Kaufman BA, Dolinsky VW, Hatch GM. Cardiolipin deficiency elevates susceptibility to a lipotoxic hypertrophic cardiomyopathy. J Mol Cell Cardiol 2020; 144:24-34. [PMID: 32418915 DOI: 10.1016/j.yjmcc.2020.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Cardiolipin (CL) is a unique tetra-acyl phospholipid localized to the inner mitochondrial membrane and essential for normal respiratory function. It has been previously reported that the failing human heart and several rodent models of cardiac pathology have a selective loss of CL. A rare genetic disease, Barth syndrome (BTHS), is similarly characterized by a cardiomyopathy due to reduced levels of cardiolipin. A mouse model of cardiolipin deficiency was recently developed by knocking-down the cardiolipin biosynthetic enzyme tafazzin (TAZ KD). These mice develop an age-dependent cardiomyopathy due to mitochondrial dysfunction. Since reduced mitochondrial capacity in the heart may promote the accumulation of lipids, we examined whether cardiolipin deficiency in the TAZ KD mice promotes the development of a lipotoxic cardiomyopathy. In addition, we investigated whether treatment with resveratrol, a small cardioprotective nutraceutical, attenuated the aberrant lipid accumulation and associated cardiomyopathy. Mice deficient in tafazzin and the wildtype littermate controls were fed a low-fat diet, or a high-fat diet with or without resveratrol for 16 weeks. In the absence of obesity, TAZ KD mice developed a hypertrophic cardiomyopathy characterized by reduced left-ventricle (LV) volume (~36%) and 30-50% increases in isovolumetric contraction (IVCT) and relaxation times (IVRT). The progression of cardiac hypertrophy with tafazzin-deficiency was associated with several underlying pathological processes including altered mitochondrial complex I mediated respiration, elevated oxidative damage (~50% increase in reactive oxygen species, ROS), the accumulation of triglyceride (~250%) as well as lipids associated with lipotoxicity (diacylglyceride ~70%, free-cholesterol ~44%, ceramide N:16-35%) compared to the low-fat fed controls. Treatment of TAZ KD mice with resveratrol maintained normal LV volumes and preserved systolic function of the heart. The beneficial effect of resveratrol on cardiac function was accompanied by a significant improvement in mitochondrial respiration, ROS production and oxidative damage to the myocardium. Resveratrol treatment also attenuated the development of cardiac steatosis in tafazzin-deficient mice through reduced de novo fatty acid synthesis. These results indicate for the first time that cardiolipin deficiency promotes the development of a hypertrophic lipotoxic cardiomyopathy. Furthermore, we determined that dietary resveratrol attenuates the cardiomyopathy by reducing ROS, cardiac steatosis and maintaining mitochondrial function.
Collapse
Affiliation(s)
- Laura K Cole
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Edgard M Mejia
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Center Denver, Aurora, USA
| | - Marilyne Vandel
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Bo Xiang
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and the Department of Medicine-Diabetes, University of Texas Health Science Center at San Antonio, San Antonia, TX, USA
| | - Nikolaos Dedousis
- Center for Metabolism and Mitochondrial Medicine and the Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine and the Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
9
|
Wu WQ, Peng S, Song ZY, Lin S. Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration. Drug Deliv Transl Res 2020; 9:920-934. [PMID: 30877625 DOI: 10.1007/s13346-019-00627-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myocardial infarction (MI) remains one of the leading cause of mortality over the world. However, current treatments are more palliative than curative, which only stall the progression of the disease, but not reverse the disease. While stem cells or bioactive molecules therapy is promising, the limited survival and engraftment of bioactive agent due to a hostile environment is a bottleneck for MI treatment. In order to maximize the utility of stem cells and bioactive molecules for myocardial repair and regeneration, various types of biomaterials have been developed. Among them, collagen-based biomaterial is widely utilized for cardiac tissue engineering and regeneration due to its optimal physical and chemical properties. In this review, we summarize the properties of collagen-based biomaterial. Then, we discuss collagen-based biomaterial currently being applied to treat MI alone, or together with stem cells and/or bioactive molecules. Finally, the delivery system of collagen-based biomaterial will also be discussed.
Collapse
Affiliation(s)
- Wei-Qiang Wu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Song Peng
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China.
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China. .,School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Keiraville, NSW, 2522, Australia.
| |
Collapse
|
10
|
Li Y, Ma L, Gu S, Tian J, Cao Y, Jin Z, Chen J, Gu B, Tu J, Wang Z, Li X, Ning Z, Jin Y. UBE3A alleviates isoproterenol-induced cardiac hypertrophy through the inhibition of the TLR4/MMP-9 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2020; 52:58-63. [PMID: 31681945 DOI: 10.1093/abbs/gmz119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 01/06/2023] Open
Abstract
Cardiac hypertrophy is considered to be a leading factor in heart function-related deaths. In this study, we explored the potential mechanism underlying cardiac hypertrophy induced by isoproterenol. Our results showed that isoproterenol induced cardiac hypertrophy in AC16 cells, as reflected by the increased cell surface area and increased hypertrophic markers, which was accompanied by increased ubiquitin-protein ligase E3a (UBE3A) expression. Moreover, UBE3A knockdown by siRNAs accelerated cardiac hypertrophy, suggesting that increased UBE3A expression induced by isoproterenol might be a protective response and UBE3A might be a protective factor against cardiac hypertrophy. Our study also revealed that UBE3A knockdown increased the protein expression of the TLR4/MMP-9 pathway that has been shown to be associated with cardiac hypertrophy, which suggested that UBE3A-mediated protection is likely to be associated with the blockade of the TLR4/MMP-9 signaling pathway. UBE3A might be thus a potential target gene for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Linlin Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Sijie Gu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Jiewen Tian
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Yilin Cao
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Zi Jin
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Jingyi Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Bingbing Gu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Jiayin Tu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Zhixiao Wang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Xinming Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Zhongping Ning
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| | - Yueling Jin
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Cardiovascular Department, Shanghai 201318, China
| |
Collapse
|
11
|
Li Z, Liu T, Yang J, Lin J, Xin SX. Characterization of adhesion properties of the cardiomyocyte integrins and extracellular matrix proteins using atomic force microscopy. J Mol Recognit 2019; 33:e2823. [PMID: 31709699 DOI: 10.1002/jmr.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 11/10/2022]
Abstract
Integrins are transmembrane adhesion receptors that play important roles in the cardiovascular system by interacting with the extracellular matrix (ECM). However, direct quantitative measurements of the adhesion properties of the integrins on cardiomyocyte (CM) and their ECM ligands are lacking. In this study, we used atomic force microscopy (AFM) to quantify the adhesion force (peak force and mean force) and binding probability between CM integrins and three main heart tissue ECM proteins, ie, collagen (CN), fibronectin (FN), and laminin (LN). Functionalizing the AFM probes with ECM proteins, we found that the peak force (mean force) was 61.69 ± 5.5 pN (76.54 ± 4.0 pN), 39.26 ± 4.4 pN (59.84 ± 3.6 pN), and 108.31 ± 4.2 pN (129.63 ± 6.0 pN), respectively, for the bond of CN-integrin, FN-integrin, and LN-integrin. The binding specificity between CM integrins and ECM proteins was verified by using monoclonal antibodies, where α10 - and α11 -integrin bind to CN, α3 - and α5 -integrin bind to FN, and α3 - and α7 -integrin bind to LN. Furthermore, adhesion properties of CM integrins under physiologically high concentrations of extracellular Ca2+ and Mg2+ were tested. Additional Ca2+ reduced the adhesion mean force to 68.81 ± 4.0 pN, 49.84 ± 3.3 pN, and 119.21 ± 5.8 pN and binding probability to 0.31, 0.34, 0.40 for CN, FN, and LN, respectively, whereas Mg2+ caused very minor changes to adhesion properties of CM integrins. Thus, adhesion properties between adult murine CM integrins and its main ECM proteins were characterized, paving the way for an improved understanding of CM mechanobiology.
Collapse
Affiliation(s)
- Zecheng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Tianqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Junxian Yang
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Schauer A, Adams V, Poitz DM, Barthel P, Joachim D, Friedrich J, Linke A, Augstein A. Loss of Sox9 in cardiomyocytes delays the onset of cardiac hypertrophy and fibrosis. Int J Cardiol 2019; 282:68-75. [DOI: 10.1016/j.ijcard.2019.01.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 01/28/2023]
|
13
|
Ariyasinghe NR, Reck CH, Viscio AA, Petersen AP, Lyra-Leite DM, Cho N, McCain ML. Engineering micromyocardium to delineate cellular and extracellular regulation of myocardial tissue contractility. Integr Biol (Camb) 2018; 9:730-741. [PMID: 28726917 DOI: 10.1039/c7ib00081b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiovascular diseases are a leading cause of death, in part due to limitations of existing models of the myocardium. Myocardium consists of aligned, contractile cardiac myocytes interspersed with fibroblasts that synthesize extracellular matrix (ECM). The cellular demographics and biochemical and mechanical properties of the ECM remodel in many different cardiac diseases. However, the impact of diverse cellular and extracellular remodeling on the contractile output of the myocardium are poorly understood. To address this, we micropatterned 13 kPa and 90 kPa polyacrylamide gels with aligned squares of fibronectin (FN) or laminin (LN). We seeded gels with two concentrations of primary neonatal rat ventricular myocytes, which naturally contain fibroblasts. Cells assembled into aligned "μMyocardia" with fibroblast : myocyte ratios dependent on initial seeding concentration. Using traction force microscopy (TFM), we found that the peak systolic longitudinal cross-sectional force was similar across conditions, but the peak systolic work was significantly lower on 90 kPa gels. This indicates that ECM elasticity dominates over ECM ligand and cell demographics in regulating contractile output. Because our platform provides independent control over cell-cell and cell-matrix interactions, it has many applications for cardiac disease modeling.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Rajabi S, Pahlavan S, Ashtiani MK, Ansari H, Abbasalizadeh S, Sayahpour FA, Varzideh F, Kostin S, Aghdami N, Braun T, Baharvand H. Human embryonic stem cell-derived cardiovascular progenitor cells efficiently colonize in bFGF-tethered natural matrix to construct contracting humanized rat hearts. Biomaterials 2018; 154:99-112. [DOI: 10.1016/j.biomaterials.2017.10.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/26/2022]
|
15
|
Chander AC, Manak MS, Varsanik JS, Hogan BJ, Mouraviev V, Zappala SM, Sant GR, Albala DM. Rapid and Short-term Extracellular Matrix-mediated In Vitro Culturing of Tumor and Nontumor Human Primary Prostate Cells From Fresh Radical Prostatectomy Tissue. Urology 2017; 105:91-100. [PMID: 28365358 DOI: 10.1016/j.urology.2017.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/21/2017] [Accepted: 03/19/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To culture prostate cells from fresh biopsy core samples from radical prostatectomy (RP) tissue. Further, given the genetic heterogeneity of prostate cells, the ability to culture single cells from primary prostate tissue may be of importance toward enabling single-cell characterization of primary prostate tissue via molecular and cellular phenotypic biomarkers. METHODS A total of 260 consecutive tissue samples from RPs were collected between October 2014 and January 2016, transported at 4°C in serum-free media to an off-site central laboratory, dissociated, and cultured. A culture protocol, including a proprietary extracellular matrix formulation (ECMf), was developed that supports rapid and short-term single-cell culture of primary human prostate cells derived from fresh RP samples. RESULTS A total of 251 samples, derived from RP samples, yielded primary human tumor and nontumor prostate cells. Cultured cells on ECMf exhibit (1) survival after transport from the operating room to the off-site centralized laboratory, (2) robust (>80%) adhesion and survival, and (3) expression of different cell-type-specific markers. Cells derived from samples of increasing Gleason score exhibited a greater number of focal adhesions and more focal adhesion activation as measured by phospho-focal adhesion kinase (Y397) immunofluorescence when patient-derived cells were cultured on ECMf. Increased Ki67 immunofluorescence levels were observed in cells derived from cancerous RP tissue when compared to noncancerous RP tissue. CONCLUSION By utilizing a unique and defined extracellular matrix protein formulation, tumor and nontumor cells derived from primary human prostate tissue can be rapidly cultured and analyzed within 72 hours after harvesting from RP tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen M Zappala
- Department of Urology, Tufts University School of Medicine, Boston; Andover Urology, Andover, MA
| | - Grannum R Sant
- Department of Urology, Tufts University School of Medicine, Boston
| | | |
Collapse
|
16
|
Pasqualini FS, Nesmith AP, Horton RE, Sheehy SP, Parker KK. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4081638. [PMID: 28044126 PMCID: PMC5164897 DOI: 10.1155/2016/4081638] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023]
Abstract
Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.
Collapse
Affiliation(s)
- Francesco S. Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Institute for Regenerative Medicine (IREM), Wyss Translational Center, University and ETH Zurich, Zurich, Switzerland
| | - Alexander P. Nesmith
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Renita E. Horton
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- James Worth Bagley College of Engineering and College of Agriculture and Life Sciences, Mississippi State University, Starkville, MS, USA
| | - Sean P. Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
17
|
Greco CM, Kunderfranco P, Rubino M, Larcher V, Carullo P, Anselmo A, Kurz K, Carell T, Angius A, Latronico MVG, Papait R, Condorelli G. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat Commun 2016; 7:12418. [PMID: 27489048 PMCID: PMC4976219 DOI: 10.1038/ncomms12418] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/30/2016] [Indexed: 12/14/2022] Open
Abstract
Methylation at 5-cytosine (5-mC) is a fundamental epigenetic DNA modification associated recently with cardiac disease. In contrast, the role of 5-hydroxymethylcytosine (5-hmC)-5-mC's oxidation product-in cardiac biology and disease is unknown. Here we assess the hydroxymethylome in embryonic, neonatal, adult and hypertrophic mouse cardiomyocytes, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks during heart development and failure. DNA hydroxymethylation marks the body of highly expressed genes as well as distal regulatory regions with enhanced activity. Moreover, pathological hypertrophy is characterized by a shift towards a neonatal 5-hmC distribution pattern. We also show that the ten-eleven translocation 2 (TET2) enzyme regulates the expression of key cardiac genes, such as Myh7, through 5-hmC deposition on the gene body and at enhancers. Thus, we provide a genome-wide analysis of 5-hmC in the cardiomyocyte and suggest a role for this epigenetic modification in heart development and disease.
Collapse
Affiliation(s)
- Carolina M Greco
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Paolo Kunderfranco
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Marcello Rubino
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Veronica Larcher
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Pierluigi Carullo
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy.,Institute of Genetics and Biomedical Research, National Research Council of Italy, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Achille Anselmo
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Kerstin Kurz
- Center for Integrated Protein Science, Department of Chemistry, Ludwig-Maximilians-Universität München, 8137 Munich, Germany
| | - Thomas Carell
- Center for Integrated Protein Science, Department of Chemistry, Ludwig-Maximilians-Universität München, 8137 Munich, Germany
| | - Andrea Angius
- Institute of Genetics and Biomedical Research, National Research Council of Italy, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | | | - Roberto Papait
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy.,Institute of Genetics and Biomedical Research, National Research Council of Italy, Via Manzoni 56, Rozzano (MI) 20089, Italy
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (MI) 20089, Italy.,Institute of Genetics and Biomedical Research, National Research Council of Italy, Via Manzoni 56, Rozzano (MI) 20089, Italy.,Humanitas University, Via Manzoni 56, Rozzano (MI) 20089, Italy.,Department of Cardiovascular Sciences, University of Leicester, Leicester LE3 9QP, UK
| |
Collapse
|
18
|
Tessier SN, Storey KB. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling. Biomol Concepts 2016; 7:69-92. [DOI: 10.1515/bmc-2015-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
AbstractStriated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses.
Collapse
Affiliation(s)
- Shannon N. Tessier
- 1Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Building 114 16th Street, Charlestown, MA 02129, USA
| | - Kenneth B. Storey
- 2Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
| |
Collapse
|
19
|
Horn MA, Trafford AW. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling. J Mol Cell Cardiol 2016; 93:175-85. [PMID: 26578393 PMCID: PMC4945757 DOI: 10.1016/j.yjmcc.2015.11.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide and there is a pressing need for new therapeutic strategies to treat such conditions. The risk of developing cardiovascular disease increases dramatically with age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix (ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis, post-synthetic deposition, post-translational modification and degradation may have detrimental effects on myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling, but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst highlighting potential novel mediators of age-dependent fibrotic pathways.
Collapse
Affiliation(s)
- Margaux A Horn
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, 3.06 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom.
| | - Andrew W Trafford
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, 3.06 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| |
Collapse
|
20
|
Horton RE, Yadid M, McCain ML, Sheehy SP, Pasqualini FS, Park SJ, Cho A, Campbell P, Parker KK. Angiotensin II Induced Cardiac Dysfunction on a Chip. PLoS One 2016; 11:e0146415. [PMID: 26808388 PMCID: PMC4725954 DOI: 10.1371/journal.pone.0146415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/16/2015] [Indexed: 11/29/2022] Open
Abstract
In vitro disease models offer the ability to study specific systemic features in isolation to better understand underlying mechanisms that lead to dysfunction. Here, we present a cardiac dysfunction model using angiotensin II (ANG II) to elicit pathological responses in a heart-on-a-chip platform that recapitulates native laminar cardiac tissue structure. Our platform, composed of arrays of muscular thin films (MTF), allows for functional comparisons of healthy and diseased tissues by tracking film deflections resulting from contracting tissues. To test our model, we measured gene expression profiles, morphological remodeling, calcium transients, and contractile stress generation in response to ANG II exposure and compared against previous experimental and clinical results. We found that ANG II induced pathological gene expression profiles including over-expression of natriuretic peptide B, Rho GTPase 1, and T-type calcium channels. ANG II exposure also increased proarrhythmic early after depolarization events and significantly reduced peak systolic stresses. Although ANG II has been shown to induce structural remodeling, we control tissue architecture via microcontact printing, and show pathological genetic profiles and functional impairment precede significant morphological changes. We assert that our in vitro model is a useful tool for evaluating tissue health and can serve as a platform for studying disease mechanisms and identifying novel therapeutics.
Collapse
Affiliation(s)
- Renita E. Horton
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Agriculture and Biological Engineering, James Worth Bagley College of Engineering, College of Agriculture and Life Sciences, Mississippi State University, Starkville, Mississippi, United States of America
| | - Moran Yadid
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Megan L. McCain
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sean P. Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Francesco S. Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sung-Jin Park
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Alexander Cho
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Patrick Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kelloniemi A, Aro J, Näpänkangas J, Koivisto E, Mustonen E, Ruskoaho H, Rysä J. TSC-22 up-regulates collagen 3a1 gene expression in the rat heart. BMC Cardiovasc Disord 2015; 15:122. [PMID: 26464165 PMCID: PMC4604760 DOI: 10.1186/s12872-015-0121-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transforming growth factor (TGF)-β is one of the key mediators in cardiac remodelling occurring after myocardial infarction (MI) and in hypertensive heart disease. The TGF-β-stimulated clone 22 (TSC-22) is a leucine zipper protein expressed in many tissues and possessing various transcription-modulating activities. However, its function in the heart remains unknown. METHODS The aim of the present study was to characterize cardiac TSC-22 expression in vivo in cardiac remodelling and in myocytes in vitro. In addition, we used TSC-22 gene transfer in order to examine the effects of TSC-22 on cardiac gene expression and function. RESULTS We found that TSC-22 is rapidly up-regulated by multiple hypertrophic stimuli, and in post-MI remodelling both TSC-22 mRNA and protein levels were up-regulated (4.1-fold, P <0.001 and 3.0-fold, P <0.05, respectively) already on day 1. We observed that both losartan and metoprolol treatments reduced left ventricular TSC-22 gene expression. Finally, TSC-22 overexpression by local intramyocardial adenovirus-mediated gene delivery showed that TSC-22 appears to have a role in regulating collagen type IIIα1 gene expression in the heart. CONCLUSIONS These results demonstrate that TSC-22 expression is induced in response to cardiac overload. Moreover, our data suggests that, by regulating collagen expression in the heart in vivo, TSC-22 could be a potential target for fibrosis-preventing therapies.
Collapse
Affiliation(s)
- Annina Kelloniemi
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland
| | - Jani Aro
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland
| | - Juha Näpänkangas
- Department of Pathology, Institute of Diagnostics, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Elina Koivisto
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland
| | - Erja Mustonen
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland.,Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jaana Rysä
- Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland. .,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
22
|
|
23
|
Barnes J, Pat B, Chen YW, Powell PC, Bradley WE, Zheng J, Karki A, Cui X, Guichard J, Wei CC, Collawn J, Dell'Italia LJ. Whole-genome profiling highlights the molecular complexity underlying eccentric cardiac hypertrophy. Ther Adv Cardiovasc Dis 2014; 8:97-118. [PMID: 24692245 DOI: 10.1177/1753944714527490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Heart failure is typically preceded by myocardial hypertrophy and remodeling, which can be concentric due to pressure overload (PO), or eccentric because of volume overload (VO). The molecular mechanisms that underlie these differing patterns of hypertrophy are distinct and have yet to be fully elucidated. Thus, the goal of this work is to identify novel therapeutic targets for cardiovascular conditions marked by hypertrophy that have previously been resistant to medical treatment, such as a pure VO. METHODS Concentric or eccentric hypertrophy was induced in rats for 2 weeks with transverse aortic constriction (TAC) or aortocaval fistula (ACF), respectively. Hemodynamic and echocardiographic analysis were used to assess the development of left ventricular (LV) hypertrophy and functional differences between groups. Changes in gene expression were determined by microarray and further characterized with Ingenuity Pathway Analysis. RESULTS Both models of hypertrophy increased LV mass. Rats with TAC demonstrated concentric LV remodeling while rats with ACF exhibited eccentric LV remodeling. Microarray analysis associated eccentric remodeling with a more extensive alteration of gene expression compared with concentric remodeling. Rats with VO had a marked activation of extracellular matrix genes, promotion of cell cycle genes, downregulation of genes associated with oxidative metabolism, and dysregulation of genes critical to cardiac contractile function. Rats with PO demonstrated similar categorical changes, but with the involvement of fewer individual genes. CONCLUSIONS Our results indicate that eccentric remodeling is a far more complex process than concentric remodeling. This study highlights the importance of several key biological functions early in the course of VO, including regulation of matrix, metabolism, cell proliferation, and contractile function. Thus, the results of this analysis will inform the ongoing search for new treatments to prevent the progression to heart failure in VO.
Collapse
Affiliation(s)
- Justin Barnes
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USADepartment of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Betty Pat
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuan-Wen Chen
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pamela C Powell
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wayne E Bradley
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Junying Zheng
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amrit Karki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason Guichard
- Department of Medicine, Division of Cardiology, University of Alabama at Birmingham, Birmingham, Alabama, USADepartment of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chih-Chang Wei
- Birmingham Department of Veteran Affairs, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
24
|
Eplerenone enhances cardioprotective effects of standard heart failure therapy through matricellular proteins in hypertensive heart failure. J Hypertens 2013; 31:2309-18; discussion 2319. [DOI: 10.1097/hjh.0b013e328364abd6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Kwak HB. Aging, exercise, and extracellular matrix in the heart. J Exerc Rehabil 2013; 9:338-47. [PMID: 24278882 PMCID: PMC3836529 DOI: 10.12965/jer.130049] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 11/22/2022] Open
Abstract
Aging is characterized by a progressive impairment of (a) cardiac structure including fibrosis and cardiomyocyte density, and (b) cardiac function including stroke volume, ejection fraction, and cardiac output. The cardiac remodeling involves loss of cardiac myocytes, reactive hypertrophy of the remaining cells, and increased extracellular matrix (ECM) and fibrosis in the aging heart, especially left ventricles. Fibrosis (i.e., accumulation of collagen) with aging is very critical in impairing cardiac function associated with increased myocardial stiffness. The balance of ECM remodeling via ECM synthesis and degradation is essential for normal cardiac structure and function. Thus an understanding of upstream ECM regulatory factors such as matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and myofibroblasts is necessary for gaining new insights into managing cardiac remodeling and dysfunction with aging. In contrast, exercise training effectively improves cardiac function in both young and older individuals. Exercise training also improves maximal cardiovascular function by increasing stroke volume and cardiac output. However, limited data indicate that exercise training might attenuate collagen content and remodeling in the aging heart. We recently found that 12 weeks of exercise training protected against geometric changes of collagen ECM in the aging heart and ameliorated age-associated dysregulation of ECM in the heart, as indicated by up-regulation of active MMPs as well as down-regulation of TIMPs and TGF-β. This review will provide a summary and discussion of aging and exercise effects on fibrosis and upstream regulators of ECM in the heart.
Collapse
Affiliation(s)
- Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Korea
| |
Collapse
|
26
|
Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci U S A 2013; 110:9770-5. [PMID: 23716679 DOI: 10.1073/pnas.1304913110] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The lack of a robust pipeline of medical therapeutic agents for the treatment of heart disease may be partially attributed to the lack of in vitro models that recapitulate the essential structure-function relationships of healthy and diseased myocardium. We designed and built a system to mimic mechanical overload in vitro by applying cyclic stretch to engineered laminar ventricular tissue on a stretchable chip. To test our model, we quantified changes in gene expression, myocyte architecture, calcium handling, and contractile function and compared our results vs. several decades of animal studies and clinical observations. Cyclic stretch activated gene expression profiles characteristic of pathological remodeling, including decreased α- to β-myosin heavy chain ratios, and induced maladaptive changes to myocyte shape and sarcomere alignment. In stretched tissues, calcium transients resembled those reported in failing myocytes and peak systolic stress was significantly reduced. Our results suggest that failing myocardium, as defined genetically, structurally, and functionally, can be replicated in an in vitro microsystem by faithfully recapitulating the structural and mechanical microenvironment of the diseased heart.
Collapse
|
27
|
Di Felice V, Serradifalco C, Rizzuto L, De Luca A, Rappa F, Barone R, Di Marco P, Cassata G, Puleio R, Verin L, Motta A, Migliaresi C, Guercio A, Zummo G. Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells. J Tissue Eng Regen Med 2013; 9:E51-64. [PMID: 23592297 DOI: 10.1002/term.1739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 01/30/2023]
Abstract
The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient's life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric nets were used. Cardiac progenitor cells isolated from adult rats were seeded by capillarity in the 3D structures and cultured inside inserts for 21 days. Under this condition, the cells expressed a high level of sarcomeric and cardiac proteins and synthesized a great quantity of ECM. In particular, partially orientated scaffolds induced the synthesis of titin, which is a fundamental protein in sarcomere assembly.
Collapse
Affiliation(s)
- Valentina Di Felice
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Claudia Serradifalco
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Luigi Rizzuto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Angela De Luca
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | | | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Lucia Verin
- Department of Materials Engineering and Industrial Technologies and Biotech Research Centre, University of Trento, Italy
- European Institute of Excellence in Tissue Engineering and Regenerative Medicine and INSTM Research Unit, Trento, Italy
| | - Antonella Motta
- Department of Materials Engineering and Industrial Technologies and Biotech Research Centre, University of Trento, Italy
- European Institute of Excellence in Tissue Engineering and Regenerative Medicine and INSTM Research Unit, Trento, Italy
| | - Claudio Migliaresi
- Department of Materials Engineering and Industrial Technologies and Biotech Research Centre, University of Trento, Italy
- European Institute of Excellence in Tissue Engineering and Regenerative Medicine and INSTM Research Unit, Trento, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Giovanni Zummo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| |
Collapse
|
28
|
Granulocyte colony-stimulating factor partially repairs the damage provoked by Trypanosoma cruzi in murine myocardium. Int J Cardiol 2013; 168:2567-74. [PMID: 23597573 DOI: 10.1016/j.ijcard.2013.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 12/13/2012] [Accepted: 03/17/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND The hallmark of Trypanosoma cruzi infection is cardiomyopathy that leads to end-stage heart failure. We investigated whether G-CSF, known to induce heart tissue repair by bone marrow stem cell mobilization, ameliorates T. cruzi-induced myocarditis. METHODS AND RESULTS T. cruzi-infected C3H/He mice were treated with G-CSF and monitored for parasite burden, BMSC mobilization, cytokine profile and cardiac remodeling. G-CSF increased the expression of CXCR4, CD34, and c-Kit, indicating mobilization and migration of BMSC, some of which differentiated to cardiomyocytes as evidenced by increased levels of GATA4(+)/MEF2C(+) cells and desmin expression in chagasic hearts. G-CSF enhanced a mixed cytokine response (IL-10+TGF-β>IFN-γ+TNF-α>IL-4) associated with increased heart inflammation and no beneficial effect on parasite control. Further, G-CSF controlled T. cruzi-induced extracellular-matrix alterations of collagens (Col I and Col llI), hydroxyproline, and glycosaminoglycan contents and promoted compensatory cardiac remodeling; however, these responses were not sufficient to control T. cruzi-induced cardiomyocyte atrophy. Benznidazole treatment prior to G-CSF resulted in the control of parasitism and parasite-induced inflammation, and subsequently, G-CSF was effective in executing the tissue repair, as evidenced by extracellular-matrix homeostasis and normalization of cardiomyocyte size in chagasic hearts. CONCLUSIONS G-CSF treatment after T. cruzi infection enhanced migration and homing of BMSC, some of which differentiated to cardiomyocytes. Yet, G-CSF promoted a mixed (Treg>Th1>Th2) immune response that contributed to persistent inflammation and limited improvement in cardiac homeostasis. Combinatorial therapy (BZ → G-CSF) was beneficial in arresting inflammatory processes and tissue damage in chagasic hearts.
Collapse
|
29
|
Azuaje F, Zhang L, Jeanty C, Puhl SL, Rodius S, Wagner DR. Analysis of a gene co-expression network establishes robust association between Col5a2 and ischemic heart disease. BMC Med Genomics 2013; 6:13. [PMID: 23574622 PMCID: PMC3637268 DOI: 10.1186/1755-8794-6-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/26/2013] [Indexed: 12/19/2022] Open
Abstract
Background This study aims to expand knowledge of the complex process of myocardial infarction (MI) through the application of a systems-based approach. Methods We generated a gene co-expression network from microarray data originating from a mouse model of MI. We characterized it on the basis of connectivity patterns and independent biological information. The potential clinical novelty and relevance of top predictions were assessed in the context of disease classification models. Models were validated using independent gene expression data from mouse and human samples. Results The gene co-expression network consisted of 178 genes and 7298 associations. The network was dissected into statistically and biologically meaningful communities of highly interconnected and co-expressed genes. Among the most significant communities, one was distinctly associated with molecular events underlying heart repair after MI (P < 0.05). Col5a2, a gene previously not specifically linked to MI response but responsible for the classic type of Ehlers-Danlos syndrome, was found to have many and strong co-expression associations within this community (11 connections with ρ > 0.85). To validate the potential clinical application of this discovery, we tested its disease discriminatory capacity on independently generated MI datasets from mice and humans. High classification accuracy and concordance was achieved across these evaluations with areas under the receiving operating characteristic curve above 0.8. Conclusion Network-based approaches can enable the discovery of clinically-interesting predictive insights that are accurate and robust. Col5a2 shows predictive potential in MI, and in principle may represent a novel candidate marker for the identification and treatment of ischemic cardiovascular disease.
Collapse
Affiliation(s)
- Francisco Azuaje
- Department of Translational Cardiovascular Research, CRP-Santé, Luxembourg, Luxembourg.
| | | | | | | | | | | |
Collapse
|
30
|
Mustonen E, Ruskoaho H, Rysä J. Thrombospondin-4, tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14: novel extracellular matrix modulating factors in cardiac remodelling. Ann Med 2012; 44:793-804. [PMID: 22380695 DOI: 10.3109/07853890.2011.614635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiac remodelling is defined as changes in the size, shape, and function of the heart, which are most commonly caused by hypertension-induced left ventricular hypertrophy and myocardial infarction. Both neurohumoral and inflammatory factors have critical roles in the regulation of cardiac remodelling. A characteristic feature of cardiac remodelling is modification of the extracellular matrix (ECM), often manifested by fibrosis, a process that has vital consequences for the structure and function of the myocardium. In addition to established modulators of the ECM, the matricellular protein thrombospondin-4 (TSP-4) as well as the tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 has been recently shown to modulate cardiac ECM. TSP-4 null mice develop pronounced cardiac hypertrophy and fibrosis with defects in collagen maturation in response to pressure overload. TWEAK and Fn14 belong to the tumour necrosis factor superfamily of proinflammatory cytokines. Recently it was shown that elevated levels of circulating TWEAK via Fn14 critically affect the cardiac ECM, characterized by increasing fibrosis and cardiomyocyte hypertrophy in mice. Here we review the literature concerning the role of matricellular proteins and inflammation in cardiac ECM remodelling, with a special focus on TSP-4, TWEAK, and its receptor Fn14.
Collapse
Affiliation(s)
- Erja Mustonen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | |
Collapse
|
31
|
Simmons CS, Petzold BC, Pruitt BL. Microsystems for biomimetic stimulation of cardiac cells. LAB ON A CHIP 2012; 12:3235-48. [PMID: 22782590 DOI: 10.1039/c2lc40308k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The heart is a complex integrated system that leverages mechanoelectrical signals to synchronize cardiomyocyte contraction and push blood throughout the body. The correct magnitude, timing, and distribution of these signals is critical for proper functioning of the heart; aberrant signals can lead to acute incidents, long-term pathologies, and even death. Due to the heart's limited regenerative capacity and the wide variety of pathologies, heart disease is often studied in vitro. However, it is difficult to accurately replicate the cardiac environment outside of the body. Studying the biophysiology of the heart in vitro typically consists of studying single cells in a tightly controlled static environment or whole tissues in a complex dynamic environment. Micro-electromechanical systems (MEMS) allow us to bridge these two extremes by providing increasing complexity for cell culture without having to use a whole tissue. Here, we carefully describe the electromechanical environment of the heart and discuss MEMS specifically designed to replicate these stimulation modes. Strengths, limitations and future directions of various designs are discussed for a variety of applications.
Collapse
Affiliation(s)
- Chelsey S Simmons
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
32
|
Sato A, Hiroe M, Akiyama D, Hikita H, Nozato T, Hoshi T, Kimura T, Wang Z, Sakai S, Imanaka-Yoshida K, Yoshida T, Aonuma K. Prognostic value of serum tenascin-C levels on long-term outcome after acute myocardial infarction. J Card Fail 2012; 18:480-6. [PMID: 22633306 DOI: 10.1016/j.cardfail.2012.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tenascin-C (TN-C), an extracellular matrix glycoprotein, is not normally expressed in the adult heart but transiently reappears under various pathologic conditions to play important roles in tissue remodeling. It is unclear whether serum TN-C levels add prognostic information independent from traditional prognostic markers. METHODS AND RESULTS We assessed 239 patients with first ST-segment elevation myocardial infarction who underwent successful percutaneous coronary intervention. We measured serum TN-C and plasma B-type natriuretic peptide (BNP) levels on day 5 after admission and compared long-term clinical outcome. During the follow-up period (24.3 ± 13 months), 54 patients experienced primary composite cardiac events (cardiac death or hospitalization for worsening heart failure). Multivariable Cox proportional hazards analysis indicated that serum TN-C (hazard ratio 2.92, 95% confidence interval [CI] 1.55-5.67; P < .001) and plasma BNP levels (hazard ratio 1.84, 95% CI 1.17-2.97; P = .008) were significant independent predictors for cardiac events after adjustment for multiple confounders. The combination of TN-C and BNP resulted in an increase of the c-statistic from 0.821 to 0.877 (P < .001) and an integrated discrimination improvement gain of 14.0% (P < .001). CONCLUSIONS Serum TN-C level on day 5 after admission is potentially useful for early risk stratification after AMI beyond established prognostic markers.
Collapse
Affiliation(s)
- Akira Sato
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Müller AL, Hryshko LV, Dhalla NS. Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 2012; 164:39-47. [PMID: 22357424 DOI: 10.1016/j.ijcard.2012.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 10/19/2011] [Accepted: 01/28/2012] [Indexed: 12/20/2022]
Abstract
Various procedures such as angioplasty, thrombolytic therapy, coronary bypass surgery, and cardiac transplantation are invariably associated with ischemia-reperfusion (I/R) injury. Impaired recovery of cardiac function due to I/R injury is considered to be a consequence of the occurrence of both oxidative stress and intracellular Ca(2+)-overload in the myocardium. These changes in the ischemic myocardium appear to activate both extracellular and intracellular proteases which are responsible for the cleavage of extracellular matrix and subcellular structures involved in the maintenance of cardiac function. It is thus intended to discuss the actions of I/R injury on several proteases, with a focus on calpain, matrix metalloproteinases, and cathepsins as well as their role in inducing alterations both inside and outside the cardiomyocytes. In addition, modifications of subcellular organelles such as myofibrils, sarcoplasmic reticulum and sarcolemma as well as extracellular matrix, and the potential regulatory effects of endogenous inhibitors on protease activities are identified. Both extracellular and intracellular proteolytic activities appear to be imperative in determining the true extent of I/R injury and their inhibition seems to be of critical importance for improving the recovery of cardiac function. Thus, both extracellular and intracellular proteases may serve as potential targets for the development of cardioprotective interventions for reducing damage to the heart and retarding the development of contractile dysfunction caused by I/R injury.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
34
|
Venugopal JR, Prabhakaran MP, Mukherjee S, Ravichandran R, Dan K, Ramakrishna S. Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface 2011; 9:1-19. [PMID: 21900319 PMCID: PMC3223634 DOI: 10.1098/rsif.2011.0301] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
World Health Organization estimated that heart failure initiated by coronary artery disease and myocardial infarction (MI) leads to 29 per cent of deaths worldwide. Heart failure is one of the leading causes of death in industrialized countries and is expected to become a global epidemic within the twenty-first century. MI, the main cause of heart failure, leads to a loss of cardiac tissue impairment of left ventricular function. The damaged left ventricle undergoes progressive ‘remodelling’ and chamber dilation, with myocyte slippage and fibroblast proliferation. Repair of diseased myocardium with in vitro-engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for heart failure patients. These events reflect an apparent lack of effective intrinsic mechanism for myocardial repair and regeneration. Motivated by the desire to develop minimally invasive procedures, the last 10 years observed growing efforts to develop injectable biomaterials with and without cells to treat cardiac failure. Biomaterials evaluated include alginate, fibrin, collagen, chitosan, self-assembling peptides, biopolymers and a range of synthetic hydrogels. The ultimate goal in therapeutic cardiac tissue engineering is to generate biocompatible, non-immunogenic heart muscle with morphological and functional properties similar to natural myocardium to repair MI. This review summarizes the properties of biomaterial substrates having sufficient mechanical stability, which stimulates the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering.
Collapse
Affiliation(s)
- Jayarama Reddy Venugopal
- Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
35
|
Ueland T, Dahl CP, Gullestad L, Aakhus S, Broch K, Skårdal R, Vermeer C, Aukrust P, Schurgers LJ. Circulating levels of non-phosphorylated undercarboxylated matrix Gla protein are associated with disease severity in patients with chronic heart failure. Clin Sci (Lond) 2011; 121:119-27. [PMID: 21294711 DOI: 10.1042/cs20100589] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We recently demonstrated that circulating MGP [matrix Gla (γ-carboxylated glutamate) protein] levels were associated with left ventricular dysfunction and increased mortality in patients with symptomatic aortic stenosis. We hypothesized that patients with chronic HF (heart failure) would have dysregulated MGP levels. We examined plasma dp-cMGP (non-phosphorylated carboxylated MGP) and dp-ucMGP (non-phosphorylated undercarboxylated MGP) in 179 patients with chronic HF and matched healthy controls as well as the relationship between MGP and cardiac dysfunction as assessed by echocardiographic measurements, inflammation [CRP (C-reactive protein)] and neurohormonal activation [NT-proBNP (N-terminal proB-type natriuretic peptide)] and the prognostic value of MGP levels in relation to mortality in these patients. We found markedly enhanced plasma dp-cMGP and, in particular, of dp-ucMGP in chronic HF with increasing levels with disease severity. Elevated MGP species were associated with ischaemic aetiology, increased CRP and NT-proBNP levels, as well as systolic and diastolic dysfunction. Finally, dp-ucMGP was associated with long-term heart transplant-free survival (n=48) in univariate, but not in multivariate, analysis. However, plasma dp-ucMGP was markedly higher in patients who died because of progression of HF (n=12) and gave prognostic information also in multivariate analysis. In conclusion, a dysregulated MGP system could be involved in left ventricular dysfunction in patients with chronic HF.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yan L, Wei X, Tang QZ, Feng J, Zhang Y, Liu C, Bian ZY, Zhang LF, Chen M, Bai X, Wang AB, Fassett J, Chen Y, He YW, Yang Q, Liu PP, Li H. Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3β and TGF-β1-Smad signalling. Cardiovasc Res 2011; 92:85-94. [PMID: 21632881 DOI: 10.1093/cvr/cvr159] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIMS Mindin is a secreted extracellular matrix protein, an integrin ligand, and an angiogenesis inhibitor, other examples of which are all key players in the progression of cardiac hypertrophy. However, its function during cardiac hypertrophy remains unclear. This study was aimed to identify the effect of mindin on cardiac hypertrophy and the underlying mechanisms. METHODS AND RESULTS A significant down-regulation of mindin expression was observed in human failing hearts. To further investigate the role of mindin in cardiac hypertrophy, we used cultured neonatal rat cardiomyocytes with gain and loss of mindin function and cardiac-specific Mindin-overexpressing transgenic (TG) mice. In cultured cardiomyocytes, mindin negatively regulated angiotensin II (Ang II)-mediated hypertrophic growth, as detected by [(3)H]-Leucine incorporation, cardiac myocyte area, and hypertrophic marker protein levels. Cardiac hypertrophy in vivo was produced by aortic banding (AB) or Ang II infusion in TG mice and their wild-type controls. The extent of cardiac hypertrophy was evaluated by echocardiography as well as by pathological and molecular analyses of heart samples. Mindin overexpression in the heart markedly attenuated cardiac hypertrophy, fibrosis, and left ventricular dysfunction in mice in response to AB or Ang II. Further analysis of the signalling events in vitro and in vivo indicated that these beneficial effects of mindin were associated with the interruption of AKT/glycogen synthase kinase 3β (GSK3β) and transforming growth factor (TGF)-β1-Smad signalling. CONCLUSION The present study demonstrates for the first time that mindin serves as a novel mediator that protects against cardiac hypertrophy and the transition to heart failure by blocking AKT/GSK3β and TGF-β1-Smad signalling.
Collapse
Affiliation(s)
- Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee S, Lu R, Müller-Ehmsen J, Schwinger RHG, Brixius K. Increased Ca2+ sensitivity of myofibrillar tension in ischaemic vs dilated cardiomyopathy. Clin Exp Pharmacol Physiol 2011; 37:1134-8. [PMID: 20804510 DOI: 10.1111/j.1440-1681.2010.05443.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. There is evidence that different aetiologies of heart failure, especially ischaemic vs dilated cardiomyopathy (ICM and DCM, respectively), may influence the prognosis of patients with this disease. Patients with ICM have a worse prognosis than those with DCM; the mechanisms underlying this difference have not yet been clarified. The aim of the present study was to investigate whether there are changes in myofibrillar function depending on the aetiology of human heart failure. 2. Ca(2+) -dependent tension (DT) and actomyosin ATPase activity (MYO) in Triton X-skinned fibre preparations of the left ventricular myocardium from patients with heart failure due to ICM (n=5) and DCM (n=5) were measured. Tension-dependent ATP consumption was calculated by the ratio of DT and MYO ('tension cost'). Non-failing myocardium (NF) from donor hearts, which could not be transplanted because of technical reasons, was evaluated as a control. 3. Although DT was reduced, the myofibrillar Ca(2+) sensitivity of DT and MYO, as well as tension cost, were increased in preparations from ICM and DCM myocardium compared with NF. The Ca(2+) sensitivity of DT and MYO was significantly increased in ICM compared with DCM preparations, resulting in more economic cross-bridge cycling in ICM than in DCM. 4. In conclusion, ICM is associated with an increased Ca(2+) sensitivity of myofibrillar tension and ATPase activity accompanied by decreased tension cost compared with DCM. Thus, the worse prognosis associated with ICM does not seem to be due to differences in myofibrillar function.
Collapse
Affiliation(s)
- Samuel Lee
- Laboratory of Muscle Research and Molecular Cardiology, Department III of Internal Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
38
|
Korf-Klingebiel M, Kempf T, Schlüter KD, Willenbockel C, Brod T, Heineke J, Schmidt VJ, Jantzen F, Brandes RP, Sugden PH, Drexler H, Molkentin JD, Wollert KC. Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction. Circulation 2011; 123:504-14. [PMID: 21262993 DOI: 10.1161/circulationaha.110.989665] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.
Collapse
Affiliation(s)
- Mortimer Korf-Klingebiel
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xi J, Khalil M, Spitkovsky D, Hannes T, Pfannkuche K, Bloch W, Sarić T, Brockmeier K, Hescheler J, Pillekamp F. Fibroblasts support functional integration of purified embryonic stem cell-derived cardiomyocytes into avital myocardial tissue. Stem Cells Dev 2011; 20:821-30. [PMID: 21142494 DOI: 10.1089/scd.2010.0398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transplantation of purified pluripotent stem cell-derived cardiomyocytes into damaged myocardium might become a therapy to improve contractile function after myocardial infarction. However, engraftment remains problematic. Aim of this study was to investigate whether murine embryonic fibroblasts (MEFs) support the functional integration of purified embryonic stem cell-derived cardiomyocytes (ES-CMs). Neonatal murine ventricular tissue slices were subjected to oxygen and glucose deprivation to simulate irreversible ischemia. Vital tissue slices served as control. Vital and avital tissue slices were cultured with or without MEFs before coculturing with clusters of puromycin-selected ES-CMs. Integration of ES-CM clusters was assessed morphologically, motility by long-term microscopy, and functional integration by isometric force measurements. We observed a good morphological integration into vital but a poor integration into avital slices. Adding MEFs improved morphological integration into irreversibly damaged slices and enabled purified ES-CMs to migrate and to confer force. We conclude that noncardiomyocytes like MEFs support morphological integration and force transmission of purified ES-CMs by enabling adhesion and migration.
Collapse
Affiliation(s)
- Jiaoya Xi
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Otani H, Yoshioka K, Nishikawa H, Inagaki C, Nakamura T. Involvement of protein kinase C and RhoA in protease-activated receptor 1-mediated F-actin reorganization and cell growth in rat cardiomyocytes. J Pharmacol Sci 2011; 115:135-143. [PMID: 21258176 DOI: 10.1254/jphs.10197fp] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022] Open
Abstract
Protease-activated receptor 1 (PAR1) that can be activated by serine proteinases such as thrombin has been demonstrated to contribute to the development of cardiac remodeling and hypertrophy after myocardial injury. Here, we investigated the mechanisms by which PAR1 leads to hypertrophic cardiomyocyte growth using cultured rat neonatal ventricular myocytes. PAR1 stimulation with thrombin (1 U/ml) or a synthetic agonist peptide (TFLLR-NH(2), 50 µM) for 48 h induced an increase in cell size and myofibril formation associated with BNP (brain natriuretic peptide) production. This actin reorganization assessed by fluorescein isothiocyanate (FITC)-conjugated phalloidin staining appeared at 1 h after PAR1 stimulation, and this response was reduced by a protein kinase C (PKC) inhibitor, chelerythrine, inhibitors of Rho (simvastatin) and Rho-associated kinase (ROCK) (Y-27632), but not by pertussis toxin (PTX). By Western blot analysis, translocation of PKCα or PKCε from the cytosol to membrane fractions was observed in cells stimulated with thrombin or TFLLR-NH(2) for 2 - 5 min. In addition, PAR1 stimulation for 3 - 5 min increased the level of active RhoA. Furthermore, inhibitors of PKC and ROCK and Rho abrogated PAR1-mediated increase in cell size. Depletion of PKCα or PKCε by specific small interfering RNA also suppressed both actin reorganization and cell growth. These results suggest that PAR1 stimulation of cardiomyocytes induces cell hypertrophy with actin cytoskeletal reorganization through activation of PKCα and PKCε isoforms and RhoA via PTX-insensitive G proteins.
Collapse
Affiliation(s)
- Hitomi Otani
- Department of Pharmacology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan.
| | | | | | | | | |
Collapse
|
41
|
Isumi Y, Hirata T, Saitoh H, Miyakawa T, Murakami K, Kudoh G, Doi H, Ishibashi K, Nakajima H. Transgenic overexpression of USP15 in the heart induces cardiac remodeling in mice. Biochem Biophys Res Commun 2011; 405:216-21. [PMID: 21219870 DOI: 10.1016/j.bbrc.2011.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/04/2011] [Indexed: 11/17/2022]
Abstract
We found a novel protein-protein interaction between ubiquitin-specific protease 15 (USP15) and skeletal muscle LIM protein 1 (SLIM1): USP15 and SLIM1 directly bound under cell-free conditions and co-immunoprecipitated from the lysates of the cells, where they were co-expressed; and USP15 deubiquitinated SLIM1, resulting in the increase of protein levels of SLIM1. Because SLIM1 is strongly implicated in the pathogenesis of myopathies and cardiomyopathies, we generated transgenic (TG) mice with cardiac-specific overexpression of human USP15. Heart weight to body weight ratios and mRNA levels of fetal gene markers in the heart were significantly higher in USP15-TG mice than in wild-type (WT) mice. Also, protein levels of endogenous murine SLIM1 in the heart were significantly higher in USP15-TG mice than in WT mice. Furthermore, the protein of alternatively spliced isoform of SLIM1 was only detected in the heart of USP15-TG mice, and mRNA levels of this isoform were higher as compared to WT mice. These results indicate that USP15 is involved in the regulation of hypertrophic responses in cardiac muscle through transcriptional and post-translational modulation of SLIM1.
Collapse
Affiliation(s)
- Yoshitaka Isumi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu X, Chakraborty S, Heaps CL, Davis MJ, Meininger GA, Muthuchamy M. Fibronectin increases the force production of mouse papillary muscles via α5β1 integrin. J Mol Cell Cardiol 2010; 50:203-13. [PMID: 20937283 DOI: 10.1016/j.yjmcc.2010.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) protein-integrin-cytoskeleton axis plays a central role as a mechanotransducing protein assemblage in many cell types. However, how the process of mechanotransduction and the mechanically generated signals arising from this axis affect myofilament function in cardiac muscle are not completely understood. We hypothesize that ECM proteins can regulate cardiac function through integrin binding, and thereby alter the intracellular calcium concentration ([Ca(2+)](i)) and/or modulate myofilament activation processes. Force measurements made in mouse papillary muscle demonstrated that in the presence of the soluble form of the ECM protein, fibronectin (FN), active force was increased significantly by 40% at 1 Hz, 54% at 2 Hz, 35% at 5 Hz and 16% at 9 Hz stimulation frequencies. Furthermore, increased active force in the presence of FN was associated with 12-33% increase in [Ca(2+)](i) and 20-50% increase in active force per unit Ca(2+). A function blocking antibody for α5 integrin prevented the effects of the FN on the changes in force and [Ca(2+)](i), whereas a function blocking α3 integrin antibody did not reverse the effects of FN. The effects of FN were reversed by an L-type Ca(2+) channel blocker, verapamil or PKA inhibitor. Freshly isolated cardiomyocytes exhibited a 39% increase in contraction force and a 36% increase in L-type Ca(2+) current in the presence of FN. Fibers treated with FN showed a significant increase in the phosphorylation of phospholamban; however, the phosphorylation of troponin I was unchanged. These results demonstrate that FN acts via α5β1 integrin to increase force production in myocardium and that this effect is partly mediated by increases in [Ca(2+)](i) and Ca(2+) sensitivity, PKA activation and phosphorylation of phospholamban.
Collapse
Affiliation(s)
- Xin Wu
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
43
|
Xie L, Terrand J, Xu B, Tsaprailis G, Boyer J, Chen QM. Cystatin C increases in cardiac injury: a role in extracellular matrix protein modulation. Cardiovasc Res 2010; 87:628-35. [PMID: 20489058 DOI: 10.1093/cvr/cvq138] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS Numerous lines of evidence suggest a role of oxidative stress in initiation and progression of heart failure. We identify novel pathways of oxidative stress in cardiomyocytes using proteomic technology. METHODS AND RESULTS Cardiomyocytes and cardiac fibroblasts isolated from rat hearts were treated with sublethal doses of H(2)O(2) for detection of secreted protein factors in the conditioned media by mass spectrometry-based proteomics. Comparison between the two cell types leads to the finding that H(2)O(2) caused an elevated cystatin C protein in the conditioned medium from cardiomyocytes. When cardiomyopathy was induced in mice by chronic administration of doxorubicin, elevated cystatin C protein was detected in the plasma. Myocardial ischaemia by left anterior descending coronary artery occlusion causes an increase in the level of cystatin C protein in the plasma. In myocardial tissue from the ischaemic area, an increase in cystatin C correlates with the inhibition of cathepsin B activity and accumulation of fibronectin and collagen I/III. Overexpressing cystatin C gene or exposing fibroblasts to cystatin C protein results in an inhibition of cathepsin B and accumulation of fibronectin and collagen I/III. CONCLUSION Oxidants induce elevated cystatin C production from CMCs. Cystatin C plays a role in cardiac extracellular matrix remodelling.
Collapse
Affiliation(s)
- Lifang Xie
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
44
|
Azuaje F, Devaux Y, Wagner DR. Coordinated modular functionality and prognostic potential of a heart failure biomarker-driven interaction network. BMC SYSTEMS BIOLOGY 2010; 4:60. [PMID: 20462429 PMCID: PMC2890499 DOI: 10.1186/1752-0509-4-60] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 05/12/2010] [Indexed: 01/28/2023]
Abstract
Background The identification of potentially relevant biomarkers and a deeper understanding of molecular mechanisms related to heart failure (HF) development can be enhanced by the implementation of biological network-based analyses. To support these efforts, here we report a global network of protein-protein interactions (PPIs) relevant to HF, which was characterized through integrative bioinformatic analyses of multiple sources of "omic" information. Results We found that the structural and functional architecture of this PPI network is highly modular. These network modules can be assigned to specialized processes, specific cellular regions and their functional roles tend to partially overlap. Our results suggest that HF biomarkers may be defined as key coordinators of intra- and inter-module communication. Putative biomarkers can, in general, be distinguished as "information traffic" mediators within this network. The top high traffic proteins are encoded by genes that are not highly differentially expressed across HF and non-HF patients. Nevertheless, we present evidence that the integration of expression patterns from high traffic genes may support accurate prediction of HF. We quantitatively demonstrate that intra- and inter-module functional activity may be controlled by a family of transcription factors known to be associated with the prevention of hypertrophy. Conclusion The systems-driven analysis reported here provides the basis for the identification of potentially novel biomarkers and understanding HF-related mechanisms in a more comprehensive and integrated way.
Collapse
Affiliation(s)
- Francisco Azuaje
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, L-1150 Luxembourg.
| | | | | |
Collapse
|
45
|
Wu X, Sun Z, Foskett A, Trzeciakowski JP, Meininger GA, Muthuchamy M. Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. Am J Physiol Heart Circ Physiol 2010; 298:H2071-81. [PMID: 20382852 DOI: 10.1152/ajpheart.01156.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Integrins link the extracellular matrix (ECM) with the intracellular cytoskeleton and other cell adhesion-associated signaling proteins to function as mechanotransducers. However, direct quantitative measurements of the cardiomyocyte mechanical state and its relationship to the interactions between specific ECM proteins and integrins are lacking. The purpose of this study was to characterize the interactions between the ECM protein fibronectin (FN) and integrins in cardiomyocytes and to test the hypothesis that these interactions would vary during contraction and relaxation states in cardiomyocytes. Using atomic force microscopy, we quantified the unbinding force (adhesion force) and adhesion probability between integrins and FN and correlated these measurements with the contractile state as indexed by cell stiffness on freshly isolated mouse cardiomyocytes. Experiments were performed in normal physiological (control), high-K(+) (tonically contracted), or low-Ca(2+) (fully relaxed) solutions. Under control conditions, the initial peak of adhesion force between FN and myocyte alpha(3)beta(1)- and/or alpha(5)beta(1)-integrins was 39.6 +/- 1.3 pN. The binding specificity between FN and alpha(3)beta(1)- and alpha(5)beta(1)-integrins was verified by using monoclonal antibodies against alpha(3)-, alpha(5)-, alpha(3) + alpha(5)-, or beta(1)-integrin subunits, which inhibited binding by 48%, 65%, 70%, or 75%, respectively. Cytochalasin D or 2,3-butanedione monoxime (BDM), to disrupt the actin cytoskeleton or block myofilament function, respectively, significantly decreased the cell stiffness; however, the adhesion force and binding probability were not altered. Tonic contraction with high-K(+) solution increased total cell adhesion (1.2-fold) and cell stiffness (27.5-fold) compared with fully relaxed cells with low-Ca(2+) solution. However, it could be partially prevented by high-K(+) bath solution containing BDM, which suppresses contraction by inhibiting the actin-myosin interactions. Thus, our results demonstrate that integrin binding to FN is modulated by the contractile state of cardiac myocytes.
Collapse
Affiliation(s)
- Xin Wu
- Dept. of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
46
|
Stewart JA, Massey EP, Fix C, Zhu J, Goldsmith EC, Carver W. Temporal alterations in cardiac fibroblast function following induction of pressure overload. Cell Tissue Res 2010; 340:117-26. [PMID: 20217135 DOI: 10.1007/s00441-010-0943-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 02/03/2010] [Indexed: 12/25/2022]
Abstract
Increases in cardiovascular load (pressure overload) are known to elicit ventricular remodeling including cardiomyocyte hypertrophy and interstitial fibrosis. While numerous studies have focused on the mechanisms of myocyte hypertrophy, comparatively little is known regarding the response of the interstitial fibroblasts to increased cardiovascular load. Fibroblasts are the most numerous cell type in the mammalian myocardium and have long been recognized as producing the majority of the myocardial extracellular matrix. It is only now becoming appreciated that other aspects of fibroblast behavior are important to overall cardiac function. The present studies were performed to examine the temporal alterations in fibroblast activity in response to increased cardiovascular load. Rat myocardial fibroblasts were isolated at specific time-points (3, 7, 14, and 28 days) after induction of pressure overload by abdominal aortic constriction. Bioassays were performed to measure specific parameters of fibroblast function including remodeling and contraction of 3-dimensional collagen gels, migration, and proliferation. In addition, the expression of extracellular matrix receptors of the integrin family was examined. Myocardial hypertrophy and fibrosis were evident within 7 days after constriction of the abdominal aorta. Collagen gel contraction, migration, and proliferation were enhanced in fibroblasts from pressure-overloaded animals compared to fibroblasts from sham animals. Differences in fibroblast function and protein expression were evident within 7 days of aortic constriction, concurrent with the onset of hypertrophy and fibrosis of the intact myocardium. These data provide further support for the idea that rapid and dynamic changes in fibroblast phenotype accompany and contribute to the progression of cardiovascular disease.
Collapse
Affiliation(s)
- James A Stewart
- Center for Cardiovascular and Pulmonary Research, Research Institute & the Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | | | | | | | | |
Collapse
|
47
|
Bowers SLK, Banerjee I, Baudino TA. The extracellular matrix: at the center of it all. J Mol Cell Cardiol 2009; 48:474-82. [PMID: 19729019 DOI: 10.1016/j.yjmcc.2009.08.024] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/09/2009] [Accepted: 08/21/2009] [Indexed: 12/22/2022]
Abstract
The extracellular matrix is not only a scaffold that provides support for cells, but it is also involved in cell-cell interactions, proliferation and migration. The intricate relationships among the cellular and acellular components of the heart drive proper heart development, homeostasis and recovery following pathological injury. Cardiac myocytes, fibroblasts and endothelial cells differentially express and respond to particular extracellular matrix factors that contribute to cell communication and overall cardiac function. In addition, turnover and synthesis of ECM components play an important role in cardiac function. Therefore, a better understanding of these factors and their regulation would lend insight into cardiac development and pathology, and would open doors to novel targeted pharmacologic therapies. This review highlights the importance of contributions of particular cardiac cell populations and extracellular matrix factors that are critical to the development and regulation of heart function.
Collapse
Affiliation(s)
- Stephanie L K Bowers
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, 1901 South 1st Street, Building 205, Room 1R24, Temple, TX 76504, USA
| | | | | |
Collapse
|
48
|
FREIMANN SARIT, KESSLER-ICEKSON GANIA, SHAHAR IRIS, RADOM-AIZIK SHLOMIT, YITZHAKY ASSIF, ELDAR MICHAEL, SCHEINOWITZ MICKEY. Exercise Training Alters the Molecular Response to Myocardial Infarction. Med Sci Sports Exerc 2009; 41:757-65. [DOI: 10.1249/mss.0b013e31819125b6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Levay AK, Peacock JD, Lu Y, Koch M, Hinton RB, Kadler KE, Lincoln J. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ Res 2008; 103:948-56. [PMID: 18802027 DOI: 10.1161/circresaha.108.177238] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heart valve structures, derived from mesenchyme precursor cells, are composed of differentiated cell types and extracellular matrix arranged to facilitate valve function. Scleraxis (scx) is a transcription factor required for tendon cell differentiation and matrix organization. This study identified high levels of scx expression in remodeling heart valve structures at embryonic day 15.5 through postnatal stages using scx-GFP reporter mice and determined the in vivo function using mice null for scx. Scx(-/-) mice display significantly thickened heart valve structures from embryonic day 17.5, and valves from mutant mice show alterations in valve precursor cell differentiation and matrix organization. This is indicated by decreased expression of the tendon-related collagen type XIV, increased expression of cartilage-associated genes including sox9, as well as persistent expression of mesenchyme cell markers including msx1 and snai1. In addition, ultrastructure analysis reveals disarray of extracellular matrix and collagen fiber organization within the valve leaflet. Thickened valve structures and increased expression of matrix remodeling genes characteristic of human heart valve disease are observed in juvenile scx(-/-) mice. In addition, excessive collagen deposition in annular structures within the atrioventricular junction is observed. Collectively, our studies have identified an in vivo requirement for scx during valvulogenesis and demonstrate its role in cell lineage differentiation and matrix distribution in remodeling valve structures.
Collapse
Affiliation(s)
- Agata K Levay
- Department of Molecular and Cellular Pharmacology, Leonard M Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Heart failure is a complex, complicated disease that is not yet fully understood. We used the Module Map algorithm to uncover groups of genes that have a similar pattern of expression under various conditions of heart stress. These groups of genes are called modules and may serve as computational predictions of biological pathways for the various clinical situations. The Module Map algorithm allows a large-scale analysis of genes expressed. We applied this algorithm to 700 different mouse experiments downloaded from the Gene Expression Omnibus database, which identified 884 modules. The analysis reconstructed partially known principles that play a role in governing the response of heart to stress, thus demonstrating the strength of the method. We have shown a role of genes related to the immune system in conditions of heart remodeling and failure. We have also shown changes in the expression of genes involved with energy metabolism and changes in the expression of contractile proteins of the heart following myocardial infarction. When focusing on another module we noted a new correlation between genes related to osteogenesis and heart failure, including Runx2 and Ahsg, whose role in heart failure was unknown so far. Despite a lack of prior biological knowledge, the Module Map algorithm has reconstructed known pathways, which demonstrates the strength of this new method for analyzing gene profiles related to clinical phenomenon. The method and the analysis presented are a new avenue to uncover the correlation of clinical conditions to the molecular level.
Collapse
Affiliation(s)
- Uri David Akavia
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|