1
|
Cheung AY, Duan Q, Li C, James Liu MC, Wu HM. Pollen-pistil interactions: It takes two to tangle but a molecular cast of many to deliver. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102279. [PMID: 36029655 DOI: 10.1016/j.pbi.2022.102279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Explosive advances have been made in the molecular understanding of pollen-pistil interactions that underlie reproductive success in flowering plants in the past three decades. Among the most notable is the discovery of pollen tube attractants [1∗,2∗]. The roles these molecules play in facilitating conspecific precedence thus promoting interspecific genetic isolation are also emerging [3-5]. Male-female interactions during the prezygotic phase and contributions from the male and female gametophytes have been comprehensively reviewed recently. Here, we focus on key advances in understanding the mechanistic underpinnings of how these interactions overcome barriers at various pollen-pistil interfaces along the pollen tube growth pathway to facilitate fertilization by desirable mates.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming-Che James Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Dong W, Wu D, Yan C, Wu D. Mapping and Analysis of a Novel Genic Male Sterility Gene in Watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2021; 12:639431. [PMID: 34539684 PMCID: PMC8442748 DOI: 10.3389/fpls.2021.639431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/19/2021] [Indexed: 05/15/2023]
Abstract
Seed production is critical for watermelon production, which mostly involves first-generation hybrid varieties. However, watermelon hybrid seed production currently requires complex procedures, including artificial isolation and pollination. Therefore, the development and use of a male-sterile system to generate watermelon hybrids can simplify the process. The scarcity of male-sterile watermelon germplasm resources necessitates the use of molecular breeding methods. Unfortunately, the genes responsible for male sterility in watermelon have not been cloned. Thus, the genetic basis of the male sterility remains unknown. In this study, two DNA pools derived from male-sterile and normal plants in the F2 population were used for whole-genome resequencing. The Illumina high-throughput sequencing resulted in 62.99 Gbp clean reads, with a Q30 of 80% after filtering. On the basis of the SNP index association algorithm, eight candidate regions (0.32 Mb) related to specific traits were detected on chromosome 6. Expression pattern analyses and watermelon transformation studies generated preliminary evidence that Cla006625 encodes a pollen-specific leucine-rich repeat protein (ClaPEX1) influencing the male sterility of watermelon. The identification and use of genic male sterility genes will promote watermelon male sterility research and lay the foundation for the efficient application of seed production technology.
Collapse
Affiliation(s)
- Wei Dong
- School of Life Science, Henan University, Kaifeng, China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Chen Yan
- School of Life Science, Henan University, Kaifeng, China
| | - Defeng Wu
- School of Life Science, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Celenk S, Vatansever B. Assessment of heterogeneity of two cultivars of Olea europaea based on the study of their Ole e 1 protein content. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13122-2. [PMID: 33641102 PMCID: PMC7914038 DOI: 10.1007/s11356-021-13122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Olive pollen is one of the main causes of allergic disease in the Mediterranean area. Ten different proteins with allergenic activity have been described in olive pollen, with major allergen Ole e 1. Olea europaea L. may cause allergenic effects of different severity depending on the Ole e 1 content of cultivars. In this paper, we aimed to assess the heterogeneity of two olive cultivars concerning concentrations of the major allergen Ole e 1 during a period of 2 years. Pollens from two most common olive cultivars, known as "Gemlik" and "Celebi," were analyzed on regular basis. Ole e 1 amounts were measured by double-sandwich enzyme-linked immunosorbent assay (ELISA). The results were expressed as μg of Ole e 1 per μg of total freeze-dried extract. Comparisons of Ole e 1 levels were made both between individual trees and between cultivars. It was analyzed the influence of some meteorological parameters on pollen counts/allergenic content on a local scale, for 2 years. Pollen sampling was carried out continuously for 2 years, using a Hirst-type volumetric trap. "Gemlik" had the higher value (mean ± standard deviation) of Ole e 1 content (2.44 ±0.70 and 1.87 ±1.03 μg/μg, respectively) when compared to "Celebi" (2.16 ±0.86 and 0.20 ±0.30 μg/μg, respectively) in the years 2013 and 2015. In our research, daily variations were observed in pollen samples of two olive cultivars and even different trees of the same cultivar. Furthermore, during certain sampling days, discrepancies between airborne pollen counts and Ole e 1 concentrations were detected for both cultivars. It was found that meteorological changes, especially temperature and precipitation fluctuations, could affect airborne pollen and Ole e 1 allergen levels in the atmosphere. Therefore, pollen samples of different O. europaea cultivars demonstrated great differences in Ole e 1 content. We believe that these findings were a result of alternate bearing behavior modulated by meteorological factors.
Collapse
Affiliation(s)
- Sevcan Celenk
- Department of Biology, Aerobiology Laboratory, Faculty of Arts and Science, Bursa Uludag University, 16059, Görükle, Nilüfer, Bursa, Turkey.
| | - Buse Vatansever
- Department of Biology, Aerobiology Laboratory, Faculty of Arts and Science, Bursa Uludag University, 16059, Görükle, Nilüfer, Bursa, Turkey
| |
Collapse
|
4
|
Aroonluk S, Roytrakul S, Jantasuriyarat C. Identification and Characterization of Phosphoproteins in Somatic Embryogenesis Acquisition during Oil Palm Tissue Culture. PLANTS 2019; 9:plants9010036. [PMID: 31881678 PMCID: PMC7020188 DOI: 10.3390/plants9010036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/08/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
Somatic embryogenesis during oil palm tissue culture is a long process. The identification of the proteins that control this process may help to shorten the time of oil palm tissue culture. We collected embryogenic callus and somatic embryos at the globular, torpedo, and cotyledon maturation stages, as well as from plantlets, for total protein extraction. An enrichment column was used to enrich the phosphoproteins, which were subjected to tryptic enzyme digestion. Each sample was analyzed with nano-liquid chromatography-tandem mass spectrometry (nano LC-MS/MS). A total of 460 phosphoproteins were identified and analyzed. The functional characterization of phosphoproteins were observed as highest in the metabolic process, protein/nucleotide/ion binding, and membrane component. The different phosphoproteins are involved in the control of vegetative growth, cellular differentiation, cell morphogenesis, and signaling roles in plants. The Quantitative Real-Time Reverse Transcription-PCR technique (qPCR) was successfully used to verify the expression of genes, and the results were consistent with the level of protein expression from nano-LC-MS/MS. The E3 ubiquitin-protein ligase and sister chromatid cohesion PDS5 were specifically expressed only in the somatic embryo and plantlet, and these could be used as protein biomarkers to determine the oil palm somatic embryo maturation stage. This study sheds light on the protein phosphorylation mechanism that regulates somatic embryogenesis transition during oil palm tissue culture.
Collapse
Affiliation(s)
- Suvichark Aroonluk
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Pathumthani 12120, Thailand;
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart (CASTNAR, NRU-KU), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Kasetsart University, Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
5
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
|
6
|
Jiao H, Liu X, Sun S, Wang P, Qiao X, Li J, Tang C, Wu J, Zhang S, Tao S. The unique evolutionary pattern of the Hydroxyproline-rich glycoproteins superfamily in Chinese white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2018; 18:36. [PMID: 29454308 PMCID: PMC5816549 DOI: 10.1186/s12870-018-1252-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/05/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND The hydroxyproline-rich glycoprotein (HRGP) superfamily, comprising three families (arabinogalactan-proteins, AGPs; extensins, EXTs; proline-rich proteins, PRPs), is a class of proline-rich proteins that exhibit high diversity and are involved in many aspects of plant biology. RESULTS In this study, 838 HRGPs were identified from Chinese white pear (Pyrus bretschneideri) by searching for biased amino acid composition and conserved motifs. 405 HRGPs were derived from whole genome duplication (WGD) events which is suggested to be the major force of driving HRGPs expansion and the recent WGD event shared by apple and pear generated most duplicated HRGPs in pear. This duplication event drived the structural variation of the HRGPs encoding hydroxyproline (Hyp)-rich motifs. The rate of HRGPs evolution mainly impacted the Hyp-rich motifs even in chimeric HRGPs. During the evolution of 53 PRPs that are also typified by 7-deoxyloganetin glucosyltransferase-like genes, the duplication from PRP to non-PRP was indirectly modified by positive selection. These results suggested that the rate of HRGP evolution mainly influenced the Hyp-rich motifs even in chimeric HRGPs. The expression divergence of HRGPs was higher than that of other commonly duplicated genes. In pear pistil, 601 HRGPs exhibited expression, while in pear pollen, 285 HRGPs were expressed. The qPCR results revealed that Pbr036330.1 and Pbr010506.1 showed different expression profile in self-incompatibility of pear pistil. CONCLUSIONS The researches indicated that WGD events was the main duplication type during the evolution of HRGPs, and the highly variable Hyp-motifs might be accountable for the expansion, evolution and expression divergence of HRGPs and that this divergence may be responsible for the gain of new functions in plants.
Collapse
Affiliation(s)
- Huijun Jiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xing Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuguang Sun
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peng Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chao Tang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Juyou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shutian Tao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
7
|
Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, Muschietti JP. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett 2018; 592:233-243. [PMID: 29265366 DOI: 10.1002/1873-3468.12947] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/22/2017] [Accepted: 11/06/2017] [Indexed: 11/07/2022]
Abstract
Proper cell wall assembly is crucial during pollen tube growth. Leucine-rich repeat extensins (LRXs) are extracellular glycoproteins which belong to the hydroxyproline-rich glycoprotein (HRGP) family. They contain a conserved N-terminal leucine-rich repeat (LRR) domain and a highly variable C-terminal extensin domain. Here, we characterized four LRX proteins (LRX8 through LRX11) from pollen of Arabidopsis thaliana. To investigate the role of LRX8-LRX11 in pollen germination and pollen tube growth, multiple T-DNA lrx mutants were obtained. The lrx mutants display abnormal pollen tubes with an irregular deposition of callose and pectin. They also show serious alterations in pollen germination and segregation ratio. Our results suggest that LRXs are involved in ensuring proper cell wall assembly during pollen tube growth.
Collapse
Affiliation(s)
- Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Universidad de Buenos Aires, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Martín A Mecchia
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Universidad de Buenos Aires, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
8
|
Su A, Song W, Xing J, Zhao Y, Zhang R, Li C, Duan M, Luo M, Shi Z, Zhao J. Identification of Genes Potentially Associated with the Fertility Instability of S-Type Cytoplasmic Male Sterility in Maize via Bulked Segregant RNA-Seq. PLoS One 2016; 11:e0163489. [PMID: 27669430 PMCID: PMC5036866 DOI: 10.1371/journal.pone.0163489] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
S-type cytoplasmic male sterility (CMS-S) is the largest group among the three major types of CMS in maize. CMS-S exhibits fertility instability as a partial fertility restoration in a specific nuclear genetic background, which impedes its commercial application in hybrid breeding programs. The fertility instability phenomenon of CMS-S is controlled by several minor quantitative trait locus (QTLs), but not the major nuclear fertility restorer (Rf3). However, the gene mapping of these minor QTLs and the molecular mechanism of the genetic modifications are still unclear. Using completely sterile and partially rescued plants of fertility instable line (FIL)-B, we performed bulk segregant RNA-Seq and identified six potential associated genes in minor effect QTLs contributing to fertility instability. Analyses demonstrate that these potential associated genes may be involved in biological processes, such as floral organ differentiation and development regulation, energy metabolism and carbohydrates biosynthesis, which results in a partial anther exsertion and pollen fertility restoration in the partially rescued plants. The single nucleotide polymorphisms (SNPs) identified in two potential associated genes were validated to be related to the fertility restoration phenotype by KASP marker assays. This novel knowledge contributes to the understanding of the molecular mechanism of the partial fertility restoration of CMS-S in maize and thus helps to guide the breeding programs.
Collapse
Affiliation(s)
- Aiguo Su
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Wei Song
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Jinfeng Xing
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Yanxin Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Ruyang Zhang
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Chunhui Li
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Minxiao Duan
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Meijie Luo
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Zi Shi
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
- * E-mail: (ZS); (JZ)
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
- * E-mail: (ZS); (JZ)
| |
Collapse
|
9
|
Hafidh S, Potěšil D, Fíla J, Čapková V, Zdráhal Z, Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol 2016; 17:81. [PMID: 27139692 PMCID: PMC4853860 DOI: 10.1186/s13059-016-0928-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As in animals, cell-cell communication plays a pivotal role in male-female recognition during plant sexual reproduction. Prelaid peptides secreted from the female reproductive tissues guide pollen tubes towards ovules for fertilization. However, the elaborate mechanisms for this dialogue have remained elusive, particularly from the male perspective. RESULTS We performed genome-wide quantitative liquid chromatography-tandem mass spectrometry analysis of a pistil-stimulated pollen tube secretome and identified 801 pollen tube-secreted proteins. Interestingly, in silico analysis reveals that the pollen tube secretome is dominated by proteins that are secreted unconventionally, representing 57 % of the total secretome. In support, we show that an unconventionally secreted protein, translationally controlled tumor protein, is secreted to the apoplast. Remarkably, we discovered that this protein could be secreted by infiltrating through the initial phases of the conventional secretory pathway and could reach the apoplast via exosomes, as demonstrated by co-localization with Oleisin1 exosome marker. We demonstrate that translationally controlled tumor protein-knockdown Arabidopsis thaliana plants produce pollen tubes that navigate poorly to the target ovule and that the mutant allele is poorly transmitted through the male. Further, we show that regulators of the endoplasmic reticulum-trans-Golgi network protein secretory pathway control secretion of Nicotiana tabacum Pollen tube-secreted cysteine-rich protein 2 and Lorelei-like GPI-anchor protein 3 and that a regulator of endoplasmic reticulum-trans-Golgi protein translocation is essential for pollen tube growth, pollen tube guidance and ovule-targeting competence. CONCLUSIONS This work, the first study on the pollen tube secretome, identifies novel genome-wide pollen tube-secreted proteins with potential functions in pollen tube guidance towards ovules for sexual reproduction. Functional analysis highlights a potential mechanism for unconventional secretion of pollen tube proteins and reveals likely regulators of conventional pollen tube protein secretion. The association of pollen tube-secreted proteins with marker proteins shown to be secreted via exosomes in other species suggests exosome secretion is a possible mechanism for cell-cell communication between the pollen tube and female reproductive cells.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| | - David Potěšil
- Research group Proteomics, CEITEC-MU, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Věra Čapková
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Zbyněk Zdráhal
- Research group Proteomics, CEITEC-MU, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
10
|
Bioinformatic Identification and Analysis of Extensins in the Plant Kingdom. PLoS One 2016; 11:e0150177. [PMID: 26918442 PMCID: PMC4769139 DOI: 10.1371/journal.pone.0150177] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/10/2016] [Indexed: 12/02/2022] Open
Abstract
Extensins (EXTs) are a family of plant cell wall hydroxyproline-rich glycoproteins (HRGPs) that are implicated to play important roles in plant growth, development, and defense. Structurally, EXTs are characterized by the repeated occurrence of serine (Ser) followed by three to five prolines (Pro) residues, which are hydroxylated as hydroxyproline (Hyp) and glycosylated. Some EXTs have Tyrosine (Tyr)-X-Tyr (where X can be any amino acid) motifs that are responsible for intramolecular or intermolecular cross-linkings. EXTs can be divided into several classes: classical EXTs, short EXTs, leucine-rich repeat extensins (LRXs), proline-rich extensin-like receptor kinases (PERKs), formin-homolog EXTs (FH EXTs), chimeric EXTs, and long chimeric EXTs. To guide future research on the EXTs and understand evolutionary history of EXTs in the plant kingdom, a bioinformatics study was conducted to identify and classify EXTs from 16 fully sequenced plant genomes, including Ostreococcus lucimarinus, Chlamydomonas reinhardtii, Volvox carteri, Klebsormidium flaccidum, Physcomitrella patens, Selaginella moellendorffii, Pinus taeda, Picea abies, Brachypodium distachyon, Zea mays, Oryza sativa, Glycine max, Medicago truncatula, Brassica rapa, Solanum lycopersicum, and Solanum tuberosum, to supplement data previously obtained from Arabidopsis thaliana and Populus trichocarpa. A total of 758 EXTs were newly identified, including 87 classical EXTs, 97 short EXTs, 61 LRXs, 75 PERKs, 54 FH EXTs, 38 long chimeric EXTs, and 346 other chimeric EXTs. Several notable findings were made: (1) classical EXTs were likely derived after the terrestrialization of plants; (2) LRXs, PERKs, and FHs were derived earlier than classical EXTs; (3) monocots have few classical EXTs; (4) Eudicots have the greatest number of classical EXTs and Tyr-X-Tyr cross-linking motifs are predominantly in classical EXTs; (5) green algae have no classical EXTs but have a number of long chimeric EXTs that are absent in embryophytes. Furthermore, phylogenetic analysis was conducted of LRXs, PERKs and FH EXTs, which shed light on the evolution of three EXT classes.
Collapse
|
11
|
Borassi C, Sede AR, Mecchia MA, Salgado Salter JD, Marzol E, Muschietti JP, Estevez JM. An update on cell surface proteins containing extensin-motifs. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:477-87. [PMID: 26475923 DOI: 10.1093/jxb/erv455] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Martin A Mecchia
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Juan D Salgado Salter
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina. Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina.
| | - Jose M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina.
| |
Collapse
|
12
|
MacAlister CA, Ortiz-Ramírez C, Becker JD, Feijó JA, Lippman ZB. Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:193-208. [PMID: 26577059 PMCID: PMC4738400 DOI: 10.1111/tpj.13079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/17/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
Hydroxyproline O-arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant-specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall-associated extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different HPAT homologs have been co-opted to function in diverse species-specific developmental contexts. However, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT function in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of protonemal tip cells. Physcomitrella hpat mutants lack cell-wall associated hydroxyproline arabinosides and can be rescued with exogenous cellulose, while global expression profiling shows that cell wall-associated genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings point to a major role for HPATs in influencing cell elongation during tip growth in plants.
Collapse
Affiliation(s)
| | | | - Jörg D Becker
- Instituto Gulbenkian de Ciência, P-2780-156, Oeiras, Portugal
| | - José A Feijó
- Instituto Gulbenkian de Ciência, P-2780-156, Oeiras, Portugal
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742-5815, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11746, USA
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11746, USA
| |
Collapse
|
13
|
Hijazi M, Velasquez SM, Jamet E, Estevez JM, Albenne C. An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. FRONTIERS IN PLANT SCIENCE 2014; 5:395. [PMID: 25177325 PMCID: PMC4132260 DOI: 10.3389/fpls.2014.00395] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 05/04/2023]
Abstract
Plant cell walls are composite structures mainly composed of polysaccharides, also containing a large set of proteins involved in diverse functions such as growth, environmental sensing, signaling, and defense. Research on cell wall proteins (CWPs) is a challenging field since present knowledge of their role into the structure and function of cell walls is very incomplete. Among CWPs, hydroxyproline (Hyp)-rich O-glycoproteins (HRGPs) were classified into three categories: (i) moderately glycosylated extensins (EXTs) able to form covalent scaffolds; (ii) hyperglycosylated arabinogalactan proteins (AGPs); and (iii) Hyp/proline (Pro)-Rich proteins (H/PRPs) that may be non-, weakly- or highly-glycosylated. In this review, we provide a description of the main features of their post-translational modifications (PTMs), biosynthesis, structure, and function. We propose a new model integrating HRGPs and their partners in cell walls. Altogether, they could form a continuous glyco-network with non-cellulosic polysaccharides via covalent bonds or non-covalent interactions, thus strongly contributing to cell wall architecture.
Collapse
Affiliation(s)
- May Hijazi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| | - Silvia M. Velasquez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| | - José M. Estevez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| |
Collapse
|
14
|
Chen J, Zhao J, Ning J, Liu Y, Xu J, Tian S, Zhang L, Sun MX. NtProRP1, a novel proline-rich protein, is an osmotic stress-responsive factor and specifically functions in pollen tube growth and early embryogenesis in Nicotiana tabacum. PLANT, CELL & ENVIRONMENT 2014; 37:499-511. [PMID: 23937639 DOI: 10.1111/pce.12174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Proline-rich proteins (PRPs) are known to play important roles in sexual plant reproduction. Most of the known proteins in the family were found in styles or pollen and modulate pollen tube growth. Here, we identified a novel member of the gene family, NtProRP1, which is preferentially expressed in tobacco pollen grains, pollen tubes and zygotes. NtProRP1 could be secreted into the extracellular space including the cell wall, and the predicted N-terminal signal peptide is crucial for its secretion. In NtProRP1-RNAi plants, pollen germination and pollen tube growth were significantly slower and showed zigzag or swell morphology in vitro. Early embryogenesis also exhibited aberrant development, indicative of its critical role in both pollen tube growth and early embryogenesis. Further investigation revealed that NtProRP1 plays a crucial role in osmotic stress response during pollen tube growth and is likely regulated by Tsi, a stress-responsive gene, suggesting that the regulatory mechanism is also involved in the stress response during sexual plant reproduction. These data provide evidence that NtProRP1 functions as a downstream factor of Tsi1 in the stress response and converges the stress signal into the modulation of pollen tube growth and early embryogenesis.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Plant Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Losada JM, Herrero M. Glycoprotein composition along the pistil of Malus x domestica and the modulation of pollen tube growth. BMC PLANT BIOLOGY 2014; 14:1. [PMID: 25316555 PMCID: PMC3890559 DOI: 10.1186/1471-2229-14-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 12/20/2013] [Indexed: 05/17/2023]
Abstract
BACKGROUND The characteristics of pollen tube growth are not constant, but display distinct patterns of growth within the different tissues of the pistil. In the stigma, the growth rate is slow and autotrophic, whereas in the style, it is rapid and heterotrophic. Very little is known about the interactions between these distinct maternal tissues and the traversing pollen tube and the role of this interaction on the observed metabolism. In this work we characterise pollen tube growth in the apple flower and look for differences in glycoprotein epitope localization between two different maternal tissues, the stigma and the style. RESULTS While immunocytochemically-detected arabinogalactan proteins were present at high levels in the stigma, they were not detected in the transmitting tissue of the style, where extensins were abundant. Whereas extensins remained at high levels in unpollinated pistils, they were no longer present in the style following pollen tube passage. Similarily, while abundant in unpollinated styles, insoluble polysaccharides such as β-glucans, were depleted in pollinated pistils. CONCLUSIONS The switch from autotropic to heterotrophic pollen tube growth correlates spatially with a change of glycoprotein epitopes between the stigma and the style. The depletion of extensins and polysaccharides following pollen tube passage in the style suggest a possible contribution to the acceleration of heterotrophic pollen tube growth, which would imply an active contribution of female tissues on prezygotic male-female crosstalk.
Collapse
Affiliation(s)
- Juan M Losada
- Pomology Department, Aula Dei Experimental Station CSIC, Apdo 13034, 50080 Zaragoza, Spain
- Present address: Arnold Arboretum of Harvard University, 1300 Centre Street, 02131 Boston, MA, USA
| | - Maria Herrero
- Pomology Department, Aula Dei Experimental Station CSIC, Apdo 13034, 50080 Zaragoza, Spain
| |
Collapse
|
16
|
Bleckmann A, Alter S, Dresselhaus T. The beginning of a seed: regulatory mechanisms of double fertilization. FRONTIERS IN PLANT SCIENCE 2014; 5:452. [PMID: 25309552 PMCID: PMC4160995 DOI: 10.3389/fpls.2014.00452] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/21/2014] [Indexed: 05/20/2023]
Abstract
THE LAUNCH OF SEED DEVELOPMENT IN FLOWERING PLANTS (ANGIOSPERMS) IS INITIATED BY THE PROCESS OF DOUBLE FERTILIZATION: two male gametes (sperm cells) fuse with two female gametes (egg and central cell) to form the precursor cells of the two major seed components, the embryo and endosperm, respectively. The immobile sperm cells are delivered by the pollen tube toward the ovule harboring the female gametophyte by species-specific pollen tube guidance and attraction mechanisms. After pollen tube burst inside the female gametophyte, the two sperm cells fuse with the egg and central cell initiating seed development. The fertilized central cell forms the endosperm while the fertilized egg cell, the zygote, will form the actual embryo and suspensor. The latter structure connects the embryo with the sporophytic maternal tissues of the developing seed. The underlying mechanisms of double fertilization are tightly regulated to ensure delivery of functional sperm cells and the formation of both, a functional zygote and endosperm. In this review we will discuss the current state of knowledge about the processes of directed pollen tube growth and its communication with the synergid cells resulting in pollen tube burst, the interaction of the four gametes leading to cell fusion and finally discuss mechanisms how flowering plants prevent multiple sperm cell entry (polyspermy) to maximize their reproductive success.
Collapse
Affiliation(s)
- Andrea Bleckmann
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of RegensburgRegensburg, Germany
| | - Svenja Alter
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of RegensburgRegensburg, Germany
- *Correspondence: Thomas Dresselhaus, Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 18, 93053 Regensburg, Germany e-mail:
| |
Collapse
|
17
|
Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genomics 2013; 14:647. [PMID: 24059455 PMCID: PMC3853109 DOI: 10.1186/1471-2164-14-647] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought tolerance is an attribute maintained in plants by cross-talk between multiple and cascading metabolic pathways. Without a sequenced genome available for horse gram, it is difficult to comprehend such complex networks and intercalated genes associated with drought tolerance of horse gram (Macrotyloma uniflorum). Therefore, de novo transcriptome discovery and associated analyses was done for this highly drought tolerant yet under exploited legume to decipher its genetic makeup. RESULTS Eight samples comprising of shoot and root tissues of two horse gram genotypes (drought-sensitive; M-191 and drought-tolerant; M-249) were used for comparison under control and polyethylene glycol-induced drought stress conditions. Using Illumina sequencing technology, a total of 229,297,896 paired end read pairs were generated and utilized for de novo assembly of horse gram. Significant BLAST hits were obtained for 26,045 transcripts while, 3,558 transcripts had no hits but contained important conserved domains. A total of 21,887 unigenes were identified. SSRs containing sequences covered 16.25% of the transcriptome with predominant tri- and mono-nucleotides (43%). The total GC content of the transcriptome was found to be 43.44%. Under Gene Ontology response to stimulus, DNA binding and catalytic activity was highly expressed during drought stress conditions. Serine/threonine protein kinase was found to dominate in Enzyme Classification while pathways belonging to ribosome metabolism followed by plant pathogen interaction and plant hormone signal transduction were predominant in Kyoto Encyclopedia of Genes and Genomes analysis. Independent search on plant metabolic network pathways suggested valine degradation, gluconeogenesis and purine nucleotide degradation to be highly influenced under drought stress in horse gram. Transcription factors belonging to NAC, MYB-related, and WRKY families were found highly represented under drought stress. qRT-PCR validated the expression profile for 9 out of 10 genes analyzed in response to drought stress. CONCLUSIONS De novo transcriptome discovery and analysis has generated enormous information over horse gram genomics. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against drought stress by horse gram. The knowledge generated can be further utilized for exploring other underexploited plants for stress responsive genes and improving plant tolerance.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Plant Metabolic Engineering Laboratory, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, HP, India.
| | | | | | | | | | | | | |
Collapse
|
18
|
Chae K, Lord EM. Pollen tube growth and guidance: roles of small, secreted proteins. ANNALS OF BOTANY 2011; 108:627-36. [PMID: 21307038 PMCID: PMC3170145 DOI: 10.1093/aob/mcr015] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/04/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pollination is a crucial step in angiosperm (flowering plant) reproduction. Highly orchestrated pollen-pistil interactions and signalling events enable plant species to avoid inbreeding and outcrossing as a species-specific barrier. In compatible pollination, pollen tubes carrying two sperm cells grow through the pistil transmitting tract and are precisely guided to the ovules, discharging the sperm cells to the embryo sac for fertilization. SCOPE In Lilium longiflorum pollination, growing pollen tubes utilize two critical mechanisms, adhesion and chemotropism, for directional growth to the ovules. Among several molecular factors discovered in the past decade, two small, secreted cysteine-rich proteins have been shown to play major roles in pollen tube adhesion and reorientation bioassays: stigma/style cysteine-rich adhesin (SCA, approx. 9·3 kDa) and chemocyanin (approx. 9·8 kDa). SCA, a lipid transfer protein (LTP) secreted from the stylar transmitting tract epidermis, functions in lily pollen tube tip growth as well as in forming the adhesive pectin matrix at the growing pollen tube wall back from the tip. Lily chemocyanin is a plantacyanin family member and acts as a directional cue for reorienting pollen tubes. Recent consecutive studies revealed that Arabidopsis thaliana homologues for SCA and chemocyanin play pivotal roles in tip polarity and directionality of pollen tube growth, respectively. This review outlines the biological roles of various secreted proteins in angiosperm pollination, focusing on plant LTPs and chemocyanin.
Collapse
|
19
|
You C, Dai X, Li X, Wang L, Chen G, Xiao J, Wu C. Molecular characterization, expression pattern, and functional analysis of the OsIRL gene family encoding intracellular Ras-group-related LRR proteins in rice. PLANT MOLECULAR BIOLOGY 2010; 74:617-629. [PMID: 20949308 DOI: 10.1007/s11103-010-9704-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 09/30/2010] [Indexed: 05/30/2023]
Abstract
Leucine-rich repeat proteins constitute a large gene family and play important roles in plant growth and development. Among them, Arabidopsis PIRL is a plant-specific class of intracellular Ras-group-related leucine-rich repeat proteins. In this study, we identified eight homologues of PIRLs in rice and designated them as OsIRL proteins. We described the gene structures, chromosome localizations, protein motifs, and phylogenetic relationships of the OsIRL gene family. The expression profiles of OsIRL genes were analyzed throughout the entire rice life cycle, along with light and three hormone stress conditions, using quantitative RT-PCR and microarray data. All OsIRL genes were expressed in at least one experimental stage and exhibited divergent expression patterns, with several genes showing preferential expression at specific stages. OsIRL4 and OsIRL5 showed higher expression levels under light compared to dark. OsIRL4 and OsIRL7 exhibited significant differential expression in response to hormone treatments. Six T-DNA or Tos17 insertion lines for five individual OsIRL genes were identified and examined morphologically. The comprehensive expression profile elucidated in this investigation together with the characterized insertion lines will provide a solid foundation for in-depth dissection of OsIRL functions.
Collapse
Affiliation(s)
- Changjun You
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Bedinger PA, Pearce G, Covey PA. RALFs: peptide regulators of plant growth. PLANT SIGNALING & BEHAVIOR 2010; 5:1342-6. [PMID: 21045555 PMCID: PMC3115231 DOI: 10.4161/psb.5.11.12954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 05/07/2023]
Abstract
Peptide signaling regulates a variety of developmental processes and environmental responses in plants. For example, the peptide systemin induces the systemic defense response in tomato and defensins are small cysteine-rich proteins that are involved in the innate immune system of plants. The CLAVATA3 peptide regulates meristem size and the SCR peptide is the pollen self-incompatibility recognition factor in the Brassicaceae. LURE peptides produced by synergid cells attract pollen tubes to the embryo sac. RALFs are a recently discovered family of plant peptides that play a role in plant cell growth.
Collapse
|
21
|
Forsthoefel NR, Dao TP, Vernon DM. PIRL1 and PIRL9, encoding members of a novel plant-specific family of leucine-rich repeat proteins, are essential for differentiation of microspores into pollen. PLANTA 2010; 232:1101-1114. [PMID: 20697737 DOI: 10.1007/s00425-010-1242-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/26/2010] [Indexed: 05/29/2023]
Abstract
Plant intracellular Ras-group-related leucine-rich repeat proteins (PIRLs) are a plant-specific class of leucine-rich repeat (LRR) proteins related to animal and fungal LRRs that take part in developmental signaling and gene regulation. As part of a systematic functional study of the Arabidopsis thaliana PIRL gene family, T-DNA knockout mutants defective in the closely related PIRL1 and PIRL9 genes were identified and characterized. Pirl1 and pirl9 single mutants displayed normal transmission and did not exhibit an obvious developmental phenotype. To investigate the possibility of functional redundancy, crosses to generate double mutants were carried out; however, pirl1;pirl9 plants were not recovered. Reciprocal crosses between wild type and pirl1/PIRL1;pirl9 plants, which produce 50% pirl1;pirl9 gametophytes, indicated male-specific transmission failure of the double-mutant allele combination. Scanning electron microscopy and viability staining showed that approximately half of the pollen produced by pirl1/PIRL1;pirl9 plants was inviable and severely malformed. Tetrad analyses with qrt1 indicated that pollen defects segregated with the double-mutant allele combination, thus demonstrating that PIRL1 and PIRL9 function after meiosis. Pollen development was characterized with bright field, fluorescence, and transmission electron microscopy. Pirl1;pirl9 mutants stopped growing as microspores, failed to initiate vacuolar fission, aborted, and underwent cytoplasmic degeneration. Development consistently arrested at the late microspore stage, just prior to pollen mitosis I. Thus, PIRL1 and PIRL9 have redundant roles essential at a key transition point early in pollen development. Together, these results define a functional context for these two members of this distinct class of plant LRR genes.
Collapse
|
22
|
Covey PA, Subbaiah CC, Parsons RL, Pearce G, Lay FT, Anderson MA, Ryan CA, Bedinger PA. A pollen-specific RALF from tomato that regulates pollen tube elongation. PLANT PHYSIOLOGY 2010; 153:703-15. [PMID: 20388667 PMCID: PMC2879774 DOI: 10.1104/pp.110.155457] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/07/2010] [Indexed: 05/18/2023]
Abstract
Rapid Alkalinization Factors (RALFs) are plant peptides that rapidly increase the pH of plant suspension cell culture medium and inhibit root growth. A pollen-specific tomato (Solanum lycopersicum) RALF (SlPRALF) has been identified. The SlPRALF gene encodes a preproprotein that appears to be processed and released from the pollen tube as an active peptide. A synthetic SlPRALF peptide based on the putative active peptide did not affect pollen hydration or viability but inhibited the elongation of normal pollen tubes in an in vitro growth system. Inhibitory effects of SlPRALF were detectable at concentrations as low as 10 nm, and complete inhibition was observed at 1 mum peptide. At least 10-fold higher levels of alkSlPRALF, which lacks disulfide bonds, were required to see similar effects. A greater effect of peptide was observed in low-pH-buffered medium. Inhibition of pollen tube elongation was reversible if peptide was removed within 15 min of exposure. Addition of 100 nm SlPRALF to actively growing pollen tubes inhibited further elongation until tubes were 40 to 60 mum in length, after which pollen tubes became resistant to the peptide. The onset of resistance correlated with the timing of the exit of the male germ unit from the pollen grain into the tube. Thus, exogenous SlPRALF acts as a negative regulator of pollen tube elongation within a specific developmental window.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523–1878 (P.A.C., C.C.S., R.L.P., P.A.B.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (G.P., C.A.R.); Department of Biochemistry, La Trobe University, Melbourne, Victoria 3086, Australia (F.T.L., M.A.A.)
| |
Collapse
|
23
|
Protsenko MA, Buza NL, Krinitsyna AA, Bulantseva EA, Korableva NP. Polygalacturonase-inhibiting protein is a structural component of plant cell wall. BIOCHEMISTRY (MOSCOW) 2008; 73:1053-62. [PMID: 18991551 DOI: 10.1134/s0006297908100015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is generally believed that plants "evolved a strategy of defending themselves from a phytopathogen attack" during evolution. This metaphor is used frequently, but it does not facilitate understanding of the mechanisms providing plant resistance to the invasion of foreign organisms and to other unfavorable external factors, as well as the role of these mechanisms in plant growth and development. Information on processes involving one of the plant resistance factors--polygalacturonase-inhibiting protein (PGIP)--is considered in this review. The data presented here indicate that PGIP, being an extracellular leucine-rich repeat-containing protein, performs important functions in the structure of plant cell wall. Amino acid residues participating in PGIP binding to homogalacturonan in the cell wall have been determined. The degree of methylation and the mode of distribution of homogalacturonan methyl groups are responsible for the formation of a complex structure, which perhaps determines the specificity of PGIP binding to pectin. PGIP is apparently one of the components of plant cell wall determining some of its mechanical properties; it is involved in biochemical processes related to growth, expansion, and maceration, and it influences plant morphology. Polygalacturonase (PG) is present within practically all plant tissues, but the manifestation of its activity varies significantly depending on physiological conditions in the tissue. Apparently, the regulation of PG functioning in apoplast significantly affects the development of processes associated with the modification of the structure of plant cell wall. PGIP can regulate PG activity through binding to homogalacturonan. The genetically determined structure of PGIP in plants determines the mode of its interaction with an invader and perhaps is one of the factors responsible for the set of pathogens causing diseases in a given plant species.
Collapse
Affiliation(s)
- M A Protsenko
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
24
|
Hamman-Khalifa A, Castro AJ, Jiménez-López JC, Rodríguez-García MI, Alché JDD. Olive cultivar origin is a major cause of polymorphism for Ole e 1 pollen allergen. BMC PLANT BIOLOGY 2008; 8:10. [PMID: 18218146 PMCID: PMC2275730 DOI: 10.1186/1471-2229-8-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 01/25/2008] [Indexed: 05/10/2023]
Abstract
BACKGROUND Pollens from different olive (Olea europaea L.) cultivars have been shown to differ significantly in their content in Ole e 1 and in their overall allergenicity. This allergen is, in addition, characterized by a high degree of polymorphism in its sequence. The purpose of this study is to evaluate the putative presence of divergences in Ole e 1 sequences from different olive cultivars. RESULTS RNA from pollen individually collected from 10 olive cultivars was used to amplify Ole e 1 sequences by RT-PCR, and the sequences were analyzed by using different bioinformatics tools. Numerous nucleotide substitutions were detected throughout the sequences, many of which resulted in amino acid substitutions in the deduced protein sequences. In most cases variability within a single variety was much lower than among varieties. Key amino acid changes in comparison with "canonical" sequences previously described in the literature included: a) the substitution of C19-relevant to the disulphide bond structure of the protein-, b) the presence of an additional N-glycosylation motif, and c) point substitutions affecting regions of Ole e 1 already described like relevant for the immunogenicity/allergenicity of the protein. CONCLUSION Varietal origin of olive pollen is a major factor determining the diversity of Ole e 1 variants. We consider this information of capital importance for the optimal design of efficient and safe allergen formulations, and useful for the genetic engineering of modified forms of the allergen among other applications.
Collapse
Affiliation(s)
- AbdelMounim Hamman-Khalifa
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación, Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Antonio Jesús Castro
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación, Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - José Carlos Jiménez-López
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación, Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María Isabel Rodríguez-García
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación, Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Juan de Dios Alché
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación, Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
25
|
Wu H, Ma BG, Zhao JT, Zhang HY. How similar are amino acid mutations in human genetic diseases and evolution. Biochem Biophys Res Commun 2007; 362:233-7. [PMID: 17681277 DOI: 10.1016/j.bbrc.2007.07.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022]
Abstract
Accumulating evidence indicates that some deleterious mutations responsible for genetic diseases may offer benefits for human to prevent other diseases. Therefore, human genetic diseases and evolution were tentatively regarded as the two sides of the same coin, which stimulated our interest to explore how similar are amino acid mutations in human genetic diseases and evolution. Through a large-scale analysis on amino acid mutation patterns of genetic diseases and evolution of Hominidae (Homo sapiens and Pan troglodytes), it was found that there exist significant correlations between two mutation patterns. Besides, there also exist some evident differences between both mutations, especially those associated with four amino acids C, G, R, and L. These findings are of significance to understanding the subtle connections between human genetic diseases and evolution.
Collapse
Affiliation(s)
- Hao Wu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049, PR China
| | | | | | | |
Collapse
|
26
|
Abstract
Plant-pathogen interactions involve highly complex series of reactions in disease development. Plants are endowed with both, resistance and defence genes. The activation of defence genes after contact with avirulence gene products of pathogens depends on signals transduced by leucine-rich repeats (LRRs) contained in resistance genes. Additionally, LRRs play roles for various actions following ligand recognition. Polygalacturonase inhibiting proteins (PGIPs), the only plant LRR protein with known ligands, are pectinase inhibitors, bound by ionic interactions to the extracellular matrix (ECM) of plant cells. They have a high affinity for fungal endopolygalacturonases (endoPGs). PGIP genes are organised in families encoding proteins with similar physical characteristics but different specificities. They are induced by infection and stress related signals. The molecular basis of PG-PGIP interaction serves as a model to understand the evolution of plant LRR proteins in recognising non-self-molecules. Extensins form a different class of structural proteins with repetitive sequences. They are also regulated by wounding and pathogen infection. Linkage of extensins with LRR motifs is highly significant in defending host tissues against pathogen invasion. Overexpression of PGIPs or expression of several PGIPs in a plant tissue, and perhaps manipulation of extensin expression could be possible strategies for disease management.
Collapse
Affiliation(s)
- V Shanmugam
- Hill Area Tea Science Division, Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India.
| |
Collapse
|
27
|
Forsthoefel NR, Cutler K, Port MD, Yamamoto T, Vernon DM. PIRLs: A Novel Class of Plant Intracellular Leucine-rich Repeat Proteins. ACTA ACUST UNITED AC 2005; 46:913-22. [PMID: 15809230 DOI: 10.1093/pcp/pci097] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Leucine-rich repeat (LRR) proteins feature tandem leucine-rich motifs that form a protein-protein interaction domain. Plants contain diverse classes of LRR proteins, many of which take part in signal transduction. We have identified a novel family of nine Arabidopsis LRR proteins that, based on predicted intracellular location and LRR motif consensus sequence, are related to Ras-binding LRR proteins found in signaling complexes in animals and yeast. This new class has been named plant intracellular Ras group-related LRR proteins (PIRLs). We have characterized PIRL cDNAs, rigorously defined gene and protein annotations, investigated gene family evolution and surveyed mRNA expression. While LRR regions suggested a relationship to Ras group LRR proteins, outside of their LRR domains PIRLs differed from Ras group proteins, exhibiting N- and C-terminal regions containing low complexity stretches and clusters of charged amino acids. PIRL genes grouped into three subfamilies based on sequence relationships and gene structures. Related gene pairs and dispersed chromosomal locations suggested family expansion by ancestral genomic or segmental duplications. Expression surveys revealed that all PIRL mRNAs are actively transcribed, with three expressed differentially in leaves, roots or flowers. These results define PIRLs as a distinct, plant-specific class of intracellular LRR proteins that probably mediate protein interactions, possibly in the context of signal transduction. T-DNA knock-out mutants have been isolated as a starting point for systematic functional analysis of this intriguing family.
Collapse
Affiliation(s)
- Nancy R Forsthoefel
- Program in Biochemistry, Biophysics and Molecular Biology, Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| | | | | | | | | |
Collapse
|
28
|
Suen DF, Wu SSH, Chang HC, Dhugga KS, Huang AHC. Cell wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style. J Biol Chem 2003; 278:43672-81. [PMID: 12930826 DOI: 10.1074/jbc.m307843200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The surface of a pollen grain consists of an outermost coat and an underlying wall. In maize (Zea mays L.), the pollen coat contains two major proteins derived from the adjacent tapetum cells in the anthers. One of the proteins is a 35-kDa endoxylanase (Wu, S. S. H., Suen, D. F., Chang, H. C., and Huang, A. H. C. (2002) J. Biol. Chem. 277, 49055-49064). The other protein of 70 kDa was purified to homogeneity and shown to be a beta-glucanase. Its gene sequence and the developmental pattern of its mRNA differ from those of the known beta-glucanases that hydrolyze the callose wall of the microspore tetrad. Mature pollen placed in a liquid medium released about nine major proteins. These proteins were partially sequenced and identified via GenBank trade mark data bases, and some had not been previously reported to be in pollen. They appear to have wall-loosening, structural, and enzymatic functions. A novel pollen wall-bound protein of 17 kDa has a unique pattern of cysteine distribution in its sequence (six tandem repeats of CX3CX10-15) that could chelate cations and form signal-receiving finger motifs. These pollen-released proteins were synthesized in the pollen interior, and their mRNA increased during pollen maturation and germination. They were localized mainly in the pollen tube wall. The pollen shell was isolated and found to contain no detectable proteins. We suggest that the pollen-coat beta-glucanase and xylanase hydrolyze the stigma wall for pollen tube entry and that the pollen secrete proteins to loosen or become new wall constituents of the tube and to break the wall of the transmitting track for tube advance.
Collapse
Affiliation(s)
- Der Fen Suen
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
In flowering plants, pollen grains germinate to form pollen tubes that transport male gametes (sperm cells) to the egg cell in the embryo sac during sexual reproduction. Pollen tube biology is complex, presenting parallels with axon guidance and moving cell systems in animals. Pollen tube cells elongate on an active extracellular matrix in the style, ultimately guided by stylar and embryo sac signals. A well-documented recognition system occurs between pollen grains and the stigma in sporophytic self-incompatibility, where both receptor kinases in the stigma and their peptide ligands from pollen are now known. Complex mechanisms act to precisely target the sperm cells into the embryo sac. These events initiate double fertilization in which the two sperm cells from one pollen tube fuse to produce distinctly different products: one with the egg to produce the zygote and embryo and the other with the central cell to produce the endosperm.
Collapse
Affiliation(s)
- Elizabeth M Lord
- Department of Botany and Plant Sciences, University of California, Riverside 92521, USA.
| | | |
Collapse
|
30
|
Baumberger N, Doesseger B, Guyot R, Diet A, Parsons RL, Clark MA, Simmons MP, Bedinger P, Goff SA, Ringli C, Keller B. Whole-genome comparison of leucine-rich repeat extensins in Arabidopsis and rice. A conserved family of cell wall proteins form a vegetative and a reproductive clade. PLANT PHYSIOLOGY 2003; 131:1313-26. [PMID: 12644681 PMCID: PMC166891 DOI: 10.1104/pp.102.014928] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Revised: 11/05/2002] [Accepted: 12/12/2002] [Indexed: 05/19/2023]
Abstract
We have searched the Arabidopsis and rice (Oryza sativa) genomes for homologs of LRX1, an Arabidopsis gene encoding a novel type of cell wall protein containing a leucine-rich repeat (LRR) and an extensin domain. Eleven and eight LRX (LRR/EXTENSIN) genes have been identified in these two plant species, respectively. The LRX gene family encodes proteins characterized by a short N-terminal domain, a domain with 10 LRRs, a cysteine-rich motif, and a variable C-terminal extensin-like domain. Phylogenetic analysis performed on the conserved domains indicates the existence of two major clades of LRX proteins that arose before the eudicot/monocot divergence and then diversified independently in each lineage. In Arabidopsis, gene expression studies by northern hybridization and promoter::uidA fusions showed that the two phylogenetic clades represent a specialization into "reproductive" and "vegetative" LRXs. The four Arabidopsis genes of the "reproductive" clade are specifically expressed in pollen, whereas the seven "vegetative" genes are predominantly expressed in various sporophytic tissues. This separation into two expression classes is also supported by previous studies on maize (Zea mays) and tomato (Lycopersicon esculentum) LRX homologs and by information on available rice ESTs. The strong conservation of the amino acids responsible for the putative recognition specificity of the LRR domain throughout the family suggests that the LRX proteins interact with similar ligands.
Collapse
Affiliation(s)
- Nicolas Baumberger
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The mechanisms of compatible pollination are less studied than those of incompatible pollination and yet most of the angiosperms show self-compatibility. From the release of pollen from anthers to the penetration of the micropyle by the pollen tube tip, there are numerous steps where the interaction between pollen and the pistil can be regulated. Recent studies have documented some diverse ways in which pollen tubes carrying sperm cells are guided to the ovules through the pistil extracellular matrices of the transmitting tract. What is still missing is an understanding of pollen tube cell biology in vivo. A recent finding supports the role of the synergids in the crucial guidance cue for the pollen tube tip at the micropyle, but experimental evidence for other 'guidepost' cells in the pistil is still lacking. The fact that the pollen tube must first travel through the matrices of the stigma and style before it can respond to the cue from the ovule makes it likely that there is a hierarchy of signalling events in pollen-pistil interactions starting at the stigma and ending at the micropyle. On the pistil side, several model systems have been used in the discovery of molecules implicated in either physical or chemical guidance. In lily, which has a hollow style, adhesion molecules (pectin and SCA) are implicated in guidance. SCA alone is also capable of inducing pollen chemotropism in an in vitro assay, suggesting that this peptide plays a dual role in lily pollination: chemotactic in the stigma and haptotactic (adhesion mediated) in the style.
Collapse
Affiliation(s)
- E M Lord
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521-0124, USA.
| |
Collapse
|