1
|
Guo C, Yang L, Liu Z, Liu D, Wüthrich K. Two-Dimensional NMR Spectroscopy of the G Protein-Coupled Receptor A 2AAR in Lipid Nanodiscs. Molecules 2023; 28:5419. [PMID: 37513291 PMCID: PMC10383251 DOI: 10.3390/molecules28145419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Eight hundred and twenty-six human G protein-coupled receptors (GPCRs) mediate the actions of two-thirds of the human hormones and neurotransmitters and over one-third of clinically used drugs. Studying the structure and dynamics of human GPCRs in lipid bilayer environments resembling the native cell membrane milieu is of great interest as a basis for understanding structure-function relationships and thus benefits continued drug development. Here, we incorporate the human A2A adenosine receptor (A2AAR) into lipid nanodiscs, which represent a detergent-free environment for structural studies using nuclear magnetic resonance (NMR) in solution. The [15N,1H]-TROSY correlation spectra confirmed that the complex of [u-15N, ~70% 2H]-A2AAR with an inverse agonist adopts its global fold in lipid nanodiscs in solution at physiological temperature. The global assessment led to two observations of practical interest. First, A2AAR in nanodiscs can be stored for at least one month at 4 °C in an aqueous solvent. Second, LMNG/CHS micelles are a very close mimic of the environment of A2AAR in nanodiscs. The NMR signal of five individually assigned tryptophan indole 15N-1H moieties located in different regions of the receptor structure further enabled a detailed assessment of the impact of nanodiscs and LMNG/CHS micelles on the local structure and dynamics of A2AAR. As expected, the largest effects were observed near the lipid-water interface along the intra- and extracellular surfaces, indicating possible roles of tryptophan side chains in stabilizing GPCRs in lipid bilayer membranes.
Collapse
Affiliation(s)
- Canyong Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Landeo Villanueva S, Malvestiti MC, van Ieperen W, Joosten MHAJ, van Kan JAL. Red light imaging for programmed cell death visualization and quantification in plant-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2021; 22:361-372. [PMID: 33497519 PMCID: PMC7865082 DOI: 10.1111/mpp.13027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 05/04/2023]
Abstract
Studies on plant-pathogen interactions often involve monitoring disease symptoms or responses of the host plant to pathogen-derived immunogenic patterns, either visually or by staining the plant tissue. Both these methods have limitations with respect to resolution, reproducibility, and the ability to quantify the results. In this study we show that red light detection by the red fluorescent protein (RFP) channel of a multipurpose fluorescence imaging system that is probably available in many laboratories can be used to visualize plant tissue undergoing cell death. Red light emission is the result of chlorophyll fluorescence on thylakoid membrane disassembly during the development of a programmed cell death process. The activation of programmed cell death can occur during either a hypersensitive response to a biotrophic pathogen or an apoptotic cell death triggered by a necrotrophic pathogen. Quantifying the intensity of the red light signal enables the magnitude of programmed cell death to be evaluated and provides a readout of the plant immune response in a faster, safer, and nondestructive manner when compared to previously developed chemical staining methodologies. This application can be implemented to screen for differences in symptom severity in plant-pathogen interactions, and to visualize and quantify in a more sensitive and objective manner the intensity of the plant response on perception of a given immunological pattern. We illustrate the utility and versatility of the method using diverse immunogenic patterns and pathogens.
Collapse
Affiliation(s)
| | | | - Wim van Ieperen
- Horticulture and Product PhysiologyWageningen University & ResearchWageningenNetherlands
| | | | - Jan A. L. van Kan
- Laboratory of PhytopathologyWageningen University & ResearchWageningenNetherlands
| |
Collapse
|
3
|
Zhang M. Recent developments of methyl-labeling strategies in Pichia pastoris for NMR spectroscopy. Protein Expr Purif 2020; 166:105521. [DOI: 10.1016/j.pep.2019.105521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
|
4
|
Fiorin GL, Sanchéz-Vallet A, Thomazella DPDT, do Prado PFV, do Nascimento LC, Figueira AVDO, Thomma BPHJ, Pereira GAG, Teixeira PJPL. Suppression of Plant Immunity by Fungal Chitinase-like Effectors. Curr Biol 2018; 28:3023-3030.e5. [PMID: 30220500 DOI: 10.1016/j.cub.2018.07.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
Crop diseases caused by fungi constitute one of the most important problems in agriculture, posing a serious threat to food security [1]. To establish infection, phytopathogens interfere with plant immune responses [2, 3]. However, strategies to promote virulence employed by fungal pathogens, especially non-model organisms, remain elusive [4], mainly because fungi are more complex and difficult to study when compared to the better-characterized bacterial pathogens. Equally incomplete is our understanding of the birth of microbial virulence effectors. Here, we show that the cacao pathogen Moniliophthora perniciosa evolved an enzymatically inactive chitinase (MpChi) that functions as a putative pathogenicity factor. MpChi is among the most highly expressed fungal genes during the biotrophic interaction with cacao and encodes a chitinase with mutations that abolish its enzymatic activity. Despite the lack of chitinolytic activity, MpChi retains substrate binding specificity and prevents chitin-triggered immunity by sequestering immunogenic chitin fragments. Remarkably, its sister species M. roreri encodes a second non-orthologous catalytically impaired chitinase with equivalent function. Thus, a class of conserved enzymes independently evolved as putative virulence factors in these fungi. In addition to unveiling a strategy of host immune suppression by fungal pathogens, our results demonstrate that the neofunctionalization of enzymes may be an evolutionary pathway for the rise of new virulence factors in fungi. We anticipate that analogous strategies are likely employed by other pathogens.
Collapse
Affiliation(s)
- Gabriel Lorencini Fiorin
- Graduate Program in Genetics and Molecular Biology, Instituto de Biologia, Universidade de Estadual de Campinas, Campinas 13083-970, Brazil; Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Andrea Sanchéz-Vallet
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 Wageningen, the Netherlands; Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Paula Favoretti Vital do Prado
- Graduate Program in Genetics and Molecular Biology, Instituto de Biologia, Universidade de Estadual de Campinas, Campinas 13083-970, Brazil; Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Leandro Costa do Nascimento
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; Centro Nacional de Processamento de Alto Desempenho, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Antonio Vargas de Oliveira Figueira
- Laboratório de Melhoramento de Plantas, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Campus "Luiz de Queiroz," Piracicaba 13400-970, Brazil
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 Wageningen, the Netherlands
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil.
| | | |
Collapse
|
5
|
Domazakis E, Wouters D, Visser RGF, Kamoun S, Joosten MHAJ, Vleeshouwers VGAA. The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:795-802. [PMID: 29451434 DOI: 10.1094/mpmi-09-17-0217-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ELICITIN RESPONSE protein (ELR) from Solanum microdontum can recognize INF1 elicitin of Phytophthora infestans and trigger defense responses. ELR is a receptor-like protein (RLP) that lacks a cytoplasmic signaling domain and is anticipated to require interaction with a signaling-competent receptor-like kinase. SUPPRESSOR OF BIR1-1 (SOBIR1) has been proposed as a general interactor for RLPs involved in immunity and, as such, is a potential interactor for ELR. Here, we investigate whether SOBIR1 is required for response to INF1 and resistance to P. infestans and whether it associates with ELR. Our results show that virus-induced gene silencing of SOBIR1 in Nicotiana benthamiana leads to loss of INF1-triggered cell death and increased susceptibility to P. infestans. Using genetic complementation, we found that the kinase activity of SOBIR1 is required for INF1-triggered cell death. Coimmunoprecipitation experiments showed that ELR constitutively associates with potato SOBIR1 in planta, forming a bipartite receptor complex. Upon INF1 elicitation, this ELR-SOBIR1 complex recruits SERK3 (SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3) leading to downstream signaling activation. Overall, our study shows that SOBIR1 is required for basal resistance to P. infestans and for INF1-triggered cell death and functions as an adaptor kinase for ELR.
Collapse
Affiliation(s)
- Emmanouil Domazakis
- 1 Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Doret Wouters
- 1 Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Richard G F Visser
- 1 Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | | | | | - Vivianne G A A Vleeshouwers
- 1 Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
6
|
Bredell H, Smith JJ, Görgens JF, van Zyl WH. Expression of unique chimeric human papilloma virus type 16 (HPV-16) L1-L2 proteins in Pichia pastoris and Hansenula polymorpha. Yeast 2018; 35:519-529. [PMID: 29709079 DOI: 10.1002/yea.3318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/02/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
Cervical cancer is ranked the fourth most common cancer in women worldwide. Despite two prophylactic vaccines being commercially available, they are unaffordable for most women in developing countries. We compared the optimized expression of monomers of the unique HPV type 16 L1-L2 chimeric protein (SAF) in two yeast strains of Pichia pastoris, KM71 (Muts ) and GS115 (Mut+ ), with Hansenula polymorpha NCYC 495 to determine the preferred host in bioreactors. SAF was uniquely created by replacing the h4 helix of the HPV-16 capsid L1 protein with an L2 peptide. Two different feeding strategies in fed-batch cultures of P. pastoris Muts were evaluated: a predetermined feed rate vs. feeding based on the oxygen consumption by maintaining constant dissolved oxygen levels (DO stat). All cultures showed a significant increase in biomass when methanol was fed using the DO stat method. In P. pastoris the SAF concentrations were higher in the Muts strains than in the Mut+ strains. However, H. polymorpha produced the highest level of SAF at 132.10 mg L-1 culture while P. pastoris Muts only produced 23.61 mg L-1 . H. polymorpha showed greater potential for the expression of HPV-16 L1/L2 chimeric proteins despite the track record of P. pastoris as a high-level producer of heterologous proteins.
Collapse
Affiliation(s)
- Helba Bredell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.,Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Jacques J Smith
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.,Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
7
|
Zhang M, Yu XW, Xu Y, Jouhten P, Swapna GVT, Glaser RW, Hunt JF, Montelione GT, Maaheimo H, Szyperski T. 13 C metabolic flux profiling of Pichia pastoris grown in aerobic batch cultures on glucose revealed high relative anabolic use of TCA cycle and limited incorporation of provided precursors of branched-chain amino acids. FEBS J 2017; 284:3100-3113. [PMID: 28731268 DOI: 10.1111/febs.14180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/18/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023]
Abstract
Carbon metabolism of Crabtree-negative yeast Pichia pastoris was profiled using 13 C nuclear magnetic resonance (NMR) to delineate regulation during exponential growth and to study the import of two precursors for branched-chain amino acid biosynthesis, α-ketoisovalerate and α-ketobutyrate. Cells were grown in aerobic batch cultures containing (a) only glucose, (b) glucose along with the precursors, or (c) glucose and Val. The study provided the following new insights. First, 13 C flux ratio analyses of central metabolism reveal an unexpectedly high anaplerotic supply of the tricarboxylic acid cycle for a Crabtree-negative yeast, and show that a substantial fraction of glucose catabolism proceeds through the pentose phosphate pathway. A comparison with previous flux ratio analyses for batch cultures of Crabtree-negative Pichia stipitis and Crabtree-positive Saccharomyces cerevisiae indicate that the overall regulation of central carbon metabolism in P. pastoris is intermediate in between P. stipitis and S. cerevisiae. Second, excess α-ketoisovalerate in the medium is not transported into the cytoplasm indicating that P. pastoris lacks a suitable transporter. In contrast, excess Val is efficiently taken up and largely fulfills demands for both Val and Leu for protein synthesis. Third, excess α-ketobutyrate is transported into the mitochondria for Ile biosynthesis. However, the import does not efficiently inhibit the synthesis of α-ketobutyrate from pyruvate indicating that P. pastoris has not been optimized evolutionarily to take full advantage of this carbon source. These findings have direct implications for preparing uniformly 2 H,13 C,15 N-labeled proteins containing protonated Ile, Val, and Leu methyl groups in P. pastoris for NMR-based structural biology. ENZYMES Acetohydroxy acid isomeroreductase (EC 1.1.1.86), branched-chain amino acid aminotransferase (BCAT, EC 2.6.1.42), fumarase (EC 4.2.1.2), malic enzyme (EC 1.1.1.39/1.1.1.40), phosphoenolpyruvate carboxykinase (EC 4.1.1.49), pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), l-serine hydroxymethyltransferase (EC 2.1.2.1), threonine aldolase (EC 4.1.2.5), threonine dehydratase (EC 4.3.1.19); transketolase (EC 2.2.1.1), transaldolase (EC 2.2.1.2).
Collapse
Affiliation(s)
- Meng Zhang
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, State Key Laboratory of Food Science and Technology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiao-Wei Yu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, State Key Laboratory of Food Science and Technology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yan Xu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, State Key Laboratory of Food Science and Technology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Paula Jouhten
- European Molecular Biology Laboratory Heidelberg, Germany
| | - Gurla V T Swapna
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ralf W Glaser
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-Universität, Jena, Germany
| | - John F Hunt
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, NY, USA
| |
Collapse
|
8
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
9
|
Mesarich CH, Stergiopoulos I, Beenen HG, Cordovez V, Guo Y, Karimi Jashni M, Bradshaw RE, de Wit PJGM. A conserved proline residue in Dothideomycete Avr4 effector proteins is required to trigger a Cf-4-dependent hypersensitive response. MOLECULAR PLANT PATHOLOGY 2016; 17:84-95. [PMID: 25845605 PMCID: PMC6638486 DOI: 10.1111/mpp.12265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CfAvr4, a chitin-binding effector protein produced by the Dothideomycete tomato pathogen Cladosporium fulvum, protects the cell wall of this fungus against hydrolysis by secreted host chitinases during infection. However, in the presence of the Cf-4 immune receptor of tomato, CfAvr4 triggers a hypersensitive response (HR), which renders the pathogen avirulent. Recently, several orthologues of CfAvr4 have been identified from phylogenetically closely related species of Dothideomycete fungi. Of these, DsAvr4 from Dothistroma septosporum also triggers a Cf-4-dependent HR, but CaAvr4 and CbAvr4 from Cercospora apii and Cercospora beticola, respectively, do not. All, however, bind chitin. To identify the region(s) and specific amino acid residue(s) of CfAvr4 and DsAvr4 required to trigger a Cf-4-dependent HR, chimeric and mutant proteins, in which specific protein regions or single amino acid residues, respectively, were exchanged between CfAvr4 and CaAvr4 or DsAvr4 and CbAvr4, were tested for their ability to trigger an HR in Nicotiana benthamiana plants transgenic for the Cf-4 immune receptor gene. Based on this approach, a single region common to CfAvr4 and DsAvr4 was determined to carry a conserved proline residue necessary for the elicitation of this HR. In support of this result, a Cf-4-dependent HR was triggered by mutant CaAvr4 and CbAvr4 proteins carrying an arginine-to-proline substitution at this position. This study provides the first step in deciphering how Avr4 orthologues from different Dothideomycete fungi trigger a Cf-4-dependent HR.
Collapse
Affiliation(s)
- Carl H Mesarich
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Ioannis Stergiopoulos
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department of Plant Pathology, University of California Davis, One Shield Avenue, Davis, CA, 95616-8751, USA
- Centre for BioSystems Genomics, PO Box 98, 6700 AB, Wageningen, the Netherlands
| | - Henriek G Beenen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Viviane Cordovez
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Yanan Guo
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Mansoor Karimi Jashni
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department of Plant Pathology, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Rosie E Bradshaw
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700 AB, Wageningen, the Netherlands
| |
Collapse
|
10
|
Spadiut O, Zalai D, Dietzsch C, Herwig C. Quantitative comparison of dynamic physiological feeding profiles for recombinant protein production with Pichia pastoris. Bioprocess Biosyst Eng 2013; 37:1163-72. [PMID: 24213806 PMCID: PMC4015061 DOI: 10.1007/s00449-013-1087-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022]
Abstract
Pichia pastoris is widely used for the production of recombinant proteins in industrial biotechnology. In general, industrial production processes describe fed-batch processes based on the specific growth rate. Recently, we introduced the specific substrate uptake rate (qs) as a novel parameter to design fed-batch strategies for P. pastoris. We showed that a dynamic feeding strategy where the feed was adjusted in steps to the maximum specific substrate uptake rate was superior to more traditional strategies in terms of specific productivity. In the present study, we compare three different dynamic feeding strategies based on qs for a recombinant P. pastoris strain with respect to cell physiology, methanol accumulation, productivity and product quality. By comparing (A) a feeding profile at constant high qs, (B) a periodically adjusted feeding profile for a stepwise qs ramp, and (C) a feeding profile at linear increasing qs, we evaluated potential effects of the mode of feeding. Although a dynamic feeding strategy with stepwise increases of qs to qs max resulted in the highest specific productivity, a feeding profile where the feeding rate was stepwise increased to a constant high qs value was superior in terms of the amount of active enzyme produced and in the amount of accumulated methanol. Furthermore, this feeding strategy could be run automatically by integrating an online calculator tool, thus rendering manual interventions by the operator unnecessary.
Collapse
Affiliation(s)
- Oliver Spadiut
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | | | | | | |
Collapse
|
11
|
Structure determination of α-helical membrane proteins by solution-state NMR: emphasis on retinal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:578-88. [PMID: 23831435 DOI: 10.1016/j.bbabio.2013.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/24/2013] [Indexed: 11/27/2022]
Abstract
The biochemical processes of living cells involve a numerous series of reactions that work with exceptional specificity and efficiency. The tight control of this intricate reaction network stems from the architecture of the proteins that drive the chemical reactions and mediate protein-protein interactions. Indeed, the structure of these proteins will determine both their function and interaction partners. A detailed understanding of the proximity and orientation of pivotal functional groups can reveal the molecular mechanistic basis for the activity of a protein. Together with X-ray crystallography and electron microscopy, NMR spectroscopy plays an important role in solving three-dimensional structures of proteins at atomic resolution. In the challenging field of membrane proteins, retinal-binding proteins are often employed as model systems and prototypes to develop biophysical techniques for the study of structural and functional mechanistic aspects. The recent determination of two 3D structures of seven-helical trans-membrane retinal proteins by solution-state NMR spectroscopy highlights the potential of solution NMR techniques in contributing to our understanding of membrane proteins. This review summarizes the multiple strategies available for expression of isotopically labeled membrane proteins. Different environments for mimicking lipid bilayers will be presented, along with the most important NMR methods and labeling schemes used to generate high-quality NMR spectra. The article concludes with an overview of types of conformational restraints used for generation of high-resolution structures of membrane proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
|
12
|
Liebrand TW, Smit P, Abd-El-Haliem A, de Jonge R, Cordewener JH, America AH, Sklenar J, Jones AM, Robatzek S, Thomma BP, Tameling WI, Joosten MH. Endoplasmic reticulum-quality control chaperones facilitate the biogenesis of Cf receptor-like proteins involved in pathogen resistance of tomato. PLANT PHYSIOLOGY 2012; 159:1819-33. [PMID: 22649272 PMCID: PMC3425215 DOI: 10.1104/pp.112.196741] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/24/2012] [Indexed: 05/04/2023]
Abstract
Cf proteins are receptor-like proteins (RLPs) that mediate resistance of tomato (Solanum lycopersicum) to the foliar pathogen Cladosporium fulvum. These transmembrane immune receptors, which carry extracellular leucine-rich repeats that are subjected to posttranslational glycosylation, perceive effectors of the pathogen and trigger a defense response that results in plant resistance. To identify proteins required for the functionality of these RLPs, we performed immunopurification of a functional Cf-4-enhanced green fluorescent protein fusion protein transiently expressed in Nicotiana benthamiana, followed by mass spectrometry. The endoplasmic reticulum (ER) heat shock protein70 binding proteins (BiPs) and lectin-type calreticulins (CRTs), which are chaperones involved in ER-quality control, were copurifying with Cf-4-enhanced green fluorescent protein. The tomato and N. benthamiana genomes encode four BiP homologs and silencing experiments revealed that these BiPs are important for overall plant viability. For the three tomato CRTs, virus-induced gene silencing targeting the plant-specific CRT3a gene resulted in a significantly compromised Cf-4-mediated defense response and loss of full resistance to C. fulvum. We show that upon knockdown of CRT3a the Cf-4 protein accumulated, but the pool of Cf-4 protein carrying complex-type N-linked glycans was largely reduced. Together, our study on proteins required for Cf function reveals an important role for the CRT ER chaperone CRT3a in the biogenesis and functionality of this type of RLP involved in plant defense.
Collapse
Affiliation(s)
- Thomas W.H. Liebrand
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Patrick Smit
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | | | - Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Jan H.G. Cordewener
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Antoine H.P. America
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Jan Sklenar
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Alexandra M.E. Jones
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Silke Robatzek
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Bart P.H.J. Thomma
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Wladimir I.L. Tameling
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | | |
Collapse
|
13
|
Krainer FW, Dietzsch C, Hajek T, Herwig C, Spadiut O, Glieder A. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microb Cell Fact 2012; 11:22. [PMID: 22330134 PMCID: PMC3295664 DOI: 10.1186/1475-2859-11-22] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/13/2012] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED ΒACKGROUND: The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. RESULTS A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. CONCLUSIONS Co-overexpressing enzymes of the methanol utilization pathway significantly affected the specific growth rate, the methanol uptake and the specific productivity of recombinant P. pastoris MutS strains. A recently developed methodology to determine strain specific parameters based on dynamic batch cultivations proved to be a valuable tool for fast strain characterization and thus early process development.
Collapse
Affiliation(s)
- Florian W Krainer
- Graz University of Technology, Institute of Molecular Biotechnology, Graz, Austria
| | - Christian Dietzsch
- Oliver Spadiut, Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, A-1060 Vienna, Austria
| | - Tanja Hajek
- Graz University of Technology, Institute of Molecular Biotechnology, Graz, Austria
| | - Christoph Herwig
- Oliver Spadiut, Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, A-1060 Vienna, Austria
| | - Oliver Spadiut
- Oliver Spadiut, Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, A-1060 Vienna, Austria
| | - Anton Glieder
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Graz, Austria
| |
Collapse
|
14
|
Sugiki T, Ichikawa O, Miyazawa-Onami M, Shimada I, Takahashi H. Isotopic labeling of heterologous proteins in the yeast Pichia pastoris and Kluyveromyces lactis. Methods Mol Biol 2012; 831:19-36. [PMID: 22167666 DOI: 10.1007/978-1-61779-480-3_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several protein expression systems are available for the preparation of stable isotope-labeled recombinant proteins for NMR studies. Yeast expression systems have several advantages over prokaryotic systems, such as the widely used Escherichia coli expression system. Protein expression using the methylotrophic yeast Pichia pastoris is commonly employed for the preparation of isotope-labeled proteins. Recently, the hemiascomycete yeast Kluyveromyces lactis expression system was reported as being useful for preparing proteins for NMR studies. Since each yeast expression system has different features, their applications have increased in number. In this chapter, we describe procedures for the efficient production of uniformly isotope-labeled proteins using the P. pastoris and the K. lactis yeast expression systems.
Collapse
|
15
|
Van't Klooster JW, Van der Kamp MW, Vervoort J, Beekwilder J, Boeren S, Joosten MHAJ, Thomma BPHJ, De Wit PJGM. Affinity of Avr2 for tomato cysteine protease Rcr3 correlates with the Avr2-triggered Cf-2-mediated hypersensitive response. MOLECULAR PLANT PATHOLOGY 2011; 12:21-30. [PMID: 21118346 PMCID: PMC6640376 DOI: 10.1111/j.1364-3703.2010.00647.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The Cladosporium fulvum Avr2 effector is a novel type of cysteine protease inhibitor with eight cysteine residues that are all involved in disulphide bonds. We have produced wild-type Avr2 protein in Pichia pastoris and determined its disulphide bond pattern. By site-directed mutagenesis of all eight cysteine residues, we show that three of the four disulphide bonds are required for Avr2 stability. The six C-terminal amino acid residues of Avr2 contain one disulphide bond that is not embedded in its overall structure. Avr2 is not processed by the tomato cysteine protease Rcr3 and is an uncompetitive inhibitor of Rcr3. We also produced mutant Avr2 proteins in which selected amino acid residues were individually replaced by alanine, and, in one mutant, all six C-terminal amino acid residues were deleted. We determined the inhibitory constant (K(i) ) of these mutants for Rcr3 and their ability to trigger a Cf-2-mediated hypersensitive response (HR) in tomato. We found that the two C-terminal cysteine residues and the six amino acid C-terminal tail of Avr2 are required for both Rcr3 inhibitory activity and the ability to trigger a Cf-2-mediated HR. Individual replacement of the lysine-17, lysine-20 or tyrosine-21 residue by alanine did not affect significantly the biological activity of Avr2. Overall, our data suggest that the affinity of the Avr2 mutants for Rcr3 correlates with their ability to trigger a Cf-2-mediated HR.
Collapse
Affiliation(s)
- John W Van't Klooster
- Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Watson HR, Apperley DC, Dixon DP, Edwards R, Hodgson DRW. An efficient method for 15N-labeling of chitin in fungi. Biomacromolecules 2010; 10:793-7. [PMID: 19249848 DOI: 10.1021/bm8012814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To permit facile (15)N solid-state NMR (ssNMR) analysis of the degree of acetylation (DA) of chitinous materials in fungi a method for the introduction of a (15)N isotopic label has been developed. Using Penicillium chrysogenum as a model system, a series of (15)N-based media were surveyed for their abilities to support mycelial growth, and a rich medium supplemented with ((15)NH(4))(2)SO(4) supported good growth. Uptake of label into chitin extracted from mycelia grown in the rich ((15)NH(4))(2)SO(4)-based media was monitored by mass spectrometry, with approximately 1 g/L of ((15)NH(4))(2)SO(4) leading to approximately 65% incorporation. The labeled chitin was studied by ssNMR to determine its DA, and the (15)N label permitted measurement of DA to within 0.5% with acquisition times of on the order of half an hour. Similar studies validated the method for DA measurements on chitin from cultures of Aspergillus niger and Mucor rouxii.
Collapse
Affiliation(s)
- Helen R Watson
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Wulff BBH, Chakrabarti A, Jones DA. Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1191-202. [PMID: 19737093 DOI: 10.1094/mpmi-22-10-1191] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interactions between plants and many biotrophic or hemibiotrophic pathogens are controlled by receptor proteins in the host and effector proteins delivered by the pathogen. Pathogen effectors facilitate pathogen growth through the suppression of host defenses and the manipulation of host metabolism, but recognition of a pathogen-effector protein by a host receptor enables the host to activate a suite of defense mechanisms that limit pathogen growth. In the tomato (Lycopersicon esculentum syn. Solanum lycopersicum)-Cladosporium fulvum (leaf mold fungus syn. Passalora fulva) pathosystem, the host receptors are plasma membrane-anchored, leucine-rich repeat, receptor-like proteins encoded by an array of Cf genes conferring resistance to C. fulvum. The pathogen effectors are mostly small, secreted, cysteine-rich, but otherwise largely dissimilar, extracellular proteins encoded by an array of avirulence (Avr) genes, so called because of their ability to trigger resistance and limit pathogen growth when the corresponding Cf gene is present in tomato. A number of Cf and Avr genes have been isolated, and details of the complex molecular interplay between tomato Cf proteins and C. fulvum effector proteins are beginning to emerge. Each effector appears to have a different role; probably most bind or modify different host proteins, but at least one has a passive role masking the pathogen. It is, therefore, not surprising that each effector is probably detected in a distinct and specific manner, some by direct binding, others as complexes with host proteins, and others via their modification of host proteins. The two papers accompanying this review contribute further to our understanding of the molecular specificity underlying effector perception by Cf proteins. This review, therefore, focuses on our current understanding of recognitional specificity in the tomato-C. fulvum pathosystem and highlights some of the critical questions that remain to be addressed. It also addresses the evolutionary causes and consequences of this specificity.
Collapse
Affiliation(s)
- B B H Wulff
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | | | | |
Collapse
|
18
|
Jones WT, Harvey D, Sun X, Greenwood DR, Al-Samarrai TH, Mesarich CH, Lowry J, Templeton MD. Heterologous expression, isotopic-labeling and immuno-characterization of Cin1, a novel protein secreted by the phytopathogenic fungus Venturia inaequalis. Protein Expr Purif 2009; 65:140-7. [DOI: 10.1016/j.pep.2009.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Blanchard V, Gadkari RA, George AVE, Roy S, Gerwig GJ, Leeflang BR, Dighe RR, Boelens R, Kamerling JP. High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains--selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG. Glycoconj J 2008; 25:245-57. [PMID: 18274893 PMCID: PMC2668595 DOI: 10.1007/s10719-007-9082-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/30/2007] [Accepted: 10/19/2007] [Indexed: 11/29/2022]
Abstract
The methylotrophic yeast Pichia pastoris is widely used for the production of recombinant glycoproteins. With the aim to generate biologically active 15N-labeled glycohormones for conformational studies focused on the unravelling of the NMR structures in solution, the P. pastoris strains GS115 and X-33 were explored for the expression of human chorionic gonadotropin (phCG) and human follicle-stimulating hormone (phFSH). In agreement with recent investigations on the N-glycosylation of phCG, produced in P. pastoris GS115, using ammonia/glycerol-methanol as nitrogen/carbon sources, the N-glycosylation pattern of phCG, synthesized using NH4Cl/glucose–glycerol–methanol, comprised neutral and charged, phosphorylated high-mannose-type N-glycans (Man8–15GlcNAc2). However, the changed culturing protocol led to much higher amounts of glycoprotein material, which is of importance for an economical realistic approach of the aimed NMR research. In the context of these studies, attention was also paid to the site specific N-glycosylation in phCG produced in P. pastoris GS115. In contrast to the rather simple N-glycosylation pattern of phCG expressed in the GS115 strain, phCG and phFSH expressed in the X-33 strain revealed, besides neutral high-mannose-type N-glycans, also high concentrations of neutral hypermannose-type N-glycans (Manup-to-30GlcNAc2). The latter finding made the X-33 strain not very suitable for generating 15N-labeled material. Therefore, 15N-phCG was expressed in the GS115 strain using the new optimized protocol. The 15N-enrichment was evaluated by 15N-HSQC NMR spectroscopy and GLC-EI/MS. Circular dichroism studies indicated that 15N-phCG/GS115 had the same folding as urinary hCG. Furthermore, 15N-phCG/GS115 was found to be similar to the unlabeled protein in every respect as judged by radioimmunoassay, radioreceptor assays, and in vitro bioassays.
Collapse
Affiliation(s)
- Véronique Blanchard
- Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schouten A, Van Baarlen P, Van Kan JAL. Phytotoxic Nep1-like proteins from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells. THE NEW PHYTOLOGIST 2008; 177:493-505. [PMID: 18028294 DOI: 10.1111/j.1469-8137.2007.02274.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nep1-like proteins (NLPs), produced by an array of unrelated microorganisms, are phytotoxic for dicotyledonous plant cells but their mode of action has not yet been established. Two paralogous NLPs from the necrotrophic plant pathogenic fungus Botrytis cinerea were characterized, designated BcNEP1 and BcNEP2. Both proteins were produced in the heterologous host Pichia pastoris and purified to homogeneity. The localization of fluorescently labelled proteins was studied and mechanisms of cell death were investigated in protoplasts and suspension cells. Purified BcNEP1 and BcNEP2 caused necrosis in all dicotyledonous plant species tested, but not in monocotyledons. A synthetic heptapeptide comprising a sequence (GHRHDWE) that is conserved in all NLPs did not cause symptoms and was unable to interfere with necrosis induction by BcNEP1 and BcNEP2 proteins. Fluorescently labelled BcNEP1 and BcNEP2 proteins were associated with plasma membranes and the nuclear envelope, as well as in the nucleolus of responding plant cells. A strong hydrogen peroxide (H(2)O(2)) accumulation was observed in chloroplasts. The death process was characterized by TUNEL assays as apoptosis, necrosis or intermediate forms of both. BcNEP1- and BcNEP2-induced cell death execution could not be abolished by specific inhibitors. These results provide further information on mechanisms of NLP-inflicted cell death.
Collapse
Affiliation(s)
- Alexander Schouten
- Laboratory of Phytopathology, Wageningen University, PO Box 8025, NL-6700 EE Wageningen, the Netherlands
| | - Peter Van Baarlen
- Laboratory of Phytopathology, Wageningen University, PO Box 8025, NL-6700 EE Wageningen, the Netherlands
| | - Jan A L Van Kan
- Laboratory of Phytopathology, Wageningen University, PO Box 8025, NL-6700 EE Wageningen, the Netherlands
| |
Collapse
|
21
|
van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1420-30. [PMID: 17153926 DOI: 10.1094/mpmi-19-1420] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Resistance against the leaf mold fungus Cladosporium fulvum is mediated by the tomato Cf proteins which belong to the class of receptor-like proteins and indirectly recognize extracellular avirulence proteins (Avrs) of the fungus. Apart from triggering disease resistance, Avrs are believed to play a role in pathogenicity or virulence of C. fulvum. Here, we report on the avirulence protein Avr4, which is a chitin-binding lectin containing an invertebrate chitin-binding domain (CBM14). This domain is found in many eukaryotes, but has not yet been described in fungal or plant genomes. We found that interaction of Avr4 with chitin is specific, because it does not interact with other cell wall polysaccharides. Avr4 binds to chitin oligomers with a minimal length of three N-acetyl glucosamine residues. In vitro, Avr4 protects chitin against hydrolysis by plant chitinases. Avr4 also binds to chitin in cell walls of the fungi Trichoderma viride and Fusarium solani f. sp. phaseoli and protects these fungi against normally deleterious concentrations of plant chitinases. In situ fluorescence studies showed that Avr4 also binds to cell walls of C. fulvum during infection of tomato, where it most likely protects the fungus against tomato chitinases, suggesting that Avr4 is a counter-defensive virulence factor.
Collapse
Affiliation(s)
- Harrold A van den Burg
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, NL-6703 HA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
van Esse HP, Thomma BPHJ, van 't Klooster JW, de Wit PJGM. Affinity-tags are removed from Cladosporium fulvum effector proteins expressed in the tomato leaf apoplast. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:599-608. [PMID: 16410259 DOI: 10.1093/jxb/erj044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cladosporium fulvum (syn. Passalora fulva) is a biotrophic fungal pathogen that causes leaf mould on tomato (Solanum esculentum). The fungus grows exclusively in the tomato leaf apoplast where it secretes several small (<15 kDa) cysteine-rich proteins that are thought to play a role in disease establishment. To investigate the role of these proteins, and to identify their in planta targets, a targeted proteomics approach was undertaken. C. fulvum proteins were expressed as recombinant fusion proteins carrying various affinity-tags at either their C- or N-terminus. Although these fusion proteins were correctly expressed and secreted into the leaf apoplast, detection of affinity-tagged C. fulvum proteins failed, and affinity purification did not result in the recovery of these proteins. However, when using C. fulvum effector protein-specific antibodies, specific signals were obtained for the different proteins. It is concluded that the stability of the in planta expressed recombinant fusion proteins is insufficient, which results in removal of the affinity-tag from the fusion proteins, irrespective of the C- or N-terminal fusion or the nature of the affinity-tag. Similar phenomena were observed when the fusion proteins were expressed in other Solanaceous species, but not when expressed in Arabidopsis thaliana.
Collapse
Affiliation(s)
- H Peter van Esse
- Laboratory of Phytopathology, Centre for Biosystems Genomics (CBSG), Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
23
|
Kruijt M, Kip DJ, Joosten MHAJ, Brandwagt BF, de Wit PJGM. The Cf-4 and Cf-9 resistance genes against Cladosporium fulvum are conserved in wild tomato species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1011-21. [PMID: 16167771 DOI: 10.1094/mpmi-18-1011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Cf-4 and Cf-9 genes originate from the wild tomato species Lycopersicon hirsutum and L. pimpinellifolium and confer resistance to strains of the leaf mold fungus Cladosporium fulvum that secrete the Avr4 and Avr9 elicitor proteins, respectively. Homologs of Cf-4 and Cf-9 (Hcr9s) are located in several clusters and evolve mainly through sequence exchange between homologs. To study the evolution of Cf genes, we set out to identify functional Hcr9s that mediate recognition of Avr4 and Avr9 (designated Hcr9-Avr4s and Hcr9-Avr9s) in all wild tomato species. Plants responsive to the Avr4 and Avr9 elicitor proteins were identified throughout the genus Lycopersicon. Open reading frames of Hcr9s from Avr4- and Avr9-responsive tomato plants were polymerase chain reaction-amplified. Several Hcr9s that mediate Avr4 or Avr9 recognition were identified in diverged tomato species by agroinfiltration assays. These Hcr9-Avr4s and Hcr9-Avr9s are highly identical to Cf-4 and Cf-9, respectively. Therefore, we conclude that both Cf-4 and Cf-9 predate Lycopersicon speciation. These results further suggest that C. fulvum is an ancient pathogen of the genus Lycopersicon, in which Cf-4 and Cf-9 have been maintained by selection pressure imposed by C. fulvum.
Collapse
Affiliation(s)
- Marco Kruijt
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
O'Leary JM, Radcliffe CM, Willis AC, Dwek RA, Rudd PM, Downing AK. Identification and removal of O-linked and non-covalently linked sugars from recombinant protein produced using Pichia pastoris. Protein Expr Purif 2005; 38:217-27. [PMID: 15555937 DOI: 10.1016/j.pep.2004.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/11/2004] [Indexed: 12/17/2022]
Abstract
The use of the methylotrophic yeast Pichia pastoris for large-scale recombinant production of proteins for therapeutic uses and/or biophysical characterisation has been gaining popularity. Here we describe the use of this organism for the production of a von Willebrand factor C domain from procollagen IIA for solution NMR studies. In this research, we specifically identified sites of O-linked glycosylation on the expressed protein, although the native protein is not glycosylated. We demonstrated that it was possible to remove the oligosaccharides by enzymatic digestion, however this approach proved to be prohibitively expensive for the scale of production required for high-resolution structural studies by NMR spectroscopy. After removal of the O-linked glycosylation sites by site-directed mutagenesis, we confirmed that the protein was no longer covalently glycosylated. However, analysis by 1H- and 13C-edited spectroscopy identified the presence of non-covalently associated glycans which were removed by lectin affinity chromatography. We have synthesised methods for the identification and removal of both covalently and non-covalently bound oligosaccharides from heterologous protein expressed in P. pastoris.
Collapse
Affiliation(s)
- Joanne M O'Leary
- Division of Structural Biology, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Strauss A, Bitsch F, Fendrich G, Graff P, Knecht R, Meyhack B, Jahnke W. Efficient uniform isotope labeling of Abl kinase expressed in Baculovirus-infected insect cells. JOURNAL OF BIOMOLECULAR NMR 2005; 31:343-9. [PMID: 15929001 DOI: 10.1007/s10858-005-2451-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 02/14/2005] [Indexed: 05/02/2023]
Abstract
This report shows for the first time the efficient uniform isotope labeling of a recombinant protein expressed using Baculovirus-infected insect cells. The recent availability of suitable media for (15)N- and (13)C/(15)N-labeling in insect cells, the high expression of Abl kinase in these labeling media and a suitable labeling protocol made it possible to obtain a (1)H-(15)N-HSQC spectrum for the catalytic domain of Abl kinase of good quality and with label incorporation rates > 90%. The presented isotope labeling method should be applicable also to further proteins where successful expression is restricted to the Baculovirus expression system.
Collapse
Affiliation(s)
- André Strauss
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Westerink N, Brandwagt BF, de Wit PJGM, Joosten MHAJ. Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9-4E ) by secretion of a stable avr4E isoform. Mol Microbiol 2004; 54:533-45. [PMID: 15469522 DOI: 10.1111/j.1365-2958.2004.04288.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introgression of resistance trait Cf-4 from wild tomato species into tomato cultivar MoneyMaker (MM-Cf0) has resulted in the near-isogenic line MM-Cf4 that confers resistance to the fungal tomato pathogen Cladosporium fulvum. At the Cf-4 locus, five homologues of Cladosporium resistance gene Cf-9 (Hcr9s) are present. While Hcr9-4D represents the functional Cf-4 resistance gene matching Avr4, Hcr9-4E confers resistance towards C. fulvum by mediating recognition of the novel avirulence determinant Avr4E. Here, we report the isolation of the Avr4E gene, which encodes a cysteine-rich protein of 101 amino acids that is secreted by C. fulvum during colonization of the apoplastic space of tomato leaves. By complementation we show that Avr4E confers avirulence to strains of C. fulvum that are normally virulent on Hcr9-4E-transgenic plants, indicating that Avr4E is a genuine, race-specific avirulence determinant. Strains of C. fulvum evade Hcr9-4E-mediated resistance either by a deletion of the Avr4E gene or by production of a stable Avr4E mutant protein that carries two amino acid substitutions, Phe(82)Leu and Met(93)Thr. Moreover, we demonstrate by site-directed mutagenesis that the single amino acid substitution Phe(82)Leu in Avr4E is sufficient to evade Hcr9-4E-mediated resistance.
Collapse
Affiliation(s)
- Nienke Westerink
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709PD Wageningen, the Netherlands
| | | | | | | |
Collapse
|
27
|
de Jong CF, Laxalt AM, Bargmann BOR, de Wit PJGM, Joosten MHAJ, Munnik T. Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:1-12. [PMID: 15200638 DOI: 10.1111/j.1365-313x.2004.02110.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Cladosporium fulvum (Cf)-4 gene of tomato confers resistance to the fungus C. fulvum, expressing the corresponding avirulence (Avr)4 gene, which codes for an elicitor protein. Little is known about how such mechanisms work, but previous studies have shown that elicitor recognition activates Ca(2+) signalling and protein kinases, such as mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK). Here, we provide evidence that a new signalling component, the lipid second messenger phosphatidic acid (PA), is produced within a few minutes of AVR4/Cf-4 interaction. Using transgenic tobacco cells expressing the tomato Cf-4-resistance gene as a model system, phospholipid signalling pathways were studied by pre-labelling the cells with (32)P(i) and assaying for the formation of lipid signals after challenge with the fungal elicitor AVR4. A dramatic rapid response was an increase in (32)P-PA, together with its metabolic product diacylglycerol pyrophosphate (DGPP). AVR4 increased the levels of PA and DGPP in a Cf-4(+)-, time- and dose-dependent manner, while the non-matching elicitor AVR9 did not trigger any response. In general, PA signalling can be triggered by two different pathways: via phospholipase D (PLD), which generates PA directly by hydrolysing structural phospholipids like phosphatidylcholine (PC), or via PLC, which generates diacylglycerol (DAG) that is subsequently phosphorylated to PA by DAG kinase (DGK). To determine the origin of the AVR4-induced PA formation, a PLD-specific transphosphatidylation assay and a differential (32)P-labelling protocol were used. The results clearly demonstrated that most PA was produced via the phosphorylation of DAG. Neomycin and U73122, inhibitors of PLC activity, inhibited AVR4-induced PA accumulation, suggesting that the increase in DGK activity was because of increased PLC activity producing DAG. Lastly, evidence is provided that PLC signalling and, in particular, PA production could play a role in triggering responses, such as the AVR4-induced oxidative burst. For example, PLC inhibitors inhibited the oxidative burst, and when PA was added to cells, an oxidative burst was induced.
Collapse
Affiliation(s)
- Camiel F de Jong
- Laboratory of Phytopathology, Wageningen University, Marijkeweg 22, NL-6709 DG Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
van den Burg HA, Spronk CAEM, Boeren S, Kennedy MA, Vissers JPC, Vuister GW, de Wit PJGM, Vervoort J. Binding of the AVR4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein-protein interactions: the chitin-binding site of AVR4 represents a novel binding site on the folding scaffold shared between the invertebrate and the plant chitin-binding domain. J Biol Chem 2004; 279:16786-96. [PMID: 14769793 DOI: 10.1074/jbc.m312594200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The attack of fungal cell walls by plant chitinases is an important plant defense response to fungal infection. Anti-fungal activity of plant chitinases is largely restricted to chitinases that contain a noncatalytic, plant-specific chitin-binding domain (ChBD) (also called Hevein domain). Current data confirm that the race-specific elicitor AVR4 of the tomato pathogen Cladosporium fulvum can protect fungi against plant chitinases, which is based on the presence of a novel type of ChBD in AVR4 that was first identified in invertebrates. Although these two classes of ChBDs (Hevein and invertebrate) are sequentially unrelated, they share structural homology. Here, we show that the chitin-binding sites of these two classes of ChBDs have different topologies and characteristics. The K(D), DeltaH, and DeltaS values obtained for the interaction between AVR4 and chito-oligomers are comparable with those obtained for Hevein. However, the binding site of AVR4 is larger than that of Hevein, i.e. AVR4 interacts strictly with chitotriose, whereas Hevein can also interact with the monomer N-acetylglucosamine. Moreover, binding of additional AVR4 molecules to chitin occurs through positive cooperative protein-protein interactions. By this mechanism AVR4 is likely to effectively shield chitin on the fungal cell wall, preventing the cell wall from being degraded by plant chitinases.
Collapse
Affiliation(s)
- Harrold A van den Burg
- Laboratorie of Biochemistry, Wageningen University, NL-6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
van den Burg HA, Westerink N, Francoijs KJ, Roth R, Woestenenk E, Boeren S, de Wit PJGM, Joosten MHAJ, Vervoort J. Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability. J Biol Chem 2003; 278:27340-6. [PMID: 12736265 DOI: 10.1074/jbc.m212196200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular AVR4 elicitor of the pathogenic fungus Cladosporium fulvum induces defense responses in the tomato genotype Cf-4. Here, the four disulfide bonds of AVR4 were identified as Cys-11-41, Cys-21-27, Cys-35-80, and Cys-57-72 by partial reduction with Tris-(2-carboxyethyl)-phosphine hydrochloride, subsequent cyanylation, and base-catalyzed chain cleavage. The resulting peptide fragments were analyzed by mass spectrometry. Sequence homology and the disulfide bond pattern revealed that AVR4 contains an invertebrate (inv) chitin-binding domain (ChBD). Binding of AVR4 to chitin was confirmed experimentally. The three disulfide bonds encompassing the inv ChBD motif are also required for protein stability of AVR4. Independent disruption of each of the three conserved disulfide bonds in AVR4 resulted in a protease-sensitive protein, whereas the fourth disulfide bond appeared not to be required for protein stability. Most strains of C. fulvum virulent on Cf-4 tomato contain Cys to Tyr substitutions in AVR4 involving two (Cys-11-41, Cys-35-80) of the three disulfide bonds present in the inv ChBD motif. These natural Cys to Tyr mutant AVR4 proteins did retain their chitin binding ability and when bound to chitin were less sensitive to proteases. Thus, the widely applied tomato Cf-4 resistance gene is circumvented by C. fulvum by amino acid substitutions affecting two disulfide bonds in AVR4 resulting in the absence of the corresponding AVR4 isoforms in apoplastic fluid. However, these natural isoforms of AVR4 appear to have retained their intrinsic function, i.e. binding to chitin present in the cell wall of C. fulvum, most likely to protect it against the deleterious effects of plant chitinases.
Collapse
Affiliation(s)
- Harrold A van den Burg
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Westerink N, Roth R, Van den Burg HA, De Wit PJGM, Joosten MHAJ. The AVR4 elicitor protein of Cladosporium fulvum binds to fungal components with high affinity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1219-1227. [PMID: 12481994 DOI: 10.1094/mpmi.2002.15.12.1219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interaction between tomato and the fungal pathogen Cladosporium fulvum complies with the gene-for-gene system. Strains of C. fulvum that produce race-specific elicitor AVR4 induce a hypersensitive response, leading to resistance, in tomato plants that carry the Cf-4 resistance gene. The mechanism of AVR4 perception was examined by performing binding studies with 125I-AVR4 on microsomal membranes of tomato plants. We identified an AVR4 high-affinity binding site (KD = 0.05 nM) which exhibited all the characteristics expected for ligand-receptor interactions, such as saturability, reversibility, and specificity. Surprisingly, the AVR4 high-affinity binding site appeared to originate from fungi present on infected tomato plants rather than from the tomato plants themselves. Detailed analysis showed that this fungus-derived, AVR4-specific binding site is heat- and proteinase K-resistant. Affinity crosslinking demonstrated that AVR4 specifically binds to a component of approximately 75 kDa that is of fungal origin. Our data suggest that binding of AVR4 to a fungal component or components is related to the intrinsic virulence function of AVR4 for C. fulvum.
Collapse
Affiliation(s)
- Nienke Westerink
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
de Jong CF, Takken FLW, Cai X, de Wit PJGM, Joosten MHAJ. Attenuation of Cf-mediated defense responses at elevated temperatures correlates with a decrease in elicitor-binding sites. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1040-9. [PMID: 12437302 DOI: 10.1094/mpmi.2002.15.10.1040] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The interaction between the fungal pathogen Cladosporium fulvum and its only host, tomato, is a well-described gene-for-gene system and several resistance (Cf) genes of tomato and matching fungal avirulence (Avr) genes have been characterized. Transgenic tobacco suspension cells expressing Cf genes respond to matching elicitors with typical defense responses, such as medium alkalization and an oxidative burst. We found that this response is attenuated at elevated ambient temperatures. Tomato seedlings expressing both a Cf and the matching Avr gene rapidly die as a result of systemic necrosis at normal temperatures, but are rescued at 33 degrees C. We demonstrate that, at 33 degrees C, the Cf/Avr-mediated induction of defense-related genes is reversibly suppressed. Furthermore, in cell suspensions, the AVR-induced medium alkalization response is slowly suppressed upon incubation at 33 degrees C, but is quickly restored after transfer to lower temperatures. A high-affinity binding site (HABS) for AVR9 is present on plasma membranes isolated from solanaceous plants and has been suggested to act as a co-receptor for AVR9. The amount of AVR9-HABS is 80% reduced in tobacco cell suspensions incubated at 33 degrees C, as compared with cell suspensions incubated at 20 degrees C. Our data suggest that the temperature sensitivity of Cf-mediated defense responses resides at the level of perception of the fungal avirulence factors.
Collapse
Affiliation(s)
- Camiel F de Jong
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | | | | | | | | |
Collapse
|