1
|
Parsazad E, Esrafili F, Yazdani B, Ghafarzadeh S, Razmavar N, Sirous H. Integrative bioinformatics analysis of ACS enzymes as candidate prognostic and diagnostic biomarkers in colon adenocarcinoma. Res Pharm Sci 2023; 18:413-429. [PMID: 37614614 PMCID: PMC10443664 DOI: 10.4103/1735-5362.378088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 05/06/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose Acyl-CoA synthetase (ACS) enzymes play an important role in the activation of fatty acids. While many studies have found correlations between the expression levels of ACS enzymes with the progression, growth, and survival of cancer cells, their role and expression patterns in colon adenocarcinoma are still greatly unknown and demand further investigation. Experimental approach The expression data of colon adenocarcinoma samples were downloaded from the Cancer Genome Atlas (TCGA) database. Normalization and differential expression analysis were performed to identify differentially expressed genes (DEGs). Gene set enrichment analysis was applied to identify top enriched genes from ACS enzymes in cancer samples. Gene ontology and protein-protein interaction analyses were performed for the prediction of molecular functions and interactions. Survival analysis and receiver operating characteristic test (ROC) were performed to find potential prognostic and diagnostic biomarkers. Findings/Results ACSL6 and ACSM5 genes demonstrated more significant differential expression and LogFC value compared to other ACS enzymes and also achieved the highest enrichment scores. Gene ontology analysis predicted the involvement of top DEGs in fatty acids metabolism, while protein-protein interaction network analysis presented strong interactions between ACSLs, ACSSs, ACSMs, and ACSBG enzymes with each other. Survival analysis suggested ACSM3 and ACSM5 as potential prognostic biomarkers, while the ROC test predicted stronger diagnostic potential for ACSM5, ACSS2, and ACSF2 genes. Conclusion and implications Our findings revealed the expression patterns, prognostic, and diagnostic biomarker potential of ACS enzymes in colon adenocarcinoma. ACSM3, ACSM5, ACSS2, and ACSF2 genes are suggested as possible prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Ehsan Parsazad
- Department of Bioscience and Biotechnology, Malek Ashtar University, Tehran, I.R. Iran
- Medvac Biopharma Company, Alborz Province, I.R. Iran
| | - Farina Esrafili
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, I.R. Iran
| | - Behnaz Yazdani
- Department of Tissue Engineering, Najafabad Branch, Islamic Azad University, Najafabad, I.R. Iran
| | - Saghi Ghafarzadeh
- Department of Royan Institute, University of Science and Culture, Tehran, I.R. Iran
| | - Namdar Razmavar
- Department of Biology, University of Guilan, Rasht, I.R. Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
2
|
Maltais TR, VanderVelde D, LaRowe DE, Goldman AD, Barge LM. Reactivity of Metabolic Intermediates and Cofactor Stability under Model Early Earth Conditions. ORIGINS LIFE EVOL B 2020; 50:35-55. [PMID: 31981046 DOI: 10.1007/s11084-019-09590-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 01/24/2023]
Abstract
Understanding the emergence of metabolic pathways is key to unraveling the factors that promoted the origin of life. One popular view is that protein cofactors acted as catalysts prior to the evolution of the protein enzymes with which they are now associated. We investigated the stability of acetyl coenzyme A (Acetyl Co-A, the group transfer cofactor in citric acid synthesis in the TCA cycle) under early Earth conditions, as well as whether Acetyl Co-A or its small molecule analogs thioacetate or acetate can catalyze the transfer of an acetyl group onto oxaloacetate in the absence of the citrate synthase enzyme. Several different temperatures, pH ranges, and compositions of aqueous environments were tested to simulate the Earth's early ocean and its possible components; the effect of these variables on oxaloacetate and cofactor chemistry were assessed under ambient and anoxic conditions. The cofactors tested are chemically stable under early Earth conditions, but none of the three compounds (Acetyl Co-A, thioacetate, or acetate) promoted synthesis of citric acid from oxaloacetate under the conditions tested. Oxaloacetate reacted with itself and/or decomposed to form a sequence of other products under ambient conditions, and under anoxic conditions was more stable; under ambient conditions the specific chemical pathways observed depended on the environmental conditions such as pH and presence/absence of bicarbonate or salt ions in early Earth ocean simulants. This work demonstrates the stability of these metabolic intermediates under anoxic conditions. However, even though free cofactors may be stable in a geological environmental setting, an enzyme or other mechanism to promote reaction specificity would likely be necessary for at least this particular reaction to proceed.
Collapse
Affiliation(s)
- Thora R Maltais
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - David VanderVelde
- Department of Chemistry, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA, 90089, USA
| | - Aaron D Goldman
- Department of Biology, Oberlin College, Science Center K123 119 Woodland St., Oberlin, OH, 44074, USA.,Blue Marble Space Institute for Science, Seattle, Washington, 98154, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA.
| |
Collapse
|
3
|
Palacios-Pérez M, José MV. The evolution of proteome: From the primeval to the very dawn of LUCA. Biosystems 2019; 181:1-10. [DOI: 10.1016/j.biosystems.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
|
4
|
Abstract
Carbon monoxide dehydrogenases (CODHs) catalyze the reversible oxidation of CO with water to CO2, two electrons, and two protons. Two classes of CODHs exist, having evolved from different scaffolds featuring active sites built from different transition metals. The basic properties of both classes are described in this overview chapter.
Collapse
Affiliation(s)
- Jae-Hun Jeoung
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Berta M Martins
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Dobbek
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Muñoz-Velasco I, García-Ferris C, Hernandez-Morales R, Lazcano A, Peretó J, Becerra A. Methanogenesis on Early Stages of Life: Ancient but Not Primordial. ORIGINS LIFE EVOL B 2018; 48:407-420. [PMID: 30612264 DOI: 10.1007/s11084-018-9570-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Of the six known autotrophic pathways, the Wood-Ljungdahl pathway (WL) is the only one present in both the acetate producing Bacteria (homoacetogens) and the methane producing Archaea (hydrogenotrophic methanogens), and it has been suggested that WL is one of the oldest metabolic pathways. However, only the so-called carbonyl branch is shared by Archaea and Bacteria, while the methyl branch is different, both in the number of reactions and enzymes, which are not homologous among them. In this work we show that some parts of the methyl branch of archaeal Wood-Ljungdahl pathway (MBWL) are present in bacteria as well as in non-methanogen archaea, although the tangled evolutionary history of MBWL cannot be traced back to the Last Common Ancestor. We have also analyzed the different variants of methanogenesis (hydrogenotrophic, acetoclastic and methylotrophic pathways), and concluded that each of these pathways, and every different enzyme or subunit (in the case of multimeric enzymes), has their own intricate evolutionary history. Our study supports the scenario of hydrogenotrophic methanogenesis being older than the other variants, albeit not old enough to be present in the last archaeal common ancestor.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P., 04510, Ciudad de México, Mexico
| | - Carlos García-Ferris
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Apartat Postal 22085, 46071, València, Spain
- Institute for Integrative Systems Biology, (I2SysBio, Universitat de València-CSIC), Apartat Postal 22085, 46071, València, Spain
| | - Ricardo Hernandez-Morales
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
- Miembro de El Colegio Nacional, El Colegio Nacional, Donceles 104, Centro Histórico, 06020, Ciudad de México, Mexico
| | - Juli Peretó
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Apartat Postal 22085, 46071, València, Spain
- Institute for Integrative Systems Biology, (I2SysBio, Universitat de València-CSIC), Apartat Postal 22085, 46071, València, Spain
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Adam PS, Borrel G, Gribaldo S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc Natl Acad Sci U S A 2018; 115:E1166-E1173. [PMID: 29358391 PMCID: PMC5819426 DOI: 10.1073/pnas.1716667115] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is a five-subunit enzyme complex responsible for the carbonyl branch of the Wood-Ljungdahl (WL) pathway, considered one of the most ancient metabolisms for anaerobic carbon fixation, but its origin and evolutionary history have been unclear. While traditionally associated with methanogens and acetogens, the presence of CODH/ACS homologs has been reported in a large number of uncultured anaerobic lineages. Here, we have carried out an exhaustive phylogenomic study of CODH/ACS in over 6,400 archaeal and bacterial genomes. The identification of complete and likely functional CODH/ACS complexes in these genomes significantly expands its distribution in microbial lineages. The CODH/ACS complex displays astounding conservation and vertical inheritance over geological times. Rare intradomain and interdomain transfer events might tie into important functional transitions, including the acquisition of CODH/ACS in some archaeal methanogens not known to fix carbon, the tinkering of the complex in a clade of model bacterial acetogens, or emergence of archaeal-bacterial hybrid complexes. Once these transfers were clearly identified, our results allowed us to infer the presence of a CODH/ACS complex with at least four subunits in the last universal common ancestor (LUCA). Different scenarios on the possible role of ancestral CODH/ACS are discussed. Despite common assumptions, all are equally compatible with an autotrophic, mixotrophic, or heterotrophic LUCA. Functional characterization of CODH/ACS from a larger spectrum of bacterial and archaeal lineages and detailed evolutionary analysis of the WL methyl branch will help resolve this issue.
Collapse
Affiliation(s)
- Panagiotis S Adam
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, 75015 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Guillaume Borrel
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Simonetta Gribaldo
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, 75015 Paris, France;
| |
Collapse
|
7
|
Jiang Y, Zhang Y, Banks C, Heaven S, Longhurst P. Investigation of the impact of trace elements on anaerobic volatile fatty acid degradation using a fractional factorial experimental design. WATER RESEARCH 2017; 125:458-465. [PMID: 28898703 DOI: 10.1016/j.watres.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 05/28/2023]
Abstract
The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 26-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation.
Collapse
Affiliation(s)
- Ying Jiang
- Centre for Bioenergy & Resource Management, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| | - Yue Zhang
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Charles Banks
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sonia Heaven
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Philip Longhurst
- Centre for Bioenergy & Resource Management, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| |
Collapse
|
8
|
Evidence of mixotrophic carbon-capture by n-butanol-producer Clostridium beijerinckii. Sci Rep 2017; 7:12759. [PMID: 28986542 PMCID: PMC5630571 DOI: 10.1038/s41598-017-12962-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
Recent efforts to combat increasing greenhouse gas emissions include their capture into advanced biofuels, such as butanol. Traditionally, biobutanol research has been centered solely on its generation from sugars. Our results show partial re-assimilation of CO2 and H2 by n-butanol-producer C. beijerinckii. This was detected as synchronous CO2/H2 oscillations by direct (real-time) monitoring of their fermentation gasses. Additional functional analysis demonstrated increased total carbon recovery above heterotrophic values associated to mixotrophic assimilation of synthesis gas (H2, CO2 and CO). This was further confirmed using 13C-Tracer experiments feeding 13CO2 and measuring the resulting labeled products. Genome- and transcriptome-wide analysis revealed transcription of key C-1 capture and additional energy conservation genes, including partial Wood-Ljungdahl and complete reversed pyruvate ferredoxin oxidoreductase / pyruvate-formate-lyase-dependent (rPFOR/Pfl) pathways. Therefore, this report provides direct genetic and physiological evidences of mixotrophic inorganic carbon-capture by C. beijerinckii.
Collapse
|
9
|
Manesis AC, O'Connor MJ, Schneider CR, Shafaat HS. Multielectron Chemistry within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase. J Am Chem Soc 2017; 139:10328-10338. [PMID: 28675928 DOI: 10.1021/jacs.7b03892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The acetyl coenzyme A synthase (ACS) enzyme plays a central role in the metabolism of anaerobic bacteria and archaea, catalyzing the reversible synthesis of acetyl-CoA from CO and a methyl group through a series of nickel-based organometallic intermediates. Owing to the extreme complexity of the native enzyme systems, the mechanism by which this catalysis occurs remains poorly understood. In this work, we have developed a protein-based model for the NiP center of acetyl coenzyme A synthase using a nickel-substituted azurin protein (NiAz). NiAz is the first model nickel protein system capable of accessing three (NiI/NiII/NiIII) distinct oxidation states within a physiological potential range in aqueous solution, a critical feature for achieving organometallic ACS activity, and binds CO and -CH3 groups with biologically relevant affinity. Characterization of the NiI-CO species through spectroscopic and computational techniques reveals fundamentally similar features between the model NiAz system and the native ACS enzyme, highlighting the potential for related reactivity in this model protein. This work provides insight into the enzymatic process, with implications toward engineering biological catalysts for organometallic processes.
Collapse
Affiliation(s)
- Anastasia C Manesis
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| | - Matthew J O'Connor
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| | - Camille R Schneider
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Abstract
Thermophilic microorganisms as well as acetogenic bacteria are both considered ancient. Interestingly, only a few species of bacteria, all belonging to the family Thermoanaerobacteraceae, are described to conserve energy from acetate formation with hydrogen as electron donor and carbon dioxide as electron acceptor. This review reflects the metabolic differences between Moorella spp., Thermoanaerobacter kivui and Thermacetogenium phaeum, with focus on the biochemistry of autotrophic growth and energy conservation. The potential of these thermophilic acetogens for biotechnological applications is discussed briefly.
Collapse
Affiliation(s)
- Mirko Basen
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany.
| |
Collapse
|
11
|
Wawrik B, Marks CR, Davidova IA, McInerney MJ, Pruitt S, Duncan KE, Suflita JM, Callaghan AV. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ Microbiol 2016; 18:2604-19. [PMID: 27198766 DOI: 10.1111/1462-2920.13374] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization.
Collapse
Affiliation(s)
- Boris Wawrik
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | - Christopher R Marks
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Irene A Davidova
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Michael J McInerney
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | - Shane Pruitt
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Development and Alumni Relations, Oglethorpe University, 4484 Peachtree Road, NE, Atlanta, GA, 30319, USA
| | - Kathleen E Duncan
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Joseph M Suflita
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Amy V Callaghan
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA
| |
Collapse
|
12
|
Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, Palumbo AV, Somenahally AC, Elias DA. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. SCIENCE ADVANCES 2015; 1:e1500675. [PMID: 26601305 PMCID: PMC4646819 DOI: 10.1126/sciadv.1500675] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/05/2015] [Indexed: 05/20/2023]
Abstract
Mercury (Hg) methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). The highly conserved nature of the recently identified Hg methylation genes hgcAB provides a foundation for broadly evaluating spatial and niche-specific patterns of microbial Hg methylation potential in nature. We queried hgcAB diversity and distribution in >3500 publicly available microbial metagenomes, encompassing a broad range of environments and generating a new global view of Hg methylation potential. The hgcAB genes were found in nearly all anaerobic (but not aerobic) environments, including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human and mammalian microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate digestive tracts, thawing permafrost soils, coastal "dead zones," soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups capable of methylating Hg emerged, including lineages having no cultured representatives. Phylogenetic analysis points to an evolutionary relationship between hgcA and genes encoding corrinoid iron-sulfur proteins functioning in the ancient Wood-Ljungdahl carbon fixation pathway, suggesting that methanogenic Archaea may have been the first to perform these biotransformations.
Collapse
Affiliation(s)
- Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Cynthia C. Gilmour
- Smithsonian Environmental Research Center, Edgewater, MD 21037–0028, USA
| | - Craig C. Brandt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Allyson Soren
- Smithsonian Environmental Research Center, Edgewater, MD 21037–0028, USA
| | - Steven D. Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bryan R. Crable
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Anthony V. Palumbo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Anil C. Somenahally
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Soil and Crop Sciences, Texas A&M University, Overton, TX 75684, USA
| | - Dwayne A. Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Corresponding author. E-mail:
| |
Collapse
|
13
|
Ferry JG. Acetate Metabolism in Anaerobes from the Domain Archaea. Life (Basel) 2015; 5:1454-71. [PMID: 26068860 PMCID: PMC4500148 DOI: 10.3390/life5021454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 01/26/2023] Open
Abstract
Acetate and acetyl-CoA play fundamental roles in all of biology, including anaerobic prokaryotes from the domains Bacteria and Archaea, which compose an estimated quarter of all living protoplasm in Earth's biosphere. Anaerobes from the domain Archaea contribute to the global carbon cycle by metabolizing acetate as a growth substrate or product. They are components of anaerobic microbial food chains converting complex organic matter to methane, and many fix CO2 into cell material via synthesis of acetyl-CoA. They are found in a diversity of ecological habitats ranging from the digestive tracts of insects to deep-sea hydrothermal vents, and synthesize a plethora of novel enzymes with biotechnological potential. Ecological investigations suggest that still more acetate-metabolizing species with novel properties await discovery.
Collapse
Affiliation(s)
- James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
14
|
Wang V, Ragsdale SW, Armstrong FA. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases. Met Ions Life Sci 2014; 14:71-97. [PMID: 25416391 PMCID: PMC4261625 DOI: 10.1007/978-94-017-9269-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Carbon monoxide dehydrogenases (CODH) play an important role in utilizing carbon monoxide (CO) or carbon dioxide (CO2) in the metabolism of some microorganisms. Two distinctly different types of CODH are distinguished by the elements constituting the active site. A Mo-Cu containing CODH is found in some aerobic organisms, whereas a Ni-Fe containing CODH (henceforth simply Ni-CODH) is found in some anaerobes. Two members of the simplest class (IV) of Ni-CODH behave as efficient, reversible electrocatalysts of CO2/CO interconversion when adsorbed on a graphite electrode. Their intense electroactivity sets an important benchmark for the standard of performance at which synthetic molecular and material electrocatalysts comprised of suitably attired abundant first-row transition elements must be able to operate. Investigations of CODHs by protein film electrochemistry (PFE) reveal how the enzymes respond to the variable electrode potential that can drive CO2/CO interconversion in each direction, and identify the potential thresholds at which different small molecules, both substrates and inhibitors, enter or leave the catalytic cycle. Experiments carried out on a much larger (Class III) enzyme CODH/ACS, in which CODH is complexed tightly with acetyl-CoA synthase, show that some of these characteristics are retained, albeit with much slower rates of interfacial electron transfer, attributable to the difficulty in making good electronic contact at the electrode. The PFE results complement and clarify investigations made using spectroscopic investigations.
Collapse
|
15
|
Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster. Biochem Biophys Res Commun 2013; 441:13-7. [DOI: 10.1016/j.bbrc.2013.09.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022]
|
16
|
Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME JOURNAL 2013; 8:383-97. [PMID: 23966099 DOI: 10.1038/ismej.2013.143] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/24/2013] [Accepted: 07/22/2013] [Indexed: 12/27/2022]
Abstract
Bacteria of the class Dehalococcoidia (DEH), phylum Chloroflexi, are widely distributed in the marine subsurface, yet metabolic properties of the many uncultivated lineages are completely unknown. This study therefore analysed genomic content from a single DEH cell designated 'DEH-J10' obtained from the sediments of Aarhus Bay, Denmark. Real-time PCR showed the DEH-J10 phylotype was abundant in upper sediments but was absent below 160 cm below sea floor. A 1.44 Mbp assembly was obtained and was estimated to represent up to 60.8% of the full genome. The predicted genome is much larger than genomes of cultivated DEH and appears to confer metabolic versatility. Numerous genes encoding enzymes of core and auxiliary beta-oxidation pathways were identified, suggesting that this organism is capable of oxidising various fatty acids and/or structurally related substrates. Additional substrate versatility was indicated by genes, which may enable the bacterium to oxidise aromatic compounds. Genes encoding enzymes of the reductive acetyl-CoA pathway were identified, which may also enable the fixation of CO2 or oxidation of organics completely to CO2. Genes encoding a putative dimethylsulphoxide reductase were the only evidence for a respiratory terminal reductase. No evidence for reductive dehalogenase genes was found. Genetic evidence also suggests that the organism could synthesise ATP by converting acetyl-CoA to acetate by substrate-level phosphorylation. Other encoded enzymes putatively conferring marine adaptations such as salt tolerance and organo-sulphate sulfohydrolysis were identified. Together, these analyses provide the first insights into the potential metabolic traits that may enable members of the DEH to occupy an ecological niche in marine sediments.
Collapse
|
17
|
Abstract
Methane produced in the biosphere is derived from two major pathways. Conversion of the methyl group of acetate to CH(4) in the aceticlastic pathway accounts for at least two-thirds, and reduction of CO(2) with electrons derived from H(2), formate, or CO accounts for approximately one-third. Although both pathways have terminal steps in common, they diverge considerably in the initial steps and energy conservation mechanisms. Steps and enzymes unique to the CO(2) reduction pathway are confined to methanogens and the domain Archaea. On the other hand, steps and enzymes unique to the aceticlastic pathway are widely distributed in the domain Bacteria, the understanding of which has contributed to a broader understanding of prokaryotic biology.
Collapse
Affiliation(s)
- James G Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16801, USA.
| |
Collapse
|
18
|
|
19
|
Volbeda A, Darnault C, Tan X, Lindahl PA, Fontecilla-Camps JC. Novel domain arrangement in the crystal structure of a truncated acetyl-CoA synthase from Moorella thermoacetica. Biochemistry 2009; 48:7916-26. [PMID: 19650626 DOI: 10.1021/bi9003952] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ni-dependent acetyl-CoA synthase (ACS) and CO dehydrogenase (CODH) constitute the central enzyme complex of the Wood-Ljungdahl pathway of acetyl-CoA formation. The crystal structure of a recombinant bacterial ACS lacking the N-terminal domain that interacts with CODH shows a large reorganization of the remaining two globular domains, producing a narrow cleft of suitable size, shape, and nature to bind CoA. Sequence comparisons with homologous archaeal enzymes that naturally lack the N-terminal domain show that many amino acids lining this cleft are conserved. Besides the typical [4Fe-4S] center, the A-cluster contains only one proximal metal ion that, according to anomalous scattering data, is most likely Cu or Zn. Incorporation of a functional Ni(2)Fe(4)S(4) A-cluster would require only minor structural rearrangements. Using available structures, a plausible model of the interaction between CODH and the smaller ACS in archaeal multienzyme complexes is presented, along with a discussion of evolutionary relationships of the archaeal and bacterial enzymes.
Collapse
Affiliation(s)
- Anne Volbeda
- Laboratoire de Cristallographie et Cristallogenèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, Université Joseph Fourier, 41 Rue Jules Horowitz, F-38027 Grenoble, France.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Dwindling petroleum feedstocks and increased CO(2)-concentrations in the atmosphere currently open the concept of using CO(2) as raw material for the synthesis of well-defined organic compounds. In parallel to recent advances in the chemical CO(2)-fixation, enzymatic (biocatalytic) carboxylation is currently being investigated at an increased pace. On the one hand, this critical review provides a concise overview on highly specific biosynthetic pathways for CO(2)-fixation and, on the other hand, a summary of biodegradation (detoxification) processes involving enzymes which possess relaxed substrate specificities, which allow their application for the regioselective carboxylation of organic substrates to furnish the corresponding carboxylic acids (145 references).
Collapse
Affiliation(s)
- Silvia M Glueck
- Research Centre Applied Biocatalysis, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
21
|
Abstract
The new stable isotope systems of transition metals are increasingly used to understand and quantify the impact of primitive microbial metabolisms on the modern and ancient Earth. To date, little effort has been expended on nickel (Ni) isotopes but there are good reasons to believe that this system may be more straightforward, and useful in this respect, than some others. Here, we present Ni stable isotope data for abiotic terrestrial samples and pure cultures of methanogens. The dataset for rocks reveals little isotopic variability and provides a lithologic baseline for terrestrial Ni isotope studies. In contrast, methanogens assimilate the light isotopes, yielding residual media with a complementary heavy isotopic enrichment. Methanogenesis may have evolved during or before the Archean, when methane could have been key to Earth's early systems. Our data suggest significant potential in Ni stable isotopes for identifying and quantifying methanogenesis on the early planet. Additionally, Ni stable isotope fractionation may well prove to be the fundamental unambiguous trace metal biomarker for methanogens.
Collapse
|
22
|
Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 2009; 33:999-1043. [PMID: 19645821 DOI: 10.1111/j.1574-6976.2009.00187.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lithotrophic sulfur oxidation is an ancient metabolic process. Ecologically and taxonomically diverged prokaryotes have differential abilities to utilize different reduced sulfur compounds as lithotrophic substrates. Different phototrophic or chemotrophic species use different enzymes, pathways and mechanisms of electron transport and energy conservation for the oxidation of any given substrate. While the mechanisms of sulfur oxidation in obligately chemolithotrophic bacteria, predominantly belonging to Beta- (e.g. Thiobacillus) and Gammaproteobacteria (e.g. Thiomicrospira), are not well established, the Sox system is the central pathway in the facultative bacteria from Alphaproteobacteria (e.g. Paracoccus). Interestingly, photolithotrophs such as Rhodovulum belonging to Alphaproteobacteria also use the Sox system, whereas those from Chromatiaceae and Chlorobi use a truncated Sox complex alongside reverse-acting sulfate-reducing systems. Certain chemotrophic magnetotactic Alphaproteobacteria allegedly utilize such a combined mechanism. Sulfur-chemolithotrophic metabolism in Archaea, largely restricted to Sulfolobales, is distinct from those in Bacteria. Phylogenetic and biomolecular fossil data suggest that the ubiquity of sox genes could be due to horizontal transfer, and coupled sulfate reduction/sulfide oxidation pathways, originating in planktonic ancestors of Chromatiaceae or Chlorobi, could be ancestral to all sulfur-lithotrophic processes. However, the possibility that chemolithotrophy, originating in deep sea, is the actual ancestral form of sulfur oxidation cannot be ruled out.
Collapse
Affiliation(s)
- Wriddhiman Ghosh
- Department of Microbiology, University of Burdwan, West Bengal, India.
| | | |
Collapse
|
23
|
Abstract
Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO(2)-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO(2)-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942. C. thermoaceticum became the most extensively studied acetogen and was used to resolve the enzymology of the acetyl-CoA pathway in the laboratories of Harland Goff Wood and Lars Gerhard Ljungdahl. Although acetogenesis initially intrigued few scientists, this novel process fostered several scientific milestones, including the first (14)C-tracer studies in biology and the discovery that tungsten is a biologically active metal. The acetyl-CoA pathway is now recognized as a fundamental component of the global carbon cycle and essential to the metabolic potentials of many different prokaryotes. The acetyl-CoA pathway and variants thereof appear to be important to primary production in certain habitats and may have been the first autotrophic process on earth and important to the evolution of life. The purpose of this article is to (1) pay tribute to those who discovered acetogens and acetogenesis, and to those who resolved the acetyl-CoA pathway, and (2) highlight the ecology and physiology of acetogens within the framework of their scientific roots.
Collapse
Affiliation(s)
- Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | |
Collapse
|
24
|
Structure of the alpha2epsilon2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex. Proc Natl Acad Sci U S A 2008; 105:9558-63. [PMID: 18621675 DOI: 10.1073/pnas.0800415105] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ni-dependent carbon monoxide dehydrogenases (Ni-CODHs) are a diverse family of enzymes that catalyze reversible CO:CO(2) oxidoreductase activity in acetogens, methanogens, and some CO-using bacteria. Crystallography of Ni-CODHs from CO-using bacteria and acetogens has revealed the overall fold of the Ni-CODH core and has suggested structures for the C cluster that mediates CO:CO(2) interconversion. Despite these advances, the mechanism of CO oxidation has remained elusive. Herein, we report the structure of a distinct class of Ni-CODH from methanogenic archaea: the alpha(2)epsilon(2) component from the alpha(8)beta(8)gamma(8)delta(8)epsilon(8) CODH/acetyl-CoA decarbonylase/synthase complex, an enzyme responsible for the majority of biogenic methane production on Earth. The structure of this Ni-CODH component provides support for a hitherto unobserved state in which both CO and H(2)O/OH(-) bind to the Ni and the exogenous FCII iron of the C cluster, respectively, and offers insight into the structures and functional roles of the epsilon-subunit and FeS domain not present in nonmethanogenic Ni-CODHs.
Collapse
|
25
|
Oelgeschläger E, Rother M. Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol 2008; 190:257-69. [PMID: 18575848 DOI: 10.1007/s00203-008-0382-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/21/2008] [Accepted: 04/29/2008] [Indexed: 12/26/2022]
Abstract
Despite its toxicity for the majority of living matter on our planet, numerous microorganisms, both aerobic and anaerobic, can use carbon monoxide (CO) as a source of carbon and/or energy for growth. The capacity to employ carboxidotrophic energy metabolism anaerobically is found in phylogenetically diverse members of the Bacteria and the Archaea. The oxidation of CO is coupled to numerous respiratory processes, such as desulfurication, hydrogenogenesis, acetogenesis, and methanogenesis. Although as diverse as the organisms capable of it, any CO-dependent energy metabolism known depends on the presence of carbon monoxide dehydrogenase. This review summarizes recent insights into the CO-dependent physiology of anaerobic microorganisms with a focus on methanogenic archaea. Carboxidotrophic growth of Methanosarcina acetivorans, thought to strictly rely on the process of methanogenesis, also involves formation of methylated thiols, formate, and even acetogenesis, and, thus, exemplifies how the beneficial redox properties of CO can be exploited in unexpected ways by anaerobic microorganisms.
Collapse
Affiliation(s)
- Ellen Oelgeschläger
- Institut für Molekulare Biowissenschaften, Abteilung Molekulare Mikrobiologie und Bioenergetik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
26
|
Tan X, Surovtsev IV, Lindahl PA. Kinetics of CO insertion and acetyl group transfer steps, and a model of the acetyl-CoA synthase catalytic mechanism. J Am Chem Soc 2007; 128:12331-8. [PMID: 16967985 PMCID: PMC2527582 DOI: 10.1021/ja0627702] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetyl-CoA synthase/carbon monoxide dehydrogenase is a Ni-Fe-S-containing enzyme that catalyzes the synthesis of acetyl-CoA from CO, CoA, and a methyl group. The methyl group is transferred onto the enzyme from a corrinoid-iron-sulfur protein (CoFeSP). The kinetics of two steps within the catalytic mechanism were studied using the stopped-flow method, including the insertion of CO into a putative Ni(2+)-CH(3) bond and the transfer of the resulting acetyl group to CoA. Neither step had been studied previously. Reactions were monitored indirectly, starting with the methylated intermediate form of the enzyme. Resulting traces were analyzed by constructing a simple kinetic model describing the catalytic mechanism under reducing conditions. Besides methyl group transfer, CO insertion, and acetyl group transfer, fitting to experimental traces required the inclusion of an inhibitory step in which CO reversibly bound to the form of the enzyme obtained immediately after product release. Global simulation of the reported datasets afforded a consistent set of kinetic parameters. The equilibrium constant for the overall synthesis of acetyl-CoA was estimated and compared to the product of the individual equilibrium constants. Simulations obtained with the model duplicated the essential behavior of the enzyme, in terms of the variation of activity with [CO], and the time-dependent decay of the NiFeC EPR signal upon reaction with CoFeSP. Under standard assay conditions, the model suggests that the vast majority of active enzyme molecules in a population should be in the methylated form, suggesting that the subsequent catalytic step, namely CO insertion, is rate limiting. This conclusion is further supported by a sensitivity analysis showing that the rate is most sensitively affected by a change in the rate coefficient associated with the CO insertion step.
Collapse
Affiliation(s)
- Xiangshi Tan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
27
|
Henstra AM, Dijkema C, Stams AJM. Archaeoglobus fulgiduscouples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. Environ Microbiol 2007; 9:1836-41. [PMID: 17564616 DOI: 10.1111/j.1462-2920.2007.01306.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genome sequence of Archaeoglobus fulgidus VC16 encodes three CO dehydrogenase genes. Here we explore the capacity of A. fulgidus to use CO as growth substrate. Archaeoglobus fulgidus VC16 was successfully adapted to growth medium that contained sulfate and CO. In the presence of CO and sulfate the culture OD(660) increased to 0.41 and sulfide, carbon dioxide, acetate and formate were formed. Accumulation of formate was transient. Similar results, except that no sulfide was formed, were obtained when sulfate was omitted. Hydrogen was never detected. Under the conditions tested, the observed concentrations of acetate (18 mM) and formate (8.2 mM) were highest in cultures without sulfate. Proton NMR spectroscopy indicated that CO2, and not CO, is the precursor of formate and the methyl group of acetate. Methylviologen-dependent formate dehydrogenase activity (1.4 micromol formate oxidized min(-1) mg(-1)) was detected in cell-free extracts and expected to have a role in formate reuptake. It is speculated that formate formation proceeds through hydrolysis of formyl-methanofuran or formyl-tetrahydromethanopterin. This study demonstrates that A. fulgidus can grow chemolithoautotrophically with CO as acetogen, and is not strictly dependent on the presence of sulfate, thiosulfate or other sulfur compounds as electron acceptor.
Collapse
Affiliation(s)
- Anne M Henstra
- Laboratory of Microbiology, Wageningen University, H. v. Suchtelenweg 4, 6703 CT, Wageningen, The Netherlands.
| | | | | |
Collapse
|
28
|
Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 2007; 8:86. [PMID: 17394648 PMCID: PMC1852104 DOI: 10.1186/1471-2164-8-86] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 03/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Archaea are highly diverse in terms of their physiology, metabolism and ecology. Presently, very few molecular characteristics are known that are uniquely shared by either all archaea or the different main groups within archaea. The evolutionary relationships among different groups within the Euryarchaeota branch are also not clearly understood. RESULTS We have carried out comprehensive analyses on each open reading frame (ORFs) in the genomes of 11 archaea (3 Crenarchaeota--Aeropyrum pernix, Pyrobaculum aerophilum and Sulfolobus acidocaldarius; 8 Euryarchaeota--Pyrococcus abyssi, Methanococcus maripaludis, Methanopyrus kandleri, Methanococcoides burtonii, Halobacterium sp. NCR-1, Haloquadratum walsbyi, Thermoplasma acidophilum and Picrophilus torridus) to search for proteins that are unique to either all Archaea or for its main subgroups. These studies have identified 1448 proteins or ORFs that are distinctive characteristics of Archaea and its various subgroups and whose homologues are not found in other organisms. Six of these proteins are unique to all Archaea, 10 others are only missing in Nanoarchaeum equitans and a large number of other proteins are specific for various main groups within the Archaea (e.g. Crenarchaeota, Euryarchaeota, Sulfolobales and Desulfurococcales, Halobacteriales, Thermococci, Thermoplasmata, all methanogenic archaea or particular groups of methanogens). Of particular importance is the observation that 31 proteins are uniquely present in virtually all methanogens (including M. kandleri) and 10 additional proteins are only found in different methanogens as well as A. fulgidus. In contrast, no protein was exclusively shared by various methanogen and any of the Halobacteriales or Thermoplasmatales. These results strongly indicate that all methanogenic archaea form a monophyletic group exclusive of other archaea and that this lineage likely evolved from Archaeoglobus. In addition, 15 proteins that are uniquely shared by M. kandleri and Methanobacteriales suggest a close evolutionary relationship between them. In contrast to the phylogenomics studies, a monophyletic grouping of archaea is not supported by phylogenetic analyses based on protein sequences. CONCLUSION The identified archaea-specific proteins provide novel molecular markers or signature proteins that are distinctive characteristics of Archaea and all of its major subgroups. The species distributions of these proteins provide novel insights into the evolutionary relationships among different groups within Archaea, particularly regarding the origin of methanogenesis. Most of these proteins are of unknown function and further studies should lead to discovery of novel biochemical and physiological characteristics that are unique to either all archaea or its different subgroups.
Collapse
|
29
|
Kooijman SALM, Troost TA. Quantitative steps in the evolution of metabolic organisation as specified by the Dynamic Energy Budget theory. Biol Rev Camb Philos Soc 2007; 82:113-42. [PMID: 17313526 DOI: 10.1111/j.1469-185x.2006.00006.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Dynamic Energy Budget (DEB) theory quantifies the metabolic organisation of organisms on the basis of mechanistically inspired assumptions. We here sketch a scenario for how its various modules, such as maintenance, storage dynamics, development, differentiation and life stages could have evolved since the beginning of life. We argue that the combination of homeostasis and maintenance induced the development of reserves and that subsequent increases in the maintenance costs came with increases of the reserve capacity. Life evolved from a multiple reserves - single structure system (prokaryotes, many protoctists) to systems with multiple reserves and two structures (plants) or single reserve and single structure (animals). This had profound consequences for the possible effects of temperature on rates. We present an alternative explanation for what became known as the down-regulation of maintenance at high growth rates in microorganisms; the density of the limiting reserve increases with the growth rate, and reserves do not require maintenance while structure-specific maintenance costs are independent of the growth rate. This is also the mechanism behind the variation of the respiration rate with body size among species. The DEB theory specifies reserve dynamics on the basis of the requirements of weak homeostasis and partitionability. We here present a new and simple mechanism for this dynamics which accounts for the rejection of mobilised reserve by busy maintenance/growth machinery. This module, like quite a few other modules of DEB theory, uses the theory of Synthesising Units; we review recent progress in this field. The plasticity of membranes that evolved in early eukaryotes is a major step forward in metabolic evolution; we discuss quantitative aspects of the efficiency of phagocytosis relative to the excretion of digestive enzymes to illustrate its importance. Some processes of adaptation and gene expression can be understood in terms of allocation linked to the relative workload of metabolic modules in (unicellular) prokaryotes and organs in (multicellular) eukaryotes. We argue that the evolution of demand systems can only be understood in the light of that of supply systems. We illustrate some important points with data from the literature.
Collapse
Affiliation(s)
- S A L M Kooijman
- Department of Theoretical Biology Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
30
|
Sipma J, Henstra AM, Parshina SM, Lens PN, Lettinga G, Stams AJM. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol 2006; 26:41-65. [PMID: 16594524 DOI: 10.1080/07388550500513974] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotechnological processes for production of bulk and fine chemicals or in biological treatment of waste streams. Synthesis gas produced from fossil fuels or biomass is rich in hydrogen and carbon monoxide. Conversion of carbon monoxide to hydrogen allows use of synthesis gas in existing hydrogen utilizing processes and is interesting in view of a transition from hydrogen production from fossil fuels to sustainable (CO2-neutral) biomass. The conversion of CO with H2O to CO2 and H2 is catalyzed by a rapidly increasing group of micro-organisms. Hydrogen is a preferred electron donor in biotechnological desulfurization ofwastewaters and flue gases. Additionally, CO is a good alternative electron donor considering the recent isolation of a CO oxidizing, sulfate reducing bacterium. Here we review CO utilization by various anaerobic micro-organisms and their possible role in biotechnological processes, with a focus on hydrogen production and bio-desulfurization.
Collapse
Affiliation(s)
- Jan Sipma
- Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 2006; 4:458-68. [PMID: 16652138 DOI: 10.1038/nrmicro1414] [Citation(s) in RCA: 433] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The epsilon-proteobacteria have recently been recognized as globally ubiquitous in modern marine and terrestrial ecosystems, and have had a significant role in biogeochemical and geological processes throughout Earth's history. To place this newly expanded group, which consists mainly of uncultured representatives, in an evolutionary context, we present an overview of the taxonomic classification for the class, review ecological and metabolic data in key sulphidic habitats and consider the ecological and geological potential of the epsilon-proteobacteria in modern and ancient systems. These integrated perspectives provide a framework for future culture- and genomic-based studies.
Collapse
Affiliation(s)
- Barbara J Campbell
- College of Marine Studies, University of Delaware, Lewes, Delaware 19958, USA.
| | | | | | | |
Collapse
|
32
|
Grahame DA, Gencic S, DeMoll E. A single operon-encoded form of the acetyl-CoA decarbonylase/synthase multienzyme complex responsible for synthesis and cleavage of acetyl-CoA in Methanosarcina thermophila. Arch Microbiol 2005; 184:32-40. [PMID: 16044263 DOI: 10.1007/s00203-005-0006-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 05/01/2005] [Accepted: 05/10/2005] [Indexed: 11/24/2022]
Abstract
Methanogens growing on C-1 substrates synthesize 2-carbon acetyl groups in the form of acetyl-CoA for carbon assimilation using the multienzyme complex acetyl-CoA decarbonylase/synthase (ACDS) which contains five different subunits encoded within an operon. In species growing on acetate ACDS also functions to cleave the acetate C-C bond for energy production by methanogenesis. A number of species of Methanosarcina that are capable of growth on either C-1 compounds or acetate contain two separate ACDS operons, and questions have been raised about whether or not these operons play separate roles in acetate synthesis and cleavage. Methanosarcina thermophila genomic DNA was analyzed for the presence of two ACDS operons by PCR amplifications with different primer pairs, restriction enzyme analyses, DNA sequencing and Southern blot analyses. A single ACDS operon was identified and characterized, with no evidence for more than one. MALDI mass spectrometric analyses were carried out on ACDS preparations from methanol- and acetate-grown cells. Peptide fragmentation patterns showed that the same ACDS subunits were present regardless of growth conditions. The evidence indicates that a single form of ACDS is used both for acetate cleavage during growth on acetate and for acetate synthesis during growth on C-1 substrates.
Collapse
Affiliation(s)
- David A Grahame
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | | | | |
Collapse
|
33
|
Meyerdierks A, Kube M, Lombardot T, Knittel K, Bauer M, Glöckner FO, Reinhardt R, Amann R. Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ Microbiol 2005; 7:1937-51. [PMID: 16309392 DOI: 10.1111/j.1462-2920.2005.00844.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The anaerobic oxidation of methane is a globally significant process which is mediated by consortia of yet uncultivated methanotrophic archaea (ANME) and sulfate-reducing bacteria. In order to gain deeper insights into genome characteristics of the different ANME groups, large-insert genomic libraries were constructed using DNA extracted from a methanotrophic microbial mat growing in the anoxic part of the Black Sea, and from sediments above gas hydrates at the Hydrate Ridge off the coast of Oregon. Analysis of these fosmid libraries with respect to archaeal 16S rRNA gene diversity revealed a single ANME-1b ribotype for the Black Sea libraries, whereas the sequences derived from the Hydrate Ridge library phylogenetically affiliated with the ANME-2a, ANME-2c and ANME-3 group. Genome walking for ANME-1b resulted in a contiguous 155 kb composite genome fragment. The comparison of a set of four genomic fragments belonging to the different ANME groups revealed differences in the rRNA operon structure and the average G+C content, with the ANME-2c contig showing the highest divergence within the set. A detailed analysis of the ANME contigs with respect to genes putatively involved in the anaerobic oxidation of methane led to the identification of: (i) a putative N5,N10-methenyltetrahydromethanopterin cyclohydrolase gene, (ii) a gene cluster supposedly encoding a novel type of heterodisulfide reductase/dehydrogenase complex and (iii) a gene cluster putatively encoding a new type of CO dehydrogenase/acetyl-CoA synthase enzyme complex.
Collapse
Affiliation(s)
- Anke Meyerdierks
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Moorella thermoacetica (originally isolated as Clostridium thermoaceticum) has served as the primary acetogenic bacterium for the resolution of the acetyl coenzyme A (acetyl-CoA) or Wood-Lijungdahl pathway, a metabolic pathway that (i) autotrophically assimilates CO2 and (ii) is centrally important to the turnover of carbon in many habitats. The purpose of this article is to highlight the diverse physiological features of this model acetogen and to examine some of the consequences of its metabolic capabilities.
Collapse
Affiliation(s)
- Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, Germany.
| | | |
Collapse
|
35
|
Drake HL, Daniel SL. Physiology of the thermophilic acetogen Moorella thermoacetica. Res Microbiol 2004; 155:422-36. [PMID: 15249059 DOI: 10.1016/j.resmic.2004.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
Moorella thermoacetica (originally isolated as Clostridium thermoaceticum) has served as the primary acetogenic bacterium for the resolution of the acetyl coenzyme A (acetyl-CoA) or Wood-Ljungdahl pathway, a metabolic pathway that (i) autotrophically assimilates CO2 and (ii) is centrally important to the turnover of carbon in many habitats. The purpose of this article is to highlight the diverse physiological features of this model acetogen and to examine some of the consequences of its metabolic capabilities.
Collapse
Affiliation(s)
- Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | |
Collapse
|
36
|
Abstract
Steps by which a nonliving chemical system could have transformed into a living system are described and discussed, assuming general features of Wächtershäuser's chemo-autotrophic surface theory of the origin of life. Environmental species such as CO2 and H2S are proposed to have reacted to form a quasi-steady state metal-bound intermediate (CH3-M) that slowly decayed into waste (CH4). Unpredictable dispersive reactions expanded the system to include surface-bound forms of the citric acid cycle intermediates (oxaloacetate-->citrate). Further reaction yielded an autocatalytic system in which raw materials are converted into the system at exponential rates. Combinatorial dispersive reactions that improved the performance of this system were automatically selected and incorporated into it. Systems evolved critical features of living systems (proteins, membranes, proteins, nucleic acids, etc.) using two related mechanisms called grafting and waste-conversion. Such living systems were transformed from less recognizable types (characterized by autocatalytic spreading, decentralization, poorly defined boundaries, etc.) into more recognizable ones (encapsulated by membranes, controlled by single-molecule genomes, etc.) that self-replicated by a cell division cycle and could evolve by the standard gene-based Darwinian mechanism. The resulting systems are viewed as having an autocatalytic network composed of three linked autocatalytic subreactions.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
37
|
Lindahl PA. Acetyl-coenzyme A synthase: the case for a Nip0-based mechanism of catalysis. J Biol Inorg Chem 2004; 9:516-24. [PMID: 15221478 DOI: 10.1007/s00775-004-0564-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 05/21/2004] [Indexed: 11/30/2022]
Abstract
Acetyl-CoA synthase (also known as carbon monoxide dehydrogenase) is a bifunctional Ni-Fe-S-containing enzyme that catalyzes the reversible reduction of CO(2) to CO and the synthesis of acetyl-coenzyme A from CO, CoA, and a methyl group donated by a corrinoid iron-sulfur protein. The active site for the latter reaction, called the A-cluster, consists of an Fe(4)S(4) cubane bridged to the proximal Ni site (Ni(p)), which is bridged in turn to the so-called distal Ni site. In this review, evidence is presented that Ni(p) achieves a zero-valent state at low potentials and during catalysis. Ni(p) appears to be the metal to which CO and methyl groups bind and then react to form an acetyl-Ni(p) intermediate. Methyl group binding requires reductive activation, where two electrons reduce some site on the A-cluster. The coordination environment of the distal Ni suggests that it could not be stabilized in redox states lower than 2+. The rate at which the [Fe(4)S(4)](2+) cubane is reduced is far slower than that at which reductive activation occurs, suggesting that the cubane is not the site of reduction. An intriguing possibility is that Ni(p)(2+) might be reduced to the zero-valent state. Reinforcing this idea are Ni-organometallic complexes in which the Ni exhibits analogous reactivity properties when reduced to the zero-valent state. A zero-valent Ni stabilized exclusively with biological ligands would be remarkable and unprecedented in biology.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A and M University, College Station, TX 77843-3255, USA.
| |
Collapse
|
38
|
Webster CE, Darensbourg MY, Lindahl PA, Hall MB. Structures and Energetics of Models for the Active Site of Acetyl-Coenzyme A Synthase: Role of Distal and Proximal Metals in Catalysis. J Am Chem Soc 2004; 126:3410-1. [PMID: 15025453 DOI: 10.1021/ja038083h] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetyl-coenzyme A (CoA) synthase/carbon monoxide dehydrogenase (ACS/CODH) is a bifunctional enzyme that generates CO from carbon dioxide in the C-cluster of the beta subunit and synthesizes acetyl-CoA from carbon monoxide (CO), CoA, and CH3+ at the active site of the A-cluster in the alpha subunit. On the basis of density functional calculations, we predict that methylation of Nip occurs first, and CO then adds to the NipII-CH3 species to form the intermediate, NipII(CO)(CH3), in which Nip deligates one of its SNid bonds. The CO-insertion/CH3-migration occurs on one metal, the proximal Ni, forming the trigonal planar NipII-acetyl intermediate. The thiolate can bind to NipII and reductively eliminate the thioester. Our calculations disfavor the unprecedented bimetallic CO-insertion/CH3-migration. Ni in the proximal site produces a better catalyst than does Cu.
Collapse
Affiliation(s)
- Charles Edwin Webster
- Contribution from the Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA
| | | | | | | |
Collapse
|
39
|
Loke HK, Tan X, Lindahl PA. Genetic construction of truncated and chimeric metalloproteins derived from the alpha subunit of acetyl-CoA synthase from Clostridium thermoaceticum. J Am Chem Soc 2002; 124:8667-72. [PMID: 12121109 DOI: 10.1021/ja025924w] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, a genetics-based method is used to truncate acetyl-coenzyme A synthase from Clostridium thermoaceticum (ACS), an alpha(2)beta(2) tetrameric 310 kDa bifunctional enzyme. ACS catalyzes the reversible reduction of CO(2) to CO and the synthesis of acetyl-CoA from CO (or CO(2) in the presence of low-potential reductants), CoA, and a methyl group bound to a corrinoid-iron sulfur protein (CoFeSP). ACS contains seven metal-sulfur clusters of four different types called A, B, C, and D. The B, C, and D clusters are located in the 72 kDa beta subunit, while the A-cluster, a Ni-X-Fe(4)S(4) cluster that serves as the active site for acetyl-CoA synthase activity, is located in the 82 kDa alpha subunit. The extent to which the essential properties of the cluster, including catalytic, redox, spectroscopic, and substrate-binding properties, were retained as ACS was progressively truncated was determined. Acetyl-CoA synthase catalytic activity remained when the entire beta subunit was removed, as long as CO, rather than CO(2) and a low-potential reductant, was used as a substrate. Truncating an approximately 30 kDa region from the N-terminus of the alpha subunit yielded a 49 kDa protein that lacked catalytic activity but exhibited A-cluster-like spectroscopic, redox, and CO-binding properties. Further truncation afforded a 23 kDa protein that lacked recognizable A-cluster properties except for UV-vis spectra typical of [Fe(4)S(4)](2+) clusters. Two chimeric proteins were constructed by fusing the gene encoding a ferredoxin from Chromatium vinosum to genes encoding the 49 and 82 kDa fragments of the alpha subunit. The chimeric proteins exhibited EPR signals that were not the simple sum of the signals from the separate proteins, suggesting magnetic interactions between clusters. This study highlights the potential for using genetics to simplify the study of complex multicentered metalloenzymes and to generate new complex metalloenzymes with interesting properties.
Collapse
Affiliation(s)
- Huay-Keng Loke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|