1
|
Gu Y, Lu H, Shao Y, Fu D, Wu J, Hu J, Tu J, Song X, Qi K. Acetoacetyl-CoA transferase ydiF regulates the biofilm formation of avian pathogenic Escherichia coli. Res Vet Sci 2022; 153:144-152. [PMID: 36375381 DOI: 10.1016/j.rvsc.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) causes persistent infection of poultry and multi-system diseases, which seriously endanger the development of the poultry industry. Biofilm allows bacteria to adapt to the natural environment and plays an important role in resistance to the external environment and the pathogenicity of APEC, but the mechanism of its formation and regulatory network have not been clarified. In this study, we used a Tn5 transposon random mutation library constructed with APEC and identified ydiF, a gene that has not previously been recognized in E. coli biofilm formation. To confirm that the ydiF gene really can regulate the formation of APEC biofilm, the ydiF gene deletion strain was constructed using APEC81. Protein association networks prediction results show that ydiF is mainly associated with genes related to the metabolism of sugars and fatty acids. Deletion of the ydiF gene significantly reduces the formation of APEC biofilm and scanning electron microscopy indicated that the degree of adhesion between the bacteria was also reduced. The deletion of the ydiF gene also significantly reduced the motility of APEC81 and through transmission electron microscopy APEC81 was observed to have significantly fewer flagella. However, the colony morphology of APEC81 on Congo red and Coomassie brilliant blue media was unaffected. The results of fluorescence quantification showed that the deletion of the ydiF gene caused a down-regulation in the transcription of genes related to the second messenger, sugar metabolism, and quorum sensing. These results indicate that ydiF plays an important role in biofilm formation and the movement of APEC. In addition, it may be possible to regulate the formation of APEC biofilms by different methods such as by regulating the second messenger and metabolic system.
Collapse
Affiliation(s)
- Yi Gu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Huiqi Lu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Dandan Fu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jianmei Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jiangang Hu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
2
|
Kian N, Samieefar N, Rezaei N. Prenatal risk factors and genetic causes of ADHD in children. World J Pediatr 2022; 18:308-319. [PMID: 35235183 DOI: 10.1007/s12519-022-00524-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Attention deficit/hyperactivity disorder (ADHD) is a common disease among children; it affected 5-7% of the population in 2015. ADHD is a multifactorial disease, and its etiology is still not clearly understood. DATA SOURCES This narrative review has been done by searching the PubMed and Embase databases using attention deficit/hyperactivity disorder, ADHD, risk factors; genetics; pediatrics; psychiatrics as keywords. RESULTS ADHD is considered to be a hereditary disorder in which genes play the fundamental role in the pathogenesis; however, findings from genetic-environmental studies support the hypothesis that genetic factors can exert effects on an individual's condition by determining his/her responses to environmental exposures, especially those during the prenatal stage. CONCLUSION ADHD is considered as a hereditary disorder in which genes and prenatal risk factors play fundamental roles in the pathogenesis.
Collapse
Affiliation(s)
- Naghmeh Kian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,USERN Office, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,USERN Office, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Bahe A. Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency presenting as ketosis with hyperglycemia: A case report. JOURNAL OF PEDIATRIC CRITICAL CARE 2022. [DOI: 10.4103/jpcc.jpcc_56_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Grünert SC, Foster W, Schumann A, Lund A, Pontes C, Roloff S, Weinhold N, Yue WW, AlAsmari A, Obaid OA, Faqeih EA, Stübbe L, Yamamoto R, Gemperle-Britschgi C, Walter M, Spiekerkoetter U, Mackinnon S, Sass JO. Succinyl-CoA:3-oxoacid coenzyme A transferase (SCOT) deficiency: A rare and potentially fatal metabolic disease. Biochimie 2021; 183:55-62. [PMID: 33596448 DOI: 10.1016/j.biochi.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
Succinyl-CoA:3-oxoacid coenzyme A transferase deficiency (SCOTD) is a rare autosomal recessive disorder of ketone body utilization caused by mutations in OXCT1. We performed a systematic literature search and evaluated clinical, biochemical and genetic data on 34 previously published and 10 novel patients with SCOTD. Structural mapping and in silico analysis of protein variants is also presented. All patients presented with severe ketoacidotic episodes. Age at first symptoms ranged from 36 h to 3 years (median 7 months). About 70% of patients manifested in the first year of life, approximately one quarter already within the neonatal period. Two patients died, while the remainder (95%) were alive at the time of the report. Almost all the surviving patients (92%) showed normal psychomotor development and no neurologic abnormalities. A total of 29 missense mutations are reported. Analysis of the published crystal structure of the human SCOT enzyme, paired with both sequence-based and structure-based methods to predict variant pathogenicity, provides insight into the biochemical consequences of the reported variants. Pathogenic variants cluster in SCOT protein regions that affect certain structures of the protein. The described pathogenic variants can be viewed in an interactive map of the SCOT protein at https://michelanglo.sgc.ox.ac.uk/r/oxct. This comprehensive data analysis provides a systematic overview of all cases of SCOTD published to date. Although SCOTD is a rather benign disorder with often favourable outcome, metabolic crises can be life-threatening or even fatal. As the diagnosis can only be made by enzyme studies or mutation analyses, SCOTD may be underdiagnosed.
Collapse
Affiliation(s)
- Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| | - William Foster
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anke Schumann
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Allan Lund
- Department of Paediatrics, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christina Pontes
- Centre for Paediatrics and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Sylvia Roloff
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Center for Chronically Sick Children, Berlin, Germany
| | - Natalie Weinhold
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Center for Chronically Sick Children, Berlin, Germany
| | - Wyatt W Yue
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ali AlAsmari
- Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Osama A Obaid
- Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Eissa Ali Faqeih
- Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Lisa Stübbe
- MVZ Dr. Eberhard & Partner Dortmund GbR (ÜBAG), Dortmund, Germany
| | - Raina Yamamoto
- MVZ Dr. Eberhard & Partner Dortmund GbR (ÜBAG), Dortmund, Germany
| | - Corinne Gemperle-Britschgi
- University Children's Hospital, Clinical Chemistry & Biochemistry and Children's Research Center, Zürich, Switzerland
| | - Melanie Walter
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sabrina Mackinnon
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany.
| |
Collapse
|
5
|
Kim YA, Kim SH, Cheon CK, Kim YM. A Rare Cause of Life-Threatening Ketoacidosis: Novel Compound Heterozygous OXCT1 Mutations Causing Succinyl-CoA:3-Ketoacid CoA Transferase Deficiency. Yonsei Med J 2019; 60:308-311. [PMID: 30799594 PMCID: PMC6391521 DOI: 10.3349/ymj.2019.60.3.308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is a rare inborn error of ketone body utilization, characterized by episodic or permanent ketosis. SCOT deficiency is caused by mutations in the OXCT1 gene, which is mapped to 5p13 and consists of 17 exons. A 12-month-old girl presented with severe ketoacidosis and was treated with continuous renal replacement therapy. She had two previously unrecognized mild-form episodes of ketoacidosis followed by febrile illness. While high levels of ketone bodies were found in her blood and urine, other laboratory investigations, including serum glucose, were unremarkable. We identified novel compound heterozygous mutations in OXCT1:c.1118T>G (p.Ile373Ser) and a large deletion ranging from exon 8 to 16 through targeted exome sequencing and microarray analysis. This is the first Korean case of SCOT deficiency caused by novel mutations in OXCT1, resulting in life-threatening ketoacidosis. In patients with unexplained episodic ketosis, or high anion gap metabolic acidosis in infancy, an inherited disorder in ketone body metabolism should be suspected.
Collapse
Affiliation(s)
- Young A Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Seong Heon Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Yoo Mi Kim
- Department of Pediatrics, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
6
|
Yuan Z, Xu R, Li J, Chen Y, Wu B, Feng J, Chen Z. Biological responses to core-shell-structured Fe 3O 4@SiO 2-NH 2 nanoparticles in rats by a nuclear magnetic resonance-based metabonomic strategy. Int J Nanomedicine 2018; 13:2447-2462. [PMID: 29719393 PMCID: PMC5922241 DOI: 10.2147/ijn.s158022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Core–shell-structured nanoparticles (NPs) have attracted much scientific attention due to their promising potential in biomedical fields in recent years. However, their underlying mechanisms of action and potential adverse effects following administration remain unknown. Methods In the present study, a 1H nuclear magnetic resonance-based metabonomic strategy was applied to investigate the metabolic consequences in rats following the intravenous administration of parent NPs of core–shell-structured nanoparticles, Fe3O4@SiO2-NH2 (Fe@Si) NPs. Results Alterations reflected in plasma and urinary metabonomes indicated that Fe@Si NPs induced metabolic perturbation in choline, ketone-body, and amino-acid metabolism besides the common metabolic disorders in tricarboxylic acid cycle, lipids, and glycogen metabolism often induced by the exogenous agents. Additionally, intestinal flora metabolism and the urea cycle were also influenced by Fe@Si NP exposure. Time-dependent biological effects revealed obvious metabolic regression, dose-dependent biological effects implied different biochemical mechanisms between low- and high-dose Fe@Si NPs, and size-dependent biological effects provided potential windows for size optimization. Conclusion Nuclear magnetic resonance-based metabonomic analysis helps in understanding the biological mechanisms of Fe@Si NPs, provides an identifiable ground for the selection of view windows, and further serves the clinical translation of Fe@Si NP-derived and -modified bioprobes or bioagents.
Collapse
Affiliation(s)
- Zhongxue Yuan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China
| | - Rui Xu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China
| | - Jinquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China
| | - Yueli Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China
| | - Binghui Wu
- State Key Laboratory for Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
7
|
Sasai H, Aoyama Y, Otsuka H, Abdelkreem E, Naiki Y, Kubota M, Sekine Y, Itoh M, Nakama M, Ohnishi H, Fujiki R, Ohara O, Fukao T. Heterozygous carriers of succinyl-CoA:3-oxoacid CoA transferase deficiency can develop severe ketoacidosis. J Inherit Metab Dis 2017; 40:845-852. [PMID: 28695376 DOI: 10.1007/s10545-017-0065-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 02/05/2023]
Abstract
Succinyl-CoA:3-oxoacid CoA transferase (SCOT, gene symbol OXCT1) deficiency is an autosomal recessive disorder in ketone body utilization that results in severe recurrent ketoacidotic episodes in infancy, including neonatal periods. More than 30 patients with this disorder have been reported and to our knowledge, their heterozygous parents and siblings have had no apparent ketoacidotic episodes. Over 5 years (2008-2012), we investigated several patients that presented with severe ketoacidosis and identified a heterozygous OXCT1 mutation in four of these cases (Case1 p.R281C, Case2 p.T435N, Case3 p.W213*, Case4 c.493delG). To confirm their heterozygous state, we performed a multiplex ligation-dependent probe amplification analysis on the OXCT1 gene which excluded the presence of large deletions or insertions in another allele. A sequencing analysis of subcloned full-length SCOT cDNA showed that wild-type cDNA clones were present at reasonable rates to mutant cDNA clones. Over the following 2 years (2013-2014), we analyzed OXCT1 mutations in six more patients presenting with severe ketoacidosis (blood pH ≦7.25 and total ketone body ≧10 mmol/L) with non-specific urinary organic acid profiles. Of these, a heterozygous OXCT1 mutation was found in two cases (Case5 p.G391D, Case6 p.R281C). Moreover, transient expression analysis revealed R281C and T435N mutants to be temperature-sensitive. This characteristic may be important because most patients developed ketoacidosis during infections. Our data indicate that heterozygous carriers of OXCT1 mutations can develop severe ketoacidotic episodes in conjunction with ketogenic stresses.
Collapse
Affiliation(s)
- Hideo Sasai
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Yuka Aoyama
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Hiroki Otsuka
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Elsayed Abdelkreem
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Yasuhiro Naiki
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuru Kubota
- Department of General Pediatrics and Interdisciplinary Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yuji Sekine
- Department of General Pediatrics, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Masatsune Itoh
- Department of Pediatrics, Kanazawa Medical University, Kanazawa, Japan
| | - Mina Nakama
- Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan
| | - Ryoji Fujiki
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu, 501-1194, Japan.
- Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan.
| |
Collapse
|
8
|
Zheng DJ, Hooper M, Spencer-Manzon M, Pierce RW. A Case of Succinyl-CoA:3-Oxoacid CoA Transferase Deficiency Presenting with Severe Acidosis in a 14-Month-Old Female: Evidence for Pathogenicity of a Point Mutation in the OXCT1 Gene. J Pediatr Intensive Care 2017; 7:62-66. [PMID: 31073471 DOI: 10.1055/s-0037-1604270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022] Open
Abstract
We describe a case of succinyl-CoA:3-oxoacid CoA transferase (SCOT) deficiency in an otherwise healthy 14 month-old female. She presented with lethargy, tachypnea, and hyperpnea with hypoglycemia and a severe anion gap metabolic acidosis. Early management included correction of the acidosis and metabolic support with dextrose and insulin. Inborn errors of metabolism are rare outside the neonatal period. However, SCOT deficiency may present at older ages. Maintaining a high index of suspicion, immediate transfer to a pediatric intensive care unit, and prompt metabolic support are key to achieving a favorable outcome.
Collapse
Affiliation(s)
- Daniel J Zheng
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States
| | - Michael Hooper
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States
| | - Michele Spencer-Manzon
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States
| | - Richard W Pierce
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
9
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
10
|
Li L, Bai S, Sheline CT. hZnT8 (Slc30a8) Transgenic Mice That Overexpress the R325W Polymorph Have Reduced Islet Zn2+ and Proinsulin Levels, Increased Glucose Tolerance After a High-Fat Diet, and Altered Levels of Pancreatic Zinc Binding Proteins. Diabetes 2017; 66:551-559. [PMID: 27899481 PMCID: PMC5248993 DOI: 10.2337/db16-0323] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 11/17/2016] [Indexed: 01/23/2023]
Abstract
Zinc (Zn2+) is involved in both type 1 diabetes (T1DM) and type 2 diabetes (T2DM). The wild-type (WT) form of the β-cell-specific Zn2+ transporter, ZNT8, is linked to T2DM susceptibility. ZnT8 null mice have a mild phenotype with a slight decrease in glucose tolerance, whereas patients with the ZnT8 R325W polymorphism (rs13266634) have decreased proinsulin staining and susceptibility to T2DM. We measured Zn2+, insulin, and proinsulin stainings and performed intraperitoneal glucose tolerance testing in transgenic mice overexpressing hZnT8 WT or hZnT8 R325W fed a normal or high-fat diet. The hZnT8 R325W transgenic line had lower pancreatic [Zn2+]i and proinsulin and higher insulin and glucose tolerance compared with control littermates after 10 weeks of a high-fat diet in male mice. The converse was true for the hZnT8 WT transgenic line, and dietary Zn2+ supplementation also induced glucose intolerance. Finally, pancreatic zinc binding proteins were identified by Zn2+-affinity chromatography and proteomics. Increasing pancreatic Zn2+ (hZnT8WT) induced nucleoside diphosphate kinase B, and Zn2+ reduction (hZnT8RW) induced carboxypeptidase A1. These data suggest that pancreatic Zn2+ and proinsulin levels covary but are inversely variant with insulin or glucose tolerance in the HFD model of T2DM suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Li Li
- Department of Ophthalmology and the Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Shi Bai
- Department of Ophthalmology and the Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Christian T Sheline
- Department of Ophthalmology and the Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY
| |
Collapse
|
11
|
Simons A, Eyskens F, Glazemakers I, van West D. Can psychiatric childhood disorders be due to inborn errors of metabolism? Eur Child Adolesc Psychiatry 2017; 26:143-154. [PMID: 27695954 PMCID: PMC5306168 DOI: 10.1007/s00787-016-0908-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
Many patients who visit a centre for hereditary metabolic diseases remarkably also suffer from a child psychiatric disorder. Those child psychiatric disorders may be the first sign or manifestation of an underlying metabolic disorder. Lack of knowledge of metabolic disorders in child psychiatry may lead to diagnoses being missed. Patients therefore are also at risk for not accessing efficacious treatment and proper counselling. To search the literature for the co-occurrence of child psychiatric disorders, such as ADHD, autism, psychosis, learning disorders and eating disorders and metabolic disorders. A search of the literature was conducted by performing a broad search on PubMed, using the terms "ADHD and metabolic disorders", "autism and metabolic disorders", "psychosis and metabolic disorders", "learning disorders and metabolic disorders", and "eating disorders and metabolic disorders". Based on inclusion criteria (concerning a clear psychiatric disorder and concerning a metabolic disorder) 4441 titles and 249 abstracts were screened and resulted in 71 relevant articles. This thorough literature search provides child and adolescent psychiatrists with an overview of metabolic disorders associated with child psychiatric symptoms, their main characteristics and recommendations for further investigations.
Collapse
Affiliation(s)
- A. Simons
- Centre of Heriditary Metabolic Diseases Antwerp (CEMA), University Hospital of Antwerp (UZA), Wilrijkstraat, 2650 Edegem, Belgium ,Collaborative Antwerp Psychiatric Research Institute (CAPRI) Youth, Antwerp, Belgium ,University Child and Adolescent Psychiatry Antwerp, Lindendreef 1, 2020 Antwerp, Belgium
| | - F. Eyskens
- Centre of Heriditary Metabolic Diseases Antwerp (CEMA), University Hospital of Antwerp (UZA), Wilrijkstraat, 2650 Edegem, Belgium
| | - I. Glazemakers
- Collaborative Antwerp Psychiatric Research Institute (CAPRI) Youth, Antwerp, Belgium ,University Child and Adolescent Psychiatry Antwerp, Lindendreef 1, 2020 Antwerp, Belgium ,University of Antwerp (CAPRI), Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - D. van West
- Collaborative Antwerp Psychiatric Research Institute (CAPRI) Youth, Antwerp, Belgium ,University of Brussels, Brussels, Belgium ,University Child and Adolescent Psychiatry Antwerp, Lindendreef 1, 2020 Antwerp, Belgium ,University of Antwerp (CAPRI), Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
12
|
β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms. Neurochem Res 2016; 42:35-49. [DOI: 10.1007/s11064-016-2099-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
|
13
|
Hori T, Yamaguchi S, Shinkaku H, Horikawa R, Shigematsu Y, Takayanagi M, Fukao T. Inborn errors of ketone body utilization. Pediatr Int 2015; 57:41-8. [PMID: 25559898 DOI: 10.1111/ped.12585] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency and mitochondrial acetoacetyl-CoA thiolase (beta-ketothiolase or T2) deficiency are classified as autosomal recessive disorders of ketone body utilization characterized by intermittent ketoacidosis. Patients with mutations retaining no residual activity on analysis of expression of mutant cDNA are designated as severe genotype, and patients with at least one mutation retaining significant residual activity, as mild genotype. Permanent ketosis is a pathognomonic characteristic of SCOT-deficient patients with severe genotype. Patients with mild genotype, however, may not have permanent ketosis, although they may develop severe ketoacidotic episodes similar to patients with severe genotype. Permanent ketosis has not been reported in T2 deficiency. In T2-deficient patients with severe genotype, biochemical diagnosis is done on urinary organic acid analysis and blood acylcarnitine analysis to observe characteristic findings during both ketoacidosis and non-episodic conditions. In Japan, however, it was found that T2-deficient patients with mild genotype are common, and typical profiles were not identified on these analyses. Based on a clinical study of ketone body utilization disorders both in Japan and worldwide, we have developed guidelines for disease diagnosis and treatment. These diseases are treatable by avoiding fasting and by providing early infusion of glucose, which enable the patients to grow without sequelae.
Collapse
Affiliation(s)
- Tomohiro Hori
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Fukao T, Mitchell G, Sass JO, Hori T, Orii K, Aoyama Y. Ketone body metabolism and its defects. J Inherit Metab Dis 2014; 37:541-51. [PMID: 24706027 DOI: 10.1007/s10545-014-9704-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 12/17/2022]
Abstract
Acetoacetate (AcAc) and 3-hydroxybutyrate (3HB), the two main ketone bodies of humans, are important vectors of energy transport from the liver to extrahepatic tissues, especially during fasting, when glucose supply is low. Blood total ketone body (TKB) levels should be evaluated in the context of clinical history, such as fasting time and ketogenic stresses. Blood TKB should also be evaluated in parallel with blood glucose and free fatty acids (FFA). The FFA/TKB ratio is especially useful for evaluation of ketone body metabolism. Defects in ketogenesis include mitochondrial HMG-CoA synthase (mHS) deficiency and HMG-CoA lyase (HL) deficiency. mHS deficiency should be considered in non-ketotic hypoglycemia if a fatty acid beta-oxidation defect is suspected, but cannot be confirmed. Patients with HL deficiency can develop hypoglycemic crises and neurological symptoms even in adolescents and adults. Succinyl-CoA-3-oxoacid CoA transferase (SCOT) deficiency and beta-ketothiolase (T2) deficiency are two defects in ketolysis. Permanent ketosis is pathognomonic for SCOT deficiency. However, patients with "mild" SCOT mutations may have nonketotic periods. T2-deficient patients with "mild" mutations may have normal blood acylcarnitine profiles even in ketoacidotic crises. T2 deficient patients cannot be detected in a reliable manner by newborn screening using acylcarnitines. We review recent data on clinical presentation, metabolite profiles and the course of these diseases in adults, including in pregnancy.
Collapse
Affiliation(s)
- Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan,
| | | | | | | | | | | |
Collapse
|
15
|
Shafqat N, Kavanagh KL, Sass JO, Christensen E, Fukao T, Lee WH, Oppermann U, Yue WW. A structural mapping of mutations causing succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. J Inherit Metab Dis 2013; 36:983-7. [PMID: 23420214 PMCID: PMC3825524 DOI: 10.1007/s10545-013-9589-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/08/2022]
Abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is a rare inherited metabolic disorder of ketone metabolism, characterized by ketoacidotic episodes and often permanent ketosis. To date there are ~20 disease-associated alleles on the OXCT1 gene that encodes the mitochondrial enzyme SCOT. SCOT catalyzes the first, rate-limiting step of ketone body utilization in peripheral tissues, by transferring a CoA moiety from succinyl-CoA to form acetoacetyl-CoA, for entry into the tricarboxylic acid cycle for energy production. We have determined the crystal structure of human SCOT, providing a molecular understanding of the reported mutations based on their potential structural effects. An interactive version of this manuscript (which may contain additional mutations appended after acceptance of this manuscript) may be found on the web address: http://www.thesgc.org/jimd/SCOT .
Collapse
Affiliation(s)
- Naeem Shafqat
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ UK
| | - Kate L. Kavanagh
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ UK
| | - Jörn Oliver Sass
- Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Freiburg, 79106 Freiburg, Germany
- Klinische Chemie & Biochemie, Universitäts-Kinderspital, 8032 Zürich, Switzerland
| | - Ernst Christensen
- Department of Clinical Genetics, Juliane Marie Centre, 2100 Copenhagen, Denmark
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 501-1194 Japan
- Medical information Sciences Division, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, 501-1194 Japan
| | - Wen Hwa Lee
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ UK
- Botnar Research Centre, Oxford Biomedical Research Unit, OX3 7LD Oxford, UK
| | - Wyatt W. Yue
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ UK
| |
Collapse
|
16
|
Cotter DG, Ercal B, d'Avignon DA, Dietzen DJ, Crawford PA. Impact of peripheral ketolytic deficiency on hepatic ketogenesis and gluconeogenesis during the transition to birth. J Biol Chem 2013; 288:19739-49. [PMID: 23689508 DOI: 10.1074/jbc.m113.454868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preservation of bioenergetic homeostasis during the transition from the carbohydrate-laden fetal diet to the high fat, low carbohydrate neonatal diet requires inductions of hepatic fatty acid oxidation, gluconeogenesis, and ketogenesis. Mice with loss-of-function mutation in the extrahepatic mitochondrial enzyme CoA transferase (succinyl-CoA:3-oxoacid CoA transferase, SCOT, encoded by nuclear Oxct1) cannot terminally oxidize ketone bodies and develop lethal hyperketonemic hypoglycemia within 48 h of birth. Here we use this model to demonstrate that loss of ketone body oxidation, an exclusively extrahepatic process, disrupts hepatic intermediary metabolic homeostasis after high fat mother's milk is ingested. Livers of SCOT-knock-out (SCOT-KO) neonates induce the expression of the genes encoding peroxisome proliferator-activated receptor γ co-activator-1a (PGC-1α), phosphoenolpyruvate carboxykinase (PEPCK), pyruvate carboxylase, and glucose-6-phosphatase, and the neonate's pools of gluconeogenic alanine and lactate are each diminished by 50%. NMR-based quantitative fate mapping of (13)C-labeled substrates revealed that livers of SCOT-KO newborn mice synthesize glucose from exogenously administered pyruvate. However, the contribution of exogenous pyruvate to the tricarboxylic acid cycle as acetyl-CoA is increased in SCOT-KO livers and is associated with diminished terminal oxidation of fatty acids. After mother's milk provokes hyperketonemia, livers of SCOT-KO mice diminish de novo hepatic β-hydroxybutyrate synthesis by 90%. Disruption of β-hydroxybutyrate production increases hepatic NAD(+)/NADH ratios 3-fold, oxidizing redox potential in liver but not skeletal muscle. Together, these results indicate that peripheral ketone body oxidation prevents hypoglycemia and supports hepatic metabolic homeostasis, which is critical for the maintenance of glycemia during the adaptation to birth.
Collapse
Affiliation(s)
- David G Cotter
- Department of Medicine, Washington University, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
17
|
Cotter DG, Schugar RC, Wentz AE, d'Avignon DA, Crawford PA. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation. Am J Physiol Endocrinol Metab 2013; 304:E363-74. [PMID: 23233542 PMCID: PMC3566508 DOI: 10.1152/ajpendo.00547.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.
Collapse
Affiliation(s)
- David G Cotter
- Division of Cardiology, Dept. of Medicine, Washington Univ. School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
18
|
Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013; 304:H1060-76. [PMID: 23396451 DOI: 10.1152/ajpheart.00646.2012] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states.
Collapse
Affiliation(s)
- David G Cotter
- Department of Medicine, Center for Cardiovascular Research, Washington University, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
19
|
Hori T, Fukao T, Murase K, Sakaguchi N, Harding CO, Kondo N. Molecular basis of two-exon skipping (exons 12 and 13) by c.1248+5g>a in OXCT1 gene: study on intermediates of OXCT1 transcripts in fibroblasts. Hum Mutat 2013; 34:473-80. [PMID: 23281106 DOI: 10.1002/humu.22258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 11/30/2012] [Indexed: 11/09/2022]
Abstract
The molecular basis of simultaneous two-exon skipping induced by a splice-site mutation has yet to be completely explained. The splice donor site mutation c.1248+5g>a (IVS13) of the OXCT1 gene resulted predominantly in skipping of exons 12 and 13 in fibroblasts from a patient (GS23) with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. We compared heteronuclear RNA (hnRNA) intermediates between controls' and GS23's fibroblasts. Our strategy was to use RT-PCR of hnRNA to detect the presence or absence of spliced exon clusters in RNA intermediates (SECRIs) comprising sequential exons. Our initial hypothesis was that a SECRI comprising exons 12 and 13 was formed first followed by skipping of this SECRI in GS23 cells. However, such a pathway was revealed to be not a major one. Hence, we compared the intron removal of SCOT transcript between controls and GS23. In controls, intron 11 was the last intron to be spliced and the removal of intron 12 was also rather slow and occurred after the removal of intron 13 in a major pathway. However, the mutation in GS23 cells resulted in retention of intron 13, thus causing the retention of introns 12 and 11. This "splicing paralysis" may be solved by skipping the whole intron 11-exon 12-intron 12-exon 13-mutated intron 13, resulting in skipping of exons 12 and 13.
Collapse
Affiliation(s)
- Tomohiro Hori
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Sun H, He J, Ru Y, Yin S, Xie Y, Yin L, Wei H, Wu L, Liu S. Monitoring succinyl-CoA:3-oxoacid CoA transferase nitration in mitochondria using monoclonal antibodies. Biochem Biophys Res Commun 2011; 415:239-44. [DOI: 10.1016/j.bbrc.2011.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/06/2011] [Indexed: 11/29/2022]
|
21
|
Cotter DG, d'Avignon DA, Wentz AE, Weber ML, Crawford PA. Obligate role for ketone body oxidation in neonatal metabolic homeostasis. J Biol Chem 2011; 286:6902-10. [PMID: 21209089 PMCID: PMC3044945 DOI: 10.1074/jbc.m110.192369] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/28/2010] [Indexed: 11/06/2022] Open
Abstract
To compensate for the energetic deficit elicited by reduced carbohydrate intake, mammals convert energy stored in ketone bodies to high energy phosphates. Ketone bodies provide fuel particularly to brain, heart, and skeletal muscle in states that include starvation, adherence to low carbohydrate diets, and the neonatal period. Here, we use novel Oxct1(-/-) mice, which lack the ketolytic enzyme succinyl-CoA:3-oxo-acid CoA-transferase (SCOT), to demonstrate that ketone body oxidation is required for postnatal survival in mice. Although Oxct1(-/-) mice exhibit normal prenatal development, all develop ketoacidosis, hypoglycemia, and reduced plasma lactate concentrations within the first 48 h of birth. In vivo oxidation of (13)C-labeled β-hydroxybutyrate in neonatal Oxct1(-/-) mice, measured using NMR, reveals intact oxidation to acetoacetate but no contribution of ketone bodies to the tricarboxylic acid cycle. Accumulation of acetoacetate yields a markedly reduced β-hydroxybutyrate:acetoacetate ratio of 1:3, compared with 3:1 in Oxct1(+) littermates. Frequent exogenous glucose administration to actively suckling Oxct1(-/-) mice delayed, but could not prevent, lethality. Brains of newborn SCOT-deficient mice demonstrate evidence of adaptive energy acquisition, with increased phosphorylation of AMP-activated protein kinase α, increased autophagy, and 2.4-fold increased in vivo oxidative metabolism of [(13)C]glucose. Furthermore, [(13)C]lactate oxidation is increased 1.7-fold in skeletal muscle of Oxct1(-/-) mice but not in brain. These results indicate the critical metabolic roles of ketone bodies in neonatal metabolism and suggest that distinct tissues exhibit specific metabolic responses to loss of ketone body oxidation.
Collapse
Affiliation(s)
| | - D. André d'Avignon
- Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
22
|
Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. Biochim Biophys Acta Mol Basis Dis 2011; 1812:619-24. [PMID: 21296660 DOI: 10.1016/j.bbadis.2011.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 11/21/2022]
Abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is an inborn error of ketone body metabolism and causes episodic ketoacidosis. We report clinical and molecular analyses of 5 patients with SCOT deficiency. Patients GS07, GS13, and GS14 are homozygotes of S405P, L327P, and R468C, respectively. GS17 and GS18 are compound heterozygotes for S226N and A215V, and V404F and E273X, respectively. These mutations have not been reported previously. Missense mutations were further characterized by transient expression analysis of mutant cDNAs. Among 6 missense mutations, mutants L327P, R468C, and A215V retained some residual activities and their mutant proteins were detected in immunoblot analysis following expression at 37°C. They were more stable at 30°C than 37°C, indicating their temperature sensitive character. The R468C mutant is a distinct temperature sensitive mutant which retained 12% and 51% of wild-type residual activities at 37 and 30°C, respectively. The S226N mutant protein was detected but retained no residual activity. Effects of missense mutations were predicted from the tertiary structure of the SCOT molecule. Main effects of these mutations were destabilization of SCOT molecules, and some of them also affected catalytic activity. Among 5 patients, GS07 and GS18 had null mutations in both alleles and the other three patients retained some residual SCOT activities. All 5 developed a first severe ketoacidotic crisis with blood gas pH <7.1, and experienced multiple ketoacidotic decompensations (two of them had seven such episodes). In general, the outcome was good even following multiple ketoacidotic events. Permanent ketosis or ketonuria is considered a pathognomonic feature of SCOT deficiency. However, this condition depends not only on residual activity but also on environmental factors.
Collapse
|
23
|
Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 2010; 7:58-63. [PMID: 21151122 DOI: 10.1038/nchembio.495] [Citation(s) in RCA: 661] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/21/2010] [Indexed: 01/08/2023]
Abstract
Of the 20 ribosomally coded amino acid residues, lysine is the most frequently post-translationally modified, which has important functional and regulatory consequences. Here we report the identification and verification of a previously unreported form of protein post-translational modification (PTM): lysine succinylation. The succinyllysine residue was initially identified by mass spectrometry and protein sequence alignment. The identified succinyllysine peptides derived from in vivo proteins were verified by western blot analysis, in vivo labeling with isotopic succinate, MS/MS and HPLC coelution of their synthetic counterparts. We further show that lysine succinylation is evolutionarily conserved and that this PTM responds to different physiological conditions. Our study also implies that succinyl-CoA might be a cofactor for lysine succinylation. Given the apparent high abundance of lysine succinylation and the significant structural changes induced by this PTM, it is expected that lysine succinylation has important cellular functions.
Collapse
|
24
|
Fukao T, Ishii T, Amano N, Kursula P, Takayanagi M, Murase K, Sakaguchi N, Kondo N, Hasegawa T. A neonatal-onset succinyl-CoA:3-ketoacid CoA transferase (SCOT)-deficient patient with T435N and c.658-666dupAACGTGATT p.N220_I222dup mutations in the OXCT1 gene. J Inherit Metab Dis 2010; 33 Suppl 3:S307-13. [PMID: 20652411 DOI: 10.1007/s10545-010-9168-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/30/2010] [Accepted: 07/02/2010] [Indexed: 12/12/2022]
Abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency causes episodic ketoacidotic crises and no apparent symptoms between them. Here, we report a Japanese case of neonatal-onset SCOT deficiency. The male patient presented a severe ketoacidotic crisis, with blood pH of 7.072 and bicarbonate of 5.8 mmol/L at the age of 2 days and was successfully treated with intravenous infusion of glucose and sodium bicarbonate. He was diagnosed as SCOT deficient by enzymatic assay and mutation analysis. At the age of 7 months, he developed a second ketoacidotic crisis, with blood pH of 7.059, bicarbonate of 5.4 mmol/L, and total ketone bodies of 29.1 mmol/L. He experienced two milder ketoacidotic crises at the ages of 1 year and 7 months and 3 years and 7 months. His urinary ketone bodies usually range from negative to 1+ but sometimes show 3+ (ketostix) without any symptoms. Hence, this patient does not show permanent ketonuria, which is characteristic of typical SCOT-deficient patients. He is a compound heterozygote of c.1304C > A (T435N) and c.658-666dupAACGTGATT p.N220_I222dup. mutations in the OXCT1 gene. The T435N mutation was previously reported as one which retained significant residual activity. The latter novel mutation was revealed to retain no residual activity by transient expression analysis. Both T435N and N220_I222 lie close to the SCOT dimerization interface and are not directly connected to the active site in the tertiary structure of a human SCOT dimer. In transient expression analysis, no apparent interallelic complementation or dominant negative effects were observed. Significant residual activity from the T435N mutant allele may prevent the patient from developing permanent ketonuria.
Collapse
Affiliation(s)
- Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Management and communication problems in a patient with succinyl-CoA transferase deficiency in pregnancy and labour. Int J Obstet Anesth 2009; 18:280-3. [PMID: 19450972 DOI: 10.1016/j.ijoa.2009.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 01/31/2009] [Accepted: 02/02/2009] [Indexed: 11/21/2022]
Abstract
Succinyl-CoA transferase deficiency is a high-risk condition that pre-disposes the sufferer to severe and life-threatening ketoacidosis. An 18-year-old woman with succinyl-CoA transferase deficiency was admitted to the delivery suite for induction of labour at 38 weeks of gestation. Her management included adequate calorie intake in order to avoid fatty acid metabolism and adequate hydration along with rigorous electrolyte balance and minimisation of physiological stress by the use of epidural analgesia. The needs of the woman's condition had to be balanced against the desire to minimise gastric volume in case emergency obstetric intervention was required.
Collapse
|
26
|
Fukao T, Kursula P, Owen EP, Kondo N. Identification and characterization of a temperature-sensitive R268H mutation in the human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 2007; 92:216-21. [PMID: 17706444 DOI: 10.1016/j.ymgme.2007.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/03/2007] [Accepted: 07/03/2007] [Indexed: 11/25/2022]
Abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency causes episodic ketoacidosis. We encountered a case of siblings in South Africa in whom a novel homozygous mutation (R268H) was found in genomic DNA. Mutant SCOT protein was very faintly detected in their fibroblasts using immunoblot analysis. Transient expression analysis of R268H mutant cDNA at 37 degrees C revealed that the R268H mutant protein was clearly detected, as much as 50% wild-type, together with 40% residual SCOT activities, hence R268H was first regarded as not being a disease-causing mutation. Since no other mutation was identified, R268H mutation was re-evaluated by further transient expression analysis. Accumulation of the R268H mutant protein was revealed to be strongly temperature dependent; residual SCOT activities were calculated to be 59.7%, 34%, and 4%, respectively, in expression at 30 degrees C, 37 degrees C, and 40 degrees C in SV40-transformed fibroblasts of GS01(a homozygote of S283X). SCOT activity of the R268H protein was more vulnerable than the wild-type to heat treatment at 50 degrees C. These results indicated that the R268H mutant protein was clearly more unstable than the wild-type in a temperature-sensitive manner. Furthermore, an analysis of the three-dimensional structure of SCOT showed that the R268H mutation was expected to break a conserved salt bridge between R268 and D52, which would be expected to lead to decreased stability of the protein. Hence we finally concluded that the R268H mutation is a disease-causing one. The stability of mutant protein in transient expression analysis does not always reflect the condition in patients' fibroblasts.
Collapse
Affiliation(s)
- Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan.
| | | | | | | |
Collapse
|
27
|
Marcus C, Alkén J, Eriksson J, Blom L, Gustafsson J. Insufficient ketone body use is the cause of ketotic hypoglycemia in one of a pair of homozygotic twins. J Clin Endocrinol Metab 2007; 92:4080-4. [PMID: 17684053 DOI: 10.1210/jc.2007-0661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Childhood ketotic hypoglycemia (KH) is a disease characterized by fasting hypoglycemia and increased levels of ketone bodies. The cause is unknown. OBJECTIVE The objective of the study was to study a pair of homozygotic twin boys, one of whom had severe KH from the age of 14 months, whereas the other boy was apparently healthy. DESIGN AND RESULTS At the age of 6 yr, the boys were thoroughly investigated. During a 24-h fasting tolerance test, the twin with KH showed hypoglycemia (blood glucose 2.0 mmol/liter) after 18 h. Three h before the occurrence of hypoglycemia, he had had 10 times higher beta-hydroxybutyrate levels than his brother, who showed no signs of hypoglycemia. Their glucose production rates were normal and similar (23.3 and 21.7 micromol/kg body weight per minute in the healthy and KH twin, respectively) as well as their lipolysis rates (5.8 and 6.8 micromol/kg body weight per minute, respectively). During repeated 60-min infusions of beta-hydroxybutyrate, the plasma level of beta-hydroxybutyrate increased 5-10 times more in the twin with KH (mean 1.1 mmol/liter in the healthy and 10.8 mmol/liter in the KH twin), indicating a disturbed clearance or metabolism of beta-hydroxybutyrate. No mutations were found in genes involved in ketone body metabolism or transport. CONCLUSION In the affected boy, KH seems to be the result of a reduced capacity to use ketone bodies, leading to increased peripheral metabolism of glucose that cannot be met by hepatic glucose production. Because the boys are homozygotic twins and only one of them is affected, the ketotic hypoglycemia is most likely caused by an altered imprinting of gene(s) involved in regulating metabolic pathways.
Collapse
Affiliation(s)
- Claude Marcus
- Department for Clinical Science, Intervention and Technology (Clintec), Division of Pediatrics, Karolinska University Hospital, Huddinge, SE-141 86 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Bappal B, Mula-Abed WA. Evaluation of diagnostic fasting in the investigation of hypoglycemia in children omani experienc. Oman Med J 2007; 22:36-41. [PMID: 22400091 PMCID: PMC3294161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/03/2007] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVES To assess the safety and importance of diagnostic fast in the evaluation of hypoglycemia in children in a non-specialist set up. METHOD The medical records of 116 patients with hypoglycemia, admitted to Pediatric Unit, Royal Hospital, Muscat, Sultanate of Oman, over a 15 year period, were reviewed. Of these, 96 (82.8%) patients, 52 boys and 44 girls, aged 8 days to 10 years were subjected to diagnostic fast. RESULTS Of these 96 patients fasted, 77 (80.2%) became hypoglycemic (HG group) and 19 (19.8 %) did not develop hypoglycemia on fast (NHG group). In the HG group, 69 (89.6%) patients developed symptomatic hypoglycemia of variable severity and none developed coma or convulsions during fasting. CONCLUSION The study has proved that diagnostic fast is relatively a safe procedure with considerable amount of diagnostic yield.
Collapse
Affiliation(s)
- Bhasker Bappal
- Department of Child Health, Royal Hospital, P.O.Box. 1331, Seeb 111, Muscat, Sultanate of Oman
| | - Waad-Allah Mula-Abed
- Department of Chemical Pathology, Royal Hospital, P.O.Box 1331, Seeb 111, Muscat, Sultanate of Oman
| |
Collapse
|
29
|
Yamada K, Fukao T, Zhang G, Sakurai S, Ruiter JPN, Wanders RJA, Kondo N. Single-base substitution at the last nucleotide of exon 6 (c.671G>A), resulting in the skipping of exon 6, and exons 6 and 7 in human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 2007; 90:291-7. [PMID: 17169596 DOI: 10.1016/j.ymgme.2006.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/27/2006] [Accepted: 10/28/2006] [Indexed: 10/23/2022]
Abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT, EC 2.8.3.5) is the key enzyme for ketone body utilization. Hereditary SCOT deficiency (MIM 245050) causes episodes of severe ketoacidosis. We identified a homozygous point mutation (c.671G>A) , which is a single-base substitution at the last nucleotide of exon 6, in a Turkish patient (GS12) with SCOT deficiency. This point mutation resulted in the skipping of exon 6, and exons 6 and 7 in human SCOT genes. To understand why the c.671G>A causes exons 6 and 7 skipping, nuclear RNA was separated from cytoplasmic RNA and both were analyzed by RT-PCR. In nuclear RNA, SCOT mRNA with exon 6 skipping was predominant and mRNA with exons 6 and 7 skipping was hardly detected, whereas the latter became one of major mRNA species in cytoplasmic RNA. This discrepancy was interpreted as follows: exon 6 skipping causes a frameshift and nonsense-mediated RNA decay in the cytosol, so mRNA with exon 6 skipping was unstable. On the other hand, SCOT mRNA with exons 6 and 7 is a minor transcript but it retains the reading-frame and is stable in cytosol. As a result, the latter mRNA is more abundant under steady-state conditions as compared to the former mRNA.
Collapse
Affiliation(s)
- Keitaro Yamada
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1194, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Fukao T, Sakurai S, Rolland MO, Zabot MT, Schulze A, Yamada K, Kondo N. A 6-bp deletion at the splice donor site of the first intron resulted in aberrant splicing using a cryptic splice site within exon 1 in a patient with succinyl-CoA: 3-Ketoacid CoA transferase (SCOT) deficiency. Mol Genet Metab 2006; 89:280-2. [PMID: 16765626 DOI: 10.1016/j.ymgme.2006.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 04/25/2006] [Accepted: 04/25/2006] [Indexed: 11/20/2022]
Abstract
Succinyl-CoA: 3-ketoacid-CoA transferase (SCOT; locus symbol OXCT, EC 2.8.3.5) deficiency is a rare genetic disorder affecting ketone body utilization in extra-hepatic tissues. A 6-bp deletion at the splice donor site of intron 1 resulted in the absence of a full-length mature SCOT mRNA with faint amounts of aberrantly spliced transcripts using a cryptic splice donor site within exon 1, which was located just 7 bases upstream from the authentic site in a SCOT deficient patient.
Collapse
Affiliation(s)
- Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Rangarajan ES, Li Y, Ajamian E, Iannuzzi P, Kernaghan SD, Fraser ME, Cygler M, Matte A. Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases. J Biol Chem 2005; 280:42919-28. [PMID: 16253988 DOI: 10.1074/jbc.m510522200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 A resolution, respectively. YdiF is organized into tetramers, with each monomer having an open alpha/beta structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent gamma-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.
Collapse
|
32
|
Fukao T, Shintaku H, Kusubae R, Zhang GX, Nakamura K, Kondo M, Kondo N. Patients homozygous for the T435N mutation of succinyl-CoA:3-ketoacid CoA Transferase (SCOT) do not show permanent ketosis. Pediatr Res 2004; 56:858-63. [PMID: 15496607 DOI: 10.1203/01.pdr.0000145297.90577.67] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Succinyl-CoA:3-ketoacid CoA transferase (SCOT; locus symbol OXCT; E.C. 2.8.3.5) is the main determinant of the ketolytic capacity of tissues. Hereditary SCOT deficiency causes episodic ketoacidosis. Permanent ketosis has been regarded as a pathognomonic feature of SCOT deficiency. There are three SCOT-deficient patients from a small region in Japan and they have not manifested permanent ketosis, even though their ketoacidotic crises were as severe as those of other SCOT-deficient patients. All three were homozygous for the T435N mutation. Transient expression analysis of wild-type and mutant cDNA showed that the T435N mutant retained significant residual SCOT activities (20% for that of the wild-type at 39.5 degrees C, 25% at 37 degrees C, and 50% at 30 degrees C). The difference of residual SCOT activities at these temperatures in expression analyses was due to differences in the level of the mutant protein. SCOT activity of the T435N protein was more vulnerable than the wild-type to heat treatment at 42 degrees C and 55 degrees C. These temperature-sensitive characteristics of the mutant protein may explain, in part, why the patients developed ketoacidotic crises during febrile illness. In SCOT-deficient patients retaining some residual activity, permanent ketosis may be absent.
Collapse
Affiliation(s)
- Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Longo N, Fukao T, Singh R, Pasquali M, Barrios RG, Kondo N, Gibson KM. Succinyl-CoA:3-ketoacid transferase (SCOT) deficiency in a new patient homozygous for an R217X mutation. J Inherit Metab Dis 2004; 27:691-2. [PMID: 15669687 DOI: 10.1023/b:boli.0000043023.57321.18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SCOT deficiency presents with persistent excess of ketones leading to ketoacidosis. Here we report patient GS15, homozygous for a novel R217X mutation, who had the first apparent ketoacidotic crisis at 8 months of age. Before confirmation of diagnosis, daily dialysis was the only mechanism by which to normalize her persistent metabolic acidosis of unknown aetiology.
Collapse
Affiliation(s)
- N Longo
- Department of Pediatrics and Pathology, University of Utah, Salt Lake City, Utah, USA.
| | | | | | | | | | | | | |
Collapse
|