1
|
Bae E, Beil S, König M, Stolte S, Escher BI, Markiewicz M. Assessing Modes of Toxic Action of Organic Cations in In Vitro Cell-Based Bioassays: the Critical Role of Partitioning to Cells and Medium Components. Chem Res Toxicol 2025. [PMID: 40036051 DOI: 10.1021/acs.chemrestox.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
High-throughput cell-based bioassays can fulfill the growing need to assess the hazards and modes of toxic action (MOA) of ionic liquids (ILs). Although nominal concentrations (Cnom) are typically used in an in vitro bioassay, freely dissolved concentrations (Cfree) are considered a more accurate dose metric because they account for chemical partitioning processes and are informative about MOA. We determined the Cfree of IL cations in AREc32 and AhR-CALUX assays using both mass balance model (MBM) prediction and experimental quantification. Partition coefficients between membrane lipid-water (Kmw), serum albumin-water (Kalbumin/w), and cell-water (Kcell/w) as well as potential confounding factors (binding to a test plate and micelle formation) were determined to improve the MBM prediction. IL cations showed a higher affinity for both cell lines than that predicted by the MBM based on Kmw and Kalbumin/w. Their affinity for the AhR-CALUX cells was more than 1 order of magnitude higher than for the AREc32, signifying cell line-specific affinity. The MBM with an experimental Kcell/w accurately predicted Cfree. Evaluating cytotoxicity based on Cfree eliminated the leveling off of toxicity observed for hydrophobic IL cations (side chain cutoff), suggesting that Cnom underestimates the effects of compounds with high affinity for the assay medium. Cell membrane concentrations calculated from Cfree using Kmw were compared to the critical membrane burden to identify whether IL cations act as baseline toxicants. The IL cations carrying 16 carbons in the chain in the AREc32 assay and most of the IL cations in the AhR-CALUX assay were classified as excess toxicants. However, since the reasons for the deviation of experimental Kcell/w from MBM prediction remain unexplained, it is uncertain whether the cell membrane concentrations can be well predicted from Kmw used in this study. Therefore, future studies should aim to uncover the underlying causes of differing cell affinities observed across cell lines and model predictions.
Collapse
Affiliation(s)
- Eunhye Bae
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, D-72076 Tübingen, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| |
Collapse
|
2
|
Seol Y, Markiewicz M, Beil S, Schubert S, Jungmann D, Wasserscheid P, Stolte S. Aquatic toxicity, bioaccumulation potential, and human estrogen/androgen activity of three oxo-Liquid Organic Hydrogen Carrier (oxo-LOHC) systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135102. [PMID: 39003805 DOI: 10.1016/j.jhazmat.2024.135102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
The Liquid Organic Hydrogen Carrier (LOHC) technology offers a technically attractive way for hydrogen storage. If LOHC systems were to fully replace liquid fossil fuels, they would need to be handled at the multi-million tonne scale. To date, LOHC systems on the market based on toluene or benzyltoluene still offer potential for improvements. Thus, it is of great interest to investigate potential LOHCs that promise better performance and environmental/human hazard profiles. In this context, we investigated the acute aquatic toxicity of oxygen-containing LOHC (oxo-LOHC) systems. Toxic Ratio (TR) values of oxo-LOHC compounds classify them baseline toxicants (0.1 < TR < 10). Additionally, the mixture toxicity test conducted with D. magna suggests that the overall toxicity of a benzophenone-based system can be accurately predicted using a concentration addition model. The estimation of bioconcentration factors (BCF) through the use of the membrane-water partition coefficient indicates that oxo-LOHCs are unlikely to be bioaccumulative (BCF < 2000). None of the oxo-LOHC compounds exhibited hormonal disrupting activities at the tested concentration of 2 mg/L in yeast-based reporter gene assays. Therefore, the oxo-LOHC systems seem to pose a low level of hazard and deserve more attention in ongoing studies searching for the best hydrogen storage technologies.
Collapse
Affiliation(s)
- Yohan Seol
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Sara Schubert
- Institute of Hydrobiology, Dresden University of Technology, 01069 Dresden, Germany
| | - Dirk Jungmann
- Institute of Hydrobiology, Dresden University of Technology, 01069 Dresden, Germany
| | - Peter Wasserscheid
- Institute of Chemical Reaction Engineering, Friedrich Alexander University of Erlangen Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany; Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy, 91058 Erlangen, Germany; Forschungszentrum Jülich GmbH, Institute for a Sustainable Hydrogen Economy, 52428 Jülich, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany.
| |
Collapse
|
3
|
Wang T, Whitcher-Johnstone A, Scaringella YS, Keith-Luzzi M, Shao J, Taub ME, Chan TS. Comparison of Commonly Used and New Methods to Determine Small Molecule Non-Specific Binding to Human Liver Microsomes. J Pharm Sci 2024; 113:1987-1995. [PMID: 38615815 DOI: 10.1016/j.xphs.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Accurate measurement of non-specific binding of a drug candidate to human liver microsomes (HLM) can be critical for the accurate determination of key enzyme kinetic parameters such as Michaelis-Menton (Km), reversible inhibition (Ki), or inactivation (KI) constants. Several methods have been developed to determine non-specific binding of small molecules to HLM, such as rapid equilibrium dialysis (RED), ultrafiltration (UF), HLM bound to magnetizable beads (HLM-beads), ultracentrifugation (UC), the linear extrapolation stability assay (LESA), and the Transil™ system. Despite various differences in methodology between these methods, it is generally presumed that similar free fraction values (fu,mic) should be generated. To evaluate this hypothesis, a test set of 9 compounds were selected, representing low (high fu,mic value) and significant (low fu,mic value) HLM binding, respectively, across HLM concentrations tested in this manuscript. The fu,mic values were determined using a single compound concentration (1.0 µM) and three HLM concentrations (0.025, 0.50, and 1.0 mg/mL). When the HLM non-specific binding event is not extensive resulting in high fu,mic values, all methods generated similar fu,mic values. However, fu,mic values varied markedly across assay formats when high binding to HLM occurred, where fu,mic values differed by up to 33-fold depending on the method used. Potential causes for such discrepancies across the various methods employed, practical implications related to conduct the different assays, and implications to clinical drug-drug interaction (DDI) predictions are discussed.
Collapse
Affiliation(s)
- Ting Wang
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA.
| | | | - Young Sun Scaringella
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| | - Monica Keith-Luzzi
- Department of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| | - Juntang Shao
- Anhui Medical University, 1980 Meishan Road, Anhui, China
| | - Mitchell E Taub
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| | - Tom S Chan
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| |
Collapse
|
4
|
Çelik G, Stolte S, Markiewicz M. NSO-heterocyclic PAHs - Controlled exposure study reveals high acute aquatic toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132428. [PMID: 37690200 DOI: 10.1016/j.jhazmat.2023.132428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
Environmental occurrence and hazardous nature of heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) has the potential to threaten the health of aquatic ecosystems. Here, we investigate the acute toxicity of heterocyclic PAHs (log KOW 3.7-6.9) to aquatic organisms: marine bacteria (Aliivibrio fischeri), freshwater green algae (Raphidocelis subcapitata), and water fleas (Daphnia magna) using passive dosing to maintain stable exposure. The membrane-water partition coefficient (KMW) of the heterocycles was measured to elucidate its relationship with toxicity. Our findings show that the tested heterocycles had little inhibitory effect on A. fischeri, while most compounds were highly toxic to R. subcapitata and D. magna. Toxicity generally increased with increasing KMW values, and nonpolar narcosis was identified as the most likely mode of toxic action of the heterocycles. Comparison of standard protocols with passive dosing emphasizes the importance of maintaining a constant concentration during toxicity testing, as very high losses occurred in standard tests and passive dosing experiments revealed higher toxicities. These results indicate a potentially high risk to aquatic life and call for more in-depth investigation of the (eco)toxic effects of NSO-PAHs.
Collapse
Affiliation(s)
- Göksu Çelik
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany.
| |
Collapse
|
5
|
Potter TD, Haywood N, Teixeira A, Hodges G, Barrett EL, Miller MA. Partitioning into phosphatidylcholine-cholesterol membranes: liposome measurements, coarse-grained simulations, and implications for bioaccumulation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37158124 DOI: 10.1039/d3em00081h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane-water partitioning is an important physical property for the assessment of bioaccumulation and environmental impact. Here, we advance simulation methodology for predicting the partitioning of small molecules into lipid membranes and compare the computational predictions to experimental measurements in liposomes. As a step towards high-throughput screening, we present an automated mapping and parametrization procedure to produce coarse-grained models compatible with the Martini 3 force field. The methodology is general and can also be used for other applications where coarse-grained simulations are appropriate. This article addresses the effect on membrane-water partitioning of adding cholesterol to POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Nine contrasting neutral, zwitterionic and charged solutes are tested. Agreement between experiment and simulation is generally good, with the most challenging cases being permanently charged solutes. For all solutes, partitioning is found to be insensitive to membrane cholesterol concentration up to 25% mole fraction. Hence, for assessment of bioaccumulation into a range of membranes (such as those found in fish), partitioning data measured in pure lipid membranes are still informative.
Collapse
Affiliation(s)
- Thomas D Potter
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | - Nicola Haywood
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Alexandre Teixeira
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Elin L Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark A Miller
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
6
|
Droge STJ, Hodges G, Bonnell M, Gutsell S, Roberts J, Teixeira A, Barrett EL. Using membrane-water partition coefficients in a critical membrane burden approach to aid the identification of neutral and ionizable chemicals that induce acute toxicity below narcosis levels. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:621-647. [PMID: 36779707 DOI: 10.1039/d2em00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The risk assessment of thousands of chemicals used in our society benefits from adequate grouping of chemicals based on the mode and mechanism of toxic action (MoA). We measure the phospholipid membrane-water distribution ratio (DMLW) using a chromatographic assay (IAM-HPLC) for 121 neutral and ionized organic chemicals and screen other methods to derive DMLW. We use IAM-HPLC based DMLW as a chemical property to distinguish between baseline narcosis and specific MoA, for reported acute toxicity endpoints on two separate sets of chemicals. The first set comprised 94 chemicals of US EPA's acute fish toxicity database: 47 categorized as narcosis MoA, 27 with specific MoA, and 20 predominantly ionic chemicals with mostly unknown MoA. The narcosis MoA chemicals clustered around the median narcosis critical membrane burden (CMBnarc) of 140 mmol kg-1 lipid, with a lower limit of 14 mmol kg-1 lipid, including all chemicals labelled Narcosis_I and Narcosis_II. This maximum 'toxic ratio' (TR) between CMBnarc and the lower limit narcosis endpoint is thus 10. For 23/28 specific MoA chemicals a TR >10 was derived, indicative of a specific adverse effect pathway related to acute toxicity. For 10/12 cations categorized as "unsure amines", the TR <10 suggests that these affect fish via narcosis MoA. The second set comprised 29 herbicides, including 17 dissociated acids, and evaluated the TR for acute toxic effect concentrations to likely sensitive aquatic plant species (green algae and macrophytes Lemna and Myriophyllum), and non-target animal species (invertebrates and fish). For 21/29 herbicides, a TR >10 indicated a specific toxic mode of action other than narcosis for at least one of these aquatic primary producers. Fish and invertebrate TRs were mostly <10, particularly for neutral herbicides, but for acidic herbicides a TR >10 indicated specific adverse effects in non-target animals. The established critical membrane approach to derive the TR provides for useful contribution to the weight of evidence to bin a chemical as having a narcosis MoA or less likely to have acute toxicity caused by a more specific adverse effect pathway. After proper calibration, the chromatographic assay provides consistent and efficient experimental input for both neutral and ionizable chemicals to this approach.
Collapse
Affiliation(s)
- Steven T J Droge
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam (UvA), Science Park 904, 1098XH Amsterdam, The Netherlands.
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Mark Bonnell
- Environment and Climate Change Canada, Ecological Assessment Division, Science and Risk Assessment Directorate, Gatineau, Quebec, Canada
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Jayne Roberts
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Alexandre Teixeira
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Elin L Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
7
|
Giakoumatos EC, Gascoigne L, Gumí-Audenis B, García ÁG, Tuinier R, Voets IK. Impact of poly(ethylene glycol) functionalized lipids on ordering and fluidity of colloid supported lipid bilayers. SOFT MATTER 2022; 18:7569-7578. [PMID: 36165127 PMCID: PMC9555145 DOI: 10.1039/d2sm00806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Colloid supported lipid bilayers (CSLBs) are highly appealing building blocks for functional colloids. In this contribution, we critically evaluate the impact on lipid ordering and CSLB fluidity of inserted additives. We focus on poly(ethylene glycol) (PEG) bearing lipids, which are commonly introduced to promote colloidal stability. We investigate whether their effect on the CSLB is related to the incorporated amount and chemical nature of the lipid anchor. To this end, CSLBs were prepared from lipids with a low or high melting temperature (Tm), DOPC, and DPPC, respectively. Samples were supplemented with either 0, 5 or 10 mol% of either a low or high Tm PEGylated lipid, DOPE-PEG2000 or DSPE-PEG2000, respectively. Lipid ordering was probed via differential scanning calorimetry and fluidity by fluorescence recovery after photobleaching. We find that up to 5 mol% of either PEGylated lipids could be incorporated into both membranes without any pronounced effects. However, the fluorescence recovery of the liquid-like DOPC membrane was markedly decelerated upon incorporating 10 mol% of either PEGylated lipids, whilst insertion of the anchoring lipids (DOPE and DSPE without PEG2000) had no detectable impact. Therefore, we conclude that the amount of incorporated PEG stabilizer, not the chemical nature of the lipid anchor, should be tuned carefully to achieve sufficient colloidal stability without compromising the membrane dynamics. These findings offer guidance for the experimental design of studies using CSLBs, such as those focusing on the consequences of intra- and inter-particle inhomogeneities for multivalent binding and the impact of additive mobility on superselectivity.
Collapse
Affiliation(s)
- Emma C Giakoumatos
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Levena Gascoigne
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Berta Gumí-Audenis
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Álvaro González García
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Remco Tuinier
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
8
|
Naßwetter LC, Fischer M, Scheidt HA, Heerklotz H. Membrane-water partitioning - Tackling the challenges of poorly soluble drugs using chaotropic co-solvents. Biophys Chem 2021; 277:106654. [PMID: 34265547 DOI: 10.1016/j.bpc.2021.106654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022]
Abstract
Many newly developed drugs suffer from poor water solubility and low bioavailability and hence, need special formulation vehicles like vesicular or micellar drug delivery systems. The knowledge of their membrane-water partition coefficient K becomes critical as is governs drug loading and release from the vehicle, as well as absorption into the body. The dilemma is that measuring K is particularly challenging for these very compounds. Here we establish a strategy to resolve this problem. We added DMSO to shift K and solubility into a convenient range and extrapolated these results back to zero-DMSO. Isothermal titration calorimetry revealed that logK of the kinase inhibitor Lapatinib decreased proportionally to DMSO content (2.5 - 20v%) with a slope of -1/20v% (m value = 28 kJ/mol). This implies a K of 84 mM-1 in DMSO-free buffer. This strategy should be transferable to other poorly soluble drugs and further detection methods.
Collapse
Affiliation(s)
- Leonie C Naßwetter
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Hermann-Herder-Straße 9, 79104 Freiburg, Germany.
| | - Markus Fischer
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Hermann-Herder-Straße 9, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-Universität, Schänzlestraße 18, 79104 Freiburg; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto ON, M5S 3M2, Canada.
| |
Collapse
|
9
|
Niu XZ, Field JA, Paniego R, Pepel RD, Chorover J, Abrell L, Sierra-Alvarez R. Bioconcentration potential and microbial toxicity of onium cations in photoacid generators. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8915-8921. [PMID: 33400114 DOI: 10.1007/s11356-020-12250-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Despite the widespread utilization of onium salts as photoacid generators (PAGs) in semiconductor photolithography, their environmental, health, and safety (EHS) properties remain poorly understood. The present work reports the bioconcentration potential of five representative onium species (four sulfonium and one iodonium compound) by determining the octanol-water partition coefficient (POW) and lipid membrane affinity coefficient (KMA); microbial toxicity was evaluated using the bioluminescent bacterium Aliivibrio fischeri (Microtox bioassay). Four of the oniums exhibited varying degrees of hydrophobic (lipophilic) partitioning (log POW: 0.08-4.12; KMA: 1.70-5.62). A strong positive linear correlation was observed between log POW and KMA (KMA = log POW + 1.76, R2 = 0.99). The bioconcentration factors (log BCF) estimated from POW and KMA for the four oniums ranged from 0.13 to 3.67 L kg-1. Bis-(4-tert-butyl phenyl)-iodonium and triphenylsulfonium had 50% inhibitory concentrations (IC50) of 4.8 and 84.6 μM, whereas the IC50 values of the other three oniums were not determined because these values were higher than their aqueous solubility. Given the increased regulatory scrutiny regarding the use and potential health impacts from onium PAGs, this study fulfills critical knowledge gaps concerning the EHS properties of PAG oniums, enabling more comprehensive evaluation of their environmental impacts and potential risk management strategies.
Collapse
Affiliation(s)
- Xi-Zhi Niu
- Department of Chemical & Environmental Engineering, The University of Arizona, 1133 James E. Rogers Way, P.O. Box 210011, Tucson, AZ, 85721, USA
- Department of Environmental Science & Arizona Laboratory for Emerging Contaminants, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jim A Field
- Department of Chemical & Environmental Engineering, The University of Arizona, 1133 James E. Rogers Way, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Rodrigo Paniego
- Department of Chemical & Environmental Engineering, The University of Arizona, 1133 James E. Rogers Way, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Richard D Pepel
- Department of Chemical & Environmental Engineering, The University of Arizona, 1133 James E. Rogers Way, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Jon Chorover
- Department of Environmental Science & Arizona Laboratory for Emerging Contaminants, The University of Arizona, Tucson, AZ, 85721, USA
| | - Leif Abrell
- Department of Environmental Science & Arizona Laboratory for Emerging Contaminants, The University of Arizona, Tucson, AZ, 85721, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical & Environmental Engineering, The University of Arizona, 1133 James E. Rogers Way, P.O. Box 210011, Tucson, AZ, 85721, USA.
| |
Collapse
|
10
|
Maculewicz J, Świacka K, Kowalska D, Stepnowski P, Stolte S, Dołżonek J. In vitro methods for predicting the bioconcentration of xenobiotics in aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140261. [PMID: 32758962 DOI: 10.1016/j.scitotenv.2020.140261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The accumulation of anthropogenic chemical substances in aquatic organisms is an immensely important issue from the point of view of environmental protection. In the context of the increasing number and variety of compounds that may potentially enter the environment, there is a need for efficient and reliable solutions to assess the risks. However, the classic approach of testing with fish or other animals is not sufficient. Due to very high costs, significant time and labour intensity, as well as ethical concerns, in vivo methods need to be replaced by new laboratory-based tools. So far, many models have been developed to estimate the bioconcentration potential of chemicals. However, most of them are not sufficiently reliable and their predictions are based on limited input data, often obtained with doubtful quality. The octanol-water partition coefficient is still often used as the main laboratory tool for estimating bioconcentration. However, according to current knowledge, this method can lead to very unreliable results, both for neutral species and, above all, for ionic compounds. It is therefore essential to start using new, more advanced and credible solutions on a large scale. Over the last years, many in vitro methods have been newly developed or improved, allowing for a much more adequate estimation of the bioconcentration potential. Therefore, the aim of this work was to review the most recent laboratory methods for assessing the bioconcentration potential and to evaluate their applicability in further research.
Collapse
Affiliation(s)
- Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stefan Stolte
- Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Water Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Golius A, Gorb L, Isayev O, Leszczynski J. Diffusion of energetic compounds through biological membrane: Application of classical MD and COSMOmic approximations. J Biomol Struct Dyn 2018; 37:247-255. [PMID: 29301457 DOI: 10.1080/07391102.2018.1424037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Computational studies of the potential biological impact of several energetic compounds were performed. The most commonly used explosives were considered in the present studies: trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2,4-dinitroanisole (DNAN), and 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). The effect of such factors as ionic strength and presence of DMSO in the water solution on the structure of the membrane were considered using the POPC lipid bilayer as an example. Molecular dynamics (MD) simulations revealed that, even on a short-time scale, the influence of those additives is noticeable, and therefore those factors should always be taken into account. The MD and the COSMOmic approaches were used to elucidate the ability of the energetic compounds to penetrate the living cell. Calculated free energy profiles and partitioning coefficients revealed distributions of the compounds in the lipid bilayer as well as an overall ability to enter the cell. MD in this case provides a better representation of the free energy profile, while the COSMOmic approach works better to predict log(Klipw) values. The effect of the functional group was observed for the profiles that were obtained using the MD method.
Collapse
Affiliation(s)
- Anastasiia Golius
- a Department of Chemistry, Physics and Atmospheric Science , Jackson State University , Jackson , Mississippi , USA
| | - Leonid Gorb
- b Institute of Molecular Biology and Genetics , Kyiv , Ukraine
| | - Olexander Isayev
- c Division of Chemical Biology and Medicinal Chemistry , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , North Carolina , USA
| | - Jerzy Leszczynski
- a Department of Chemistry, Physics and Atmospheric Science , Jackson State University , Jackson , Mississippi , USA
| |
Collapse
|
12
|
Dołżonek J, Cho CW, Stepnowski P, Markiewicz M, Thöming J, Stolte S. Membrane partitioning of ionic liquid cations, anions and ion pairs - Estimating the bioconcentration potential of organic ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:378-389. [PMID: 28554027 DOI: 10.1016/j.envpol.2017.04.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 05/26/2023]
Abstract
Recent efforts have been directed towards better understanding the persistency and toxicity of ionic liquids (ILs) in the context of the "benign-by-design" approach, but the assessment of their bioaccumulation potential remains neglected. This paper reports the experimental membrane partitioning of IL cations (imidazolium, pyridinium, pyrrolidinium, phosphonium), anions ([C(CN)3]-, [B(CN)4]-, [FSO2)2N]-, [(C2F5)3PF3]-, [(CF3SO2)2N]-) and their combinations as a measure for estimating the bioconcentration factor (BCF). Both cations and anions can have a strong affinity for phosphatidylcholine bilayers, which is mainly driven by the hydrophobicity of the ions. This affinity is often reflected in the ecotoxicological impact. Our data revealed that the bioconcentration potential of IL cations and anions is much higher than expected from octanol-water-partitioning based estimations that have recently been presented. For some ILs, the membrane-water partition coefficient reached levels corresponding to BCFs that might become relevant in terms of the "B" (bioaccumulation potential) classification under REACH. However, this preliminary estimation need to be confirmed by in vivo bioconcentration studies.
Collapse
Affiliation(s)
- Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; Center for Environmental Research and Sustainable Technology (UFT), Faculty 4, University of Bremen, Leobener Strasse, 28359 Bremen, Germany.
| | - Chul-Woong Cho
- School of Chemical Engineering, Chonbuk National University, Chonbuk, Jeonju 561-756, Republic of Korea
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Marta Markiewicz
- Center for Environmental Research and Sustainable Technology (UFT), Faculty 4, University of Bremen, Leobener Strasse, 28359 Bremen, Germany
| | - Jorg Thöming
- Center for Environmental Research and Sustainable Technology (UFT), Faculty 4, University of Bremen, Leobener Strasse, 28359 Bremen, Germany
| | - Stefan Stolte
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; Center for Environmental Research and Sustainable Technology (UFT), Faculty 4, University of Bremen, Leobener Strasse, 28359 Bremen, Germany.
| |
Collapse
|
13
|
Desai D, Zhang J, Sandholm J, Lehtimäki J, Grönroos T, Tuomela J, Rosenholm JM. Lipid Bilayer-Gated Mesoporous Silica Nanocarriers for Tumor-Targeted Delivery of Zoledronic Acid in Vivo. Mol Pharm 2017; 14:3218-3227. [PMID: 28737925 DOI: 10.1021/acs.molpharmaceut.7b00519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zoledronic acid (ZOL) is a nitrogen-containing bisphosphonate used for the treatment of bone diseases and calcium metabolism. Anticancer activity of ZOL has been established, but its extraskeletal effects are limited due to its rapid uptake and accumulation to bone hydroxyapatite. In this work, we report on the development of tethered lipid bilayer-gated mesoporous silica nanocarriers (MSNs) for the incorporation, retention, and intracellular delivery of ZOL. The in vitro anticancer activity of ZOL-loaded nanocarriers was evaluated by cell viability assay and live-cell imaging. For in vivo delivery, the nanocarriers were tagged with folic acid to boost the affinity for breast cancer cells. Histological examination of the liver revealed no adverse off-target effects stemming from the nanocarriers. Importantly, nonspecific accumulation of ZOL within bone was not observed, which indicated in vivo stability of the tethered lipid bilayers. Further, the intravenously administered ZOL-loaded nanocarriers showed tumor growth suppression in breast cancer xenograft-bearing mice.
Collapse
Affiliation(s)
- Diti Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University , Turku 20520, Finland
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University , Chongqing 400044, China
| | - Jouko Sandholm
- Cell Imaging Core, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , Turku 20520, Finland
| | - Jaakko Lehtimäki
- Institute of Biomedicine, University of Turku , Turku 20520, Finland
| | - Tove Grönroos
- Medicity Research Laboratory, University of Turku , Turku 20520, Finland.,Turku PET Centre, University of Turku , Turku 20520, Finland
| | - Johanna Tuomela
- Institute of Biomedicine, University of Turku , Turku 20520, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University , Turku 20520, Finland
| |
Collapse
|
14
|
Droge STJ, Hermens JLM, Gutsell S, Rabone J, Hodges G. Predicting the phospholipophilicity of monoprotic positively charged amines. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:307-323. [PMID: 28218330 DOI: 10.1039/c6em00615a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The sorption affinity of eighty-six charged amine structures to phospholipid monolayers (log KIAM) was determined using immobilized artificial membrane high-performance liquid chromatography (IAM-HPLC). The amine compounds covered the most prevalent types of polar groups, widely ranged in structural complexity, and included forty-seven pharmaceuticals, as well as several narcotics and pesticides. Amine type specific corrective increments were used to align log KIAM data with bilayer membrane sorption coefficients (KMW(IAM)). Using predicted sorption affinities of neutral amines, we evaluated the difference (scaling factor ΔMW) with the measured log KMW(IAM) for cationic amines. The ΔMW values were highly variable, ranging from -2.37 to +2.3 log units. For each amine type, polar amines showed lower ΔMW values than hydrocarbon based amines (CxHyN+). COSMOmic software was used to directly calculate the partitioning coefficient of ionic structures into a phospholipid bilayer (KDMPC-W,cation), including quaternary ammonium compounds. The resulting root mean square error (RMSE) between log KDMPC-W,cation and log KMW(IAM) was 0.83 for all eighty-six polar amines, and 0.47 for sixty-eight CxHyN+ amines. The polar amines were then split into five groups depending on polarity and structural complexity, and corrective increments for each group were defined to improve COSMOmic predictions. Excluding only the group with sixteen complex amine structures (≥4 polar groups, Mw > 400, including several macrolide antibiotics), the resulting RMSE for corrected KDMPC-W,cation values improved to 0.45 log units for the remaining set of 138 polar and CxHyN+ amines.
Collapse
Affiliation(s)
- S T J Droge
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands
| | - J L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands
| | - S Gutsell
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, UK
| | - J Rabone
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, UK
| | - G Hodges
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, UK
| |
Collapse
|
15
|
Timmer N, Droge STJ. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2890-2898. [PMID: 28187261 PMCID: PMC5343551 DOI: 10.1021/acs.est.6b05662] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (DMW,PBS) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log DMW values above 4. Renewal of the medium resulted in linear sorption isotherms. DMW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed DMW,PBS. Log DMW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the DMW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.
Collapse
|
16
|
Kuepfer L, Niederalt C, Wendl T, Schlender JF, Willmann S, Lippert J, Block M, Eissing T, Teutonico D. Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model. CPT Pharmacometrics Syst Pharmacol 2016; 5:516-531. [PMID: 27653238 PMCID: PMC5080648 DOI: 10.1002/psp4.12134] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of this tutorial is to introduce the fundamental concepts of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling with a special focus on their practical implementation in a typical PBPK model building workflow. To illustrate basic steps in PBPK model building, a PBPK model for ciprofloxacin will be constructed and coupled to a pharmacodynamic model to simulate the antibacterial activity of ciprofloxacin treatment.
Collapse
Affiliation(s)
- L Kuepfer
- Bayer Technology Services, Leverkusen, Germany
| | - C Niederalt
- Bayer Technology Services, Leverkusen, Germany
| | - T Wendl
- Bayer Technology Services, Leverkusen, Germany
| | | | | | - J Lippert
- Bayer HealthCare, Wuppertal, Germany
| | - M Block
- Bayer Technology Services, Leverkusen, Germany
| | - T Eissing
- Bayer Technology Services, Leverkusen, Germany
| | - D Teutonico
- Bayer Technology Services, Leverkusen, Germany.
| |
Collapse
|
17
|
Morandi GD, Zhang K, Wiseman SB, Pereira ADS, Martin JW, Giesy JP. Effect of Lipid Partitioning on Predictions of Acute Toxicity of Oil Sands Process Affected Water to Embryos of Fathead Minnow (Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8858-8866. [PMID: 27420640 DOI: 10.1021/acs.est.6b01481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dissolved organic compounds in oil sands process affected water (OSPW) are known to be responsible for most of its toxicity to aquatic organisms, but the complexity of this mixture prevents use of traditional bottom-up approaches for predicting toxicities of mixtures. Therefore, a top-down approach to predict toxicity of the dissolved organic fraction of OSPW was developed and tested. Accurate masses (i.e., m/z) determined by ultrahigh resolution mass spectrometry in negative and positive ionization modes were used to assign empirical chemical formulas to each chemical species in the mixture. For each chemical species, a predictive measure of lipid accumulation was estimated by stir-bar sorptive extraction (SBSE) to poly(dimethyl)siloxane, or by partitioning to solid-supported lipid membranes (SSLM). A narcosis mode of action was assumed and the target-lipid model was used to estimate potencies of mixtures by assuming strict additivity. A model developed using a combination of the SBSE and SSLM lipid partitioning estimates, whereby the accumulation of chemicals to neutral and polar lipids was explicitly considered, was best for predicting empirical values of LC50 in 96-h acute toxicity tests with embryos of fathead minnow (Pimephales promelas). Model predictions were within 4-fold of observed toxicity for 75% of OSPW samples, and within 8.5-fold for all samples tested, which is comparable to the range of interlaboratory variability for in vivo toxicity testing.
Collapse
Affiliation(s)
- Garrett D Morandi
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
| | - Kun Zhang
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta Canada
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
| | | | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
- Department of Zoology, and Center for Integrative Toxicology, Michigan State University , East Lansing, Michigan 48823, United States
- School of Biological Sciences, University of Hong Kong , Hong Kong, SAR China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| |
Collapse
|
18
|
Droge STJ, Hermens JLM, Rabone J, Gutsell S, Hodges G. Phospholipophilicity of CxHyN(+) amines: chromatographic descriptors and molecular simulations for understanding partitioning into membranes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1011-23. [PMID: 27118065 DOI: 10.1039/c6em00118a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Using immobilized artificial membrane high-performance liquid chromatography (IAM-HPLC) the sorption affinity of 70 charged amine structures to phospholipids was determined. The amines contained only 1 charged moiety and no other polar groups, the rest of the molecule being aliphatic and/or aromatic hydrocarbon groups. We systematically evaluated the influence of the amine type (1°, 2°, 3° amines and quaternary ammonium), alkyl chain branching, phenyl ring positioning, charge positioning (terminal vs. central in the molecule) on the phospholipid-water partitioning coefficient (KPLIPW). These experimental results were compared with quantum-chemistry based three-dimensional (3D) molecular simulations of the partitioning of charged amines, including the most likely solute conformers, using a hydrated phospholipid bilayer in the COSMOmic module of COSMOtherm software. Both IAM-HPLC retention data and the simulations suggest that the molecular orientation of charged amines at the location in the bilayer with the lowest calculated Gibbs free energy exerts a strong influence over the partitioning within the membrane. The most favourable position of charged amines coincides with the region where the phosphate anions in the phospholipid bilayer are most abundant. Hydrocarbon units oriented in this layer are located more towards the aqueous phase and contribute less to the overall membrane affinity than hydrocarbon units extending into the more hydrophobic core of the bilayer. COSMOmic simulations explain most of the trends between the structural differences observed in IAM-HPLC based KPLIPW. For this set of cationic structures, the mean absolute difference between COSMOmic simulations and IAM-HPLC data, accounting only for amine type corrective increments, is 0.31 log units.
Collapse
Affiliation(s)
- S T J Droge
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands.
| | - J L M Hermens
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands.
| | - J Rabone
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, UK
| | - S Gutsell
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, UK
| | - G Hodges
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, UK
| |
Collapse
|
19
|
Golius A, Gorb L, Michalkova Scott A, Hill FC, Shukla M, Goins AB, Johnson DR, Leszczynski J. Experimental and computational study of membrane affinity for selected energetic compounds. CHEMOSPHERE 2016; 148:322-327. [PMID: 26820779 DOI: 10.1016/j.chemosphere.2016.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/14/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
The affinity of various energetic compounds for a biological membrane was investigated using experimental and computational techniques. We measured octanol-water (log(Kow)) and liposome-water (log(Klipw)) partition coefficients for the following chemicals: trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitroanisole (DNAN), 2methoxy-5-nitrophenol (2M5NP), 2,4,6-trinitrobenzene (TNB), and 2,4-dinitrophenol (2,4-DNP). In order to determine log(Klipw) experimentally, we used artificial solid supported lipid liposomes produced under trade mark TRANSIL. Log(Kow) value were predicted with several program packages including the COSMOthermX software. Log(Klipw) were estimated with COSMOmic as implemented in the COSMOthermX program package. In order to verify accuracy of our experimentally obtained results, we performed basic statistical analysis of data taken from the literature. We concluded that compounds considered in this study possess a moderate ability to penetrate into membranes. Comparison of both coefficients has shown that in general, the log(Kow) values are slightly smaller than log(Klipw).
Collapse
Affiliation(s)
- Anastasiia Golius
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | | | | | - Frances C Hill
- U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Manoj Shukla
- U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | | | | | - Jerzy Leszczynski
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA.
| |
Collapse
|
20
|
Grossutti M, Seenath R, Noël JA, Lipkowski J. Infrared and fluorescence spectroscopic studies of a phospholipid bilayer supported by a soft cationic hydrogel scaffold. J Colloid Interface Sci 2016; 473:162-71. [PMID: 27064742 DOI: 10.1016/j.jcis.2016.03.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Polarized attenuated total reflection (ATR-IR) spectroscopy and fluorescence microscopy techniques were used to characterize a 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) membrane supported on porous, cationic hydrogel beads. Fluorescence microscopy images showed that the DPhPC coated the external surface of the hydrogel scaffold. In addition, a fluorescence assay of the emission intensity of the Tb(3+)/dipicolinic acid complex demonstrated that the DPhPC coating acted as a barrier to Tb(3+) efflux from the scaffolded vesicle and successfully sealed the porous hydrogel bead. Fluorescence quenching and ATR-IR spectroscopic measurements revealed that the lipid coating has a bilayer structure. The phytanoyl chains were found to exhibit significant trans-gauche isomerization, characteristic of the fluid liquid phase. However, no lipid lateral mobility was observed by fluorescence recovery after photobleaching (FRAP) measurements. The phosphocholine headgroup was found to be well hydrated and oriented such that the cationic choline group tucked in behind the anionic phosphate group, consistent with an electrostatic attraction between the cationic scaffold and zwitterionic lipid. The absence of lipid lateral mobility may be due to the strength of this attraction.
Collapse
Affiliation(s)
- Michael Grossutti
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ryan Seenath
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John A Noël
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
21
|
Voisin H, Aimé C, Coradin T. Understanding and Tuning Bioinorganic Interfaces for the Design of Bionanocomposites. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Liu Y, Mark Worden R. Size dependent disruption of tethered lipid bilayers by functionalized polystyrene nanoparticles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:67-75. [DOI: 10.1016/j.bbamem.2014.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 12/18/2022]
|
23
|
Bittermann K, Spycher S, Endo S, Pohler L, Huniar U, Goss KU, Klamt A. Prediction of Phospholipid–Water Partition Coefficients of Ionic Organic Chemicals Using the Mechanistic Model COSMOmic. J Phys Chem B 2014; 118:14833-42. [DOI: 10.1021/jp509348a] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Natesan S, Lukacova V, Peng M, Subramaniam R, Lynch S, Wang Z, Tandlich R, Balaz S. Structure-based prediction of drug distribution across the headgroup and core strata of a phospholipid bilayer using surrogate phases. Mol Pharm 2014; 11:3577-95. [PMID: 25179490 PMCID: PMC4186683 DOI: 10.1021/mp5003366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Solvation of drugs in the core (C)
and headgroup (H) strata of
phospholipid bilayers affects their physiological transport rates
and accumulation. These characteristics, especially a complete drug
distribution profile across the bilayer strata, are tedious to obtain
experimentally, to the point that even simplified preferred locations
are only available for a few dozen compounds. Recently, we showed
that the partition coefficient (P) values in the
system of hydrated diacetyl phosphatidylcholine (DAcPC) and n-hexadecane (C16), as surrogates of the H- and C-strata
of the bilayer composed of the most abundant mammalian phospholipid,
PC, agree well with the preferred bilayer location of compounds. High P values are typical for lipophiles accumulating in the
core, and low P values are characteristic of cephalophiles
preferring the headgroups. This simple pattern does not hold for most
compounds, which usually have more even distribution and may also
accumulate at the H/C interface. To model complete distribution, the
correlates of solvation energies are needed for each drug state in
the bilayer: (1) for the H-stratum it is the DAcPC/W P value, calculated as the ratio of the C16/W and C16/DAcPC (W for
water) P values; (2) for the C-stratum, the C16/W P value; (3) for the H/C interface, the P values for all plausible molecular poses are characterized using
the fragment DAcPC/W and C16/W solvation parameters for the parts
of the molecule embedded in the H- and C-strata, respectively. The
correlates, each scaled by two Collander coefficients, were used in
a nonlinear, mass-balance based model of intrabilayer distribution,
which was applied to the easily measurable overall P values of compounds in the DMPC (M = myristoyl) bilayers and monolayers
as the dependent variables. The calibrated model for 107 neutral compounds
explains 94% of experimental variance, achieves similar cross-validation
levels, and agrees well with the nontrivial, experimentally determined
bilayer locations for 27 compounds. The resulting structure-based
prediction system for intrabilayer distribution will facilitate more
realistic modeling of passive transport and drug interactions with
those integral membrane proteins, which have the binding sites located
in the bilayer, such as some enzymes, influx and efflux transporters,
and receptors. If only overall bilayer accumulation is of interest,
the 1-octanol/W P values suffice to model the studied
set.
Collapse
Affiliation(s)
- Senthil Natesan
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences , Vermont Campus, Colchester, Vermont 05446, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Grossutti M, Seenath R, Conlon S, Leitch JJ, Li J, Lipkowski J. Spectroscopic and permeation studies of phospholipid bilayers supported by a soft hydrogel scaffold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10862-10870. [PMID: 25147944 DOI: 10.1021/la502925p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polarized attenuated total reflection infrared (ATR-IR) spectroscopy, fluorescence microscopy, and fluorescence spectroscopy were used to characterize a lipid coating composed of 70 mol % 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 30 mol % cholesterol, supported on a spherical hydrogel scaffold. The fluorescence microscopy images show an association between the lipid coating and the hydrogel scaffold. Fluorescence permeability measurements revealed that the phospholipid coating acts as a permeability barrier, exhibiting characteristics of a lamellar bilayer coating structure. Variable evanescent wave penetration depth ATR-IR spectroscopy studies validated the determination of quantitative molecular orientation information for a lipid coating supported on a spherical scaffold. These polarized ATR-IR studies measured an average DMPC acyl chain tilt angle of ∼21-25°, with respect to the surface normal.
Collapse
Affiliation(s)
- Michael Grossutti
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Campbell SD, Regina KJ, Kharasch ED. Significance of lipid composition in a blood-brain barrier-mimetic PAMPA assay. ACTA ACUST UNITED AC 2013; 19:437-44. [PMID: 23945876 DOI: 10.1177/1087057113497981] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial cells forming the blood-brain barrier limit drug access into the brain, due to tight junctions, membrane drug transporters, and unique lipid composition. Passive permeability, thought to mediate drug access, is typically tested using porcine whole-brain lipid. However, human endothelial cell lipid composition differs. This investigation evaluated the influence of lipid composition on passive permeability across artificial membranes. Permeability of CNS-active drugs across an immobilized lipid membrane was determined using three lipid models: crude extract from whole pig brain, human brain microvessel lipid, and microvessel lipid plus cholesterol. Lipids were immobilized on polyvinylidene difluoride, forming donor and receiver chambers, in which drug concentrations were measured after 2 h. The log of effective permeability was then calculated using the measured concentrations. Permeability of small, neutral compounds was unaffected by lipid composition. Several structurally diverse drugs were highly permeable in porcine whole-brain lipid but one to two orders of magnitude less permeable across human brain endothelial cell lipid. Inclusion of cholesterol had the greatest influence on bulky amphipathic compounds such as glucuronide conjugates. Lipid composition markedly influences passive permeability. This was most apparent for charged or bulky compounds. These results demonstrate the importance of using species-specific lipid models in passive permeability assays.
Collapse
Affiliation(s)
- Scott D Campbell
- 1Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
27
|
Bilayer Composition, Temperature, Speciation Effects and the Role of Bilayer Chain Ordering on Partitioning of Dexamethasone and its 21-Phosphate. Pharm Res 2013; 30:3154-69. [DOI: 10.1007/s11095-013-1143-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
28
|
Esteves F, Moutinho C, Matos C. Correlation between octanol/water and liposome/water distribution coefficients and drug absorption of a set of pharmacologically active compounds. J Liposome Res 2013; 23:83-93. [PMID: 23464986 DOI: 10.3109/08982104.2012.742539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Absorption and consequent therapeutic action are key issues in the development of new drugs by the pharmaceutical industry. In this sense, different models can be used to simulate biological membranes to predict the absorption of a drug. This work compared the octanol/water and the liposome/water models. The parameters used to relate the two models were the distribution coefficients between liposomes and water and octanol and water and the fraction of drug orally absorbed. For this study, 66 drugs were collected from literature sources and divided into four groups according to charge and ionization degree: neutral; positively charged; negatively charged; and partially ionized/zwitterionic. The results show a satisfactory linear correlation between the octanol and liposome systems for the neutral (R²= 0.9324) and partially ionized compounds (R²= 0.9367), contrary to the positive (R²= 0.4684) and negatively charged compounds (R²= 0.1487). In the case of neutral drugs, results were similar in both models because of the high fraction orally absorbed. However, for the charged drugs (positively, negatively, and partially ionized/zwitterionic), the liposomal model has a more-appropriate correlation with absorption than the octanol model. These results show that the neutral compounds only interact with membranes through hydrophobic bonds, whereas charged drugs favor electrostatic interactions established with the liposomes. With this work, we concluded that liposomes may be a more-appropriate biomembrane model than octanol for charged compounds.
Collapse
Affiliation(s)
- Freddy Esteves
- Grupo de Investigação em Bioengenharia e Química Biofarmacêutica, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | | | | |
Collapse
|
29
|
Superior performance of liposomes over enzymatic amplification in a high-throughput assay for myoglobin in human serum. Anal Bioanal Chem 2013; 405:4017-26. [DOI: 10.1007/s00216-013-6807-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 11/28/2022]
|
30
|
Franzen U, Østergaard J. Physico-chemical characterization of liposomes and drug substance–liposome interactions in pharmaceutics using capillary electrophoresis and electrokinetic chromatography. J Chromatogr A 2012; 1267:32-44. [DOI: 10.1016/j.chroma.2012.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 01/19/2023]
|
31
|
Hou WC, Moghadam BY, Corredor C, Westerhoff P, Posner JD. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1869-76. [PMID: 22242832 DOI: 10.1021/es203661k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of nanoparticles with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assessed the affinity of functionalized gold nanoparticles (Au NPs) with sizes from 5 to 100 nm to lipid bilayers by determining the Au NP distribution between aqueous electrolytes and lipid bilayers. The Au NP distribution to lipid bilayers reached an apparent steady state in 24 h with smaller Au NPs distributing onto lipid bilayers more rapidly than larger ones. Au NPs distributed to lipid bilayers to a larger extent at lower pH. Tannic acid-functionalized Au NPs exhibited greater distribution to lipid bilayers than polyvinylpyrrolidone-functionalized Au NPs of the same size. Across the various Au NP sizes, we measure the lipid bilayer-water distribution coefficient (K(lipw) = C(lip)/C(w)) as 450 L/kg lipid, which is independent of dosimetric units. This work suggests that the nanoparticle-cell membrane interaction is dependent on solution chemistry and nanoparticle surface functionality. The K(lipw) value may be used to predict the affinity of spherical Au NPs across a certain size range toward lipid membranes.
Collapse
Affiliation(s)
- Wen-Che Hou
- Mechanical Engineering, Chemical Engineering, University of Washington, Seattle, Washington 98195-2600, United States.
| | | | | | | | | |
Collapse
|
32
|
Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, Part 1: Oral solutions. J Pharm Sci 2011; 100:5324-45. [DOI: 10.1002/jps.22726] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 07/14/2011] [Indexed: 11/07/2022]
|
33
|
Hou WC, Moghadam BY, Westerhoff P, Posner JD. Distribution of fullerene nanomaterials between water and model biological membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11899-11905. [PMID: 21854052 DOI: 10.1021/la2017837] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biological membranes are one of the important interfaces between cells and pollutants. Many polar and hydrophobic chemicals can accumulate within these membranes. For this reason, artificial biological membranes are appealing surrogates to complex organisms for assessing the bioaccumulation potential of engineered nanomaterials (ENMs). To our knowledge, this work presents the first quantitative study on the distribution of fullerene ENMs between lipid bilayers, used as model biological membranes, and water. We evaluated the lipid bilayer-water association coefficients (K(lipw)) of aqueous fullerene aggregates (nC(60)) and fullerol (C(60)(ONa)(x)(OH)(y), x + y = 24). Kinetic studies indicated that fullerol reached apparent equilibrium more rapidly than nC(60) (2 h versus >9 h). Nonlinear isotherms can describe the distribution behavior of nC(60) and fullerol. The lipid bilayer-water distributions of both nC(60) and fullerol were pH-dependent with the accumulation in lipid bilayers increasing systematically as the pH decreased from 8.6 (natural water pH) to 3 (the low end of physiologically relevant pH). This pH dependency varies with the zeta potentials of the ENMs and leads to patterns similar to those previously observed for the lipid bilayer-water distribution behavior of ionizable organic pollutants. The K(lipw) value for nC(60) was larger than that of fullerol at a given pH, indicating a greater propensity for nC(60) to interact with lipid bilayers. For example, at pH 7.4 and an aqueous concentration of 10 mg/L, K(lipw) was 3.5 times greater for nC(60) (log K(lipw) = 2.99) relative to fullerol (log K(lipw) = 2.45). Comparisons with existing aquatic organism bioaccumulation studies suggested that the lipid bilayer-water distribution is a potential method for assessing the bioaccumulation potentials of ENMs.
Collapse
Affiliation(s)
- Wen-Che Hou
- Mechanical Engineering and Chemical Engineering, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | | | |
Collapse
|
34
|
Urbahns K, Woltering M, Nikolic S, Pernerstorfer J, Bischoff H, Dittrich-Wengenroth E, Lustig K. Glycine amides as PPARα agonists. Bioorg Med Chem Lett 2010; 20:3376-9. [DOI: 10.1016/j.bmcl.2010.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/25/2022]
|
35
|
Alakoskela JM, Vitovic P, Kinnunen PKJ. Screening for the drug-phospholipid interaction: correlation to phospholipidosis. ChemMedChem 2009; 4:1224-51. [PMID: 19551800 DOI: 10.1002/cmdc.200900052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phospholipid bilayers represent a complex, anisotropic environment fundamentally different from bulk oil or octanol, for instance. Even "simple" drug association to phospholipid bilayers can only be fully understood if the slab-of-hydrocarbon approach is abandoned and the complex, anisotropic properties of lipid bilayers reflecting the chemical structures and organization of the constituent phospholipids are considered. The interactions of drugs with phospholipids are important in various processes, such as drug absorption, tissue distribution, and subcellular distribution. In addition, drug-lipid interactions may lead to changes in lipid-dependent protein activities, and further, to functional and morphological changes in cells, a prominent example being the phospholipidosis (PLD) induced by cationic amphiphilic drugs. Herein we briefly review drug-lipid interactions in general and the significance of these interactions in PLD in particular. We also focus on a potential causal connection between drug-induced PLD and steatohepatitis, which is induced by some cationic amphiphilic drugs.
Collapse
Affiliation(s)
- Juha-Matti Alakoskela
- Division of Biochemistry, Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland.
| | | | | |
Collapse
|
36
|
Franzen U, Jorgensen L, Larsen C, Heegaard NHH, Østergaard J. Determination of liposome-buffer distribution coefficients of charged drugs by capillary electrophoresis frontal analysis. Electrophoresis 2009; 30:2711-9. [DOI: 10.1002/elps.200900013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Ahmed S, Wunder SL. Effect of high surface curvature on the main phase transition of supported phospholipid bilayers on SiO2 nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:3682-3691. [PMID: 19231878 DOI: 10.1021/la803630m] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Investigation of the physical properties of highly curved membranes is important in biology, for example, in fusion intermediates, and in pharmaceutical or chromatographic applications, where nanoscale features may affect substrate binding. However, vesicle fusion below 40 nm precludes study of this size regime. In this investigation, the effect of high surface curvature on the adsorption and morphology of phosphotidylcholine lipids with alkyl chain lengths of 14 (DMPC), 16 (DPPC), and 18 (DSPC) onto silica (SiO2) nanobeads was investigated by thermogravimetric analysis (TGA), high sensitivity nanocalorimetry, and vibrational spectroscopy. The SiO2 beads ranged in size from 5 to 100 nm. Stable supported bilayers were formed on all bead sizes by vesicle fusion of the parent MLVs at temperatures above the main phase transition temperature (T(m)) of the lipids. A downward shift in T(m), and a broadening (deltaT1/2) of the transition with respect to the parent MLVs, was observed for the 100 nm beads. With decreasing bead size, T(m) first decreased, but then increased. On the smallest bead size, whose dimensions were comparable to those of the adsorbed lipids, T(m)'s were higher than those of the parent MLVs. The increase in T(m) indicated a stiffening of the supported bilayer, which was confirmed by Raman spectroscopic data. Narrowing of the phase transition or the appearance of peak doublets occurred at the smaller bead sizes. The results were consistent with a model in which the high free volume and increased outer headgroup spacing of lipids on highly curved surfaces induced interdigitation in the supported lipids.
Collapse
Affiliation(s)
- Selver Ahmed
- Department of Chemistry 016-00, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
38
|
Henchoz Y, Bard B, Guillarme D, Carrupt PA, Veuthey JL, Martel S. Analytical tools for the physicochemical profiling of drug candidates to predict absorption/distribution. Anal Bioanal Chem 2009; 394:707-29. [DOI: 10.1007/s00216-009-2634-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/16/2009] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
|
39
|
Klamt A, Huniar U, Spycher S, Keldenich J. COSMOmic: a mechanistic approach to the calculation of membrane-water partition coefficients and internal distributions within membranes and micelles. J Phys Chem B 2008; 112:12148-57. [PMID: 18754634 DOI: 10.1021/jp801736k] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new approach for the modeling of molecules in micellar systems and especially in biomembranes, COSMOmic, is presented, and its performance is validated on the example of the partitioning of molecules between water and biological membranes. Starting from quantum chemical calculations of the surfactant, solvent, and solute molecules, and being based on the COSMO-RS method for fluid-phase thermodynamic properties, COSMOmic is essentially free of additional adjustable parameters. The inclusion of an elastic energy correction into the COSMOmic model did not turn out to yield any significant improvement. The novel COSMOmic method allows for the efficient prediction of the distribution of molecules in micellar systems.
Collapse
Affiliation(s)
- Andreas Klamt
- COSMOlogic GmbH&COKG, Burscheider Strasse 515, 51381 Leverkusen, Germany.
| | | | | | | |
Collapse
|
40
|
Grassi M. Membranes in Drug Delivery. HANDBOOK OF MEMBRANE SEPARATIONS 2008:427-471. [DOI: 10.1201/9781420009484.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
41
|
General approach for the calculation of tissue to plasma partition coefficients. Toxicol In Vitro 2007; 22:457-67. [PMID: 17981004 DOI: 10.1016/j.tiv.2007.09.010] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 11/22/2022]
Abstract
A new mechanistic, universal model for the calculation of steady state tissue:plasma partition coefficients (Kt:p) of organic chemicals in mammalian species was developed. The approach allows the estimation of Kt:p-values based on the composition of the tissues in terms of water, neutral lipids, neutral and acidic phospholipids and proteins using the lipophilicity, the binding to phospholipid membranes, the pKa and the unbound fraction in blood plasma as compound specific parameters. Taking explicitly into account the sign and fraction of the charge of the compounds at the physiological pH the method is universally applicable to neutral, acidic, basic or multiply charged substances and has thus a significantly extended applicability compared to previously published approaches. The model was applied to 59 chemically diverse drug compounds for which tissue:plasma partition coefficients are reported in the literature. In total 474 experimentally observed Kt:p values for 12 tissues and the red blood cells were available and could be compared to model results. For 73% of the calculated values a deviation less than 3-fold from the respective observed value was found, proving the validity of the approach.
Collapse
|
42
|
Urbahns K, Härter M, Albers M, Schmidt D, Stelte-Ludwig B, Brüggemeier U, Vaupel A, Keldenich J, Lustig K, Tsujishita H, Gerdes C. Biphenyls as potent vitronectin receptor antagonists. Part 3: Squaric acid amides. Bioorg Med Chem Lett 2007; 17:6151-4. [PMID: 17910915 DOI: 10.1016/j.bmcl.2007.09.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 11/18/2022]
Abstract
Vitronectin receptor (alpha(V)beta(3)) antagonists have been implicated as a possible new treatment of restenosis following balloon angioplasty. In this work we investigate a series of novel arginine mimetic scaffolds leading to new insight of the alpha(V)beta(3)/ligand interaction. Squaric acid amide 10 is a subnanomolar alpha(V)beta(3) antagonist with improved potency on human smooth muscle cell migration.
Collapse
Affiliation(s)
- Klaus Urbahns
- Institute of Medicinal Chemistry, Bayer Healthcare AG, Bayer-Schering Pharma, 42096 Wuppertal, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Troutier AL, Ladavière C. An overview of lipid membrane supported by colloidal particles. Adv Colloid Interface Sci 2007; 133:1-21. [PMID: 17397791 DOI: 10.1016/j.cis.2007.02.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 01/29/2007] [Accepted: 02/19/2007] [Indexed: 12/30/2022]
Abstract
In recent years, original hybrid assemblies composed of a particle core surrounded by a lipid shell emerged as promising entities for various biotechnological applications. Their broadened bio-potentialities, ranging from model membrane systems or biomolecule screening supports, to substance delivery reservoirs or therapeutic vectors, are furthered by their versatility of composition due to the possible wide variation in the particle nature and size, as well as in the lipid formulation. The synthesis, the characteristics, and the uses of these Lipid/Particle assemblies encountered in the literature so far are reviewed, and classified according to the spherical core size in order to highlight general trends. Moreover, several criteria are particularly discussed: i) the interactions involved between the particles and the lipids, and implicitly the assembly elaboration mechanism, ii) the most suited techniques for an accurate characterization of the entities from structural and physicochemical points of view, and iii) the remarkable properties of the solid-supported lipid membrane obtained.
Collapse
Affiliation(s)
- Anne-Lise Troutier
- Laboratoire des Matériaux Inorganiques, UMR 6002-CNRS, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière Cedex, France
| | | |
Collapse
|
44
|
Vossen M, Sevestre M, Niederalt C, Jang IJ, Willmann S, Edginton AN. Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models. Theor Biol Med Model 2007; 4:13. [PMID: 17386084 PMCID: PMC1853074 DOI: 10.1186/1742-4682-4-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 03/26/2007] [Indexed: 11/29/2022] Open
Abstract
Background Drug-drug interactions resulting from the inhibition of an enzymatic process can have serious implications for clinical drug therapy. Quantification of the drugs internal exposure increase upon administration with an inhibitor requires understanding to avoid the drug reaching toxic thresholds. In this study, we aim to predict the effect of the CYP3A4 inhibitors, itraconazole (ITZ) and its primary metabolite, hydroxyitraconazole (OH-ITZ) on the pharmacokinetics of the anesthetic, midazolam (MDZ) and its metabolites, 1' hydroxymidazolam (1OH-MDZ) and 1' hydroxymidazolam glucuronide (1OH-MDZ-Glu) using mechanistic whole body physiologically-based pharmacokinetic simulation models. The model is build on MDZ, 1OH-MDZ and 1OH-MDZ-Glu plasma concentration time data experimentally determined in 19 CYP3A5 genotyped adult male individuals, who received MDZ intravenously in a basal state. The model is then used to predict MDZ, 1OH-MDZ and 1OH-MDZ-Glu concentrations in an CYP3A-inhibited state following ITZ administration. Results For the basal state model, three linked WB-PBPK models (MDZ, 1OH-MDZ, 1OH-MDZ-Glu) for each individual were elimination optimized that resulted in MDZ and metabolite plasma concentration time curves that matched individual observed clinical data. In vivo Km and Vmax optimized values for MDZ hydroxylation were similar to literature based in vitro measures. With the addition of the ITZ/OH-ITZ model to each individual coupled MDZ + metabolite model, the plasma concentration time curves were predicted to greatly increase the exposure of MDZ as well as to both increase exposure and significantly alter the plasma concentration time curves of the MDZ metabolites in comparison to the basal state curves. As compared to the observed clinical data, the inhibited state curves were generally well described although the simulated concentrations tended to exceed the experimental data between approximately 6 to 12 hours following MDZ administration. This deviations appeared to be greater in the CYP3A5 *1/*1 and CYP3A5 *1/*3 group than in the CYP3A5 *3/*3 group and was potentially the result of assuming that ITZ/OH-ITZ inhibits both CYP3A4 and CYP3A5, whereas in vitro inhibition is due to CYP3A4. Conclusion This study represents the first attempt to dynamically simulate metabolic enzymatic drug-drug interactions via coupled WB-PBPK models. The workflow described herein, basal state optimization followed by inhibition prediction, is novel and will provide a basis for the development of other inhibitor models that can be used to guide, interpret, and potentially replace clinical drug-drug interaction trials.
Collapse
Affiliation(s)
- Michaela Vossen
- Competence Center Systems Biology, Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| | - Michael Sevestre
- Competence Center Computational Solutions, Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| | - Christoph Niederalt
- Competence Center Systems Biology, Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| | - In-Jin Jang
- Department of Pharmacology and Clinical Pharmacology Unit, Seoul National University College of Medicine and Hospital, Seoul, South Korea
| | - Stefan Willmann
- Competence Center Systems Biology, Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| | - Andrea N Edginton
- Competence Center Systems Biology, Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| |
Collapse
|
45
|
Willmann S, Edginton AN, Dressman JB. Development and Validation of a Physiology-based Model for the Prediction of Oral Absorption in Monkeys. Pharm Res 2007; 24:1275-82. [PMID: 17373575 DOI: 10.1007/s11095-007-9247-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE The development and validation of a physiology-based absorption model for orally administered drugs in monkeys is described. MATERIALS AND METHODS Physiological parameters affecting intestinal transit and absorption of an orally administered drug in monkeys have been collected from the literature and implemented in a physiological model for passive absorption previously developed for rats and humans. Predicted fractions of dose absorbed have been compared to experimentally observed values for a set of N = 37 chemically diverse drugs. A sensitivity analysis was performed to assess the influence of various physiological model parameters on the predicted fraction dose absorbed. RESULTS A Pearson's correlation coefficient of 0.94 (95% confidence interval: [0.88, 0.97]; p < 0.0001) between the predicted and observed fraction dose absorbed in monkeys was obtained for compounds undergoing non-solubility limited passive absorption (N = 29). The sensitivity analysis revealed that the predictions of fractions dose absorbed in monkeys are very sensitive with respect to inter-individual variations of the small intestinal transit time. CONCLUSIONS The model is well suited to predict the fraction dose absorbed of passively absorbed compounds after oral administration and to assess the influence of inter-individual physiological variability on oral absorption in monkeys.
Collapse
Affiliation(s)
- Stefan Willmann
- Bayer Technology Services GmbH, Process Technology/Systems Biology, Building E41, Leverkusen, Germany.
| | | | | |
Collapse
|
46
|
Wang Y, Sun J, Liu H, Wang Y, He Z. Prediction of Human Drug Absorption Using Liposome Electrokinetic Chromatography. Chromatographia 2007. [DOI: 10.1365/s10337-006-0140-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Willmann S, Lippert J, Schmitt W. From physicochemistry to absorption and distribution: predictive mechanistic modelling and computational tools. Expert Opin Drug Metab Toxicol 2006; 1:159-68. [PMID: 16922658 DOI: 10.1517/17425255.1.1.159] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During the past decade, the pharmaceutical industry has invested considerably in technologies that have the potential to increase throughput in discovery projects. For large compound libraries, efficacy, availability and safety should be determined as early and as reliably as possible. The latest step in this effort is the implementation of in silico methods that combine and interpret (sometimes replace) experimental in vitro data. For ADME properties (absorption, distribution, metabolism and excretion) rational predictive models have been developed that rely on basic physicochemical input data and on mechanistic descriptions of the underlying biophysical and biochemical processes. Some of these models have become commercially available (e.g., GastroPlus: Simulations Plus; PK-Map, PK-Sim: Bayer Technology Services). The contribution of such models to an optimised research and development process will be discussed.
Collapse
Affiliation(s)
- Stefan Willmann
- Bayer Technology Services GmbH, Process Technology/Biophysics, 42096 Wuppertal, Germany.
| | | | | |
Collapse
|
48
|
Carrozzino JM, Khaledi MG. Interaction of Basic Drugs with Lipid Bilayers Using Liposome Electrokinetic Chromatography. Pharm Res 2004; 21:2327-35. [PMID: 15648265 DOI: 10.1007/s11095-004-7685-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE This study explores factors influencing the interactions of positively charged drugs with liposomes using liposome electrokinetic chromatography (LEKC) for the development of LEKC as a rapid screening method for drug-membrane interactions. METHODS Liposomes were prepared and the retention factors were measured for a series of basic drugs under a variety of buffer conditions, including various buffer types, concentrations, and ionic strengths as well as using different phospholipids and liposome compositions. LEKC retention is compared with octanol-water partitioning. RESULTS The interaction of ionizable solutes with liposomes decreased with increasing ionic strength of the aqueous buffer. The type of buffer also influences positively charged drug partitioning into liposomes. Varying the surface charge on the liposomes by the selection of phospholipids influences the electrostatic interactions, causing an increase in retention with increasing percentages of anionic lipids in the membrane. Poor correlations are observed between LEKC retention and octanol-water partitioning. CONCLUSIONS These studies demonstrate the overall buffer ionic strength at a given pH is more important than buffer type and concentration. The interaction of positively charged drugs with charged lipid bilayer membranes is selectively influenced by the pKa of the drug. Liposomes are more biologically relevant in vitro models for cell membranes than octanol, and LEKC provides a unique combination of advantages for rapid screening of drug-membrane interactions.
Collapse
Affiliation(s)
- Jennifer M Carrozzino
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
49
|
Hartmann T, Schmitt J. Lipophilicity - beyond octanol/water: a short comparison of modern technologies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2004; 1:431-439. [PMID: 24981624 DOI: 10.1016/j.ddtec.2004.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sorting out new chemical entities (NCE) with inappropriate absorption, distribution, metabolism, excretion (ADME) behaviour at an early stage of drug discovery and development is a major challenge in pharmaceutical profiling. An accepted strategy to predict absorption is the measurement of the permeability of a drug candidate. One step earlier the lipophilicity of a compound is determined, which is directly related to permeability and fraction absorbed. Here, we compare today's state of the art technologies for a fast measurement of lipophilicity.:
Collapse
Affiliation(s)
- Thorsten Hartmann
- NIMBUS Biotechnologie GmbH, Eilenburger Str. 4, 04317 Leipzig, Germany.
| | - Johannes Schmitt
- NIMBUS Biotechnologie GmbH, Eilenburger Str. 4, 04317 Leipzig, Germany
| |
Collapse
|
50
|
Schuhmacher J, Kohlsdorfer C, Bühner K, Brandenburger T, Kruk R. High-throughput determination of the free fraction of drugs strongly bound to plasma proteins. J Pharm Sci 2004; 93:816-30. [PMID: 14999720 DOI: 10.1002/jps.10588] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Quantification of protein binding of new chemical entities is an important early screening step during drug discovery and is of fundamental interest for the estimation of safety margins during drug development. In this publication, we describe the development of a new high-throughput assay for the determination of the free drug fraction in plasma (fu). The new technique is an enhancement of the previously published erythrocytes partition method. It is based on the distribution of drugs between plasma water, plasma proteins, and solid-supported lipid membranes (Transil). The execution of protein binding studies by partitioning is dramatically simplified by substituting erythrocytes with commercially available Transil beads, and makes the method particularly suitable for high-throughput studies. Eight Bayer compounds from different compound classes covering a wide range of lipophilicities (log P = 1.9-5.6) and fu values (0.018-35%) were selected for validation of the assay. The results obtained by the new method and by either the erythrocytes partitioning technique or more conventional methods (ultrafiltration and equilibrium dialysis) are identical, confirming that the new method produces valid results even for drugs that are strongly bound to plasma proteins. Precision and accuracy of the data in the cases of very low and high fu values are comparable, indicating that the method is especially suited for highly lipophilic drugs that tend to adsorb to surfaces compared with other methods, like ultrafiltration or equilibrium dialysis, that may produce biased data. The method is also useful for the determination of binding parameters and the pH dependence of fu. In summary, this assay is well suited for high-throughput determination of protein binding during drug discovery and for extended protein binding studies during drug development.
Collapse
Affiliation(s)
- Joachim Schuhmacher
- Department of Preclinical Pharmacokinetics, Bayer AG, Building 468, Aprather Weg 18 A, 42096 Wuppertal, Federal Republic of Germany.
| | | | | | | | | |
Collapse
|