1
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2024:S0022-202X(24)01919-5. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
2
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
3
|
Doepner M, Lee I, Natale CA, Brathwaite R, Venkat S, Kim SH, Wei Y, Vakoc CR, Capell BC, Katzenellenbogen JA, Katzenellenbogen BS, Feigin ME, Ridky TW. Endogenous DOPA inhibits melanoma through suppression of CHRM1 signaling. SCIENCE ADVANCES 2022; 8:eabn4007. [PMID: 36054350 PMCID: PMC10848963 DOI: 10.1126/sciadv.abn4007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/14/2022] [Indexed: 05/18/2023]
Abstract
Melanoma risk is 30 times higher in people with lightly pigmented skin versus darkly pigmented skin. Using primary human melanocytes representing the full human skin pigment continuum and preclinical melanoma models, we show that cell-intrinsic differences between dark and light melanocytes regulate melanocyte proliferative capacity and susceptibility to malignant transformation, independent of melanin and ultraviolet exposure. These differences result from dihydroxyphenylalanine (DOPA), a melanin precursor synthesized at higher levels in melanocytes from darkly pigmented skin. We used both high-throughput pharmacologic and genetic in vivo CRISPR screens to determine that DOPA limits melanocyte and melanoma cell proliferation by inhibiting the muscarinic acetylcholine receptor M1 (CHRM1) signaling. Pharmacologic CHRM1 antagonism in melanoma leads to depletion of c-Myc and FOXM1, both of which are proliferation drivers associated with aggressive melanoma. In preclinical mouse melanoma models, pharmacologic inhibition of CHRM1 or FOXM1 inhibited tumor growth. CHRM1 and FOXM1 may be new therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Miriam Doepner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inyoung Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Natale
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roderick Brathwaite
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sung Hoon Kim
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Brian C. Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Katzenellenbogen
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benita S. Katzenellenbogen
- Departments of Molecular and Integrative Physiology and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Todd W. Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Chernyavsky A, Khylynskyi MM, Patel KG, Grando SA. Chronic exposure to the anti-M3 muscarinic acetylcholine receptor autoantibody in pemphigus vulgaris contributes to disease pathophysiology. J Biol Chem 2022; 298:101687. [PMID: 35143842 PMCID: PMC8897697 DOI: 10.1016/j.jbc.2022.101687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/31/2022] Open
Abstract
Pemphigus vulgaris (PV) is a potentially lethal autoimmune mucocutaneous blistering disease characterized by binding of IgG autoantibodies (AuAbs) to keratinocytes (KCs). In addition to AuAbs against adhesion molecules desmogleins 1 and 3, PV patients also produce an AuAb against the M3 muscarinic acetylcholine (ACh) receptor (M3AR) that plays an important role in regulation of vital functions of KCs upon binding endogenous ACh. This anti-M3AR AuAb is pathogenic because its adsorption eliminates the acantholytic activity of PV IgG; however, the molecular mechanism of its action is unclear. In the present study, we sought to elucidate the mode of immunopharmacologic action of the anti-M3AR AuAb in PV. Short-term exposures of cultured KCs to PV IgG or the muscarinic agonist muscarine both induced changes in the expression of keratins 5 and 10, consistent with the inhibition of proliferation and upregulated differentiation and in keeping with the biological function of M3AR. In contrast, long-term incubations induced a keratin expression pattern consistent with upregulated proliferation and decreased differentiation, in keeping with the hyperproliferative state of KCs in PV. This change could result from desensitization of the M3AR, representing the net antagonist-like effect of the AuAb. Therefore, chronic exposure of KCs to the anti-M3AR AuAb interrupts the physiological regulation of KCs by endogenous ACh, contributing to the onset of acantholysis. Since cholinergic agents have already demonstrated antiacantholytic activity in a mouse model of PV and in PV patients, our results have translational significance and can guide future development of therapies for PV patients employing cholinergic drugs.
Collapse
Affiliation(s)
- Alex Chernyavsky
- Department of Dermatology, University of California Irvine, Irvine, California, USA
| | | | - Krupa G Patel
- Department of Neurology, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Sergei A Grando
- Department of Dermatology, University of California Irvine, Irvine, California, USA; Department of Biological Chemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
5
|
Martín-Escura C, Medina-Peris A, Spear LA, de la Torre Martínez R, Olivos-Oré LA, Barahona MV, González-Rodríguez S, Fernández-Ballester G, Fernández-Carvajal A, Artalejo AR, Ferrer-Montiel A, González-Muñiz R. β-Lactam TRPM8 Antagonist RGM8-51 Displays Antinociceptive Activity in Different Animal Models. Int J Mol Sci 2022; 23:ijms23052692. [PMID: 35269831 PMCID: PMC8910920 DOI: 10.3390/ijms23052692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Transient receptor potential melastatin subtype 8 (TRPM8) is a cation channel extensively expressed in sensory neurons and implicated in different painful states. However, the effectiveness of TRPM8 modulators for pain relief is still a matter of discussion, since structurally diverse modulators lead to different results, depending on the animal pain model. In this work, we described the antinociceptive activity of a β–lactam derivative, RGM8-51, showing good TRPM8 antagonist activity, and selectivity against related thermoTRP channels and other pain-mediating receptors. In primary cultures of rat dorsal root ganglion (DRG) neurons, RGM8-51 potently reduced menthol-evoked neuronal firing without affecting the major ion conductances responsible for action potential generation. This compound has in vivo antinociceptive activity in response to cold, in a mouse model of oxaliplatin-induced peripheral neuropathy. In addition, it reduces cold, mechanical and heat hypersensitivity in a rat model of neuropathic pain arising after chronic constriction of the sciatic nerve. Furthermore, RGM8-51 exhibits mechanical hypersensitivity-relieving activity, in a mouse model of NTG-induced hyperesthesia. Taken together, these preclinical results substantiate that this TRPM8 antagonist is a promising pharmacological tool to study TRPM8-related diseases.
Collapse
Affiliation(s)
- Cristina Martín-Escura
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (C.M.-E.); (L.A.S.)
- Alodia Farmacéutica SL, 28108 Alcobendas, Spain
| | - Alicia Medina-Peris
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Luke A. Spear
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (C.M.-E.); (L.A.S.)
| | - Roberto de la Torre Martínez
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Luis A. Olivos-Oré
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.A.O.-O.); (M.V.B.); (A.R.A.)
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Victoria Barahona
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.A.O.-O.); (M.V.B.); (A.R.A.)
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sara González-Rodríguez
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Gregorio Fernández-Ballester
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Asia Fernández-Carvajal
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
- Correspondence: (A.F.-C.); (R.G.-M.); Tel.: +00-34-258-74-34 (R.G.-M.)
| | - Antonio R. Artalejo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.A.O.-O.); (M.V.B.); (A.R.A.)
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio Ferrer-Montiel
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Rosario González-Muñiz
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (C.M.-E.); (L.A.S.)
- Correspondence: (A.F.-C.); (R.G.-M.); Tel.: +00-34-258-74-34 (R.G.-M.)
| |
Collapse
|
6
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
7
|
Said ER, Nagui NAER, Rashed LA, Mostafa WZ. Oxidative stress and the cholinergic system in non-segmental vitiligo: Effect of narrow band ultraviolet b. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:306-312. [PMID: 33404131 DOI: 10.1111/phpp.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Despite exhaustive research, melanocyte disappearance and the evolution of vitiligo remain enigmatic, and although multi-factorial, oxidative stress appears as a major player. The role of cutaneous cholinergic system in vitiligo pathogenesis has also been reported in some studies. OBJECTIVE To evaluate and correlate the influence of phototherapy on cutaneous cholinergic system and oxidative stress in vitiligo. METHODS Acetyl choline (ACh), its receptors; nicotinic (nAChR) and muscarinic (mAChR); acetylcholine esterase (AChE) and H2 O2 levels were estimated in de-pigmented and re-pigmented lesions of 30 vitiligo patients before and after NB-UVB phototherapy and in 30 controls. ACh and H2 O2 levels were measured by colorimetry. AChE and acetylcholine receptors expression were measured by quantitative real-time PCR. RESULTS Mean ACh and H2 O2 levels were significantly higher in vitiligo lesions before NB-UVB (P < .001) whereas AChE enzyme level was significantly lower (P < .001) compared to both re-pigmented and control skin. Additionally, mean mAChR was significantly higher and mean nAChR was significantly lower in vitiligo lesions before NB-UVB versus controls and re-pigmented skin (P < .001). Also, H2 O2 and AChE showed negative correlation whereas ACh and mAChR showed significant positive correlation. Although all the studied parameters showed significant changes after treatment and subsequent re-pigmentation, a significant difference continued to exist between all vitiligo skin and controls. CONCLUSION Cholinergic system is strongly involved in vitiligo pathogenesis through H2 O2 inhibition of AChE which could be reversed by NB-UVB. Moreover, the strong activation of mAChRs may reflect genetic and/or acquired errors, direct up-regulation by ACh and H2 O2 or both.
Collapse
Affiliation(s)
- Eman Raafat Said
- Dermatology Department, Faculty of medicine, Cairo University, Cairo, Egypt
| | | | - Laila Ahmed Rashed
- Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
8
|
Multiple Roles for Cholinergic Signaling from the Perspective of Stem Cell Function. Int J Mol Sci 2021; 22:ijms22020666. [PMID: 33440882 PMCID: PMC7827396 DOI: 10.3390/ijms22020666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/11/2023] Open
Abstract
Stem cells have extensive proliferative potential and the ability to differentiate into one or more mature cell types. The mechanisms by which stem cells accomplish self-renewal provide fundamental insight into the origin and design of multicellular organisms. These pathways allow the repair of damage and extend organismal life beyond that of component cells, and they probably preceded the evolution of complex metazoans. Understanding the true nature of stem cells can only come from discovering how they are regulated. The concept that stem cells are controlled by particular microenvironments, also known as niches, has been widely accepted. Technical advances now allow characterization of the zones that maintain and control stem cell activity in several organs, including the brain, skin, and gut. Cholinergic neurons release acetylcholine (ACh) that mediates chemical transmission via ACh receptors such as nicotinic and muscarinic receptors. Although the cholinergic system is composed of organized nerve cells, the system is also involved in mammalian non-neuronal cells, including stem cells, embryonic stem cells, epithelial cells, and endothelial cells. Thus, cholinergic signaling plays a pivotal role in controlling their behaviors. Studies regarding this signal are beginning to unify our understanding of stem cell regulation at the cellular and molecular levels, and they are expected to advance efforts to control stem cells therapeutically. The present article reviews recent findings about cholinergic signaling that is essential to control stem cell function in a cholinergic niche.
Collapse
|
9
|
Functional Characterization of Cholinergic Receptors in Melanoma Cells. Cancers (Basel) 2020; 12:cancers12113141. [PMID: 33120929 PMCID: PMC7693616 DOI: 10.3390/cancers12113141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
In the last two decades, the scientific community has come to terms with the importance of non-neural acetylcholine in light of its multiple biological and pathological functions within and outside the nervous system. Apart from its well-known physiological role both in the central and peripheral nervous systems, in the autonomic nervous system, and in the neuromuscular junction, the expression of the acetylcholine receptors has been detected in different peripheral organs. This evidence has contributed to highlight new roles for acetylcholine in various biological processes, (e.g., cell viability, proliferation, differentiation, migration, secretion). In addition, growing evidence in recent years has also demonstrated new roles for acetylcholine and its receptors in cancer, where they are involved in the modulation of cell proliferation, apoptosis, angiogenesis, and epithelial mesenchymal transition. In this review, we describe the functional characterization of acetylcholine receptors in different tumor types, placing attention on melanoma. The latest set of data accessible through literature, albeit limited, highlights how cholinergic receptors both of muscarinic and nicotinic type can play a relevant role in the migratory processes of melanoma cells, suggesting their possible involvement in invasion and metastasis.
Collapse
|
10
|
Belote RL, Simon SM. Ca2+ transients in melanocyte dendrites and dendritic spine-like structures evoked by cell-to-cell signaling. J Cell Biol 2019; 219:132739. [PMID: 31821412 PMCID: PMC7039208 DOI: 10.1083/jcb.201902014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/19/2019] [Accepted: 10/25/2019] [Indexed: 01/21/2023] Open
Abstract
Melanocytes are the neural crest-derived pigment-producing cells of the skin that possess dendrites. Yet little is known about how melanocyte dendrites receive and process information from neighboring cells. Here, using a co-culture system to interrogate the interaction between melanocyte dendrites and keratinocytes, we show that signals from neighboring keratinocytes trigger local compartmentalized Ca2+ transients within the melanocyte dendrites. The localized dendritic Ca2+ transients could be triggered by two keratinocyte-secreted factors, endothelin and acetylcholine, which acted via specific melanocyte receptors. Furthermore, compartmentalized Ca2+ transients were also generated on discrete dendritic spine-like structures on the melanocytes. These spines were also present in intact human skin. Our findings provide insights into how melanocyte dendrites communicate with neighboring cells and offer a new model system for studying compartmentalized signaling in dendritic structures.
Collapse
|
11
|
Wu Q, Fung AHY, Xu ML, Poon K, Liu EYL, Kong XP, Yao P, Xiong QP, Dong TTX, Tsim KWK. Microphthalmia-associated transcription factor up-regulates acetylcholinesterase expression during melanogenesis of murine melanoma cells. J Biol Chem 2018; 293:14417-14428. [PMID: 30076217 DOI: 10.1074/jbc.ra118.003729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/29/2018] [Indexed: 11/06/2022] Open
Abstract
Acetylcholinesterase (AChE) hydrolyzes the neurotransmitter acetylcholine in neurons. However, AChE has been proposed to also have nonneuronal functions in different cell types. Here, we report that AChE is expressed in melanocytes and melanoma cells, and that the tetrameric (G4) form is the major AChE isoform in these cells. During melanogenesis of B16F10 murine melanoma cells, AChE levels decreased markedly. The differentiation of melanoma cells led to (i) an increase in melanin and tyrosinase, (ii) a change in intracellular cAMP levels, and (iii) a decrease in microphthalmia-associated transcription factor (MITF). We hypothesized that the regulation of AChE during melanogenesis is mediated by two transcription factors: cAMP-response element-binding protein (CREB) and MITF. In melanoma cells, exogenous cAMP suppressed AChE expression and the promoter activity of the ACHE gene. This suppression was mediated by a cAMP-response element (CRE) located on the ACHE promoter, as mutation of CRE relieved the suppression. In melanoma, MITF overexpression induced ACHE transcription, and mutation of an E-box site in human ACHE promoter blocked this induction. An AChE inhibitor greatly enhanced acetylcholine-mediated responses of melanogenic gene expression levels in vitro; however, this enhancement was not observed in the presence of agonists of the muscarinic acetylcholine receptor. These results indicate that ACHE transcription is regulated by cAMP-dependent signaling during melanogenesis of B16F10 cells, and the effect of this enzyme on melanin production suggests that it has a potential role in skin pigmentation.
Collapse
Affiliation(s)
- Qiyun Wu
- From the Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China and.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Aster H Y Fung
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Miranda L Xu
- From the Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China and.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kaman Poon
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Etta Y L Liu
- From the Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China and.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiang P Kong
- From the Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China and
| | - Ping Yao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qing P Xiong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina T X Dong
- From the Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China and.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Karl W K Tsim
- From the Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China and .,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
12
|
Gizzi C, Mohamed-Noriega J, Murdoch I. A Case of Bilateral Pigment Dispersion Syndrome Following Many Years of Uninterrupted Treatment With Atropine 1% for Bilateral Congenital Cataracts. J Glaucoma 2017; 26:e225-e228. [PMID: 28671922 DOI: 10.1097/ijg.0000000000000717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Describe an unusual case of bilateral pigment dispersion syndrome (PDS) following years of uninterrupted treatment with atropine 1% for bilateral congenital cataracts, speculate on potential mechanisms leading to this condition. DESIGN This is a case report. CASE A 45-year-old white patient on long-term treatment with atropine 1% ointment since his infancy for bilateral congenital cataracts developed PDS with secondary ocular hypertension. RESULTS The patient showed all the hallmarks of PDS with secondary ocular hypertension. An anterior segment Swept-Source optical coherence tomography was obtained to review the iris profile. The patient showed good pressure response to topical prostaglandin therapy. CONCLUSIONS This is the second case report of PDS in a patient with chronic use of topical atropine. The proposed mechanisms for pigment dispersion are discussed and the possibility raised of dispersion being a potential side effect of the drug.
Collapse
Affiliation(s)
- Corrado Gizzi
- *Moorfields Eye Hospital, NHS Trust ‡NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK †DIBINEM, University of Bologna, Bologna, Italy §Department of Ophthalmology, University Hospital, UANL, Monterrey, México
| | | | | |
Collapse
|
13
|
Dobrovinskaya O, Valencia-Cruz G, Castro-Sánchez L, Bonales-Alatorre EO, Liñan-Rico L, Pottosin I. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia. Front Pharmacol 2016; 7:290. [PMID: 27630569 PMCID: PMC5005329 DOI: 10.3389/fphar.2016.00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/18/2016] [Indexed: 12/17/2022] Open
Abstract
Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.
Collapse
Affiliation(s)
- Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, Universidad de ColimaColima, México; Consejo Nacional de Ciencia y TecnologíaMéxico City, México
| | | | - Liliana Liñan-Rico
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| |
Collapse
|
14
|
Iyengar B. The melanocyte photosensory system in the human skin. SPRINGERPLUS 2013; 2:158. [PMID: 23807911 PMCID: PMC3685707 DOI: 10.1186/2193-1801-2-158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/21/2013] [Indexed: 11/18/2022]
Abstract
The pigment cells form the largest population of neural crest cells to migrate into the epidermis and hair follicle along each dermatomic area from the neural folds. The melanopsin system responsible for photoentrainment, was isolated from the photosensitive dermal melanophores of frogs Xenopus laevis responding to light. Melanocytes form a photoresponsive network which reads the environmental seasonal variations in the light cycles in the same manner. The present work was undertaken to study the organization of this system by: I. Experimental assessment of photoresponse and II. Evidence of an organized system of photoreception in the skin. Melanocytes, in whole skin organ cultures and epidermal strips, from margin of vitiligo in G2 phase show prominent dendricity, and express pigment, biogenic amines and hormones on UV exposure. The photoresponse depends on the photosensitive enzymes NAT/HIOMT and dopaoxidase. Melanocytes interact with adjacent keratinocytes, dermal capillaries, and nerve endings. The melanocyte network reads the diurnal and seasonal photophase by the melatonin/serotonin switch like the pineal. Sleep disorders and winter depression are corrected by phototherapy utilising this mechanism. Melanocytes showing photoactivity, aplasia, hypoplasia and hyperplasia, and interactive keratinocytes occupy the trigeminal, brachial and lumbosacral dermatomes, zones of high embryonic induction, forming an ectodermal placodal system. Melanin units and hair follicles serve as photoreceptors. Migration of active melanocytes to defined areas is evident in pigment patterns in guinea pigs. This study identifies defined photoreceptor melanocyte/epidermal domains which read the seasonal photophase and control the sleep waking cycle in response to the environmental light. I. Whole skin organ cultures, and epidermal strips from margin of vitiligo in G2 phase are exposed to UV and IR to study sequential and dose response of marginal melanocytes, using histochemistry, immunohistochemistry to assess pigment, biogenic amines and hormones on UV exposure. II. Dermatomic Distributions: Detailed maps of melanocyte photoresponse in 356 biopsies, lesions in 297 vitiligo, 100 melanosis, 165 melanomas 142 leprosy and 442 basal cell/keratinocytes lesions were assessed for patterns of dermatomic distribution. Embryonal melanocyte migration along dermatomes was assessed in 285 guinea pigs from an inbred colony having black, brown and white patches.
Collapse
Affiliation(s)
- Bhanu Iyengar
- Pigment Cell Centre, Iyengar Farm, Brijwasan Road, PO Kapshera, New Delhi, 110037 India
| |
Collapse
|
15
|
Ockenga W, Kühne S, Bocksberger S, Banning A, Tikkanen R. Non-neuronal functions of the m2 muscarinic acetylcholine receptor. Genes (Basel) 2013; 4:171-97. [PMID: 24705159 PMCID: PMC3899973 DOI: 10.3390/genes4020171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/10/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022] Open
Abstract
Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Wymke Ockenga
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Sina Kühne
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Simone Bocksberger
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| |
Collapse
|
16
|
Abstract
Many epithelial and endothelial cells express a cholinergic autocrine loop in which acetylcholine acts as a growth factor to stimulate cell growth. Cancers derived from these tissues similarly express a cholinergic autocrine loop and ACh secreted by the cancer or neighboring cells interacts with M3 muscarinic receptors expressed on the cancer cells to stimulate tumor growth. Primary proliferative pathways involve MAPK and Akt activation. The ability of muscarinic agonists to stimulate, and M3 antagonists to inhibit tumor growth has clearly been demonstrated for lung and colon cancer. The ability of muscarinic agonists to stimulate growth has been shown for melanoma, pancreatic, breast, ovarian, prostate and brain cancers, suggesting that M3 antagonists will also inhibit growth of these tumors as well. As yet no clinical trials have proven the efficacy of M3 antagonists as cancer therapeutics, though the widespread clinical use and low toxicity of M3 antagonists support the potential role of these drugs as adjuvants to current cancer therapies.
Collapse
Affiliation(s)
- Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
17
|
Ali SA, Meitei KV. On the action and mechanism of withaferin-A from Withania somnifera, a novel and potent melanin dispersing agent in frog melanophores. J Recept Signal Transduct Res 2011; 31:359-66. [PMID: 21848494 DOI: 10.3109/10799893.2011.602414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present work was carried out to determine the effects of lyophilized root extracts of Withania somnifera along with pure withaferin-A, on the isolated skin melanophores of frog, Rana tigerina which are disguised type of smooth muscle cells and offer excellent in vitro opportunities for studying the effects of pharmacological and pharmaceutical agents. The lyophilized extract of W. somnifera and its active ingredient withaferin-A induced powerful dose-dependent physiologically significant melanin dispersal effects in the isolated skin melanophores of R. tigerina, which were completely blocked by atropine as well as hyoscine. The per se melanin dispersal effects of lyophilized extracts of W. somnifera and its active ingredient withaferin-A got highly potentiated by neostigmine. It appears that the melanin dispersal effects of the extracts of W. somnifera and withaferin-A is mediated by cholino-muscarinic like receptors having similar properties.
Collapse
Affiliation(s)
- Sharique A Ali
- Department of Biotechnology, Saifia College of Science and Education, Bhopal, India.
| | | |
Collapse
|
18
|
Salim S, Ali SA. Vertebrate melanophores as potential model for drug discovery and development: a review. Cell Mol Biol Lett 2011; 16:162-200. [PMID: 21225472 PMCID: PMC6275700 DOI: 10.2478/s11658-010-0044-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/20/2010] [Indexed: 11/21/2022] Open
Abstract
Drug discovery in skin pharmacotherapy is an enormous, continually expanding field. Researchers are developing novel and sensitive pharmaceutical products and drugs that target specific receptors to elicit concerted and appropriate responses. The pigment-bearing cells called melanophores have a significant contribution to make in this field. Melanophores, which contain the dark brown or black pigment melanin, constitute an important class of chromatophores. They are highly specialized in the bidirectional and coordinated translocation of pigment granules when given an appropriate stimulus. The pigment granules can be stimulated to undergo rapid dispersion throughout the melanophores, making the cell appear dark, or to aggregate at the center, making the cell appear light. The major signals involved in pigment transport within the melanophores are dependent on a special class of cell surface receptors called G-protein-coupled receptors (GPCRs). Many of these receptors of adrenaline, acetylcholine, histamine, serotonin, endothelin and melatonin have been found on melanophores. They are believed to have clinical relevance to skin-related ailments and therefore have become targets for high throughput screening projects. The selective screening of these receptors requires the recognition of particular ligands, agonists and antagonists and the characterization of their effects on pigment motility within the cells. The mechanism of skin pigmentation is incredibly intricate, but it would be a considerable step forward to unravel its underlying physiological mechanism. This would provide an experimental basis for new pharmacotherapies for dermatological anomalies. The discernible stimuli that can trigger a variety of intracellular signals affecting pigment granule movement primarily include neurotransmitters and hormones. This review focuses on the role of the hormone and neurotransmitter signals involved in pigment movement in terms of the pharmacology of the specific receptors.
Collapse
MESH Headings
- Animals
- Drug Discovery
- Hypothalamic Hormones/metabolism
- Melanins/metabolism
- Melanocortins/metabolism
- Melanocyte-Stimulating Hormones/metabolism
- Melanophores/metabolism
- Pituitary Hormones/metabolism
- Receptors, Adrenergic/chemistry
- Receptors, Adrenergic/metabolism
- Receptors, Cholinergic/chemistry
- Receptors, Cholinergic/metabolism
- Receptors, Endothelin/chemistry
- Receptors, Endothelin/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Histamine/chemistry
- Receptors, Histamine/metabolism
- Receptors, Melatonin/agonists
- Receptors, Melatonin/antagonists & inhibitors
- Receptors, Melatonin/metabolism
- Receptors, Serotonin/chemistry
- Receptors, Serotonin/metabolism
- Vertebrates
Collapse
Affiliation(s)
- Saima Salim
- Postgraduate Department of Biotechnology, Saifia College of Science Bhopal, Saifia, 462001 India
| | - Sharique A. Ali
- Postgraduate Department of Biotechnology, Saifia College of Science Bhopal, Saifia, 462001 India
| |
Collapse
|
19
|
CHAICHALOTORNKUL S, UDOMPATAIKUL M, SHOWPITTAPORNCHAI U, PALUNGWACHIRA P, PRADIDARCHEEP W. Altered distribution of M2 and M4 muscarinic receptor expression in vitiligo. J Dermatol 2010; 38:493-7. [DOI: 10.1111/j.1346-8138.2010.00995.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Wang H, Yu YQ, Liao WJ, Wang ZR, Lv YJ, Zhang YG, Gao TW. Negative regulation of endogenous protein kinase Calpha on the dynamic change of carbachol-induced intracellular calcium response in different melanoma cells. J Cell Physiol 2009; 221:276-82. [PMID: 19626679 DOI: 10.1002/jcp.21881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulations of intracellular protein kinase C (PKC) on carbachol (CCh)-induced intracellular calcium ([Ca(2+)]i) responses were investigated in different stages of melanoma cells. We found that CCh (1 mM) significantly increased [Ca(2+)]i with 6-, 4-, 4-, and 25-folds intensities in WM793B, 451Lu, SK-MEL-5, and A2058 melanoma cells, respectively. Pretreatment of phorbol 12, 13-dibutyrate (PDBu, 2 microM), an activator of intracellular PKC, significantly suppressed CCh-induced peak reactions in WM793B, SK-MEL-5, and A2058 cells. RT-PCR data showed that mRNA levels of PKCalpha were 12-, 4-, 6-, and 0.9-folds higher in above four melanoma cells. Short interfering RNA (siRNA) targeting to PKCalpha in WM793B cells enhanced CCh-induced peak calcium reactions. Present data indicated that CCh-induced [Ca(2+)]i responses were dynamically changed in different stages of melanoma progression. Moreover, intracellular PKCalpha activated by exogenous agonist and expressed through endogenous gene transcription negatively regulated CCh-induced calcium responses. The functional analysis on the relationship between CCh-induced calcium response and endogenous PKCalpha expression might be helpful to predict the development of melanoma.
Collapse
Affiliation(s)
- Huan Wang
- Department of Dermatology, Center of Dermatology of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Thangjam GS, Agarwal P, Balapure AK, Rao SG, Kondaiah P. Regulation of extracellular matrix genes by arecoline in primary gingival fibroblasts requires epithelial factors. J Periodontal Res 2009; 44:736-43. [PMID: 19438976 DOI: 10.1111/j.1600-0765.2008.01185.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Oral submucous fibrosis, a disease of collagen disorder, has been attributed to arecoline present in the saliva of betel quid chewers. However, the molecular basis of the action of arecoline in the pathogenesis of oral submucous fibrosis is poorly understood. The basic aim of our study was to elucidate the mechanism underlying the action of arecoline on the expression of genes in oral fibroblasts. MATERIAL AND METHODS Human keratinocytes (HaCaT cells) and primary human gingival fibroblasts were treated with arecoline in combination with various pathway inhibitors, and the expression of transforming growth factor-beta isoform genes and of collagen isoforms was assessed using reverse transcription-polymerase chain reaction analysis. RESULTS We observed the induction of transforming growth factor-beta2 by arecoline in HaCaT cells and this induction was found to be caused by activation of the M-3 muscarinic acid receptor via the induction of calcium and the protein kinase C pathway. Most importantly, we showed that transforming growth factor-beta2 was significantly overexpressed in oral submucous fibrosis tissues (p = 0.008), with a median of 2.13 (n = 21) compared with 0.75 (n = 18) in normal buccal mucosal tissues. Furthermore, arecoline down-regulated the expression of collagens 1A1 and 3A1 in human primary gingival fibroblasts; however these collagens were induced by arecoline in the presence of spent medium of cultured human keratinocytes. Treatment with a transforming growth factor-beta blocker, transforming growth factor-beta1 latency-associated peptide, reversed this up-regulation of collagen, suggesting a role for profibrotic cytokines, such as transforming growth factor-beta, in the induction of collagens. CONCLUSION Taken together, our data highlight the importance of arecolineinduced epithelial changes in the pathogenesis of oral submucous fibrosis.
Collapse
Affiliation(s)
- G S Thangjam
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
22
|
Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 2008; 154:1558-71. [PMID: 18500366 PMCID: PMC2518461 DOI: 10.1038/bjp.2008.185] [Citation(s) in RCA: 614] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/27/2008] [Accepted: 04/09/2008] [Indexed: 12/13/2022] Open
Abstract
Animal life is controlled by neurons and in this setting cholinergic neurons play an important role. Cholinergic neurons release ACh, which via nicotinic and muscarinic receptors (n- and mAChRs) mediate chemical neurotransmission, a highly integrative process. Thus, the organism responds to external and internal stimuli to maintain and optimize survival and mood. Blockade of cholinergic neurotransmission is followed by immediate death. However, cholinergic communication has been established from the beginning of life in primitive organisms such as bacteria, algae, protozoa, sponge and primitive plants and fungi, irrespective of neurons. Tubocurarine- and atropine-sensitive effects are observed in plants indicating functional significance. All components of the cholinergic system (ChAT, ACh, n- and mAChRs, high-affinity choline uptake, esterase) have been demonstrated in mammalian non-neuronal cells, including those of humans. Embryonic stem cells (mice), epithelial, endothelial and immune cells synthesize ACh, which via differently expressed patterns of n- and mAChRs modulates cell activities to respond to internal or external stimuli. This helps to maintain and optimize cell function, such as proliferation, differentiation, formation of a physical barrier, migration, and ion and water movements. Blockade of n- and mACHRs on non-innervated cells causes cellular dysfunction and/or cell death. Thus, cholinergic signalling in non-neuronal cells is comparable to cholinergic neurotransmission. Dysfunction of the non-neuronal cholinergic system is involved in the pathogenesis of diseases. Alterations have been detected in inflammatory processes and a pathobiologic role of non-neuronal ACh in different diseases is discussed. The present article reviews recent findings about the non-neuronal cholinergic system in humans.
Collapse
Affiliation(s)
- I Wessler
- Institute of Pathology, University Hospital, Johannes Gutenberg-University, Mainz, Germany.
| | | |
Collapse
|
23
|
Oda S, Sato F, Okada A, Akahane S, Igarashi H, Yokofujita J, Yang J, Kuroda M. Immunolocalization of muscarinic receptor subtypes in the reticular thalamic nucleus of rats. Brain Res Bull 2007; 74:376-84. [PMID: 17845913 DOI: 10.1016/j.brainresbull.2007.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 04/24/2007] [Accepted: 07/05/2007] [Indexed: 11/29/2022]
Abstract
In this study, to identify the precise localization of the muscarinic receptor subtypes m2, m3 and m4 in the rostral part of the rat reticular thalamic nucleus (rRt), namely, the limbic sector, we used receptor-subtype-specific antibodies and characterized the immunolabeled structures by light, confocal laser scanning, and electron microscopies. The m2-immunolabeling was preferentially distributed in the distal dendrite region where cholinergic afferent fibers tend to terminate and in the peripheral region of somata, whereas the m3-immunolabeling was more preferentially distributed in a large part of somata and in proximal dendrite shafts than in the distal dendrite region. Dual-immunofluorescence experiments demonstrated that majority of rRt neurons with parvalbumin immunoreactivity contain both m2 and m3. Neither m2 nor m3 was detected in presynaptic terminals or axonal elements. No m4-immunolabeling was detected in the rostral part of the thalamus including rRt. These results show the different distributions of m2 and m3 in rRt neurons, and strongly suggest that m2 is more closely associated with cholinergic afferents than m3.
Collapse
Affiliation(s)
- Satoko Oda
- Department of Anatomy, Toho University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hasse S, Chernyavsky AI, Grando SA, Paus R. The M4 muscarinic acetylcholine receptor plays a key role in the control of murine hair follicle cycling and pigmentation. Life Sci 2007; 80:2248-52. [PMID: 17346754 PMCID: PMC2017094 DOI: 10.1016/j.lfs.2007.01.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 11/26/2006] [Accepted: 01/05/2007] [Indexed: 01/09/2023]
Abstract
Cholinergic receptors of the muscarinic class (M1-M5) are expressed in epidermal keratinocytes and melanocytes as well as in the hair follicle. Knockout (KO) mice of all five receptors have been created and resulted in different phenotypes. KO mice with a deletion of the M4 muscarinic acetylcholine receptor (M4R) present a striking hair phenotype, which we have analyzed here in greater detail by quantitative histomorphometry. Earlier studies revealed a retarded hair follicle morphogenesis in M4R KO mice, compared to age-matched wild type controls. On day 17, when mice enter the first hair growth cycle, the KO mice still showed a slightly retarded catagen phase. Subsequently, hair follicles of the KO mice stayed in a highly significantly prolonged telogen phase, while wild type mice had already far progressed in the hair cycle by entry into anagen. Most strikingly, the M4R KO mice did not engage in follicular melanogenesis and failed to produce pigmented hair shafts. The current pilot study suggests that the M4R plays a fundamental role in the control of the murine hair follicle cycling and is an essential signaling element in the control of hair follicle pigmentation.
Collapse
Affiliation(s)
- Sybille Hasse
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Luebeck, University of Luebeck, D-23538 Luebeck, Germany
| | | | | | | |
Collapse
|
25
|
Yang Q, Sumner AD, Puhl HL, Ruiz-Velasco V. M1 and M2 Muscarinic Acetylcholine Receptor Subtypes Mediate Ca2+ Channel Current Inhibition in Rat Sympathetic Stellate Ganglion Neurons. J Neurophysiol 2006; 96:2479-87. [PMID: 17005606 DOI: 10.1152/jn.00093.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) are known to mediate the acetylcholine inhibition of Ca2+ channels in central and peripheral neurons. Stellate ganglion (SG) neurons provide the main sympathetic input to the heart and contribute to the regulation of heart rate and myocardial contractility. Little information is available regarding mAChR regulation of Ca2+ channels in SG neurons. The purpose of this study was to identify the mAChR subtypes that modulate Ca2+ channel currents in rat SG neurons innervating heart muscle. Accordingly, the modulation of Ca2+ channel currents by the muscarinic cholinergic agonist, oxotremorine-methiodide (Oxo-M), and mAChR blockers was examined. Oxo-M–mediated mAChR stimulation led to inhibition of Ca2+ currents through voltage-dependent (VD) and voltage-independent (VI) pathways. Pre-exposure of SG neurons to the M1 receptor blocker, M1-toxin, resulted in VD inhibition of Ca2+ currents after Oxo-M application. On the other hand, VI modulation of Ca2+ currents was observed after pretreatment of cells with methoctramine (M2 mAChR blocker). The Oxo-M–mediated inhibition was nearly eliminated in the presence of both M1 and M2 mAChR blockers but was unaltered when SG neurons were exposed to the M4 mAChR toxin, M4-toxin. Finally, the results from single-cell RT-PCR and immunofluorescence assays indicated that M1 and M2 receptors are expressed and located on the surface of SG neurons. Overall, the results indicate that SG neurons that innervate cardiac muscle express M1 and M2 mAChR, and activation of these receptors leads to inhibition of Ca2+ channel currents through VI and VD pathways, respectively.
Collapse
Affiliation(s)
- Qing Yang
- Department of Anesthesiology, H187, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033-0850, USA
| | | | | | | |
Collapse
|
26
|
Kurzen H, Henrich C, Booken D, Poenitz N, Gratchev A, Klemke CD, Engstner M, Goerdt S, Maas-Szabowski N. Functional Characterization of the Epidermal Cholinergic System In Vitro. J Invest Dermatol 2006; 126:2458-72. [PMID: 16810300 DOI: 10.1038/sj.jid.5700443] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to analyze the influence of cholinergic and anticholinergic drugs on epidermal physiology using organotypic cocultures (OTCs). Blocking of all acetylcholine receptors (AChRs) by combined treatment with mecamylamine and atropine or treatment with strychnine (blocking alpha9nAChR) for 7-14 days resulted in a complete inhibition of epidermal differentiation and proliferation. Blockage of nicotinic (n)AChR with mecamylamine led to a less pronounced delay in epidermal differentiation and proliferation than blockage of muscarinic (m)AChR with atropine, evidenced by reduced epithelial thickness and expression of terminal differentiation markers like cytokeratin 2e or filaggrin. In OTCs treated with atropine, mecamylamine, or strychnine, we could demonstrate intracellular lipid accumulation in the lower epidermal layers, indicating a severely disturbed epidermal barrier. In addition, we observed prominent acantholysis in the basal and lower suprabasal layers in mecamylamine-, atropine-, and strychnine-treated cultures, accompanied by a decreased expression of cell adhesion proteins. This globally reduced cell adhesion led to cell death via intrinsic activation of apoptosis. In contrast, stimulation of nAChR and mAChR with cholinergic drugs resulted in a significantly thickened epithelium, accompanied by an improved epithelial maturation. In summary, we show that epidermal AChR are crucially involved in the regulation of epidermal homeostasis.
Collapse
Affiliation(s)
- Hjalmar Kurzen
- Department of Dermatology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Qu J, Zhou X, Xie R, Zhang L, Hu D, Li H, Lu F. The presence of m1 to m5 receptors in human sclera: evidence of the sclera as a potential site of action for muscarinic receptor antagonists. Curr Eye Res 2006; 31:587-97. [PMID: 16877267 DOI: 10.1080/02713680600770609] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of this study was to identify the presence of muscarinic acetylcholine receptors (mAChRs) in human sclera in order to determine whether the sclera is a potential site of action for mAChR antagonists. METHODS Cell lines of human scleral fibroblasts were cultured in Dulbecco modified Ealge's medium. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis were used to detect mRNA expression of muscarinic acetylcholine receptors in the cell lines of the fibroblasts. Western blot analysis and immunocytochemistry were used to detect proteins of mAChRs in the cell lines. Immunohistochemical study was used to further detect the presence of mAChR proteins in the frozen scleral sections. RESULTS The cultured fibroblasts demonstrated mRNA expression of five mAChRs (m1 to m5) in RT-PCR and Northern blot analysis. The molecular size of mRNA expression was largest for the m3 receptor, followed by the m2, m4, m5, and m1 in both RT-PCR and Northern blot analysis. Proteins of the m1 to m5 receptors were present in cell line fibroblasts under Western blot analysis and immunocytochemistry with a range of molecular weight from 80 kDa (m5) to 60 kDa (m1) in Western blot analysis. The presence of these five receptors was also detected in scleral tissues with immunohistochemistry. CONCLUSIONS This study demonstrated the presence of mAChR subtypes (m1 to m5) in human scleral fibroblasts at both mRNA and protein levels. This finding indicates that the sclera is a potential site of action for the currently used mAChR antagonists in prevention of human myopia.
Collapse
Affiliation(s)
- Jia Qu
- School of Ophthalmology and Optometry, Wenzhou Medical College, Key Laboratory of Vision Science, Ministry of Health PR China, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Grando SA, Pittelkow MR, Schallreuter KU. Adrenergic and Cholinergic Control in the Biology of Epidermis: Physiological and Clinical Significance. J Invest Dermatol 2006; 126:1948-65. [PMID: 16912692 DOI: 10.1038/sj.jid.5700151] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The presence of an autocrine adrenergic and cholinergic intra/intercellular signal transduction network in the human epidermis contributes significantly to homeostatic and compensatory responses regulating vital functions in keratinocytes and melanocytes. The ligands produced control autocrine and paracrine loops to initiate responses through cognate receptors expressed within the same or adjacent cells. The epidermal adrenergic signal controls calcium homeostasis, cell growth, differentiation, motility, and pigmentation via the beta2 and alpha1 adrenoceptors. The cholinergic system is highly complex comprising both nicotinic and muscarinic receptors with multiple subtypes and this system plays an important role in keratinocyte cell cycle progression, differentiation, directional migration, adhesion, and apoptotic secretion. Moreover, lymphocytes also express adrenergic and cholinergic receptors. Both types of signal transduction receptors are coupled to classical intracellular second messenger pathways, including cAMP-, cGMP-, and calcium-mediated downstream responses. To date, it has been recognized that several dermatoses such as psoriasis, atopic dermatitis, Mal de Meleda, vitiligo, palmoplantar pustulosis, and pemphigus may be mediated, in part, by the non-neuronal adrenergic/cholinergic systems. A detailed understanding of the physiology and pathophysiology of the adrenergic/cholinergic network in the skin could offer the development of specific drugs for novel treatment modalities.
Collapse
Affiliation(s)
- Sergei A Grando
- Department of Dermatology, University of California, Davis, 95817, USA.
| | | | | |
Collapse
|
29
|
Abstract
Skincare formulations for the improvement of aging skin are increasingly important consumer products. Here, we review available data on one such agent - 2-dimethylaminoethanol (DMAE) or deanol - that has recently been evaluated in a placebo-controlled trial. DMAE is an analog of the B vitamin choline and is a precursor of acetylcholine. Although the role of acetylcholine as a neurotransmitter is well known, growing evidence points to acetylcholine as a ubiquitous cytokine-like molecule that regulates basic cellular processes such as proliferation, differentiation, locomotion, and secretion in a paracrine and autocrine fashion. Indeed, this modulatory role may contribute to the cutaneous activity of DMAE. In a randomized clinical study, 3% DMAE facial gel applied daily for 16 weeks has been shown to be safe and efficacious (p < 0.05) in the mitigation of forehead lines and periorbital fine wrinkles, and in improving lip shape and fullness and the overall appearance of aging skin. These effects did not regress during a 2-week cessation of application. Beneficial trends (p > 0.05 but </= 0.1) were noted in the appearance of coarse wrinkles, under-eye dark circles, nasolabial folds, sagging neck skin, and neck firmness. Application was found to be well tolerated, with no differences in the incidence of erythema, peeling, dryness, itching, burning, or stinging between the DMAE and placebo groups. An open-label extension of the trial showed that the long-term application of DMAE gel for up to 1 year was associated with a good safety profile. The acute skin-firming effects of DMAE have been confirmed by quantitative measures of cutaneous tensile strength. In vitro studies in peripheral blood lymphocytes indicate that DMAE is a moderately active anti-inflammatory agent. Although its mechanisms of action in the skin remain to be elucidated, evidence suggests that the skin is an active site of acetylcholine synthesis, storage, secretion, metabolism, and receptivity. Muscarinic acetylcholine receptors have been localized to keratinocytes, melanocytes and dermal fibroblasts, whereas nicotinic acetylcholine receptors have been found in keratinocytes. The role of acetylcholine and the role of DMAE as a modulator of acetylcholine-mediated functions in the skin remain to be elucidated.Thus, the benefits of DMAE in dermatology include a potential anti-inflammatory effect and a documented increase in skin firmness with possible improvement in underlying facial muscle tone. Studies are needed to evaluate the relative efficacy of DMAE compared with other skin-care regimens (e.g., topical antioxidant creams, alpha-hydroxy acids).
Collapse
Affiliation(s)
- Rachel Grossman
- Johnson and Johnson Consumer Products Worldwide, Skillman, NJ 08558, USA
| |
Collapse
|
30
|
Kurzen H, Schallreuter KU. Novel aspects in cutaneous biology of acetylcholine synthesis and acetylcholine receptors. Exp Dermatol 2004; 13 Suppl 4:27-30. [PMID: 15507109 DOI: 10.1111/j.1600-0625.2004.00258.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extraneuronal acetylcholine (ACh) has been demonstrated to influence a plethora of cutaneous cell functions in an autocrine, paracrine and endocrine fashion. Through the differentiation-specific expression of its different nicotinic (nACh-R) and muscarinic (mACh-R) receptors, ACh acts upon keratinocyte proliferation and migration, terminal differentiation and barrier formation, sweat and sebum secretion as well as microcirculation and angiogenesis. Only very recently it has been recognized that acetylcholinesterase, but not cholineacetyltransferase, activity is regulated by hydrogen peroxide. Considering that the outer layer of the human skin can be a target for UV-generated H2O2 in the millimolar range, this mechanism needs to be taken into account for the regulation of ACh homeostasis in skin biology. Consequently, ACh can accumulate, as shown, for example, in the depigmentation process in vitiligo. There is a highly regulated distribution of ACh-R in human epidermis and adnexal structures, supporting previously observed effects of cholinergic compounds on keratinocyte biology. Most significantly, the regulated expression of ACh-R in sebaceous glands advocates a role for ACh in sebum production and as a promoter of sebocyte differentiation, thus offering an explanation for skin diseases associated with altered sebum production after chronic nicotine exposure. So far, ACh-induced sweat production has been thought to be under the exclusive control of mACh-R. However, recently, the presence of both different nACh-R and mACh-R in myoepithelial and acinar cells of eccrine sweat glands has been documented, indicating a more complex regulation of sweat production and expulsion.
Collapse
Affiliation(s)
- Hjalmar Kurzen
- Department of Dermatology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany.
| | | |
Collapse
|
31
|
Elwary SMA, Hasse S, Schallreuter KU. m2 Muscarinic Acetylcholine Receptor (mAchR) Subtype Is Present in Human Epidermal Keratinocytes In Situ and In Vitro. J Invest Dermatol 2004; 123:1206-7. [PMID: 15622552 DOI: 10.1111/j.0022-202x.2004.23493.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84:1155-228. [PMID: 15383650 DOI: 10.1152/physrev.00044.2003] [Citation(s) in RCA: 1382] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents interacting via pathways activated by receptor-dependent and -independent mechanisms, in hormonal, auto-, para-, or intracrine fashion. Because of the multidirectional nature and heterogeneous character of the melanogenesis modifying agents, its controlling factors are not organized into simple linear sequences, but they interphase instead in a multidimensional network, with extensive functional overlapping with connections arranged both in series and in parallel. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortins and ACTH, whereas among the negative regulators agouti protein stands out, determining intensity of melanogenesis and also the type of melanin synthesized. Within the context of the skin as a stress organ, melanogenic activity serves as a unique molecular sensor and transducer of noxious signals and as regulator of local homeostasis. In keeping with these multiple roles, melanogenesis is controlled by a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes. Indeed, the significance of melanogenesis extends beyond the mere assignment of a color trait.
Collapse
Affiliation(s)
- Andrzej Slominski
- Dept. of Pathology, Suite 599, University of Tennessee Health Science Center, 930 Madison Avenue, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
33
|
Meng F, Miao L, Zhang S, Lou C. Ca2+ is involved in muscarine-acetylcholine-receptor-mediated acetylcholine signal transduction in guard cells ofVicia faba L. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf02900967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Arredondo J, Hall LL, Ndoye A, Nguyen VT, Chernyavsky AI, Bercovich D, Orr-Urtreger A, Beaudet AL, Grando SA. Central role of fibroblast alpha3 nicotinic acetylcholine receptor in mediating cutaneous effects of nicotine. J Transl Med 2003; 83:207-25. [PMID: 12594236 DOI: 10.1097/01.lab.0000053917.46614.12] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Smoking is associated with aberrant cutaneous tissue remodeling, such as precocious skin aging and impaired wound healing. The mechanism is not fully understood. Dermal fibroblasts (DF) are the primary cellular component of the dermis and may provide a target for pathobiologic effects of tobacco products. The purpose of this study was to characterize a mechanism of nicotine (Nic) effects on the growth and tissue remodeling function of DF. We hypothesized that the effects of Nic on DF result from its binding to specific nicotinic acetylcholine receptors (nAChRs) expressed by these cells and that downstream signaling from the receptors alters normal cell functioning, leading to changes in skin homeostasis. Using RT-PCR and Western blotting, we found that a 24-hour exposure of human DF to 10 micro M Nic causes a 1.9- to 28-fold increase of the mRNA and protein levels of the cell cycle regulators p21, cyclin D1, Ki-67, and PCNA and a 1.7- to 2-fold increase of the apoptosis regulators Bcl-2 and caspase 3. Nic exposure also up-regulated expression of the dermal matrix proteins collagen type Ialpha1 and elastin as well as matrix metalloproteinase-1. Mecamylamine (Mec), the specific antagonist of nAChRs, abolished Nic-induced alterations, indicating that they resulted from a pharmacologic stimulation of nAChRs expressed by DF. To establish the relevance of these findings to a specific nicotinergic pathway, we studied human DF transfected with anti-alpha3 antisense oligonucleotides and murine DF from alpha3 nAChR knockout mice. In both cases, lack of alpha3 was associated with alterations in fibroblast growth and function that were opposite to those observed in DF treated with Nic, suggesting that the nicotinic effects on DF were mostly mediated by alpha3 nAChR. In addition to alpha3, the nAChR subunits detected in human DF were alpha5, alpha7, beta2, and beta4. The exposure of DF to Nic altered the relative amounts of each of these subunits, leading to reciprocal changes in [(3)H]epibatidine-binding kinetics. Thus, some of the pathobiologic effects of tobacco products on extracellular matrix turnover in the skin may stem from Nic-induced alterations in the physiologic control of the unfolding of the genetically determined program of growth and the tissue remodeling function of DF as well as alterations in the structure and function of fibroblast nAChRs.
Collapse
Affiliation(s)
- Juan Arredondo
- Department of Dermatology, University of California at Davis, School of Medicine, Davis, California 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|