1
|
Gál B, Varga-Kugler R, Ihász K, Kaszab E, Farkas S, Marton S, Martella V, Bányai K. A Snapshot on the Genomic Epidemiology of Turkey Reovirus Infections, Hungary. Animals (Basel) 2023; 13:3504. [PMID: 38003122 PMCID: PMC10668827 DOI: 10.3390/ani13223504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Reovirus infections in turkeys are associated with arthritis and lameness. Viral genome sequence data are scarce, which makes an accurate description of the viral evolution and epidemiology difficult. In this study, we isolated and characterized turkey reoviruses from Hungary. The isolates were identified in 2016; these isolates were compared with earlier Hungarian turkey reovirus strains and turkey reoviruses isolated in the 2010s in the United States. Gene-wise sequence and phylogenetic analyses identified the cell-receptor binding protein and the main neutralization antigen, σC, to be the most conserved. The most genetically diverse gene was another surface antigen coding gene, μB. This gene was shown to undergo frequent reassortment among chicken and turkey origin reoviruses. Additional reassortment events were found primarily within members of the homologous turkey reovirus clade. Our data showed evidence for low variability among strains isolated from independent outbreaks, a finding that suggests a common source of turkey reoviruses in Hungarian turkey flocks. Given that commercial vaccines are not available, identification of the source of these founder virus strains would permit a more efficient prevention of disease outbreaks before young birds are settled to fattening facilities.
Collapse
Affiliation(s)
- Bence Gál
- Intervet Hungária Kft, Lechner Odon Fasor 10/b, H-1095 Budapest, Hungary;
| | - Renáta Varga-Kugler
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Katalin Ihász
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
| | - Eszter Kaszab
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
- Institute of Metagenomics, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Szilvia Farkas
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary;
| | - Szilvia Marton
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Aldo Moro, S.P. per Casamassima km 3, 70010 Valenzano, Italy;
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary; (R.V.-K.); (K.I.); (E.K.); (S.M.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21, H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
2
|
Kugler R, Dandár E, Fehér E, Jakab F, Mató T, Palya V, Bányai K, Farkas SL. Phylogenetic analysis of a novel reassortant orthoreovirus strain detected in partridge (Perdix perdix). Virus Res 2015; 215:99-103. [PMID: 26597720 DOI: 10.1016/j.virusres.2015.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022]
Abstract
Avian orthoreoviruses cause various diseases in wild birds and domesticated poultry. In this study we report the detection and genomic characterization of a partridge (Perdix perdix) origin reovirus strain, D1007/2008. The virus was isolated on cell culture from acute pneumonia and infra-orbital sinusitis. The 23,497 nucleotide long genome sequence was obtained by combined use of semiconductor and capillary sequencing. Sequence and phylogenetic analyses showed that the partridge reovirus strain was related to orthoreoviruses of gallinaceous birds. In fact, five (λB, λC, μB, σC, σNS) and one (σB) out of 10 genes clustered definitely with turkey or chicken origin orthoreoviruses, respectively, whereas in the λA, μA, μNS and σA phylogenies a more distant genetic relationship was observed. Our data indicate that the identified reovirus strain is composed of a mixture of chicken and turkey orthoreovirus related alleles. This finding implies that partridges may serve as natural reservoirs for orthoreoviruses of domesticated poultry.
Collapse
Affiliation(s)
- Renáta Kugler
- Institute for Veterinary Medical Research, Centre of Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| | - Eszter Dandár
- United Szent István és Szent László Hospital-Clinic, Nagyvárad tér 1, Budapest 1097, Hungary
| | - Enikő Fehér
- Institute for Veterinary Medical Research, Centre of Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| | - Ferenc Jakab
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, Pécs 7642, Hungary
| | - Tamás Mató
- Ceva-Phylaxia Veterinary Biologicals Co. LTD, Szállás u. 5, Budapest 1107, Hungary
| | - Vilmos Palya
- Ceva-Phylaxia Veterinary Biologicals Co. LTD, Szállás u. 5, Budapest 1107, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre of Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary.
| | - Szilvia L Farkas
- Institute for Veterinary Medical Research, Centre of Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| |
Collapse
|
3
|
Alavarez JM, Ferreira CSA, Ferreira AJP. Enteric viruses in turkey flocks: a historic review. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2014. [DOI: 10.1590/1516-635x1603225-232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Jindal N, Mor SK, Marthaler D, Patnayak DP, Ziegler AF, Goyal SM. Molecular characterization of turkey enteric reovirus S3 gene. Avian Pathol 2014; 43:224-30. [PMID: 24666328 DOI: 10.1080/03079457.2014.904500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The molecular diversity in S3 gene sequences of turkey reovirus (TRV) was determined in poult enteritis syndrome (PES)-affected and apparently healthy turkey poults. Twenty-nine TRV-positive samples (15 from PES-affected flocks and 14 from apparently healthy flocks) were tested using self-designed primers for the S3 gene. Phylogenetic analysis revealed that the TRV S3 sequences of this study clustered in clade III and formed two different groups in this clade. The avian reoviruses from duck and goose formed clade I and those from chickens formed clade II. The clade III TRV sequences had a nucleotide percent identity of 88.9 to 100% among themselves but only of 59.5 to 63.5% and 69.2 to 72.6% with clades I and II, respectively. More amino acid substitutions were present in TRVs from PES-affected flocks than in those from apparently healthy flocks using ATCC VR-818 (AY444912) as a benchmark. All TRVs of this study showed substitutions at positions 244 and 285. The impact of these changes on the virulence of the virus, if any, needs to be studied.
Collapse
Affiliation(s)
- Naresh Jindal
- a Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences , Lala Lajpat Rai University of Veterinary and Animal Sciences , Hisar , India
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Gut health is very important to get maximum returns in terms of weight gain and egg production. Enteric diseases such as poult enteritis complex (PEC) in turkeys do not allow their production potential to be achieved to its maximum. A number of viruses, bacteria, and protozoa have been implicated but the primary etiology has not been definitively established. Previously, electron microscopy was used to detect the presence of enteric viruses, which were identified solely on the basis of their morphology. With the advent of rapid molecular diagnostic methods and next generation nucleic acid sequencing, researchers have made long strides in identification and characterization of viruses associated with PEC. The molecular techniques have also helped us in identification of pathogens which were previously not known. Regional and national surveys have revealed the presence of several different enteric viruses in PEC including rotavirus, astrovirus, reovirus and coronavirus either alone or in combination. There may still be unknown pathogens that may directly or indirectly play a role in enteritis in turkeys. This review will focus on the role of turkey coronavirus, rotavirus, reovirus, and astrovirus in turkey enteritis.
Collapse
|
6
|
Rosa ACG, Ferreira HL, Gomes DE, Táparo CV, Cardoso TC. Isolation and molecular characterization of Brazilian turkey reovirus from immunosuppressed young poults. Arch Virol 2013; 159:1453-7. [PMID: 24327096 PMCID: PMC7086608 DOI: 10.1007/s00705-013-1947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/01/2013] [Indexed: 11/27/2022]
Abstract
In this study, we investigated turkey reovirus (TReoV) in tissue samples from young birds, aged 15 days. RT-PCR for TReoV detected 3.3 % positive samples and TReoV was successfully isolated in Vero cells. Histological analysis of positive bursa of Fabricius (BF) revealed atrophied follicles and lymphocyte depletion. The number of CD8+, CD4+ and IgM+ cells was lower in infected BF. Phylogenetic analysis based on S3 gene showed that the Brazilian TReoV isolates clustered in a single group with 98-100 % similarity to TReoV strains circulating in the United States. This is the first indication that TReoV infection may be a contributing factor to immunosuppression in young birds.
Collapse
Affiliation(s)
- Ana Carolina G. Rosa
- Laboratório de Virologia, Faculdade de Medicina Veterinária, University of São Paulo State, Rua Clóvis Pestana, 793, Araçatuba, SP CEP 16050-680 Brazil
| | - Helena Lage Ferreira
- Departamento de Medicina Veterinária, FZEA-USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP CEP 13635-900 Brazil
| | - Deriane Elias Gomes
- Laboratório de Virologia, Faculdade de Medicina Veterinária, University of São Paulo State, Rua Clóvis Pestana, 793, Araçatuba, SP CEP 16050-680 Brazil
| | - Cilene Vidovix Táparo
- Laboratório de Virologia, Faculdade de Medicina Veterinária, University of São Paulo State, Rua Clóvis Pestana, 793, Araçatuba, SP CEP 16050-680 Brazil
| | - Tereza Cristina Cardoso
- Laboratório de Virologia, Faculdade de Medicina Veterinária, University of São Paulo State, Rua Clóvis Pestana, 793, Araçatuba, SP CEP 16050-680 Brazil
- Departamento de Apoio, Produção e Saúde Animal, Curso de Medicina Veterinária, Rua Clóvis Pestana, 793, Araçatuba, SP CEP 16050-680 Brazil
| |
Collapse
|
7
|
Yin CH, Qin LT, Sun MY, Gao YL, Qi XL, Gao HL, Wang YQ, Wang XM. Antigenic analysis of monoclonal antibodies against different epitopes of σB protein of avian reovirus. PLoS One 2013; 8:e81533. [PMID: 24312314 PMCID: PMC3842295 DOI: 10.1371/journal.pone.0081533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Avian reovirus (ARV) causes arthritis, tenosynovitis, runting-stunting syndrome (RSS), malabsorption syndrome (MAS) and immunosuppression in chickens. σB is one of the major structural proteins of ARV, which is able to induce group-specific antibodies against the virus. METHODS AND RESULTS The present study described the identification of two linear B-cell epitopes in ARV σB through expressing a set of partially overlapping and consecutive truncated peptides spanning σB screened with two monoclonal antibodies (mAbs) 1F4 and 1H3-1.The data indicated that (21)KTPACW(26) (epitope A) and (32)WDTVTFH(38) (epitope B) were minimal determinants of the linear B cell epitopes. Antibodies present in the serum of ARV-positive chickens recognized the minimal linear epitopes in Western blot analyses. By sequence alignment analysis, we determined that the epitopes A and B were not conserved among ARV, duck reovirus (DRV) and turkey reovirus (TRV) strains. Western blot assays, confirmed that epitopes A and B were ARV-specific epitopes, and they could not react with the corresponding peptides of DRV and TRV. CONCLUSIONS AND SIGNIFICANCE We identified (21)KTPACW(26) and (32)WDTVTFH(38) as σB -specific epitopes recognized by mAbs 1F4 and 1H3-1, respectively. The results in this study may have potential applications in development of diagnostic techniques and epitope-based marker vaccines against ARV groups.
Collapse
Affiliation(s)
- Chun-hong Yin
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Li-ting Qin
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Mei-yu Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yu-long Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xiao-le Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Hong-lei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yong-qiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xiao-mei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail:
| |
Collapse
|
8
|
Antigenic analysis monoclonal antibodies against different epitopes of σB protein of Muscovy duck reovirus. Virus Res 2011; 163:546-51. [PMID: 22197425 DOI: 10.1016/j.virusres.2011.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 11/23/2022]
Abstract
σB is one of the major structural proteins of Muscovy duck reovirus (DRV), which is able to induce protective immune response in target birds. Four anti-DRV σB MAbs were identified belong to two distinct epitopes, designated A (1E5, 4E3, and 5D8) and B (2F7) (Liu et al., 2010). To understand antigenic determinants of the σB protein, a set of 20 (P1-P20), partially overlapping and consecutive peptides spanning σB were expressed and then screened by MAbs. With Western blot and enzyme-linked immunosorbent assay (ELISA), two minimal units of the linear epitopes, 19YIRAPACWD27 (epitope B) and 65TDGVCFPHHK74 (epitope A), were identified within N-terminal region of the σB protein. The epitope B was highly conserved among DRV and avian reovirus (ARV) strains through sequence alignment analysis. Immunofluorescence assays (IFA) and ELISA, confirmed that epitope B is a broad group-specific epitope among DRV and ARV. Epitope A could only react with chicken embyonated fibroblast cells (CEF) infected with DRV, but not ARV. However, both peptides have good immunogenicity and could induce antibodies against DRV in BALB/c mice. This report documents the first identification of σB epitopes in the precise locations. The two probes would be useful in the development of discriminating diagnostic kits for DRV and ARV infection.
Collapse
|
9
|
Broome virus, a new fusogenic Orthoreovirus species isolated from an Australian fruit bat. Virology 2010; 402:26-40. [PMID: 20350736 DOI: 10.1016/j.virol.2009.11.048] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 11/26/2009] [Indexed: 11/22/2022]
Abstract
This report describes the discovery and characterization of a new fusogenic orthoreovirus, Broome virus (BroV), isolated from a little red flying-fox (Pteropus scapulatus). The BroV genome consists of 10 dsRNA segments, each having a 3' terminal pentanucleotide sequence conserved amongst all members of the genus Orthoreovirus, and a unique 5' terminal pentanucleotide sequence. The smallest genome segment is bicistronic and encodes two small nonstructural proteins, one of which is a novel fusion associated small transmembrane (FAST) protein responsible for syncytium formation, but no cell attachment protein. The low amino acid sequence identity between BroV proteins and those of other orthoreoviruses (13-50%), combined with phylogenetic analyses of structural and nonstructural proteins provide evidence to support the classification of BroV in a new sixth species group within the genus Orthoreovirus.
Collapse
|
10
|
Jindal N, Patnayak DP, Chander Y, Ziegler AF, Goyal SM. Detection and molecular characterization of enteric viruses from poult enteritis syndrome in turkeys. Poult Sci 2010; 89:217-26. [PMID: 20075272 PMCID: PMC7107190 DOI: 10.3382/ps.2009-00424] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to detect and characterize enteric viruses [rotavirus, turkey astrovirus-2 (TAstV-2), reovirus, and turkey coronavirus] from cases of poult enteritis syndrome (PES) in Minnesota turkeys. Of the intestinal contents collected from 43 PES cases, 25 were positive for rotavirus and 13 for small round viruses by electron microscopy (EM). Of the enteric virus-positive cases by EM (n=27), 16 cases had rotavirus or small round viruses alone and the remaining 11 cases had both viruses. None of the cases were positive for reovirus or coronavirus by EM. However, with reverse transcription-PCR (RT-PCR), 40 cases (93%) were positive for rotavirus, 36 (84%) for TAstV-2, and 17 (40%) for reovirus. None of the cases were positive for turkey coronavirus by RT-PCR. The viruses from all cases were detected either alone or in combination of 2 or 3 by RT-PCR. Thus, 8 (19%) cases were positive for a single virus, whereas a combination of viruses was detected in the remaining 35 (81%) cases. The rota-TAstV-2 combination was the most predominant (n=18 cases). Fifteen cases were positive for all 3 viruses. The rotaviruses had sequence homology of 89.8 to 100% with previously published sequences of turkey rotaviruses at the nucleotide level. The TAstV-2 had sequence homology of 84.6 to 98.7% with previously published TAstV-2, whereas reoviruses had sequence homology of 91.6 to 99.3% with previously published sequences of turkey reoviruses. Phylogenetic analysis revealed that rota- and reoviruses clustered in a single group, whereas TAstV-2 clustered in 2 different groups. In conclusion, a larger number of PES cases was positive for rotavirus, TAstV-2, and reovirus by RT-PCR than with EM. The presence of more than one virus and changes at the genetic level in a virus may affect the severity of PES in turkey flocks.
Collapse
Affiliation(s)
- N Jindal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | |
Collapse
|
11
|
Sellers H, Linneman E, Icard AH, Mundt E. A purified recombinant baculovirus expressed capsid protein of a new astrovirus provides partial protection to runting-stunting syndrome in chickens. Vaccine 2009; 28:1253-63. [PMID: 19941993 PMCID: PMC7115372 DOI: 10.1016/j.vaccine.2009.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 10/26/2009] [Accepted: 11/08/2009] [Indexed: 11/26/2022]
Abstract
A new viral sequence likely belonging to a virus of the family Astroviridae was determined using the gut content of chickens affected with the runting-stunting syndrome (RSS) in chickens. Since the appropriate virus could not be isolated in cell culture the open reading frame of the viral capsid protein was cloned to generate a recombinant baculovirus. The protein was purified and used as an experimental vaccine in broiler breeders to provide maternal derived antibodies for the protection of the offspring. The presence of specific antibodies was monitored by an ELISA. The offspring of vaccinated breeder hens were partially protected in a RSS challenge model.
Collapse
Affiliation(s)
- Holly Sellers
- Department of Population Health, University of Georgia, 953 College Station Road, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
12
|
Xu W, Coombs KM. Conserved structure/function of the orthoreovirus major core proteins. Virus Res 2009; 144:44-57. [PMID: 19720241 DOI: 10.1016/j.virusres.2009.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/25/2009] [Accepted: 03/31/2009] [Indexed: 11/18/2022]
Abstract
Orthoreoviruses are infectious agents with genomes of 10 segments of double-stranded RNA. Detailed molecular information is available for all 10 segments of several mammalian orthoreoviruses, and for most segments of several avian orthoreoviruses (ARV). We, and others, have reported sequences of the L2, all S-class, and all M-class genome segments of two different avian reoviruses, strains ARV138 and ARV176. We here determined L1 and L3 genome segment nucleotide sequences for both strains to complete full genome characterization of this orthoreovirus subgroup. ARV L1 segments were 3958 nucleotides long and encode lambda A major core shell proteins of 1293 residues. L3 segments were 3907 nucleotides long and encode lambda C core turret proteins of 1285 residues. These newly determined ARV segments were aligned with all currently available homologous mammalian reovirus (MRV) and aquareovirus (AqRV) genome segments. Identical and conserved amino acid residues amongst these diverse groups were mapped into known mammalian reovirus lambda 1 core shell and lambda 2 core turret proteins to predict conserved structure/function domains. Most identical and conserved residues were located near predicted catalytic domains in the lambda-class guanylyltransferase, and forming patches that traverse the lambda-class core shell, which may contribute to the unusual RNA transcription processes in this group of viruses.
Collapse
Affiliation(s)
- Wanhong Xu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
13
|
Oldoni I, Rodríguez-Avila A, Riblet SM, Zavala G, García M. Pathogenicity and growth characteristics of selected infectious laryngotracheitis virus strains from the United States. Avian Pathol 2009; 38:47-53. [PMID: 19156579 DOI: 10.1080/03079450802632031] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a recent study, several US infectious laryngotracheitis virus (ILTV) strains and field isolates were genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) into nine different genotypes. All of the commercial poultry isolates were identified within genotypes IV, V, and VI. Based on the PCR-RFLP, Group IV isolates were characterized as genetically identical to the chicken embryo origin (CEO) vaccines, Group V as genetically closely related to the CEO vaccines, and Group VI as genetically different to the vaccine strains. The objective of this study was to determine the pathogenicity and growth characteristics of six ILTV commercial poultry isolates as compared with the CEO vaccine. Two isolates representative of PCR-RFLP Groups IV, V, and VI were selected. Differences in disease severity, viral tissue distribution in chickens, and plaque formation ability in cell culture were observed among viral genotypes IV, V, and VI, and between V-A and V-B isolates. Mild respiratory clinical signs were produced by IV-A, IV-B and the CEO vaccine, while VI-A and VI-B isolates produced severe respiratory signs and severe depression, and during the peak of clinical signs both isolates were re-isolated from the conjunctiva, sinus, trachea and thymus. Similarly to Group VI isolates, V-A and V-B produced severe respiratory signs, depression, and were re-isolated from conjunctiva, sinus, and trachea; on cell culture, both isolates produced significant larger plaques than any of the other isolates analysed. Overall, differences in pathogenicity and growth characteristics were observed among genetically closely related US ILTV isolates; however, complete genomes will be necessary to identify molecular determinants linked to the pathogenic viral phenotypes.
Collapse
Affiliation(s)
- Ivomar Oldoni
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|
14
|
Xu W, Coombs KM. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein. Virol J 2008; 5:153. [PMID: 19091125 PMCID: PMC2615760 DOI: 10.1186/1743-422x-5-153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/17/2008] [Indexed: 12/01/2022] Open
Abstract
Background The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp) enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses. Results We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV) and aquareovirus (AqRV) genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces. Conclusion The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55%) amongst all currently known ARV and MRV proteins. This implies significant evolutionary constraints are placed on dsRNA RdRp molecules, particularly in regions comprising the canonical polymerase motifs and residues thought to interact directly with template and nascent mRNA. This may point the way to improved design of anti-viral agents specifically targeting this enzyme.
Collapse
Affiliation(s)
- Wanhong Xu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Manitoba, Canada.
| | | |
Collapse
|
15
|
Day JM, Spackman E, Pantin-Jackwood MJ. Turkey origin reovirus-induced immune dysfunction in specific pathogen free and commercial turkey poults. Avian Dis 2008; 52:387-91. [PMID: 18939624 DOI: 10.1637/8190-120607-reg] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, pathogenesis studies, using genetically distinct turkey-origin reoviruses (TRVs), revealed that poults infected with certain TRV isolates had moderate to severe bursal atrophy, suggesting virus-induced immune dysfunction. In order to characterize the effect of TRV infection on the turkey immune system, classical assays were undertaken to quantify the humoral and cell-mediated immune responses in small Beltsville and broad-breasted white poults infected with the TRV isolate NC/SEP-R44/03. A marked effect on the cutaneous basophil hypersensitivity response, and on the antibody response to Newcastle disease virus (NDV) exposure, was noted in commercial and specific pathogen free (SPF) poults inoculated with NC/SEP-R44/03 at three days of age. Moderate to severe bursal atrophy, similar to that noted previously in SPF poults, occurred in commercial poults inoculated at three days of age. This immune dysfunction and bursal atrophy was not present in commercial poults inoculated at three weeks of age.
Collapse
Affiliation(s)
- J Michael Day
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, Georgia 30605, USA.
| | | | | |
Collapse
|
16
|
de Kloet SR. Sequence analysis of four double-stranded RNA genomic segments reveals an orthoreovirus with a unique genotype infecting psittaciformes. Avian Dis 2008; 52:480-6. [PMID: 18939639 DOI: 10.1637/8212-011908-reg.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper describes the characterization of four double-stranded ribonucleic acid segments, S1, S2, S3, and S4, of a newly identified pathogenic reovirus from parrots. The four segments share a unique 5' terminus GCUUUUC. The amino-acid sequences of the conserved sigma A and sigma NS proteins show less than 60% sequence similarity, whereas those of the outer capsid proteins sigma B and sigma C have at most 47% sequence similarity to their counterparts in other bird or bat reoviruses. In a phylogenetic analysis of the amino-acid sequences, the proteins coded for by the S1 segment, P10, P17, and sigma C, group with their homologous proteins in other avian reoviruses, whereas the major capsid protein, sigma B, and the nonstructural protein, sigma NS, show more sequence similarity to their bat reoviral counterparts. The phylogenetic relationship of sigma A with the homologous avian and bat sequences is unresolved. The possibility that the parrot reovirus has evolved from an ancestral, more batlike reovirus is discussed. It is proposed to designate this unique virus as PsRV.
Collapse
Affiliation(s)
- Siwo R de Kloet
- Animal Genetics Inc., 1336 Timberlane Road, Tallahassee, FL 32312, USA.
| |
Collapse
|
17
|
Pantin-Jackwood MJ, Spackman E, Day JM, Rives D. Periodic monitoring of commercial turkeys for enteric viruses indicates continuous presence of astrovirus and rotavirus on the farms. Avian Dis 2007; 51:674-80. [PMID: 17992925 DOI: 10.1637/0005-2086(2007)51[674:pmoctf]2.0.co;2] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A longitudinal survey to detect enteric viruses in intestinal contents collected from turkeys in eight commercial operations and one research facility was performed using molecular detection methods. Intestinal contents were collected from turkeys prior to placement, with each flock resampled at 2, 4, 6, 8, 10, and 12 wk of age. The samples were screened for astrovirus, rotavirus, reovirus, and turkey coronavirus (TCoV) by a reverse transcriptase and polymerase chain reaction (RT-PCR), and for groups 1 and 2 adenovirus by PCR. Rotavirus was the only virus detected prior to placement (7 of 16 samples examined). All of the commercial flocks were positive for rotavirus and astrovirus from 2 until 6 wk of age, and most were intermittently positive until 12 wk of age, when the birds were processed. Of the 96 samples collected from birds on the farms, 89.5% were positive for astrovirus, and 67.7% were positive for rotavirus. All flocks were negative for TCoV, reovirus, and group 1 adenovirus at all time points, and positive for group 2 adenovirus (hemorrhagic enteritis virus) at 6 wk of age. All the flocks monitored were considered healthy or normal by field personnel. Turkeys placed on research facilities that had been empty for months and thoroughly cleaned had higher body weights and lower feed conversion rates at 5 wk of age when compared to turkeys placed on commercial farms. Intestinal samples collected at 1, 2, and 3 wk of age from these turkeys were free of enteric viruses. This report demonstrates that astroviruses and rotaviruses may be present within a turkey flock through the life of the flock. Comparison of infected birds with one group of turkeys that were negative for enteric viruses by the methods used here suggests that astrovirus and/or rotavirus may affect production. The full impact on flock performance needs to be further determined.
Collapse
Affiliation(s)
- Mary J Pantin-Jackwood
- Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA.
| | | | | | | |
Collapse
|
18
|
Day JM, Pantin-Jackwood MJ, Spackman E. Sequence and phylogenetic analysis of the S1 genome segment of turkey-origin reoviruses. Virus Genes 2007; 35:235-42. [PMID: 17265142 DOI: 10.1007/s11262-006-0044-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 09/20/2006] [Indexed: 10/23/2022]
Abstract
Based on previous reports characterizing the turkey-origin avian reovirus (TRV) sigmaB (sigma2) major outer capsid protein gene, the TRVs may represent a new group within the fusogenic orthoreoviruses. However, no sequence data from other TRV genes or genome segments has been reported. The sigmaC protein encoded by the avian reovirus S1 genome segment is the cell attachment protein and a major antigenic determinant for avian reovirus. The chicken reovirus S1 genome segment is well characterized and is well conserved in viruses from that species. This report details the amplification, cloning and sequencing of the entire S1 genome segment from two and the entire coding sequences of the sigmaC, p10 and p17 genes from an additional five TRVs. Sequence analysis reveals that of the three proteins encoded by the TRV S1 genome segment, sigmaC shares at most 57% amino acid identity with sigmaC from the chicken reovirus reference strain S1133, while the most similar p10 and p17 proteins share 72% and 61% identity, respectively, with the corresponding S1133 proteins. The most closely related mammalian reovirus, the fusogenic Nelson Bay reovirus, encodes a sigmaC protein that shares from 25% to 28% amino acid identity with the TRV sigmaC proteins. This report supports the earlier suggestion that the TRVs are a separate virus species within the Orthoreovirus genus, and may provide some insight into TRV host specificity and pathogenesis.
Collapse
Affiliation(s)
- J Michael Day
- Southeast Poultry Research Laboratory, USDA-ARS, 934 College Station Road, Athens, GA 30605, USA
| | | | | |
Collapse
|
19
|
Pantin-Jackwood MJ, Spackman E, Day JM. Pathology and virus tissue distribution of Turkey origin reoviruses in experimentally infected Turkey poults. Vet Pathol 2007; 44:185-95. [PMID: 17317795 DOI: 10.1354/vp.44-2-185] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pathogenesis of 4 isolates of turkey-origin reovirus (NC/SEP-R44/03, NC/98, TX/98, and NC/85) and 1 chicken-origin reovirus (1733) was examined by infecting specific pathogen free (SPF) poults. These turkey-origin reovirus (TRV) isolates were collected from turkey flocks experiencing poult enteritis and are genetically distinct from previously reported avian reoviruses. Microscopic examination of the tissues collected from the TRV-infected poults revealed different degrees of bursal atrophy characterized by lymphoid depletion and increased fibroplasia between the bursal follicles. To understand the relationship between virus spread and replication, and the induction of lesions, immunohistochemical staining (IHC) for viral antigen, in situ hybridization (ISH) for the detection of viral RNA, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay for the detection of apoptosis in affected tissues was performed. Both IHC and ISH revealed viral antigen and RNA in the surface epithelial cells of the bursa, in macrophages in the interstitium of the bursa and, to lesser degree, in splenic red pulp macrophages and intestinal epithelial cells. Increased apoptosis of bursal lymphocytes and macrophages was observed at 2 and 5 days postinoculation. No lesions were found in tissues from poults inoculated with the virulent chicken-origin strain, however viral antigen was detected in the bursa and the intestine. Although all TRVs studied displayed similar tissue tropism, there were substantial differences in the severity of the lesions produced. Poults inoculated with NC/SEP-R44/03 or NC/98 had moderate to severe bursal atrophy, whereas poults inoculated with TX/98 or NC/85 presented a mild to moderate bursal lymphoid depletion. The lymphoid depletion observed in the bursa appears to be the effect of an indirectly induced apoptosis and would most likely result in immune dysfunction in poults infected with TRV.
Collapse
Affiliation(s)
- M J Pantin-Jackwood
- Southeast Poultry Research Laboratory, US Department of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA 30605, USA.
| | | | | |
Collapse
|
20
|
Zhang Y, Guo D, Liu M, Geng H, Hu Q, Liu Y, Liu N. Characterization of the σB-encoding genes of muscovy duck reovirus: σC–σB-ELISA for antibodies against duck reovirus in ducks. Vet Microbiol 2007; 121:231-41. [PMID: 17218069 DOI: 10.1016/j.vetmic.2006.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 11/30/2006] [Accepted: 12/13/2006] [Indexed: 11/20/2022]
Abstract
The sigmaB/sigmaC-encoding genes of muscovy duck reovirus (DRV) S12 strain were cloned, sequenced, and expressed in Escherichia coli. The sigmaC-encoding gene of DRV showed only 21-22% identity to that of avian reovirus (ARV) at both nucleotide and amino acid level. The sigmaB-encoding gene of DRV comprised 1163bp with one open reading frame (ORF). The ORF comprised 1104bp and encoded 367 amino acids with a predicted molecular mass of 40.44 kDa. A zinc-binding motif and a basic amino acid motif were found within the predicted amino acid sequence of sigmaB. The identities between the S12 and ARV were 59.3-64.0% and 60.9-62.5%, respectively, at the nucleotide and deduced amino acid levels. Phylogenetic analysis of the sigmaB-encoding gene sequence indicated that S12 separated as a distinct virus relative to other avian strains. The expressed sigmaB/sigmaC fusion proteins in E. coli could be detected, approximately 45 and 50kDa, respectively, by duck anti-reovirus polyclonal serum. In addition, an ELISA (sigmaB-sigmaC-ELISA) using the expressed sigmaB-sigmaC proteins as coating antigen for detection of antibodies to DRV in ducks was developed. In comparison with the virus neutralization test and agar gel immuno-diffusion test (AGID), the sigmaB-sigmaC-ELISA showed perfect specificity and sensitivity. The sigmaB-sigmaC-ELISA did not react with the antisera to other duck pathogens, implying that these two proteins were specific in recognition of DRV antibodies. Taken together, the results demonstrated that sigmaB-sigmaC-ELISA was a sensitive and accurate method for detecting antibodies to DRV.
Collapse
Affiliation(s)
- Yun Zhang
- Avian Infectious Disease Division, National Key Laboratory of Veterinary Biotechnology, Harbin, Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Guo D, Geng H, Liu M, Hu Q, Wang J, Tong G, Kong X, Liu N, Liu C. Characterization of M-class genome segments of muscovy duck reovirus S14. Virus Res 2007; 125:42-53. [PMID: 17218035 DOI: 10.1016/j.virusres.2006.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/07/2006] [Accepted: 12/08/2006] [Indexed: 11/26/2022]
Abstract
This report documents the first sequence analysis of the entire M1, M2, and M3 genome segments of the muscovy duck reovirus (DRV) S14. The complete sequence of each of the three M gene segments was determined. The M1 genome segment was 2283 nucleotides in length and was predicted to encode muA protein of 732 residues. The Escherichia coli expressed M1 transcripts generated a 108kDa protein, as expected for muA. A cleavage product of muA, muA1, could be detected by Western blotting with duck anti-reovirus and mouse anti-muA polyclonal serum. muA was distributed diffusely in the cytoplasma and nucleus of transfected Vero cells, which provides evidence that muA might be functional related to the mammalian reovirus (MRV) mu2. The M2 gene was 2155 nucleotides in length and was predicted to encode muB major outer capsid protein of 676 amino acids. The M3 genome segment was 1996 nucleotides in length and was predicted to encode a muNS protein of 635 amino acids. It was unexpectedly found that 5'-termini of the M1 and M2 genes ended with 5'-ACUUUU and 5'-UCUUUU, respectively, instead of 5'-GCUUUU, which is present on most mRNAs of other avian reoviruses (ARV). The UCAUC 3'-terminal sequences of the S14 M1, M2, and M3 genome segments are shared by DRV, ARV, and MRV. Alignment of the DRV muA-, muB-, and muNS-encoding genes with ARV revealed 72.9-73.9%, 67.1-69.6%, and 69.4-70.8% nucleotide identity, respectively. The amino acid sequence homology between DRV and ARV ranged from 85.3 to 86.2% (muA), 75.0 to 76.5% (muB), and 78.4 to 79.8% (muNS). Phylogenetic analyses of the M1, M2, M3, and S-class [Kuntz-Simon, G., Le Gall-Recule, G., de Boisseson, C., Jestin, V., 2002. Muscovy duck reovirus sigmaC protein is a typically encoded by the smallest genome segment. J. Gen. Virol. 83, 1189-1200; Zhang, Y., Liu, M., Hu, Q.L., Ouyang, S.D., Tong, G.Z., 2006a. Characterization of the sigmaC-encoding gene from muscovy duck reovirus. Virus Genes 36, 169-174; Zhang, Y., Liu, M., Ouyan, S.D., Hu, Q.L., Guo, D.C., Han, Z., 2006b. Detection and identification of avian, duck, and goose reoviruses by RT-PCR: goose and duck reoviruses aggregated the same specified genogroup in Orthoreovirus Genus II. Arch. Virol. 151, 1525-1538] genome segments suggests that DRV and ARV share a recent common ancestor and that the two lineages have subsequently undergone host dependent evolution.
Collapse
Affiliation(s)
- Yun Zhang
- Avian Infectious Disease Division of National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Noad L, Shou J, Coombs KM, Duncan R. Sequences of avian reovirus M1, M2 and M3 genes and predicted structure/function of the encoded mu proteins. Virus Res 2006; 116:45-57. [PMID: 16297481 PMCID: PMC5123877 DOI: 10.1016/j.virusres.2005.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 12/29/2022]
Abstract
We report the first sequence analysis of the entire complement of M-class genome segments of an avian reovirus (ARV). We analyzed the M1, M2 and M3 genome segment sequences, and sequences of the corresponding muA, muB and muNS proteins, of two virus strains, ARV138 and ARV176. The ARV M1 genes were 2,283 nucleotides in length and predicted to encode muA proteins of 732 residues. Alignment of the homologous mammalian reovirus (MRV) mu2 and ARV muA proteins revealed a relatively low overall amino acid identity ( approximately 30%), although several highly conserved regions were identified that may contribute to conserved structural and/or functional properties of this minor core protein (i.e. the MRV mu2 protein is an NTPase and a putative RNA-dependent RNA polymerase cofactor). The ARV M2 genes were 2158 nucleotides in length, encoding predicted muB major outer capsid proteins of 676 amino acids, more than 30 amino acids shorter than the homologous MRV mu1 proteins. In spite of the difference in size, the ARV/MRV muB/mu1 proteins were more conserved than any of the homologous proteins encoded by other M- or S-class genome segments, exhibiting percent amino acid identities of approximately 45%. The conserved regions included the residues involved in the maturation- and entry- specific proteolytic cleavages that occur in the MRV mu1 protein. Notably missing was a region recently implicated in MRV mu1 stabilization and in forming "hub and spokes" complexes in the MRV outer capsid. The ARV M3 genes were 1996 nucleotides in length and predicted to encode a muNS non-structural protein of 635 amino acids, significantly shorter than the homologous MRV muNS protein, which is attributed to several substantial deletions in the aligned ARV muNS proteins. Alignments of the ARV and MRV muNS proteins revealed a low overall amino acid identity ( approximately 25%), although several regions were relatively conserved.
Collapse
Affiliation(s)
- Lindsay Noad
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Jingyun Shou
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| |
Collapse
|
23
|
Bányai K, Palya V, Benko M, Bene J, Havasi V, Melegh B, Szucs G. The Goose Reovirus Genome Segment Encoding the Minor Outer Capsid Protein, σ1/σC, is Bicistronic and Shares Structural Similarities with its Counterpart in Muscovy Duck Reovirus. Virus Genes 2005; 31:285-91. [PMID: 16175334 DOI: 10.1007/s11262-005-3243-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 07/26/2004] [Accepted: 04/11/2005] [Indexed: 11/30/2022]
Abstract
Reoviruses have recently been shown to be associated with disease in young geese and to be involved in epizooties of severe outcome in Hungary. To assess the genetic variability among these pathogenic goose reoviruses (GRVs), we sequenced the S4 genome segment of five GRV strains isolated from different diseased flocks. We found that the GRV S4 genome segment, consisting of two partially overlapping open reading frames (ORFs), shares substantial structural similarity with its counterpart in muscovy duck reoviruses (DRVs). ORF1 is predicted to encode a polypeptide highly similar to the p10 polypeptide of DRV, and ORF2 supposedly encodes the minor outer capsid protein, sigma1/sigmaC. In one of the five GRV strains examined, we identified a single uracil base insertion close to the middle of ORF2. This insertion resulted in a frameshift and in concomitant acquisition of a termination codon (UAA) a few codons downstream, apparently causing truncation of the C-terminal part of the protein. The functional consequences of this assumed mutation, which would result in loss of more than a half of the protein, have yet to be determined. Nonetheless, the sequence and structural similarities between the genome segment encoding sigmal/sigmaC in GRVs and DRVs suggest that these viruses belong to a species distinct from other established species within subgroup 2 of orthoreoviruses.
Collapse
Affiliation(s)
- Krisztián Bányai
- Regional Laboratory of Virology, Baranya County Institute of State Public Health Service, Szabadság út 7, H-7623 , Pécs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
24
|
Spackman E, Pantin-Jackwood M, Day JM, Sellers H. The pathogenesis of turkey origin reoviruses in turkeys and chickens. Avian Pathol 2005; 34:291-6. [PMID: 16147564 DOI: 10.1080/03079450500178501] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Avian reoviruses that have been shown to be genetically distinct from chicken origin reoviruses were isolated from commercial turkey flocks in the Southeastern US and Texas that were experiencing enteritis. The pathogenesis of these turkey origin reoviruses (TRVs) was evaluated in commercial and specific pathogen free (SPF) turkey poults and SPF chickens. Mortality, clinical disease, gross lesions, microscopic lesions and body weights were observed. TRVs replicated poorly and did not cause disease in chickens. Clinical disease induced by the TRV isolates, characterized by diarrhoea and depression, was mild in both SPF and commercial origin poults. Several TRV isolates caused moderate to severe bursal atrophy in poults. Additionally, each of the TRV isolates caused significant body weight decreases in SPF and/or commercial poults as compared with sham inoculates. Molecular characterization of the isolates revealed that the TRVs and chicken origin reoviruses had identical electropherotype profiles.
Collapse
Affiliation(s)
- Erica Spackman
- Southeast Poultry Research Laboratory, USDA-ARS, 934 College Station Road, Athens, GA 30605, USA.
| | | | | | | |
Collapse
|
25
|
Spackman E, Kapczynski D, Sellers H. Multiplex real-time reverse transcription-polymerase chain reaction for the detection of three viruses associated with poult enteritis complex: turkey astrovirus, turkey coronavirus, and turkey reovirus. Avian Dis 2005; 49:86-91. [PMID: 15839418 DOI: 10.1637/7265-082304r] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Poult enteritis complex (PEC) is an economically important disease of young turkeys characterized by diarrhea, poor weight gain, and, in some cases, high mortality. Although PEC is considered to be a polymicrobial disease, numerous viruses, including turkey coronavirus (TCV), turkey astrovirus type 2 (TAstV-2), and avian reoviruses (ARVs), have been associated with PEC-like disease. Real-time reverse transcription-polymerase chain reaction (RRT-PCR), a highly sensitive and specific detection method for viral RNA, was developed in a multiplex format for the simultaneous detection of TAstV-2 and TCV and for the detection of two genetic types of ARV. Assay sensitivity was determined using in vitro transcribed RNA and varied by target between 150 gene copies for TAstV-2 alone and 2200 gene copies for TCV when multiplexed. Virus detection was evaluated with samples collected from poults inoculated at 1 day of age with each of the viruses. Cloacal swabs and intestinal samples were obtained at 1, 2, 3, 4, 6, 9, 14, 17, and 21 days after inoculation, processed, and tested for virus detection by RRT-PCR Cloacal swabs from TAstV-2- and TCV-infected poults were shown to have sensitivity for virus detection similar to that of intestinal samples when compared directly. ARV detection by RRT-PCR was compared with virus isolation and had similar sensitivity.
Collapse
Affiliation(s)
- Erica Spackman
- Southeast Poultry Research Laboratory, USDA-ARS, 934 College Station Road, Athens, GA 30605, USA
| | | | | |
Collapse
|
26
|
Sellers HS, Linnemann EG, Pereira L, Kapczynski DR. Phylogenetic Analysis of the Sigma 2 Protein Gene of Turkey Reoviruses. Avian Dis 2004; 48:651-7. [PMID: 15529990 DOI: 10.1637/7181-032304r] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The open reading frame of the S3 segment encoding the sigma2 protein of four turkey reovirus field isolates was analyzed for sequence heterogeneity. The turkey reoviruses we present here have a 97% amino acid identity to turkey NC 98. The S3 nucleotide and amino acid sequence similarity was < or =61% and 78%-80%, respectively, when compared to the chicken reovirus isolates. Comparison of amino acid sequences from chickens and turkeys with that of a duck isolate revealed a 53% and 55% similarity, respectively. Phylogenetic analyses, based on both nucleotide and amino acid sequence, resulted in three major groups among the avian reoviruses; these groups were clearly separated by species. The results of this study provide further evidence, based on the deduced sigma2 sequence, that turkey reoviruses form a distinct, separate group relative to chicken and duck isolates. In addition, as a result of the limited sequence identity with their avian counterparts, turkey reoviruses could potentially be considered a separate virus species within subgroup 2 of the Orthoreovirus genus.
Collapse
Affiliation(s)
- Holly S Sellers
- Department of Avian Medicine, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
27
|
Duncan R, Corcoran J, Shou J, Stoltz D. Reptilian reovirus: a new fusogenic orthoreovirus species. Virology 2004; 319:131-40. [PMID: 14967494 DOI: 10.1016/j.virol.2003.10.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/20/2003] [Accepted: 10/20/2003] [Indexed: 11/26/2022]
Abstract
The fusogenic subgroup of orthoreoviruses contains most of the few known examples of non-enveloped viruses capable of inducing syncytium formation. The only unclassified orthoreoviruses at the species level represent several fusogenic reptilian isolates. To clarify the relationship of reptilian reoviruses (RRV) to the existing fusogenic and nonfusogenic orthoreovirus species, we undertook a characterization of a python reovirus isolate. Biochemical, biophysical, and biological analyses confirmed the designation of this reptilian reovirus (RRV) isolate as an unclassified fusogenic orthoreovirus. Sequence analysis revealed that the RRV S1 and S3 genome segments contain a novel conserved 5'-terminal sequence not found in other orthoreovirus species. In addition, the gene arrangement and the coding potential of the bicistronic RRV S1 genome segment differ from that of established orthoreovirus species, encoding a predicted homologue of the reovirus cell attachment protein and a unique 125 residue p14 protein. The RRV S3 genome segment encodes a homologue of the reovirus sigma-class major outer capsid protein, although it is highly diverged from that of other orthoreovirus species (amino acid identities of only 16-25%). Based on sequence analysis, biological properties, and phylogenetic analysis, we propose this python reovirus be designated as the prototype strain of a fifth species of orthoreoviruses, the reptilian reoviruses.
Collapse
Affiliation(s)
- Roy Duncan
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| | | | | | | |
Collapse
|