1
|
Takeda T, Yamano S, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, Daghlian G, Hong YK, Yoshimatsu Y, Hirashima M, Kobashi Y, Okamoto K, Kishimoto T, Umeda Y. Dose-response relationship of pulmonary disorders by inhalation exposure to cross-linked water-soluble acrylic acid polymers in F344 rats. Part Fibre Toxicol 2022; 19:27. [PMID: 35395797 PMCID: PMC8994297 DOI: 10.1186/s12989-022-00468-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In Japan, six workers handling cross-linked water-soluble acrylic acid polymer (CWAAP) at a chemical plant suffered from lung diseases, including fibrosis, interstitial pneumonia, emphysema, and pneumothorax. We recently demonstrated that inhalation of CWAAP-A, one type of CWAAP, causes pulmonary disorders in rats. It is important to investigate dose-response relationships and recoverability from exposure to CWAAPs for establishing occupational health guidelines, such as setting threshold limit value for CWAAPs in the workplace. METHODS Male and female F344 rats were exposed to 0.3, 1, 3, or 10 mg/m3 CWAAP-A for 6 h/day, 5 days/week for 13 weeks using a whole-body inhalation exposure system. At 1 h, 4 weeks, and 13 weeks after the last exposure the rats were euthanized and blood, bronchoalveolar lavage fluid, and all tissues including lungs and mediastinal lymph nodes were collected and subjected to biological and histopathological analyses. In a second experiment, male rats were pre-treated with clodronate liposome or polymorphonuclear leukocyte-neutralizing antibody to deplete macrophages or neutrophils, respectively, and exposed to CWAAP-A for 6 h/day for 2 days. RESULTS CWAAP-A exposure damaged only the alveoli. The lowest observed adverse effect concentration (LOAEC) was 1 mg/m3 and the no observed adverse effect concentration (NOAEC) was 0.3 mg/m3. Rats of both sexes were able to recover from the tissue damage caused by 13 weeks exposure to 1 mg/m3 CWAAP-A. In contrast, tissue damage caused by exposure to 3 and 10 mg/m3 was irreversible due to the development of interstitial lung lesions. There was a gender difference in the recovery from CWAAP-A induced pulmonary disorders, with females recovering less than males. Finally, acute lung effects caused by CWAAP-A were significantly reduced by depletion of alveolar macrophages. CONCLUSIONS Pulmonary damage caused by inhalation exposure to CWAAP-A was dose-dependent, specific to the lung and lymph nodes, and acute lung damage was ameliorated by depleting macrophages in the lungs. CWAAP-A had both a LOAEC and a NOAEC, and tissue damage caused by exposure to 1 mg/m3 CWAAP-A was reversible: recovery in female rats was less than for males. These findings indicate that concentration limits for CWAAPs in the workplace can be determined.
Collapse
Affiliation(s)
- Tomoki Takeda
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan.
| | - Shotaro Yamano
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan.
| | - Yuko Goto
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - Shigeyuki Hirai
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - Yusuke Furukawa
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - Yoshinori Kikuchi
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - Kyohei Misumi
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - Masaaki Suzuki
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - Kenji Takanobu
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - Hideki Senoh
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - Misae Saito
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - Hitomi Kondo
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - George Daghlian
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yasuhiro Yoshimatsu
- Division of Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Masanori Hirashima
- Division of Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Yoichiro Kobashi
- Department of Pathology, Tenri Hospital, Tenri, Nara, 632-8552, Japan
| | - Kenzo Okamoto
- Department of Pathology, Hokkaido Chuo Rosai Hospital, Japan Organization of Occupational Health and Safety, Iwamizawa, Hokkaido, 068-0004, Japan
| | - Takumi Kishimoto
- Director of Research and Training Center for Asbestos-Related Diseases, Okayama, Okayama, 702-8055, Japan
| | - Yumi Umeda
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| |
Collapse
|
2
|
Yue J, Su K, Zhang G, Yang J, Xu C, Liu X. Dihydrotanshinone Attenuates LPS-Induced Acute Lung Injury in Mice by Upregulating LXRα. Inflammation 2021; 45:212-221. [PMID: 34467464 DOI: 10.1007/s10753-021-01539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Dihydrotanshinone (DIH) is an extract of Salvia miltiorrhiza Bunge. It has been reported that DIH could regulate NF-κB signaling pathway. The aim of this study was to investigate whether DIH could protect mice from lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. In this study, sixty mice were randomly divided into five groups, one group as blank control group, the second group as LPS control group, and the last three groups were pre-injected with different doses of DIH and then inhaled LPS for experimental comparison. After 12 h of LPS treatment, the wet-dry ratio, histopathlogical changes, and myeloperoxidase (MPO) activity of lungs were measured. In addition, ELISA kits were used to measure the levels of TNF-α and IL-1β inflammatory cytokines in bronchoalveolar lavage fluids (BALF), and western blot analysis was used to measure the activity of NF-κB signaling pathway. The results demonstrated that DIH could effectively reduce pulmonary edema, MPO activity, and improve the lung histopathlogical changes. Furthermore, DIH suppressed the levels of inflammatory cytokines in BALF, such as TNF-α and IL-1β. In addition, DIH could also downregulate the activity of NF-κB signaling pathway. We also found that DIH dose-dependently increased the expression of LXRα. In addition, DIH could inhibit LPS-induced IL-8 production and NF-κB activation in A549 cells. And the inhibitory effects were reversed by LXRα inhibitor geranylgeranyl pyrophosphate (GGPP). Therefore, we speculate that DIH regulates LPS-induced ALI in mice by increasing LXRα expression, which subsequently inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jing Yue
- Department of Anesthesiology, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Kai Su
- Department of Head and Neck Surgery, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Jinghui Yang
- Department of Hepatobiliary Pancreatic Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, China
| | - Chengbi Xu
- Department of Head and Neck Surgery, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Xueshibojie Liu
- Department of Head and Neck Surgery, The Second Affiliated Hospital of Jilin University, Changchun, China.
- Department of Head and Neck Surgery, The Second Affiliated Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Petroni RC, Biselli PJC, de Lima TM, Theobaldo MC, Caldini ET, Pimentel RN, Barbeiro HV, Kubo SA, Velasco IT, Soriano FG. Hypertonic Saline (NaCl 7.5%) Reduces LPS-Induced Acute Lung Injury in Rats. Inflammation 2016; 38:2026-35. [PMID: 25962375 DOI: 10.1007/s10753-015-0183-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe lung inflammatory manifestation and has no effective therapy nowadays. Sepsis is one of the main illnesses among ARDS causes. The use of fluid resuscitation is an important treatment for sepsis, but positive fluid balance may induce pulmonary injury. As an alternative, fluid resuscitation with hypertonic saline ((HS) NaCl 7.5%) has been described as a promising therapeutical agent in sepsis-induced ARDS by the diminished amount of fluid necessary. Thus, we evaluated the effect of hypertonic saline in the treatment of LPS-induced ARDS. We found that hypertonic saline (NaCl 7.5%) treatment in rat model of LPS-induced ARDS avoided pulmonary function worsening and inhibited type I collagen deposition. In addition, hypertonic saline prevented pulmonary injury by decreasing metalloproteinase 9 (MMP-9) activity in tissue. Focal adhesion kinase (FAK) activation was reduced in HS group as well as neutrophil infiltration, NOS2 expression and NO content. Our study shows that fluid resuscitation with hypertonic saline decreases the progression of LPS-induced ARDS due to inhibition of pulmonary remodeling that is observed when regular saline is used.
Collapse
Affiliation(s)
- Ricardo Costa Petroni
- Emergency Medicine Department, Medical School, University of São Paulo, São Paulo, Brazil.
- Faculdade de Medicina da USP, LIM-51, Av. Dr. Arnaldo, 455, 3 andar, sala 3189, Cerqueira César, 01246-903, São Paulo, SP, Brazil.
| | | | - Thais Martins de Lima
- Emergency Medicine Department, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Elia Tamaso Caldini
- Laboratory of Cell Biology, Department of Pathology, Medical School, University of Sao Paulo, São Paulo, Brazil
| | | | - Hermes Vieira Barbeiro
- Emergency Medicine Department, Medical School, University of São Paulo, São Paulo, Brazil
| | - Suely Ariga Kubo
- Emergency Medicine Department, Medical School, University of São Paulo, São Paulo, Brazil
| | - Irineu Tadeu Velasco
- Emergency Medicine Department, Medical School, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
4
|
Fastner C, Mairbäurl H, Weber NC, van der Sluijs K, Hackl F, Hotz L, Dahan A, Hollmann MW, Berger MM. Intravenous S-ketamine does not inhibit alveolar fluid clearance in a septic rat model. PLoS One 2014; 9:e112622. [PMID: 25386677 PMCID: PMC4227727 DOI: 10.1371/journal.pone.0112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/14/2014] [Indexed: 11/24/2022] Open
Abstract
We previously demonstrated that intratracheally administered S-ketamine inhibits alveolar fluid clearance (AFC), whereas an intravenous (IV) bolus injection had no effect. The aim of the present study was to characterize whether continuous IV infusion of S-ketamine, yielding clinically relevant plasma concentrations, inhibits AFC and whether its effect is enhanced in acute lung injury (ALI) which might favor the appearance of IV S-ketamine at the alveolar surface. AFC was measured in fluid-instilled rat lungs. S-ketamine was administered IV over 6 h (loading dose: 20 mg/kg, followed by 20 mg/kg/h), or intratracheally by addition to the instillate (75 µg/ml). ALI was induced by IV lipopolysaccharide (LPS; 7 mg/kg). Interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant (CINC)-3 were measured by ELISA in plasma and bronchoalveolar lavage fluid. Isolated rat alveolar type-II cells were exposed to S-ketamine (75 µg/ml) and/or LPS (1 mg/ml) for 6 h, and transepithelial ion transport was measured as short circuit current (ISC). AFC was 27±5% (mean±SD) over 60 min in control rats and was unaffected by IV S-ketamine. Tracheal S-ketamine reduced AFC to 18±9%. In LPS-treated rats, AFC decreased to 16±6%. This effect was not enhanced by IV S-ketamine. LPS increased IL-6 and CINC-3 in plasma and bronchoalveolar lavage fluid. In alveolar type-II cells, S-ketamine reduced ISC by 37% via a decrease in amiloride-inhibitable sodium transport. Continuous administration of IV S-ketamine does not affect rat AFC even in endotoxin-induced ALI. Tracheal application with direct exposure of alveolar epithelial cells to S-ketamine decreases AFC by inhibition of amiloride-inhibitable sodium transport.
Collapse
Affiliation(s)
- Christian Fastner
- Department of Anesthesiology, University Hospital, Heidelberg, Germany
- Medical Clinic VII, Sports Medicine, University Hospital, Heidelberg, Germany
| | - Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, University Hospital, Heidelberg, Germany
| | - Nina C. Weber
- Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam (AMC), Amsterdam, The Netherlands
| | - Koen van der Sluijs
- Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam (AMC), Amsterdam, The Netherlands
| | - Florian Hackl
- Department of Anesthesiology, Critical Care and Pain Medicine, Salzburg General Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Lorenz Hotz
- Department of Anesthesiology, University Hospital, Heidelberg, Germany
- Department of Anesthesiology, Critical Care and Pain Medicine, Salzburg General Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Albert Dahan
- Department of Anesthesiology, University Medical Center, Leiden, The Netherlands
| | - Markus W. Hollmann
- Department of Anesthesiology, University of Amsterdam (AMC), Amsterdam, The Netherlands
| | - Marc M. Berger
- Department of Anesthesiology, University Hospital, Heidelberg, Germany
- Department of Anesthesiology, Critical Care and Pain Medicine, Salzburg General Hospital, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| |
Collapse
|
5
|
Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 2013; 306:L217-30. [PMID: 24318116 DOI: 10.1152/ajplung.00311.2013] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening lung condition resulting from direct and indirect insults to the lung. It is characterized by disruption of the endothelial-epithelial barrier, alveolar damage, pulmonary edema, and respiratory failure. A key feature of ARDS is the accumulation of neutrophils in the lung microvasculature, interstitium, and alveolar space. Despite a clear association between neutrophil influx into the lung and disease severity, there is some debate as to whether neutrophils directly contribute to disease pathogenesis. The primary function of neutrophils is to provide immediate host defense against pathogenic microorganisms. Neutrophils release numerous antimicrobial factors such as reactive oxygen species, proteinases, and neutrophil extracellular traps. However, these factors are also toxic to host cells and can result in bystander tissue damage. The excessive accumulation of neutrophils in ARDS may therefore contribute to disease progression. Central to neutrophil recruitment is the release of chemokines, including the archetypal neutrophil chemoattractant IL-8, from resident pulmonary cells. However, the chemokine network in the inflamed lung is complex and may involve several other chemokines, including CXCL10, CCL2, and CCL7. This review will therefore focus on the experimental and clinical evidence supporting neutrophils as key players in ARDS and the chemokines involved in recruiting them into the lung.
Collapse
Affiliation(s)
- Andrew E Williams
- Centre for Inflammation and Tissue Repair, Univ. College London, Rayne Institute, 5 Univ. St., London WC1E 6JF, UK.
| | | |
Collapse
|
6
|
Guo YL, Huang H, Zeng DX, Zhao JP, Fang HJ, Lavoie JP. Interleukin (IL)-4 induces production of cytokine-induced neutrophil chemoattractants (CINCs) and intercellular adhesion molecule (ICAM)-1 in lungs of asthmatic rats. ACTA ACUST UNITED AC 2013; 33:470-478. [PMID: 23904363 DOI: 10.1007/s11596-013-1144-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/15/2013] [Indexed: 12/31/2022]
Abstract
The present study aimed to examine the effect of interleukin (IL)-4 on neutrophil chemotaxis in airway inflammation in asthmatic rats and the possible mechanism. Male Wistar rats were intranasally instilled with recombinant rat (rr) IL-4 (rrIL-4) at different doses [2, 4 or 8 μg/animal, dissolved in 200 μL normal saline (NS)] or rrIL-4 at 4 μg/animal (dissolved in 200 μL NS). NS (200 μL) and LPS (6 mg/kg/animal, dissolved in 200 μL NS) were intranasally given respectively in the negative and positive control groups. Moreover, the asthmatic lung inflammation was induced in rats which were then intranasally treated with rrIL-4 (4 μg/animal) or LPS (6 mg/kg/animal). The normal rats treated with different doses of rrIL-4 and those asthmatic rats were sacrificed 6 h later. And animals instilled with rrIL-4 at 4 μg were sacrificed 6, 12 or 24 h later. The bronchoalveolar lavage fluid (BALF) and lungs were harvested for detection of leukocyte counts by Wright-Giemsa staining and lung histopathology by haematoxylin-eosin (HE) staining. The levels of cytokine-induced neutrophil chemoattractant (CINC)-1 and intercellular adhesion molecule (ICAM)-1 in BALF were determined by ELISA. Real-time PCR was used to measure the mRNA expression of CINCs (CINC-1, CINC-2α, CINC-2β, CINC-3) and ICAM-1 in lung tissues. The results showed that the intranasal instillation of IL-4 did not induce a recruitment of neutrophils in BALF in rats. However, IL-4 could increase the CINC-1 level in BALF in a dose-dependent manner at 6 h. But the mRNA expression levels of CINC-1, CINC-2α, CINC-2β, CINC-3 were not significantly increased in lungs of IL-4-treated rats relative to NS negative control group. Moreover, IL-4 was found to augment the mRNA expression of ICAM-1 in lungs and the ICAM-1 level in BALF at 6 h. However, the increase in CINC-1 and ICAM-1 levels in BALF of IL-4-treated asthmatic rats was not significantly different from that in untreated asthmatic rats. These findings indicate that IL-4 does not directly recruit neutrophils in the rat lungs, but it may contribute to airway neutrophilia through up-regulation of CINC-1 and ICAM-1.
Collapse
Affiliation(s)
- Ya-Li Guo
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Respiratory Diseases and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Hong Huang
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Da-Xiong Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jian-Ping Zhao
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Juan Fang
- Department of Respiratory Diseases and Critical Care Medicine, Tongji Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, J2S 7C6, Canada
| |
Collapse
|
7
|
Oliveira GP, Oliveira MBG, Santos RS, Lima LD, Dias CM, Ab' Saber AM, Teodoro WR, Capelozzi VL, Gomes RN, Bozza PT, Pelosi P, Rocco PRM. Intravenous glutamine decreases lung and distal organ injury in an experimental model of abdominal sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R74. [PMID: 19454012 PMCID: PMC2717436 DOI: 10.1186/cc7888] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/19/2009] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The protective effect of glutamine, as a pharmacological agent against lung injury, has been reported in experimental sepsis; however, its efficacy at improving oxygenation and lung mechanics, attenuating diaphragm and distal organ injury has to be better elucidated. In the present study, we tested the hypothesis that a single early intravenous dose of glutamine was associated not only with the improvement of lung morpho-function, but also the reduction of the inflammatory process and epithelial cell apoptosis in kidney, liver, and intestine villi. METHODS Seventy-two Wistar rats were randomly assigned into four groups. Sepsis was induced by cecal ligation and puncture surgery (CLP), while a sham operated group was used as control (C). One hour after surgery, C and CLP groups were further randomized into subgroups receiving intravenous saline (1 ml, SAL) or glutamine (0.75 g/kg, Gln). At 48 hours, animals were anesthetized, and the following parameters were measured: arterial oxygenation, pulmonary mechanics, and diaphragm, lung, kidney, liver, and small intestine villi histology. At 18 and 48 hours, Cytokine-Induced Neutrophil Chemoattractant (CINC)-1, interleukin (IL)-6 and 10 were quantified in bronchoalveolar and peritoneal lavage fluids (BALF and PLF, respectively). RESULTS CLP induced: a) deterioration of lung mechanics and gas exchange; b) ultrastructural changes of lung parenchyma and diaphragm; and c) lung and distal organ epithelial cell apoptosis. Glutamine improved survival rate, oxygenation and lung mechanics, minimized pulmonary and diaphragmatic changes, attenuating lung and distal organ epithelial cell apoptosis. Glutamine increased IL-10 in peritoneal lavage fluid at 18 hours and bronchoalveolar lavage fluid at 48 hours, but decreased CINC-1 and IL-6 in BALF and PLF only at 18 hours. CONCLUSIONS In an experimental model of abdominal sepsis, a single intravenous dose of glutamine administered after sepsis induction may modulate the inflammatory process reducing not only the risk of lung injury, but also distal organ impairment. These results suggest that intravenous glutamine may be a potentially beneficial therapy for abdominal sepsis.
Collapse
Affiliation(s)
- Gisele P Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Steurer M, Schläpfer M, Steurer M, Z'graggen BR, Booy C, Reyes L, Spahn DR, Beck-Schimmer B. The volatile anaesthetic sevoflurane attenuates lipopolysaccharide-induced injury in alveolar macrophages. Clin Exp Immunol 2008; 155:224-30. [PMID: 19032551 DOI: 10.1111/j.1365-2249.2008.03807.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a well-defined inflammation whereby alveolar macrophages play a crucial role as effector cells. As shown previously in numerous experimental approaches, volatile anaesthetics might reduce the degree of injury in pre- or post-conditioning set-ups. Therefore, we were interested to evaluate the effect of the application of the volatile anaesthetic sevoflurane on alveolar macrophages regarding the expression of inflammatory mediators upon lipopolysaccharide (LPS) stimulation in vitro. Alveolar macrophages were stimulated with LPS. Two hours later, cells were exposed additionally to air (control) or to sevoflurane-containing air for 4, 6, 8, 12 or 24 h. Tumour necrosis factor (TNF)-alpha, cytokine-induced neutrophil chemoattractant-1 (CINC-1), macrophage-inflammatory protein-2 (MIP-2) and monocyte chemoattractant protein-1 (MCP-1) proteins were determined and chemotaxis assays were performed. To evaluate possible cellular signalling pathways phosphorylation of the kinases extracellular-regulated kinase (ERK) and Akt was assessed. In the early phase of sevoflurane post-conditioning expression of TNF-alpha, CINC-1, MIP-2 and MCP-1 was attenuated, leading to a diminished chemotaxis reaction for neutrophils. Phosphorylation of ERK seems to be a possible cellular mechanism in the sevoflurane-induced protection in vitro. Pharmacological post-conditioning of alveolar macrophages with sevoflurane immunmodulates the inflammatory response upon stimulation with endotoxin. This might be a possible option for a therapeutical approach in ALI.
Collapse
Affiliation(s)
- M Steurer
- Institute of Physiology, Zurich Center of Integrative Human Physiology, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nishina K, Zhang F, Nielsen LD, Edeen K, Wang J, Mason RJ. Expression of CINC-2beta is related to the state of differentiation of alveolar epithelial cells. Am J Respir Cell Mol Biol 2005; 33:505-12. [PMID: 16055671 PMCID: PMC2715358 DOI: 10.1165/rcmb.2005-0113oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alveolar epithelial cells are among the first cells to encounter inhaled particles or organisms. These cells likely participate in the initiation and modulation of the inflammatory response by production of chemokines. However, there is little information on the extent or regulation of chemokine production by these cells. Rat type II cells were studied under differentiated and dedifferentiated conditions to determine their ability to express and secrete CXC chemokines. Both differentiated and dedifferentiated type II cells secreted MIP-2, MCP-1, and CINC-2 in response to a cytokine mixture of IL-1beta, TNF-alpha, and IFN-gamma or to IL-1beta alone. The cytokine mixture also induced iNOS expression and nitrite secretion. Both differentiated and dedifferentiated type II cells expressed CINC-1 (GRO), CINC-2alpha, CINC-3 (MIP-2), and MCP-1 mRNA, and their expression was increased by the cytokine mixture or by IL-1beta alone. However, CINC-2beta, a splice variant of CINC-2, was only expressed under differentiated conditions stimulated by KGF and was not increased by the cytokine mixture or by IL-1beta. In situ hybridization of normal lung and lung instilled with Ad-KGF demonstrated that CINC-2beta was expressed by alveolar and bronchiolar epithelial cells in vivo. We conclude that CINC-2beta is regulated differently from most other chemokines and that its expression is related to the state of alveolar type II cell differentiation.
Collapse
Affiliation(s)
- Kahoru Nishina
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ader F, Le Berre R, Faure K, Gosset P, Epaulard O, Toussaint B, Polack B, Nowak E, Viget NB, Kipnis E, Guery BP. Alveolar response to Pseudomonas aeruginosa: role of the type III secretion system. Infect Immun 2005; 73:4263-71. [PMID: 15972518 PMCID: PMC1168600 DOI: 10.1128/iai.73.7.4263-4271.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The type III secretion system (TTSS) is a specialized cytotoxin-translocating apparatus of gram-negative bacteria which is involved in lung injury, septic shock, and a poor patient outcome. Recent studies have attributed these effects mainly to the ExoU effector protein. However, few studies have focused on the ExoU-independent pathogenicity of the TTSS. For the present study, we compared the pathogenicities of two strains of Pseudomonas aeruginosa in a murine model of acute lung injury. We compared the CHA strain, which has a functional TTSS producing ExoS and ExoT but not ExoU, to an isogenic mutant with an inactivated exsA gene, CHA-D1, which does not express the TTSS at all. Rats challenged with CHA had significantly increased lung injury, as assessed by the wet/dry weight ratio for the lungs and the protein level in bronchoalveolar lavage fluid (BALF) at 12 h, compared to those challenged with CHA-D1. Consistent with these findings, the CHA strain was associated with increased in vitro cytotoxicity on A549 cells, as assessed by the release of lactate dehydrogenase. CHA was also associated at 12 h with a major decrease in polymorphonuclear neutrophils in BALF, with a proinflammatory response, as assessed by the amounts of tumor necrosis factor alpha and interleukin-1beta, and with decreased bacterial clearance from the lungs, ultimately leading to an increased mortality rate. These results demonstrate that the TTSS has a major role in P. aeruginosa pathogenicity independent of the role of ExoU. This report underscores the crucial roles of ExoS and ExoT or other TTSS-related virulence factors in addition to ExoU.
Collapse
Affiliation(s)
- F Ader
- Laboratoire de Recherche en Pathologie Infectieuse, Faculté de Médecine de Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yanagisawa R, Takano H, Inoue K, Ichinose T, Sadakane K, Yoshino S, Yamaki K, Kumagai Y, Uchiyama K, Yoshikawa T, Morita M. Enhancement of acute lung injury related to bacterial endotoxin by components of diesel exhaust particles. Thorax 2003; 58:605-12. [PMID: 12832678 PMCID: PMC1746720 DOI: 10.1136/thorax.58.7.605] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Diesel exhaust particles (DEP) synergistically aggravate acute lung injury related to lipopolysaccharide (LPS) in mice, but the components in DEP responsible for this have not been identified. A study was undertaken to examine the effects of the organic chemicals (DEP-OC) and residual carbonaceous nuclei (washed DEP) derived from DEP on LPS related lung injury. METHODS ICR mice were divided into experimental groups and vehicle, LPS, washed DEP, DEP-OC, washed DEP+LPS, and DEP-OC+LPS were administered intratracheally. The cellular profile of the bronchoalveolar lavage (BAL) fluid, pulmonary oedema, lung histology, and expression of proinflammatory molecules and Toll-like receptors in the lung were evaluated. RESULTS Both DEP-OC and washed DEP enhanced the infiltration of neutrophils into BAL fluid in the presence of LPS. Washed DEP combined with LPS synergistically exacerbated pulmonary oedema and induced alveolar haemorrhage, which was concomitant with the enhanced lung expression of interleukin-1beta, macrophage inflammatory protein-1alpha, macrophage chemoattractant protein-1, and keratinocyte chemoattractant, whereas DEP-OC combined with LPS did not. Gene expression of Toll-like receptors 2 and 4 was increased by combined treatment with washed DEP and LPS. The enhancement effects of washed DEP on LPS related changes were comparable to those of whole DEP. CONCLUSIONS These results suggest that the residual carbonaceous nuclei of DEP rather than the extracted organic chemicals predominantly contribute to the aggravation of LPS related lung injury. This may be mediated through the expression of proinflammatory cytokines, chemokines, and Toll-like receptors.
Collapse
Affiliation(s)
- R Yanagisawa
- Pathophysiology Research Team, National Institute for Environmental Studies, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Clarke DJ, Branton RL. A role for tumor necrosis factor alpha in death of dopaminergic neurons following neural transplantation. Exp Neurol 2002; 176:154-62. [PMID: 12093092 DOI: 10.1006/exnr.2002.7911] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poor survival of transplanted dopaminergic (DA) neurons remains a serious obstacle to the success of cell replacement therapy as an alternative to the current treatments for Parkinson's disease (PD). We have examined the temporal release profile of an inflammatory cytokine, tumor necrosis factor-alpha (TNFalpha), following transplantation of fetal mesencephalic tissue into the rat striatum. The amounts of TNFalpha released in vivo when added to cultures of embryonic DA neurons, significantly reduced the survival of DA neurons in vitro, and this cell death could be prevented by the inclusion of an antibody to the TNFalpha receptor type 1. Inclusion of this antibody in cell suspensions during transplantation also increased the survival of transplanted fetal DA neurons by approximately 250%. Use of this therapeutic antibody approach may offer significant improvements to neural transplantation as a treatment for PD.
Collapse
Affiliation(s)
- Deborah J Clarke
- Department of Human Anatomy and Genetics, South Parks Road, Oxford, United Kingdom
| | | |
Collapse
|
13
|
Ward H, Vigues S, Poole S, Bristow AF. The rat interleukin 10 receptor: cloning and sequencing of cDNA coding for the alpha-chain protein sequence, and demonstration by western blotting of expression in the rat brain. Cytokine 2001; 15:237-40. [PMID: 11594787 DOI: 10.1006/cyto.2001.0933] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cDNA coding for the alpha chain of the rat interleukin 10 (IL-10) receptor was amplified by polymerase chain reaction (PCR), cloned and sequenced. The nucleic acid coding sequence exhibited 88% and 68% homology with the mouse and human IL-10 receptor sequences, respectively. The translated protein exhibited 83% and 61% homology with the mouse and human IL-10 receptor proteins. Specific antibodies were raised to the extracellular domain of the rat IL-10 receptor expressed as a secreted protein in recombinant Drosophila S2 cells. Western blotting using these antibodies demonstrated the presence of the IL-10 receptor in five major regions of the rat brain (cortex, cerebellum, hippocampus, hypothalamus and pituitary), supporting a role for IL-10 as a central regulator of inflammation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Brain/metabolism
- Cell Membrane/metabolism
- Cloning, Molecular
- DNA, Complementary/metabolism
- Drosophila
- Humans
- Immunohistochemistry
- Inflammation
- Interleukin-10/physiology
- Mice
- Molecular Sequence Data
- Polymerase Chain Reaction
- Protein Structure, Tertiary
- Rats
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/genetics
- Receptors, Interleukin-10
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
Collapse
Affiliation(s)
- H Ward
- National Institute for Biological Standards and Control, Potters Bar, Herts, UK
| | | | | | | |
Collapse
|
14
|
Nawa H, Takahashi M, Patterson PH. Cytokine and growth factor involvement in schizophrenia--support for the developmental model. Mol Psychiatry 2000; 5:594-603. [PMID: 11126390 DOI: 10.1038/sj.mp.4000730] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Medical treatment with various cytokines can provoke psychiatric symptoms. Conversely, psychiatric patients can display abnormalities in cytokine and neurotrophic factor expression. Such observations have pointed to the potential contribution of cytokines and growth factors to schizophrenic pathology and/or etiology. The cellular targets of the relevant factors and the nature of their actions remain to be explored in mental illness, however. Recent physiological studies demonstrate that cytokines and neurotrophic factors can markedly influence synaptic transmission and plasticity upon acute or chronic application. Moreover, many of the molecular alterations observed in the schizophrenic brain are consistent with abnormalities in cytokine and neurotrophic factor regulation of these molecules. In this review, we summarize these molecular pathology findings for schizophrenia and highlight the neurodevelopmental activities of cytokines and neurotrophic factors that may contribute to the etiology or pathology of this illness.
Collapse
Affiliation(s)
- H Nawa
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | | | | |
Collapse
|