1
|
Jové M, Mota-Martorell N, Fernàndez-Bernal A, Portero-Otin M, Barja G, Pamplona R. Phenotypic molecular features of long-lived animal species. Free Radic Biol Med 2023; 208:728-747. [PMID: 37748717 DOI: 10.1016/j.freeradbiomed.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Anna Fernàndez-Bernal
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain.
| |
Collapse
|
2
|
Gómez J, Mota-Martorell N, Jové M, Pamplona R, Barja G. Mitochondrial ROS production, oxidative stress and aging within and between species: Evidences and recent advances on this aging effector. Exp Gerontol 2023; 174:112134. [PMID: 36849000 DOI: 10.1016/j.exger.2023.112134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
Mitochondria play a wide diversity of roles in cell physiology and have a key functional implication in cell bioenergetics and biology of free radicals. As the main cellular source of oxygen radicals, mitochondria have been postulated as the mediators of the cellular decline associated with the biological aging. Recent evidences have shown that mitochondrial free radical production is a highly regulated mechanism contributing to the biological determination of longevity which is species-specific. This mitochondrial free radical generation rate induces a diversity of adaptive responses and derived molecular damage to cell components, highlighting mitochondrial DNA damage, with biological consequences that influence the rate of aging of a given animal species. In this review, we explore the idea that mitochondria play a fundamental role in the determination of animal longevity. Once the basic mechanisms are discerned, molecular approaches to counter aging may be designed and developed to prevent or reverse functional decline, and to modify longevity.
Collapse
Affiliation(s)
- José Gómez
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Rey Juan Carlos University, E28933 Móstoles, Madrid, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain.
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040 Madrid, Spain.
| |
Collapse
|
3
|
Almaida-Pagan PF, Lucas-Sanchez A, Martinez-Nicolas A, Terzibasi E, de Lama MAR, Cellerino A, Mendiola P, de Costa J. Membrane lipids and maximum lifespan in clownfish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:53-65. [PMID: 34862943 PMCID: PMC8844168 DOI: 10.1007/s10695-021-01037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The longevity-homeoviscous adaptation (LHA) theory of ageing states that lipid composition of cell membranes is linked to metabolic rate and lifespan, which has been widely shown in mammals and birds but not sufficiently in fish. In this study, two species of the genus Amphiprion (Amphiprion percula and Amphiprion clarkii, with estimated maximum lifespan potentials [MLSP] of 30 and 9-16 years, respectively) and the damselfish Chromis viridis (estimated MLSP of 1-2 years) were chosen to test the LHA theory of ageing in a potential model of exceptional longevity. Brain, livers and samples of skeletal muscle were collected for lipid analyses and integral part in the computation of membrane peroxidation indexes (PIn) from phospholipid (PL) fractions and PL fatty acid composition. When only the two Amphiprion species were compared, results pointed to the existence of a negative correlation between membrane PIn value and maximum lifespan, well in line with the predictions from the LHA theory of ageing. Nevertheless, contradictory data were obtained when the two Amphiprion species were compared to the shorter-lived C. viridis. These results along with those obtained in previous studies on fish denote that the magnitude (and sometimes the direction) of the differences observed in membrane lipid composition and peroxidation index with MLSP cannot explain alone the diversity in longevity found among fishes.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagan
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain.
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - Alejandro Lucas-Sanchez
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Eva Terzibasi
- Stazione Zoologica Anton Dohrn, Naples, Campania, Italy
| | - Maria Angeles Rol de Lama
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Pilar Mendiola
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jorge de Costa
- Chronobiology Lab, Department of Physiology, Faculty of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, 30100, Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
4
|
Han J, Park H, Maharana C, Gwon AR, Park J, Baek SH, Bae HG, Cho Y, Kim HK, Sul JH, Lee J, Kim E, Kim J, Cho Y, Park S, Palomera LF, Arumugam TV, Mattson MP, Jo DG. Alzheimer's disease-causing presenilin-1 mutations have deleterious effects on mitochondrial function. Am J Cancer Res 2021; 11:8855-8873. [PMID: 34522215 PMCID: PMC8419044 DOI: 10.7150/thno.59776] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are frequently observed in the early stages of Alzheimer's disease (AD). Studies have shown that presenilin-1 (PS1), the catalytic subunit of γ-secretase whose mutation is linked to familial AD (FAD), localizes to the mitochondrial membrane and regulates its homeostasis. Thus, we investigated how five PS1 mutations (A431E, E280A, H163R, M146V, and Δexon9) observed in FAD affect mitochondrial functions. Methods: We used H4 glioblastoma cell lines genetically engineered to inducibly express either the wild-type PS1 or one of the five PS1 mutants in order to examine mitochondrial morphology, dynamics, membrane potential, ATP production, mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), oxidative stress, and bioenergetics. Furthermore, we used brains of PS1M146V knock-in mice, 3xTg-AD mice, and human AD patients in order to investigate the role of PS1 in regulating MAMs formation. Results: Each PS1 mutant exhibited slightly different mitochondrial dysfunction. Δexon9 mutant induced mitochondrial fragmentation while A431E, E280A, H163R, and M146V mutants increased MAMs formation. A431E, E280A, M146V, and Δexon9 mutants also induced mitochondrial ROS production. A431E mutant impaired both complex I and peroxidase activity while M146V mutant only impaired peroxidase activity. All PS1 mutants compromised mitochondrial membrane potential and cellular ATP levels were reduced by A431E, M146V, and Δexon9 mutants. Through comparative profiling of hippocampal gene expression in PS1M146V knock-in mice, we found that PS1M146V upregulates Atlastin 2 (ATL2) expression level, which increases ER-mitochondria contacts. Down-regulation of ATL2 after PS1 mutant induction rescued abnormally elevated ER-mitochondria interactions back to the normal level. Moreover, ATL2 expression levels were significantly elevated in the brains of 3xTg-AD mice and AD patients. Conclusions: Overall, our findings suggest that each of the five FAD-linked PS1 mutations has a deleterious effect on mitochondrial functions in a variety of ways. The adverse effects of PS1 mutations on mitochondria may contribute to MAMs formation and oxidative stress resulting in an accelerated age of disease onset in people harboring mutant PS1.
Collapse
|
5
|
Melentev PA, Ryabova EV, Surina NV, Zhmujdina DR, Komissarov AE, Ivanova EA, Boltneva NP, Makhaeva GF, Sliusarenko MI, Yatsenko AS, Mohylyak II, Matiytsiv NP, Shcherbata HR, Sarantseva SV. Loss of swiss cheese in Neurons Contributes to Neurodegeneration with Mitochondria Abnormalities, Reactive Oxygen Species Acceleration and Accumulation of Lipid Droplets in Drosophila Brain. Int J Mol Sci 2021; 22:8275. [PMID: 34361042 PMCID: PMC8347196 DOI: 10.3390/ijms22158275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Various neurodegenerative disorders are associated with human NTE/PNPLA6 dysfunction. Mechanisms of neuropathogenesis in these diseases are far from clearly elucidated. Hereditary spastic paraplegia belongs to a type of neurodegeneration associated with NTE/PNLPLA6 and is implicated in neuron death. In this study, we used Drosophila melanogaster to investigate the consequences of neuronal knockdown of swiss cheese (sws)-the evolutionarily conserved ortholog of human NTE/PNPLA6-in vivo. Adult flies with the knockdown show longevity decline, locomotor and memory deficits, severe neurodegeneration progression in the brain, reactive oxygen species level acceleration, mitochondria abnormalities and lipid droplet accumulation. Our results suggest that SWS/NTE/PNPLA6 dysfunction in neurons induces oxidative stress and lipid metabolism alterations, involving mitochondria dynamics and lipid droplet turnover in neurodegeneration pathogenesis. We propose that there is a complex mechanism in neurological diseases such as hereditary spastic paraplegia, which includes a stress reaction, engaging mitochondria, lipid droplets and endoplasmic reticulum interplay.
Collapse
Affiliation(s)
- Pavel A. Melentev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Elena V. Ryabova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Nina V. Surina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Darya R. Zhmujdina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Artem E. Komissarov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Ekaterina A. Ivanova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Mariana I. Sliusarenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Andriy S. Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Iryna I. Mohylyak
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Nataliya P. Matiytsiv
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Halyna R. Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| |
Collapse
|
6
|
Plasma methionine metabolic profile is associated with longevity in mammals. Commun Biol 2021; 4:725. [PMID: 34117367 PMCID: PMC8196171 DOI: 10.1038/s42003-021-02254-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 05/20/2021] [Indexed: 01/28/2023] Open
Abstract
Methionine metabolism arises as a key target to elucidate the molecular adaptations underlying animal longevity due to the negative association between longevity and methionine content. The present study follows a comparative approach to analyse plasma methionine metabolic profile using a LC-MS/MS platform from 11 mammalian species with a longevity ranging from 3.5 to 120 years. Our findings demonstrate the existence of a species-specific plasma profile for methionine metabolism associated with longevity characterised by: i) reduced methionine, cystathionine and choline; ii) increased non-polar amino acids; iii) reduced succinate and malate; and iv) increased carnitine. Our results support the existence of plasma longevity features that might respond to an optimised energetic metabolism and intracellular structures found in long-lived species. Mota-Martorell and colleagues use a comparative metabolomics approach to examine plasma metabolite levels associated with methionine metabolism in 11 mammalian species. They identify species specific plasma profiles indicative of a link between lifetime longevity and methionine metabolism.
Collapse
|
7
|
Ghiselli F, Iannello M, Piccinini G, Milani L. Bivalve molluscs as model systems for studying mitochondrial biology. Integr Comp Biol 2021; 61:1699-1714. [PMID: 33944910 DOI: 10.1093/icb/icab057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The class Bivalvia is a highly successful and ancient taxon including ∼25,000 living species. During their long evolutionary history bivalves adapted to a wide range of physicochemical conditions, habitats, biological interactions, and feeding habits. Bivalves can have strikingly different size, and despite their apparently simple body plan, they evolved very different shell shapes, and complex anatomic structures. One of the most striking features of this class of animals is their peculiar mitochondrial biology: some bivalves have facultatively anaerobic mitochondria that allow them to survive prolonged periods of anoxia/hypoxia. Moreover, more than 100 species have now been reported showing the only known evolutionarily stable exception to the strictly maternal inheritance of mitochondria in animals, named doubly uniparental inheritance. Mitochondrial activity is fundamental to eukaryotic life, and thanks to their diversity and uncommon features, bivalves represent a great model system to expand our knowledge about mitochondrial biology, so far limited to a few species. We highlight recent works studying mitochondrial biology in bivalves at either genomic or physiological level. A link between these two approaches is still missing, and we believe that an integrated approach and collaborative relationships are the only possible ways to be successful in such endeavour.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Giovanni Piccinini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
8
|
Amarsanaa K, Kim HJ, Ko EA, Jo J, Jung SC. Nobiletin Exhibits Neuroprotective Effects against Mitochondrial Complex I Inhibition via Regulating Apoptotic Signaling. Exp Neurobiol 2021; 30:73-86. [PMID: 33424017 PMCID: PMC7926044 DOI: 10.5607/en20051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/10/2020] [Accepted: 12/25/2020] [Indexed: 12/27/2022] Open
Abstract
Nobiletin, a polymethoxylated flavonoid found in citrus, has been studied because of its modulatory functions in cellular signaling cascades, and effects to prevent mitochondrial calcium overload and neuronal cell death. Particularly, we previously reported that nobiletin induced changes in the mitochondrial membrane potential through K+ channel regulation, suggesting that nobiletin might exert neuroprotective effects via regulating mitochondrial functions associated with the electron transport chain (ETC) system. This study investigated whether nobiletin regulated mitochondrial dysfunction mediated by ETC system downregulation by inhibiting complex I (CI) and complex III (CIII) in pure mitochondria and the cortical neurons of rats. The results showed that nobiletin significantly reduced mitochondrial reactive oxygen species (ROS) production, inhibited apoptotic signaling, enhanced ATP production and then restored neuronal viability under conditions of CI inhibition, but not CIII inhibition. These effects were attributed to the downregulation of translocation of apoptosis-induced factor (AIF), and the upregulation of CI activity and the expression of antioxidant enzymes such as Nrf2 and HO-1. Together with our previous study, these results indicate that the neuroprotective effects of nobiletin under mitochondrial dysfunction may be associated with its function to activate antioxidant signaling cascades. Our findings suggest the possibility that nobiletin has therapeutic potential in treating oxidative neurological and neurodegenerative diseases mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Khulan Amarsanaa
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Hye-Ji Kim
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Jaemin Jo
- Department of Internal Medicine, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
9
|
Albuck AL, Sakamuri SSVP, Sperling JA, Evans WR, Kolli L, Sure VN, Mostany R, Katakam PVG. Peroxynitrite decomposition catalyst enhances respiratory function in isolated brain mitochondria. Am J Physiol Heart Circ Physiol 2021; 320:H630-H641. [PMID: 33164581 PMCID: PMC8082788 DOI: 10.1152/ajpheart.00389.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Peroxynitrite (PN), generated from the reaction of nitric oxide (NO) and superoxide, is implicated in the pathogenesis of ischemic and neurodegenerative brain injuries. Mitochondria produce NO from mitochondrial NO synthases and superoxide by the electron transport chain. Our objective was to detect the generation of PN of mitochondrial origin and characterize its effects on mitochondrial respiratory function. Freshly isolated brain nonsynaptosomal mitochondria from C57Bl/6 (wild type, WT) and endothelial NO synthase knockout (eNOS-KO) mice were treated with exogenous PN (0.1, 1, 5 µmol/L) or a PN donor (SIN-1; 50 µmol/L) or a PN scavenger (FeTMPyP; 2.5 µmol/L). Oxygen consumption rate (OCR) was measured using Agilent Seahorse XFe24 analyzer and mitochondrial respiratory parameters were calculated. Mitochondrial membrane potential, superoxide, and PN were determined from rhodamine 123, dihydroethidium, and DAX-J2 PON green fluorescence measurements, respectively. Mitochondrial protein nitrotyrosination was determined by Western blots. Both exogenous PN and SIN-1 decreased respiratory function in WT isolated brain mitochondria. FeTMPyP enhanced state III and state IVo mitochondrial respiration in both WT and eNOS-KO mitochondria. FeTMPyP also elevated state IIIu respiration in eNOS-KO mitochondria. Unlike PN, neither SIN-1 nor FeTMPyP depolarized the mitochondria. Although mitochondrial protein nitrotyrosination was unaffected by SIN-1 or FeTMPyP, FeTMPyP reduced mitochondrial PN levels. Mitochondrial superoxide levels were increased by FeTMPyP but were unaffected by PN or SIN-1. Thus, we present the evidence of functionally significant PN generation in isolated brain mitochondria. Mitochondrial PN activity was physiologically relevant in WT mice and pathologically significant under conditions with eNOS deficiency.NEW & NOTEWORTHY Mitochondria generate superoxide and nitric oxide that could potentially react with each other to produce PN. We observed eNOS and nNOS immunoreactivity in isolated brain and heart mitochondria with pharmacological inhibition of nNOS found to modulate the mitochondrial respiratory function. This study provides evidence of generation of functionally significant PN in isolated brain mitochondria that affects respiratory function under physiological conditions. Importantly, the mitochondrial PN levels and activity were exaggerated in the eNOS-deficient mice, suggesting its pathological significance.
Collapse
Affiliation(s)
- Aaron L Albuck
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jared A Sperling
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Wesley R Evans
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Lahari Kolli
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
- Clinical Neuroscience Research Center, New Orleans, Louisiana
| |
Collapse
|
10
|
Pamplona R, Jové M, Mota-Martorell N, Barja G. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity? FEBS J 2021; 288:6652-6673. [PMID: 33455045 DOI: 10.1111/febs.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Complex I, a component of the electron transport chain, plays a central functional role in cell bioenergetics and the biology of free radicals. The structural and functional N module of complex I is one of the main sites of the generation of free radicals. The NDUFV2 subunit/N1a cluster is a component of this module. Furthermore, the rate of free radical production is linked to animal longevity. In this review, we explore the hypothesis that NDUFV2 is the only conserved core subunit designed with a regulatory function to ensure correct electron transfer and free radical production, that low gene expression and protein abundance of the NDUFV2 subunit is an evolutionary adaptation needed to achieve a longevity phenotype, and that these features are determinants of the lower free radical generation at the mitochondrial level and a slower rate of aging of long-lived animals.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Pingale T, Gupta GL. Current and emerging therapeutic targets for Parkinson's disease. Metab Brain Dis 2021; 36:13-27. [PMID: 33090348 DOI: 10.1007/s11011-020-00636-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by gradual neurodegeneration and forfeiture of dopamine neurons in substantia nigra pars compacta which ultimately leads to depletion of dopamine levels. PD patients not only display motor features such as rigidity, tremor, and bradykinesia but also non-motor features such as depression, anxiety, etc. Various treatments are available for PD patients such as dopamine replacement are well established but it is only partially or transiently effective. As these therapies not able to restore dopaminergic neurons and delay the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is crucial. The present review discusses a comprehensive overview of current novel targets for PD which includes molecular chaperone, neuroinflammation, mitochondrial dysfunction, neuromelanin, Ubiquitin-proteasome system, protein Abelson, Synaptic vesicle glycoprotein 2C, and Cocaine-amphetamine-regulated transcript, etc. These approaches will help to identify new targets for the treatment of disease and may provide a ray of hope for PD patient treatment. Graphical abstract.
Collapse
Affiliation(s)
- Tanvi Pingale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India.
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, 425 405, Maharashtra, India.
| |
Collapse
|
12
|
Thiel NA, Sachett A, Schneider SE, Garbinato C, Decui L, Eichwald T, Conterato GMM, Latini A, Piato A, Siebel AM. Exposure to the herbicide 2,4-dichlorophenoxyacetic acid impairs mitochondrial function, oxidative status, and behavior in adult zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45874-45882. [PMID: 32803608 DOI: 10.1007/s11356-020-10497-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most commonly used herbicides worldwide. While the effects of 2,4-D in target organisms are well known, its consequences in nontarget organisms are not fully explained. Therefore, the purpose of this study was to investigate the effects of the herbicide on mitochondrial energy metabolism, oxidative status, and exploratory behavior in adult zebrafish. Animal exposure to 2,4-D increased cytochrome c oxidase and catalase activities and reduced SOD/CAT ratio, moreover, increased the total distance traveled and the number of crossings. Finally, animals exposed to 2,4-D spent more time in the upper zone of the tank and traveled a long distance in the upper zone. Overall, our results indicate the 2,4-D can provoke disabling effects in nontarget organisms. The obtained data showed that exposure to 2,4-D at environmentally relevant concentrations alters mitochondrial metabolism and antioxidant status and disturbs the zebrafish innate behavior.
Collapse
Affiliation(s)
- Nathana Andressa Thiel
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil
| | - Adrieli Sachett
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, Centro Histórico, Porto Alegre, RS, 90050-170, Brazil
| | - Sabrina Ester Schneider
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil
| | - Cristiane Garbinato
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil
| | - Laura Decui
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil
| | - Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Greicy M M Conterato
- Laboratório de Fisiologia da Reprodução Animal, Departamento de Agricultura, Biodiversidade e Floresta, Universidade Federal de Santa Catarina, Campus de Curitibanos, Rodovia Ulysses Gaboardi, Curitibanos, SC, 89520-000, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, Centro Histórico, Porto Alegre, RS, 90050-170, Brazil
| | - Anna Maria Siebel
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil.
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil.
| |
Collapse
|
13
|
Mota-Martorell N, Jove M, Pradas I, Sanchez I, Gómez J, Naudi A, Barja G, Pamplona R. Low abundance of NDUFV2 and NDUFS4 subunits of the hydrophilic complex I domain and VDAC1 predicts mammalian longevity. Redox Biol 2020; 34:101539. [PMID: 32353747 PMCID: PMC7191849 DOI: 10.1016/j.redox.2020.101539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) production, specifically at complex I (Cx I), has been widely suggested to be one of the determinants of species longevity. The present study follows a comparative approach to analyse complex I in heart tissue from 8 mammalian species with a longevity ranging from 3.5 to 46 years. Gene expression and protein content of selected Cx I subunits were analysed using droplet digital PCR (ddPCR) and western blot, respectively. Our results demonstrate: 1) the existence of species-specific differences in gene expression and protein content of Cx I in relation to longevity; 2) the achievement of a longevity phenotype is associated with low protein abundance of subunits NDUFV2 and NDUFS4 from the matrix hydrophilic domain of Cx I; and 3) long-lived mammals show also lower levels of VDAC (voltage-dependent anion channel) amount. These differences could be associated with the lower mitochondrial ROS production and slower aging rate of long-lived animals and, unexpectedly, with a low content of the mitochondrial permeability transition pore in these species. There are species-specific differences in gene expression and protein content of Cx I. The achievement of a longevity phenotype is associated with low protein abundance of subunits NDUFV2 and NDUFS4 from the matrix hydrophilic domain of Cx I. Long-lived mammals show also lower levels of VDAC (voltage-dependent anion channel) amount. These differences can be causally associated with the aging rate of long-lived animals.
Collapse
Affiliation(s)
- Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Mariona Jove
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Irene Pradas
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Isabel Sanchez
- Proteomics and Genomics Unit, University of Lleida, Lleida, Catalonia, Spain.
| | - José Gómez
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos I, ESCET-Campus de Móstoles, Móstoles, Madrid, Spain.
| | - Alba Naudi
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| |
Collapse
|
14
|
Munro D, Pamenter ME. Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities. Aging Cell 2019; 18:e13009. [PMID: 31322803 PMCID: PMC6718592 DOI: 10.1111/acel.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial oxidative theory of aging has been repeatedly investigated over the past 30 years by comparing the efflux of hydrogen peroxide (H2O2) from isolated mitochondria of long‐ and short‐lived species using horseradish peroxidase‐based assays. However, a clear consensus regarding the relationship between H2O2 production rates and longevity has not emerged. Concomitantly, novel insights into the mechanisms of reactive oxygen species (ROS) handling by mitochondria themselves should have raised concerns about the validity of this experimental approach. Here, we review pitfalls of the horseradish peroxidase/amplex red detection system for the measurement of mitochondrial ROS formation rates, with an emphasis on longevity studies. Importantly, antioxidant systems in the mitochondrial matrix are often capable of scavenging H2O2 faster than mitochondria produce it. As a consequence, as much as 84% of the H2O2 produced by mitochondria may be consumed before it diffuses into the reaction medium, where it can be detected by the horseradish peroxidase/amplex red system, this proportion is likely not consistent across species. Furthermore, previous studies often used substrates that elicit H2O2 formation at a much higher rate than in physiological conditions and at sites of secondary importance in vivo. Recent evidence suggests that the activity of matrix antioxidants may correlate with longevity instead of the rate of H2O2 formation. We conclude that past studies have been methodologically insufficient to address the putative relationship between longevity and mitochondrial ROS. Thus, novel methodological approaches are required that more accurately encompass mitochondrial ROS metabolism.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biology University of Ottawa Ottawa Ontario Canada
| | - Matthew E. Pamenter
- Department of Biology University of Ottawa Ottawa Ontario Canada
- University of Ottawa Brain and Mind Research Institute Ottawa Ontario Canada
| |
Collapse
|
15
|
Barja G. Towards a unified mechanistic theory of aging. Exp Gerontol 2019; 124:110627. [DOI: 10.1016/j.exger.2019.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
|
16
|
Han Y, Ishibashi S, Iglesias-Gonzalez J, Chen Y, Love NR, Amaya E. Ca 2+-Induced Mitochondrial ROS Regulate the Early Embryonic Cell Cycle. Cell Rep 2019; 22:218-231. [PMID: 29298423 PMCID: PMC5770342 DOI: 10.1016/j.celrep.2017.12.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022] Open
Abstract
While it is appreciated that reactive oxygen species (ROS) can act as second messengers in both homeostastic and stress response signaling pathways, potential roles for ROS during early vertebrate development have remained largely unexplored. Here, we show that fertilization in Xenopus embryos triggers a rapid increase in ROS levels, which oscillate with each cell division. Furthermore, we show that the fertilization-induced Ca2+ wave is necessary and sufficient to induce ROS production in activated or fertilized eggs. Using chemical inhibitors, we identified mitochondria as the major source of fertilization-induced ROS production. Inhibition of mitochondrial ROS production in early embryos results in cell-cycle arrest, in part, via ROS-dependent regulation of Cdc25C activity. This study reveals a role for oscillating ROS levels in early cell cycle regulation in Xenopus embryos.
Collapse
Affiliation(s)
- Yue Han
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Shoko Ishibashi
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Javier Iglesias-Gonzalez
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Yaoyao Chen
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nick R Love
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
17
|
Pirson M, Clippe A, Knoops B. The curious case of peroxiredoxin-5: what its absence in aves can tell us and how it can be used. BMC Evol Biol 2018; 18:18. [PMID: 29422028 PMCID: PMC5806436 DOI: 10.1186/s12862-018-1135-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Background Peroxiredoxins are ubiquitous thiol-dependent peroxidases that represent a major antioxidant defense in both prokaryotic cells and eukaryotic organisms. Among the six vertebrate peroxiredoxin isoforms, peroxiredoxin-5 (PRDX5) appears to be a particular peroxiredoxin, displaying a different catalytic mechanism, as well as a wider substrate specificity and subcellular distribution. In addition, several evolutionary peculiarities, such as loss of subcellular targeting in certain species, have been reported for this enzyme. Results Western blotting analyses of 2-cys PRDXs (PRDX1–5) failed to identify the PRDX5 isoform in chicken tissue homogenates. Thereafter, via in silico analysis of PRDX5 orthologs, we went on to show that the PRDX5 gene is conserved in all branches of the amniotes clade, with the exception of aves. Further investigation of bird genomic sequences and expressed tag sequences confirmed the disappearance of the gene, though TRMT112, a gene located closely to the 5′ extremity of the PRDX5 gene, is conserved. Finally, using in ovo electroporation to overexpress the long and short forms of human PRDX5, we showed that, though the gene is lost in birds, subcellular targeting of human PRDX5 is conserved in the chick. Conclusions Further adding to the distinctiveness of this enzyme, this study reports converging evidence supporting loss of PRDX5 in aves. In-depth analysis revealed that this absence is proper to birds as PRDX5 appears to be conserved in non-avian amniotes. Finally, taking advantage of the in ovo electroporation technique, we validate the subcellular targeting of human PRDX5 in the chick embryo and bring forward this gain-of-function model as a potent way to study PRDX5 functions in vivo.
Collapse
Affiliation(s)
- Marc Pirson
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 4-5 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - André Clippe
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 4-5 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Bernard Knoops
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 4-5 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
18
|
Bunik VI, Brand MD. Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells. Biol Chem 2018; 399:407-420. [DOI: 10.1515/hsz-2017-0284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/03/2018] [Indexed: 01/06/2023]
Abstract
Abstract
Mitochondrial 2-oxoacid dehydrogenase complexes oxidize 2-oxoglutarate, pyruvate, branched-chain 2-oxoacids and 2-oxoadipate to the corresponding acyl-CoAs and reduce NAD+ to NADH. The isolated enzyme complexes generate superoxide anion radical or hydrogen peroxide in defined reactions by leaking electrons to oxygen. Studies using isolated mitochondria in media mimicking cytosol suggest that the 2-oxoacid dehydrogenase complexes contribute little to the production of superoxide or hydrogen peroxide relative to other mitochondrial sites at physiological steady states. However, the contributions may increase under pathological conditions, in accordance with the high maximum capacities of superoxide or hydrogen peroxide-generating reactions of the complexes, established in isolated mitochondria. We assess available data on the use of modulations of enzyme activity to infer superoxide or hydrogen peroxide production from particular 2-oxoacid dehydrogenase complexes in cells, and limitations of such methods to discriminate specific superoxide or hydrogen peroxide sources in vivo.
Collapse
Affiliation(s)
- Victoria I. Bunik
- A.N. Belozersky Institute of Physicochemical Biology , Lomonosov Moscow State University , 119992 Moscow , Russia
| | - Martin D. Brand
- Buck Institute for Research on Aging , 8001 Redwood Blvd. , Novato, CA 94945 , USA
| |
Collapse
|
19
|
Age-related effects of X-ray irradiation on mouse hippocampus. Oncotarget 2018; 7:28040-58. [PMID: 27057631 PMCID: PMC5053708 DOI: 10.18632/oncotarget.8575] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/27/2016] [Indexed: 12/31/2022] Open
Abstract
Therapeutic irradiation of pediatric and adult patients can profoundly affect adult neurogenesis, and cognitive impairment manifests as a deficit in hippocampal-dependent functions. Age plays a major role in susceptibility to radiation, and younger children are at higher risk of cognitive decay when compared to adults. Cranial irradiation affects hippocampal neurogenesis by induction of DNA damage in neural progenitors, through the disruption of the neurogenic microenvironment, and defective integration of newborn neurons into the neuronal network. Our goal here was to assess cellular and molecular alterations induced by cranial X-ray exposure to low/moderate doses (0.1 and 2 Gy) in the hippocampus of mice irradiated at the postnatal ages of day 10 or week 10, as well as the dependency of these phenomena on age at irradiation. To this aim, changes in the cellular composition of the dentate gyrus, mitochondrial functionality, proteomic profile in the hippocampus, as well as cognitive performance were evaluated by a multidisciplinary approach. Our results suggest the induction of specific alterations in hippocampal neurogenesis, microvascular density and mitochondrial functions, depending on age at irradiation. A better understanding of how irradiation impairs hippocampal neurogenesis at low and moderate doses is crucial to minimize adverse effects of therapeutic irradiation, contributing also to radiation safety regulations.
Collapse
|
20
|
Mobbs CV. Glucose-Induced Transcriptional Hysteresis: Role in Obesity, Metabolic Memory, Diabetes, and Aging. Front Endocrinol (Lausanne) 2018; 9:232. [PMID: 29892261 PMCID: PMC5985453 DOI: 10.3389/fendo.2018.00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 01/30/2023] Open
Abstract
During differentiation transient, inducers produce permanent changes in gene expression. A similar phenomenon, transcriptional hysteresis, produced by transient or prolonged exposure to glucose, leads to cumulative, persistent, and largely irreversible effects on glucose-regulated gene expression, and may drive key aspects of metabolic memory, obesity, diabetes, and aging, and explain the protective effects of dietary restriction during aging. The most relevant effects of glucose-induced transcriptional hysteresis are the persistent effects of elevated glucose on genes that control glucose metabolism itself. A key observation is that, as with the lac operon, glucose induces genes that promote glycolysis and inhibits gene expression of alternative metabolic pathways including the pentose pathway, beta oxidation, and the TCA cycle. A similar pattern of metabolic gene expression is observed during aging, suggesting that cumulative exposure to glucose during aging produces this metabolic shift. Conversely, dietary restriction, which increases lifespan and delays age-related impairments, produces the opposite metabolic profile, leading to a shift away from glycolysis and toward the use of alternative substrates, including lipid and ketone metabolisms. The effect of glucose on gene expression leads to a positive feedback loop that leads to metastable persistent expression of genes that promote glycolysis and inhibit alternative pathways, a phenomenon first observed in the regulation of the lac operon. On the other hand, this pattern of gene expression can also be inhibited by activation of peroxisome proliferator activating receptor transcription factors that promote beta oxidation and inhibit metabolism of glucose-derived carbon bonds in the TCA cycle. Several pathological consequences may arise from glucose-induced transcriptional hysteresis. First, elevated glucose induces glycolytic genes in pancreatic beta cells, which induces a semi-stable persistent increase in insulin secretion, which could drive obesity and insulin resistance, and also due to glucose toxicity could eventually lead to beta-cell decompensation and diabetes. Diabetic complications persist even after complete normalization of glucose, a phenomenon known as metabolic memory. This too can be explained by persistent bistable expression of glucose-induced glycolytic genes.
Collapse
|
21
|
Keane J, Tajouri L, Gray B. Recombinant human growth hormone and insulin-like growth factor-1 do not affect mitochondrial derived highly reactive oxygen species production in peripheral blood mononuclear cells under conditions of substrate saturation in-vitro. Nutr Metab (Lond) 2016; 13:45. [PMID: 27382409 PMCID: PMC4932701 DOI: 10.1186/s12986-016-0105-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the mitochondrial effects exerted by physiological and supra-physiological concentrations of recombinant human growth hormone (rhGH) and recombinant insulin-like growth factor-1 (rIGF-1) under conditions of substrate saturation in peripheral blood mononuclear cells (PBMCs). METHODS PBMCs from healthy male subjects were treated with either rhGH, at concentrations of 0.5, 5 and 50 μg/L, or rIGF-1 at concentrations of 100, 300 and 500 μg/L for 4 h. Mitochondrial membrane potential (Δψm) and mitochondrial levels of highly reactive oxygen species (hROS) were subsequently analysed. This analysis was performed by flow cytometry in digitonin permeabilized cells, following treatment with saturating concentrations of various respiratory substrate combinations and the use of specific electron transport chain (ETC.) complex inhibitors, enabling control over both the sites of electron entry into the ETC. at complexes I and II and the entry of electrons from reduced carriers involved in β-oxidation at the level of ubiquinol. RESULTS Neither rhGH nor rIGF-1 exerted any significant effect on Δψm or the rate of hROS production in either lymphocyte or monocyte sub-populations under any of the respiratory conditions analysed. CONCLUSION That neither hormone was capable of attenuating levels of oxidative stress mediated via either complex I linked respiration or lipid-derived respiration could have serious health implications for the use of rhGH in healthy individuals, which is frequently associated with significant increases in the bioavailability of free fatty acids (FFA). Such elevated supplies of lipid-derived substrates to the mitochondria could lead to oxidative damage which would negatively impact mitochondrial function.
Collapse
Affiliation(s)
- James Keane
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland Australia
| | - Lotti Tajouri
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland Australia
| | - Bon Gray
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland Australia
| |
Collapse
|
22
|
Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 2016; 68:694-713. [PMID: 27377693 DOI: 10.1016/j.neubiorev.2016.06.040] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 01/05/2023]
Abstract
Bipolar disorder (BD) is a chronic psychiatric illness characterized by severe and biphasic changes in mood. Several pathophysiological mechanisms have been hypothesized to underpin the neurobiology of BD, including the presence of mitochondrial dysfunction. A confluence of evidence points to an underlying dysfunction of mitochondria, including decreases in mitochondrial respiration, high-energy phosphates and pH; changes in mitochondrial morphology; increases in mitochondrial DNA polymorphisms; and downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration. Mitochondria play a pivotal role in neuronal cell survival or death as regulators of both energy metabolism and cell survival and death pathways. Thus, in this review, we discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BD. The final part of this review discusses mitochondria as a potential target of therapeutic interventions in BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Andre F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Faculty of Health, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health and The Centre for Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
23
|
Buhlman LM. Parkin loss-of-function pathology: Premature neuronal senescence induced by high levels of reactive oxygen species? Mech Ageing Dev 2016; 161:112-120. [PMID: 27374431 DOI: 10.1016/j.mad.2016.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022]
Abstract
Parkinson's and Alzheimer's diseases (PD and AD, respectively) are considered to be diseases of advanced brain ageing, which seems to involve high levels of reactive oxygen species (ROS). AD neurodegeneration is initially apparent in the hippocampus; as AD progresses, many more brain regions are affected. PD-associated neurodegeneration is relatively limited to dopaminergic neurons of the substantia nigra pars compacta (SNpc), especially in cases in which patients inherit particular disease-causing mutations. Thus, the task of elucidating mechanisms by which loss of function of one particular protein triggers death of a subset of neurons may be more approachable. Understanding the mechanisms of neurodegeneration in these forms of PD may not only shed light on avenues leading toward therapeutic strategies in PD and other neurodegenerative diseases, but also on those leading toward understanding natural ageing. Neurodegeneration in PD patients harboring homozygous loss-of-function mutations in the PARK2 gene may result from unbalanced levels of ROS, which are mostly produced in mitochondria and can irreparably damage macromolecules and trigger apoptosis. This review discusses mitochondrial sources of ROS, how ROS can trigger apoptosis, mechanisms by which Parkin loss-of-function may cause neurodegeneration by increasing ROS levels, and concludes with hypotheses regarding selective SNpc dopaminergic neuron vulnerability.
Collapse
Affiliation(s)
- Lori M Buhlman
- Midwestern University, 19555 N 59th Avenue, Glendale, AZ, 85308, USA.
| |
Collapse
|
24
|
Hudson L, Bowman A, Rashdan E, Birch-Machin MA. Mitochondrial damage and ageing using skin as a model organ. Maturitas 2016; 93:34-40. [PMID: 27215947 DOI: 10.1016/j.maturitas.2016.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
Abstract
Ageing describes the progressive functional decline of an organism over time, leading to an increase in susceptibility to age-related diseases and eventually to death, and it is a phenomenon observed across a wide range of organisms. Despite a vast repertoire of ageing studies performed over the past century, the exact causes of ageing remain unknown. For over 50 years it has been speculated that mitochondria play a key role in the ageing process, due mainly to correlative data showing an increase in mitochondrial dysfunction, mitochondrial DNA (mtDNA) damage, and reactive oxygen species (ROS) with age. However, the exact role of the mitochondria in the ageing process remains unknown. The skin is often used to study human ageing, due to its easy accessibility, and the observation that the ageing process is able to be accelerated in this organ via environmental insults, such as ultra violet radiation (UVR). This provides a useful tool to investigate the mechanisms regulating ageing and, in particular, the role of the mitochondria. Observations from dermatological and photoageing studies can provide useful insights into chronological ageing of the skin and other organs such as the brain and liver. Moreover, a wide range of diseases are associated with ageing; therefore, understanding the cause of the ageing process as well as regulatory mechanisms involved could provide potentially advantageous therapeutic targets for the prevention or treatment of such diseases.
Collapse
Affiliation(s)
- Laura Hudson
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Amy Bowman
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Eyman Rashdan
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mark A Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
25
|
Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1086-1101. [PMID: 26971832 DOI: 10.1016/j.bbabio.2016.03.012] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/31/2022]
Abstract
Succinate is an important metabolite at the cross-road of several metabolic pathways, also involved in the formation and elimination of reactive oxygen species. However, it is becoming increasingly apparent that its realm extends to epigenetics, tumorigenesis, signal transduction, endo- and paracrine modulation and inflammation. Here we review the pathways encompassing succinate as a metabolite or a signal and how these may interact in normal and pathological conditions.(1).
Collapse
|
26
|
Kandola K, Bowman A, Birch-Machin MA. Oxidative stress - a key emerging impact factor in health, ageing, lifestyle and aesthetics. Int J Cosmet Sci 2015; 37 Suppl 2:1-8. [DOI: 10.1111/ics.12287] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/05/2015] [Indexed: 01/18/2023]
Affiliation(s)
- K. Kandola
- Dermatology; Medical School Newcastle University; Newcastle upon Tyne NE24HH U.K
| | - A. Bowman
- Dermatology; Medical School Newcastle University; Newcastle upon Tyne NE24HH U.K
| | - M. A. Birch-Machin
- Dermatology; Medical School Newcastle University; Newcastle upon Tyne NE24HH U.K
| |
Collapse
|
27
|
Cashman CR, Höke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 2015; 596:33-50. [PMID: 25617478 PMCID: PMC4428955 DOI: 10.1016/j.neulet.2015.01.048] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wld(S)) and Sarm knockout animal models. These studies have shown axonal degeneration to occur through a programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Christopher R Cashman
- Departments of Neuroscience and Neurology, USA; MSTP- MD/PhD Program, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Departments of Neuroscience and Neurology, USA.
| |
Collapse
|
28
|
Barja G. The mitochondrial free radical theory of aging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 127:1-27. [PMID: 25149212 DOI: 10.1016/b978-0-12-394625-6.00001-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mitochondrial free radical theory of aging is reviewed. Only two parameters currently correlate with species longevity in the right sense: the mitochondrial rate of reactive oxygen species (mitROS) production and the degree of fatty acid unsaturation of tissue membranes. Both are low in long-lived animals. In addition, the best-known manipulation that extends longevity, dietary restriction, also decreases the rate of mitROS production and oxidative damage to mtDNA. The same occurs during protein restriction as well as during methionine restriction. These two manipulations also increase maximum longevity in rodents. The decrease in mitROS generation and oxidative stress that takes place in caloric restriction seems to be due to restriction of a single dietary substance: methionine. The information available supports a mitochondrial free radical theory of aging focused on low generation of endogenous damage and low sensitivity of membranes to oxidation in long-lived animals.
Collapse
Affiliation(s)
- Gustavo Barja
- Department of Animal Physiology II, Faculty of Biological Sciences, Complutense University, Madrid Spain
| |
Collapse
|
29
|
Vajapey R, Rini D, Walston J, Abadir P. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance. Front Physiol 2014; 5:439. [PMID: 25505418 PMCID: PMC4241834 DOI: 10.3389/fphys.2014.00439] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with the accumulation of various deleterious changes in cells. According to the free radical and mitochondrial theory of aging, mitochondria initiate most of the deleterious changes in aging and govern life span. The failure of mitochondrial reduction-oxidation (redox) homeostasis and the formation of excessive free radicals are tightly linked to dysregulation in the Renin Angiotensin System (RAS). A main rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II) by angiotensin-converting enzyme (ACE). Ang II binds with equal affinity to two main angiotensin receptors—type 1 (AT1R) and type 2 (AT2R). The binding of Ang II to AT1R activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive oxygen species (ROS). This Ang II-AT1R–NADPH-ROS signal triggers the opening of mitochondrial KATP channels and mitochondrial ROS production in a positive feedback loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging enzymes, thereby leading to detrimental levels of free radicals in the cell. AT2R is less understood, but evidence supports an anti-oxidative and mitochondria-protective function for AT2R. The overlap between age related changes in RAS and mitochondria, and the consequences of this overlap on age-related diseases are quite complex. RAS dysregulation has been implicated in many pathological conditions due to its contribution to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of this review is to: (a) report the most recent information elucidating the role of RAS in mitochondrial redox hemostasis and (b) discuss the effect of age-related activation of RAS on generation of free radicals.
Collapse
Affiliation(s)
- Ramya Vajapey
- School of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| | - David Rini
- Division of Cellular and Molecular Medicine, Art as Applied to Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Jeremy Walston
- Division of Geriatrics Medicine and Gerontology, Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Peter Abadir
- Division of Geriatrics Medicine and Gerontology, Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
30
|
Hemion C, Flammer J, Neutzner A. Quality control of oxidatively damaged mitochondrial proteins is mediated by p97 and the proteasome. Free Radic Biol Med 2014; 75:121-8. [PMID: 25062828 DOI: 10.1016/j.freeradbiomed.2014.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
Protein quality control is essential for maintaining mitochondrial fidelity. Proteins damaged by reactive oxygen species necessitate quality control to prevent mitochondrial dysfunction connected to aging and neurodegeneration. Here we report a role for the AAA ATPase p97/VCP and the proteasome in the quality control of oxidized mitochondrial proteins under low oxidative stress as well as normal conditions. Proteasomal inhibition and blocking p97-dependent protein retrotranslocation interfered with degradation of oxidized mitochondrial proteins. Thus, ubiquitin-dependent, p97-, and proteasome-mediated degradation of oxidatively damaged proteins plays a key role in maintaining mitochondrial fidelity and is likely an important defense mechanism against aging and neurodegeneration.
Collapse
Affiliation(s)
- Charles Hemion
- Department of Biomedicine, University Basel, Basel, Switzerland
| | - Josef Flammer
- Department of Ophthalmology, University Basel, Basel, Switzerland
| | - Albert Neutzner
- Department of Biomedicine, University Basel, Basel, Switzerland; Department of Ophthalmology, University Basel, Basel, Switzerland.
| |
Collapse
|
31
|
Metabolomics of Human Brain Aging and Age-Related Neurodegenerative Diseases. J Neuropathol Exp Neurol 2014; 73:640-57. [DOI: 10.1097/nen.0000000000000091] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Abstract
OBJECTIVES Mazindol is a sympathomimetic amine, widely used as an anorectic agent in the treatment of obesity. This drug causes psychostimulant effects because of its pharmacological profile similar to amphetamine, acting like a monoamine reuptake inhibitor. However, the mechanisms underlying the action of mazindol are still not clearly understood. METHODS Swiss mice received a single acute administration of mazindol (0.25, 1.25 and 2.5 mg/kg, ip) or saline. After 2 h, the animals were killed by decapitation; the brain was removed and used for the evaluation of activities of mitochondrial respiratory chain complexes, Krebs cycle enzymes and creatine kinase. RESULTS Acute administration of mazindol decreased complex I activity only in the hippocampus. Complex IV activity was increased in the cerebellum (2.5 mg/kg) and cerebral cortex (0.25 mg/kg). Citrate synthase activity was increased in the cerebellum (1.25 mg/kg) and cerebral cortex (1.25 mg/kg), and creatine kinase activity was increased in the cerebellum (1.25 mg/kg). CONCLUSION We suggest that the inhibition of complex I in the hippocampus only and activation of complex IV, citrate synthase and creatine kinase occurs because of a stimulus effect of mazindol in the central nervous system, which causes a direct impairment on energy metabolism.
Collapse
|
33
|
Streck EL, Gonçalves CL, Furlanetto CB, Scaini G, Dal-Pizzol F, Quevedo J. Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders. REVISTA BRASILEIRA DE PSIQUIATRIA 2014; 36:156-67. [DOI: 10.1590/1516-4446-2013-1224] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Emilio L. Streck
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Cinara L. Gonçalves
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Camila B. Furlanetto
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Giselli Scaini
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Felipe Dal-Pizzol
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - João Quevedo
- National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil; UNESC, Brazil
| |
Collapse
|
34
|
Mariadassou M, Pellay FX. Identification of amino acids in mitochondrially encoded proteins that correlate with lifespan. Exp Gerontol 2014; 56:53-8. [PMID: 24657631 DOI: 10.1016/j.exger.2014.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
Animals show a huge diversity in their lifespan that can vary from a few weeks to over a hundred years in vertebrates. Size is a key element in this variation and the positive correlation between size and maximum lifespan can be observed in each class of vertebrate. Some groups and species clearly stand out in this size-lifespan relationship and the ones with exceptionally long lifespan have been studied to understand the biological causes of their low aging rate. Among the potential explanations of animals' lifespan variations, mitochondria and mitochondrially encoded genes have drawn attention because of their importance in the aging process. To understand both the extent of lifespan variations and their dependence to genes and amino acid variations in mitochondrial genes and DNA (mtDNA), we analyze in a systematic way all 13 proteins encoded by mitochondria in all vertebrates for which we had information on weight, maximum lifespan and mtDNA sequence. This comparison allows us to visualize positions, and even specific amino acids, in these sequences that correlate with lifespan. With this approach, we draw a map of 356 amino acid residues, at 296 positions within the sequence, that correlate with longer or shorter lifespan. We also compared this map with the human mitochondrial polymorphism to determine its potential as a predictive tool.
Collapse
Affiliation(s)
| | - François-Xavier Pellay
- INSERM Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France; NAOS group/Jean-Noël Thorel, 13855 Aix-en-Provence, France.
| |
Collapse
|
35
|
Quinlan CL, Goncalves RLS, Hey-Mogensen M, Yadava N, Bunik VI, Brand MD. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem 2014; 289:8312-25. [PMID: 24515115 DOI: 10.1074/jbc.m113.545301] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD(+) or NADH at about the same operating redox potential as the NADH/NAD(+) pool and comprise the NADH/NAD(+) isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)(+) ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I.
Collapse
Affiliation(s)
- Casey L Quinlan
- From The Buck Institute for Research on Aging, Novato, California 94945
| | | | | | | | | | | |
Collapse
|
36
|
Effects of Tamarindus indica fruit pulp extract on abundance of HepG2 cell lysate proteins and their possible consequential impact on metabolism and inflammation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:459017. [PMID: 24455694 PMCID: PMC3886566 DOI: 10.1155/2013/459017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/28/2013] [Indexed: 01/26/2023]
Abstract
The fruit pulp extract of Tamarindus indica has been reported for its antioxidant and hypolipidemic properties. In this study, the methanol extract of T. indica fruit pulp was investigated for its effects on the abundance of HepG2 cell lysate proteins. Cell lysate was extracted from HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp. Approximately 2500 spots were resolved using two-dimensional gel electrophoresis and the abundance of 20 cellular proteins was found to be significantly reduced. Among the proteins of reduced abundance, fourteen, including six proteins involved in metabolism (including ethanolamine phosphate cytidylyltransferase), four mitochondrial proteins (including prohibitin and respiratory chain proteins), and four proteins involved in translation and splicing, were positively identified by mass spectrometry and database search. The identified HepG2 altered abundance proteins, when taken together and analyzed by Ingenuity Pathways Analysis (IPA) software, are suggestive of the effects of T. indica fruit pulp extract on metabolism and inflammation, which are modulated by LXR/RXR. In conclusion, the methanol fruit pulp extract of T. indica was shown to cause reduced abundance of HepG2 mitochondrial, metabolic, and regulatory proteins involved in oxidative phosphorylation, protein synthesis, and cellular metabolism.
Collapse
|
37
|
Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:408-17. [PMID: 24183692 DOI: 10.1016/j.bbabio.2013.10.006] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022]
Abstract
Cardiolipin is a unique phospholipid which is almost exclusively located in the inner mitochondrial membrane where it is biosynthesized. Considerable progress has recently been made in understanding the role of cardiolipin in mitochondrial function and bioenergetics. This phospholipid is associated with membranes designed to generate an electrochemical gradient that is used to produce ATP, such as bacterial plasma membranes and inner mitochondrial membrane. This ubiquitous and intimate association between cardiolipin and energy transducing membranes indicates an important role for cardiolipin in mitochondrial bioenergetic processes. Cardiolipin has been shown to interact with a number of proteins, including the respiratory chain complexes and substrate carrier proteins. Over the past decade, the significance of cardiolipin in the organization of components of the electron transport chain into higher order assemblies, termed respiratory supercomplexes, has been established. Moreover, cardiolipin is involved in different stages of the mitochondrial apoptotic process, as well as in mitochondrial membrane stability and dynamics. This review discusses the current understanding of the functional role that cardiolipin plays in several reactions and processes involved in mitochondrial bioenergetics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| | - Valeria Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Valentina De Benedictis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| |
Collapse
|
38
|
Knuuti J, Belevich G, Sharma V, Bloch DA, Verkhovskaya M. A single amino acid residue controls ROS production in the respiratory Complex I from Escherichia coli. Mol Microbiol 2013; 90:1190-200. [PMID: 24325249 DOI: 10.1111/mmi.12424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2013] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species (ROS) production by respiratory Complex I from Escherichia coli was studied in bacterial membrane fragments and in the isolated and purified enzyme, either solubilized or incorporated in proteoliposomes. We found that the replacement of a single amino acid residue in close proximity to the nicotinamide adenine dinucleotide (NADH)-binding catalytic site (E95 in the NuoF subunit) dramatically increases the reactivity of Complex I towards dioxygen (O2 ). In the E95Q variant short-chain ubiquinones exhibit strong artificial one-electron reduction at the catalytic site, also leading to a stronger increase in ROS production. Two mechanisms can contribute to the observed kinetic effects: (a) a change in the reactivity of flavin mononucleotide (FMN) towards dioxygen at the catalytic site, and (b) a change in the population of the ROS-generating state. We propose the existence of two (closed and open) states of the NAD(+) -bound enzyme as one feature of the substrate-binding site of Complex I. The analysis of the kinetic model of ROS production allowed us to propose that the population of Complex I with reduced FMN is always low in the wild-type enzyme even at low ambient redox potentials, minimizing the rate of reaction with O2 in contrast to E95Q variant.
Collapse
Affiliation(s)
- Juho Knuuti
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), FIN-00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
39
|
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 2013; 19:1420-45. [PMID: 23642158 PMCID: PMC3791058 DOI: 10.1089/ars.2012.5148] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/11/2013] [Accepted: 05/05/2013] [Indexed: 01/12/2023]
Abstract
An updated version of the mitochondrial free radical theory of aging (MFRTA) and longevity is reviewed. Key aspects of the theory are emphasized. Another main focus concerns common misconceptions that can mislead investigators from other specialties, even to wrongly discard the theory. Those different issues include (i) the main reactive oxygen species (ROS)-generating site in the respiratory chain in relation to aging and longevity: complex I; (ii) the close vicinity or even contact between that site and the mitochondrial DNA, in relation to the lack of local efficacy of antioxidants and to sub-cellular compartmentation; (iii) the relationship between mitochondrial ROS production and oxygen consumption; (iv) recent criticisms on the MFRTA; (v) the widespread assumption that ROS are simple "by-products" of the mitochondrial respiratory chain; (vi) the unnecessary postulation of "vicious cycle" hypotheses of mitochondrial ROS generation which are not central to the free radical theory of aging; and (vii) the role of DNA repair concerning endogenous versus exogenous damage. After considering the large body of data already available, two general characteristics responsible for the high maintenance degree of long-lived animals emerge: (i) a low generation rate of endogenous damage: and (ii) the possession of tissue macromolecules that are highly resistant to oxidative modification.
Collapse
Affiliation(s)
- Gustavo Barja
- Department of Animal Physiology II, Faculty of Biological Sciences, Complutense University , Madrid, Spain
| |
Collapse
|
40
|
Nagasaki H, Nakashima A, Kaneko YS, Kodani Y, Takayanagi T, Itoh M, Kondo K, Nagatsu T, Hamada Y, Ota M, Ota A. Aripiprazole increases NADPH level in PC12 cells: the role of NADPH oxidase. J Neural Transm (Vienna) 2013; 121:91-103. [PMID: 23934573 DOI: 10.1007/s00702-013-1075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/26/2013] [Indexed: 12/28/2022]
Abstract
In aripiprazole-treated PC12 cells, we previously showed that the mitochondrial membrane potential (Δψm) was rather increased in spite of lowered cytochrome c oxidase activity. To address these inconsistent results, we focused the NADPH generation by glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway (PPP), to titrate reactive oxygen species (ROS) that results in the Δψm maintenance. G6PD may be also involved in another inconsistent result of lowered intracellular lactate level in aripiprazole-treated PC12 cells, because PPP competes glucose-6-phosphate with the glycolytic pathway, resulting in the downregulation of glycolysis. Therefore, we assayed intracellular amounts of NADPH, ROS, and the activities of the enzymes generating or consuming NADPH (G6PD, NADP(+)-dependent isocitrate dehydrogenase, NADP(+)-dependent malic enzyme, glutathione reductase, and NADPH oxidase [NOX]) and estimated glycolysis in 50 μM aripiprazole-, clozapine-, and haloperidol-treated PC12 cells. NADPH levels were enhanced only in aripiprazole-treated ones. Only haloperidol increased ROS. However, the enzyme activities did not show significant changes toward enhancing NADPH level except for the aripiprazole-induced decrease in NOX activity. Thus, the lowered NOX activity could have contributed to the aripiprazole-induced increase in the NADPH level by lowering ROS generation, resulting in maintained Δψm. Although the aforementioned assumption was invalid, the ratio of fructose-1,6-bisphosphate to fructose-6-phosphate was decreased by all antipsychotics examined. Pyruvate kinase activity was enhanced only by aripiprazole. In summary, these observations indicate that aripiprazole possibly possesses the pharmacological superiority to clozapine and haloperidol in the ROS generation and the adjustment of glycolytic pathway.
Collapse
Affiliation(s)
- Hiroshi Nagasaki
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Munro D, Pichaud N, Paquin F, Kemeid V, Blier PU. Low hydrogen peroxide production in mitochondria of the long-lived Arctica islandica: underlying mechanisms for slow aging. Aging Cell 2013; 12:584-92. [PMID: 23566066 DOI: 10.1111/acel.12082] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2013] [Indexed: 10/27/2022] Open
Abstract
The observation of an inverse relationship between lifespan and mitochondrial H₂O₂ production rate would represent strong evidence for the disputed oxidative stress theory of aging. Studies on this subject using invertebrates are surprisingly lacking, despite their significance in both taxonomic richness and biomass. Bivalve mollusks represent an interesting taxonomic group to challenge this relationship. They are exposed to environmental constraints such as microbial H₂S, anoxia/reoxygenation, and temperature variations known to elicit oxidative stress. Their mitochondrial electron transport system is also connected to an alternative oxidase that might improve their ability to modulate reactive oxygen species (ROS) yield. Here, we compared H₂O₂ production rates in isolated mantle mitochondria between the longest-living metazoan--the bivalve Arctica islandica--and two taxonomically related species of comparable size. In an attempt to test mechanisms previously proposed to account for a reduction of ROS production in long-lived species, we compared oxygen consumption of isolated mitochondria and enzymatic activity of different complexes of the electron transport system in the two species with the greatest difference in longevity. We found that A. islandica mitochondria produced significantly less H₂O₂ than those of the two short-lived species in nearly all conditions of mitochondrial respiration tested, including forward, reverse, and convergent electron flow. Alternative oxidase activity does not seem to explain these differences. However, our data suggest that reduced complex I and III activity can contribute to the lower ROS production of A. islandica mitochondria, in accordance with previous studies. We further propose that a lower complex II activity could also be involved.
Collapse
Affiliation(s)
- Daniel Munro
- Biology Department Université du Québec à Rimouski 300, allée des Ursulines, CP 3300, succ. ARimouski QC CanadaG5L 3A1
| | - Nicolas Pichaud
- Biology Department Université du Québec à Rimouski 300, allée des Ursulines, CP 3300, succ. ARimouski QC CanadaG5L 3A1
| | - Frédérique Paquin
- Biology Department Université du Québec à Rimouski 300, allée des Ursulines, CP 3300, succ. ARimouski QC CanadaG5L 3A1
| | - Vincent Kemeid
- Biology Department Université du Québec à Rimouski 300, allée des Ursulines, CP 3300, succ. ARimouski QC CanadaG5L 3A1
| | - Pierre U. Blier
- Biology Department Université du Québec à Rimouski 300, allée des Ursulines, CP 3300, succ. ARimouski QC CanadaG5L 3A1
| |
Collapse
|
42
|
Castro JP, Jung T, Grune T, Almeida H. Actin carbonylation: from cell dysfunction to organism disorder. J Proteomics 2013; 92:171-80. [PMID: 23684956 DOI: 10.1016/j.jprot.2013.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
Protein carbonylation is an important event in the context of proteostasis because of its frequency, non-enzymatic nature and irreversible effects. The carbonylation of proteins disturbs their function and leads to protein aggregates, which may precede cellular senescence and cell death. Actin, an evolutionarily conserved cytoskeletal protein that is involved in important cellular processes, is one of the proteins most susceptible to carbonylation. Conditions resulting in oxidative stress are likely to lead to its carbonylation, loss of function and aggregate formation. In this review, we summarise actin susceptibility to carbonylation, as verified in cell free extracts, cell lines and animal models, and review its fate through the activation of cell mechanisms aimed at removing damaged proteins. Their insufficient activity may underlie age-related diseases and the ageing process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- José Pedro Castro
- Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal; Institute of Nutrition, Friedrich Schiller Universität Jena, Dornburger Str. 24, 07743 Jena, Germany
| | | | | | | |
Collapse
|
43
|
Muller F. The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. J Am Aging Assoc 2013; 23:227-53. [PMID: 23604868 DOI: 10.1007/s11357-000-0022-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most biogerontologists agree that oxygen (and nitrogen) free radicals play a major role in the process of aging. The evidence strongly suggests that the electron transport chain, located in the inner mitochondrial membrane, is the major source of reactive oxygen species in animal cells. It has been reported that there exists an inverse correlation between the rate of superoxide/hydrogen peroxide production by mitochondria and the maximum longevity of mammalian species. However, no correlation or most frequently an inverse correlation exists between the amount of antioxidant enzymes and maximum longevity. Although overexpression of the antioxidant enzymes SOD1 and CAT (as well as SOD1 alone) have been successful at extending maximum lifespan in Drosophila, this has not been the case in mice. Several labs have overexpressed SOD1 and failed to see a positive effect on longevity. An explanation for this failure is that there is some level of superoxide damage that is not preventable by SOD, such as that initiated by the hydroperoxyl radical inside the lipid bilayer, and that accumulation of this damage is responsible for aging. I therefore suggest an alternative approach to testing the free radical theory of aging in mammals. Instead of trying to increase the amount of antioxidant enzymes, I suggest using molecular biology/transgenics to decrease the rate of superoxide production, which in the context of the free radical theory of aging would be expected to increase longevity. This paper aims to summarize what is known about the nature and mechanisms of superoxide production and what genes are involved in controlling the rate of superoxide production.
Collapse
Affiliation(s)
- F Muller
- Laboratory of David M. Kramer, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
44
|
Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013; 14:6306-44. [PMID: 23528859 PMCID: PMC3634422 DOI: 10.3390/ijms14036306] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023] Open
Abstract
The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
| | - Edgar A. Jaimes
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
- Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
45
|
Sanchez-Roman I, Barja G. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol 2013; 48:1030-42. [PMID: 23454735 DOI: 10.1016/j.exger.2013.02.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/17/2013] [Accepted: 02/21/2013] [Indexed: 11/25/2022]
Abstract
Comparative studies indicate that long-lived mammals have low rates of mitochondrial reactive oxygen species production (mtROSp) and oxidative damage in their mitochondrial DNA (mtDNA). Dietary restriction (DR), around 40%, extends the mean and maximum life span of a wide range of species and lowers mtROSp and oxidative damage to mtDNA, which supports the mitochondrial free radical theory of aging (MFRTA). Regarding the dietary factor responsible for the life extension effect of DR, neither carbohydrate nor lipid restriction seems to modify maximum longevity. However protein restriction (PR) and methionine restriction (at least 80% MetR) increase maximum lifespan in rats and mice. Interestingly, only 7weeks of 40% PR (at least in liver) or 40% MetR (in all the studied organs, heart, brain, liver or kidney) is enough to decrease mtROSp and oxidative damage to mtDNA in rats, whereas neither carbohydrate nor lipid restriction changes these parameters. In addition, old rats also conserve the capacity to respond to 7weeks of 40% MetR with these beneficial changes. Most importantly, 40% MetR, differing from what happens during both 40% DR and 80% MetR, does not decrease growth rate and body size of rats. All the available studies suggest that the decrease in methionine ingestion that occurs during DR is responsible for part of the aging-delaying effect of this intervention likely through the decrease of mtROSp and ensuing DNA damage that it exerts. We conclude that lowering mtROS generation is a conserved mechanism, shared by long-lived species and dietary, protein, and methionine restricted animals, that decreases damage to macromolecules situated near the complex I mtROS generator, especially mtDNA. This would decrease the accumulation rate of somatic mutations in mtDNA and maybe finally also in nuclear DNA.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Spain
| | | |
Collapse
|
46
|
Liu Y, Barber DS, Zhang P, Liu B. Complex II of the mitochondrial respiratory chain is the key mediator of divalent manganese-induced hydrogen peroxide production in microglia. Toxicol Sci 2013; 132:298-306. [PMID: 23315522 DOI: 10.1093/toxsci/kfs344] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Exposure to excessive levels of manganese (Mn) is associated with the development of movement disorders, with symptoms overlapping with Parkinson's disease. Oxidative damage has been implicated as a key contributor to Mn-induced neurotoxicity. We have recently reported that divalent Mn (Mn(2+)) stimulates brain microglia to produce and release hydrogen peroxide (H2O2), and microglial-free radical generation facilitates Mn(2+)-induced dopaminergic neurotoxicity. The goal of this study was to elucidate the underlying mechanism of the Mn(2+)-induced H2O2 production in microglia. Exposure to low micromolar concentrations of Mn(2+), but not divalent copper, cadmium, nickel, cobalt, zinc, and iron, induced a significant production of H2O2 from rat microglial but not astroglial cells. Subcellular fractionation studies revealed that Mn(2+) was capable of inducing significant H2O2 production in the mitochondrial but not the cytosolic or nuclear fraction prepared from microglia. Analysis of the relative contribution of mitochondrial respiratory chain complexes indicated that Mn(2+)-induced mitochondrial H2O2 production required the presence of complex II substrate succinate. In contrast, complex I substrates malate and glutamate failed to support H2O2 production in the presence of Mn(2+). Furthermore, the succinate-supported Mn(2+)-induced mitochondrial H2O2 production was abolished by pharmacological inhibition of complex II but not that of complexes I and III, suggesting that mitochondrial complex II is a key mediator in Mn(2+)-induced H2O2 production. These findings advance our knowledge on the mechanisms by which Mn induces oxidative stress and the potential contribution to Mn neurotoxicity.
Collapse
Affiliation(s)
- Yue Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
47
|
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2013; 3:461-91. [PMID: 24252804 PMCID: PMC4135313 DOI: 10.3233/jpd-130230] [Citation(s) in RCA: 1155] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection.
Collapse
Affiliation(s)
- Vera Dias
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
48
|
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2012; 47:9-23. [PMID: 23011809 DOI: 10.1007/s12035-012-8344-z] [Citation(s) in RCA: 488] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a "burst" of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
49
|
Kuzmiak S, Glancy B, Sweazea KL, Willis WT. Mitochondrial function in sparrow pectoralis muscle. J Exp Biol 2012; 215:2039-50. [DOI: 10.1242/jeb.065094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SUMMARY
Flying birds couple a high daily energy turnover with double-digit millimolar blood glucose concentrations and insulin resistance. Unlike mammalian muscle, flight muscle predominantly relies on lipid oxidation during locomotion at high fractions of aerobic capacity, and birds outlive mammals of similar body mass by a factor of three or more. Despite these intriguing functional differences, few data are available comparing fuel oxidation and free radical production in avian and mammalian skeletal muscle mitochondria. Thus we isolated mitochondria from English sparrow pectoralis and rat mixed hindlimb muscles. Maximal O2 consumption and net H2O2 release were measured in the presence of several oxidative substrate combinations. Additionally, NAD- and FAD-linked electron transport chain (ETC) capacity was examined in sonicated mitochondria. Sparrow mitochondria oxidized palmitoyl-l-carnitine 1.9-fold faster than rat mitochondria and could not oxidize glycerol-3-phosphate, while both species oxidized pyruvate, glutamate and malate–aspartate shuttle substrates at similar rates. Net H2O2 release was not significantly different between species and was highest when glycolytic substrates were oxidized. Sonicated sparrow mitochondria oxidized NADH and succinate over 1.8 times faster than rat mitochondria. The high ETC catalytic potential relative to matrix substrate dehydrogenases in sparrow mitochondria suggests a lower matrix redox potential is necessary to drive a given O2 consumption rate. This may contribute to preferential reliance on lipid oxidation, which may result in lower in vivo reactive oxygen species production in birds compared with mammals.
Collapse
Affiliation(s)
- Sarah Kuzmiak
- Arizona State University, Department of Kinesiology, Tempe, AZ 85287, USA
| | - Brian Glancy
- Arizona State University, Department of Kinesiology, Tempe, AZ 85287, USA
| | - Karen L. Sweazea
- Arizona State University, Department of Kinesiology, Tempe, AZ 85287, USA
| | - Wayne T. Willis
- Arizona State University, Department of Kinesiology, Tempe, AZ 85287, USA
| |
Collapse
|
50
|
Gonçalves CL, Rezin GT, Ferreira GK, Jeremias IC, Cardoso MR, Carvalho-Silva M, Zugno AI, Quevedo J, Streck EL. Differential effects of escitalopram administration on metabolic parameters of cortical and subcortical brain regions of Wistar rats. Acta Neuropsychiatr 2012; 24:147-54. [PMID: 26953007 DOI: 10.1111/j.1601-5215.2011.00592.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Considering that mitochondria may be drug targets and some characteristics of drug-mitochondria interactions may still be misjudged because of the difficulty in foreseeing and understanding all possible implications of the complex pathophysiology of mitochondria, our study aimed to investigate the effect of escitalopram on the activity of enzymes of mitochondrial energy metabolism. METHODS Animals received daily administration of escitalopram dissolved in saline [10 mg/kg, intraperitoneal (IP)] at 1.0 ml/kg volume for 14 days. Control rats received an equivalent volume of saline, 1.0 ml/kg (IP), for the same treatment period. Twelve hours after last injection, rats were killed by decapitation and brain areas were rapidly isolated. The samples were homogenised and the activities of mitochondrial respiratory chain complexes, some enzymes of Krebs cycle (citrate synthase, malate dehydrogenase and succinate dehydrogenase) and creatine kinase were measured. RESULTS We verified that chronic administration of escitalopram decreased the activities of complexes I and II-III in cerebellum, hippocampus, striatum and posterior cortex whereas prefrontal cortex was not affected. Complex II activity was decreased only in striatum without affecting prefrontal cortex, hippocampus, cerebellum and posterior cortex. However, chronic administration of escitalopram did not affect complex IV and enzymes of Krebs cycle activities as well as creatine kinase. CONCLUSION In this study we showed a decrease in the activities of complexes I and II-III in most of the brain structures analysed and complex II activity was decreased only in striatum. However, it remains to be determined if mitochondrial dysfunction is rather a causal or a consequential event of abnormal signalling.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gabriela K Ferreira
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Isabela C Jeremias
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Mariane R Cardoso
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|