1
|
Stachurska K, Marcisz U, Długosz M, Antosiewicz JM. Kinetics of Structural Transitions Induced by Sodium Dodecyl Sulfate in α-Chymotrypsin. ACS OMEGA 2023; 8:49137-49149. [PMID: 38162786 PMCID: PMC10753550 DOI: 10.1021/acsomega.3c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
The temporal changes in circular dichroism at 222 and 260 nm were recorded by using stopped-flow spectroscopy after mixing α-chymotrypsin solutions with sodium dodecyl sulfate solutions. Simultaneously with the circular dichroism signal, the fluorescence emission was recorded. Changes in the secondary and tertiary structures of chymotrypsin induced by sodium dodecyl sulfate are characterized by either three or four one-way reactions with relaxation amplitudes and times precisely determined by an advanced numerical procedure of Kuzmič. Quantitatively, transitions within the secondary and tertiary structures of the protein are significantly different. Moreover, changes in the tertiary structure depend on the type of recorded signal (either circular dichroism or fluorescence) and the wavelength of the incident radiation. The latter observation is particularly interesting as it indicates that the contributions of protein's different tryptophans to the total recorded fluorescence depend on the excitation wavelength. We present several results justifying this hypothesis.
Collapse
Affiliation(s)
- Karolina Stachurska
- Biophysics Division, Institute of Experimental
Physics, Faculty of Physics, University
of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland
| | - Urszula Marcisz
- Biophysics Division, Institute of Experimental
Physics, Faculty of Physics, University
of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland
| | - Maciej Długosz
- Biophysics Division, Institute of Experimental
Physics, Faculty of Physics, University
of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland
| | - Jan M. Antosiewicz
- Biophysics Division, Institute of Experimental
Physics, Faculty of Physics, University
of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Parray ZA, Naqvi AAT, Ahanger IA, Shahid M, Ahmad F, Hassan MI, Islam A. Measuring Structural Changes in Cytochrome c under Crowded Conditions Using In Vitro and In Silico Approaches. Polymers (Basel) 2022; 14:polym14224808. [PMID: 36432935 PMCID: PMC9692323 DOI: 10.3390/polym14224808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
It is known from in vitro studies that macromolecular crowding in the cell effects protein structure, stability and function; but predictive studies are relatively unexplored. There are few reports where the effect of various crowder mixtures has been exploited to discern their combined effect on the structural stability of proteins. These studies are more significant because their effect can mimicked with in vivo conditions, where the environment is heterogeneous. Effects of two crowders, polyethylene glycol (PEG 400 Da), and its monomer ethylene glycol (EG) alone and in mixture on the structural stability of cytochrome c (cyt c) were determined using various spectroscopic and bioinformatics tools. The main conclusions of our study are (i) the monomer EG has a kosmotropic effect on the protein (stabilizes the protein), and has no significant effect on the tertiary structure; (ii) PEG 400 destabilizes the structure as well as the stability of the protein; and (iii) EG counteracts the destabilizing effect of PEG 400. From this investigation, it seems evident that proteins may fold or unfold in the crowded environment of the cell where various interactions assist them to maintain their structure for their functions. Bioinformatics approaches were also used to support all of the in vitro observations. Cyt c is functional protein; if the structure of the protein is modulated due to change in the environment its nature of function will also change. Our research addresses the question by modulating the environment around the protein, and the macromolecule (protein) conformation dynamics and interaction study via in vitro and in silico approaches which indirectly compares with that of the environment in-cellular milieu, which is highly crowded.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department of Chemistry, Indian Institute of Technology Delhi, IIT Campus, Hauz Khas, New Delhi 110016, India
| | - Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Faizan Ahmad
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Correspondence: ; Tel.: +91-9312812007
| |
Collapse
|
3
|
Parray ZA, Ahmad F, Alajmi MF, Hussain A, Hassan MI, Islam A. Interaction of polyethylene glycol with cytochrome c investigated via in vitro and in silico approaches. Sci Rep 2021; 11:6475. [PMID: 33742055 PMCID: PMC7979836 DOI: 10.1038/s41598-021-85792-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the significant proteins that have attracted research groups due to virtue of being a potent selective anticancer drug target and property of triggering apoptosis upon release in cytoplasm is cytochrome c (cyt c). The mechanical transformations due to the macromolecular crowding in membrane in the mammalian cell are proposed to be useful inductors of changes in volume. It is very interesting to know that mitochondrial function were observed to be improved by polyethylene glycol (PEG) interaction, which in turn inhibits the cyt c (a pro-apoptotic cell death factor). In this work, the effect of polyethylene glycol of molecular weight 4 kilo Dalton (PEG 4 kDa) was investigated to highlight the structural transformations (tertiary and secondary structure) in cyt c using a choice of spectroscopic techniques (including UV-Vis absorption, near-UV, far-UV and Soret circular dichroism and fluorescence spectroscopy), which shows noteworthy shifts in the secondary and tertiary structures at higher concentrations of PEG 4 kDa with small changes in the heme-globular interactions. The size distribution changes of native protein treated with various concentrations of the crowder were observed and analyzed by dynamic light scattering (DLS). The interaction studies of the crowder with the protein was observed and analyzed by FTIR, isothermal titration calorimetry, time resolved fluorescence and molecular docking. The investigations suggested that the structural changes in the protein occurred due to soft interactions of PEG 4 kDa, which usually destabilizes proteins. The experimental evidence in this study proposed that crowding could be another approach to mechanical super-competition and free of certain markers that could aid in the identification and control of various diseases. This study suggests that crowders at specific concentrations, which softly interact with proteins, can be exploited as remedy for various diseases.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
4
|
Mondal S, Das B. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 198:278-282. [PMID: 29554518 DOI: 10.1016/j.saa.2018.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/19/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C16MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C16MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C16MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants.
Collapse
Affiliation(s)
- Satyajit Mondal
- Department of Chemistry, Presidency University, Kolkata 700 073, India
| | - Bijan Das
- Department of Chemistry, Presidency University, Kolkata 700 073, India.
| |
Collapse
|
5
|
Saha P, Sikdar S, Manna C, Chakrabarti J, Ghosh M. SDS induced dissociation of STY3178 oligomer: experimental and molecular dynamics studies. RSC Adv 2017. [DOI: 10.1039/c6ra25737b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
STY3178 the yfdX Salmonella Typhi protein dissociates reversibly in presence of sodium dodecyl sulphate from trimer to monomer.
Collapse
Affiliation(s)
- Paramita Saha
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Samapan Sikdar
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Camelia Manna
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Jaydeb Chakrabarti
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Mahua Ghosh
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| |
Collapse
|
6
|
Risbridger TAG, Watkins DW, Armstrong JPK, Perriman AW, Anderson JLR, Fermin DJ. Effect of Bioconjugation on the Reduction Potential of Heme Proteins. Biomacromolecules 2016; 17:3485-3492. [PMID: 27650815 DOI: 10.1021/acs.biomac.6b00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The modification of protein surfaces employing cationic and anionic species enables the assembly of these biomaterials into highly sophisticated hierarchical structures. Such modifications can allow bioconjugates to retain or amplify their functionalities under conditions in which their native structure would be severely compromised. In this work, we assess the effect of this type of bioconjugation on the redox properties of two model heme proteins, that is, cytochrome c (CytC) and myoglobin (Mb). In particular, the work focuses on the sequential modification by 3-dimethylamino propylamine (DMAPA) and 4-nonylphenyl 3-sulfopropyl ether (S1) anionic surfactant. Bioconjugation with DMAPA and S1 are the initial steps in the generation of pure liquid proteins, which remain active in the absence of water and up to temperatures above 150 °C. Thin-layer spectroelectrochemistry reveals that DMAPA cationization leads to a distribution of bioconjugate structures featuring reduction potentials shifted up to 380 mV more negative than the native proteins. Analysis based on circular dichroism, MALDI-TOF mass spectrometry, and zeta potential measurements suggest that the shift in the reduction potentials are not linked to protein denaturation, but to changes in the spin state of the heme. These alterations of the spin states originate from subtle structural changes induced by DMAPA attachment. Interestingly, electrostatic coupling of anionic surfactant S1 shifts the reduction potential closer to that of the native protein, demonstrating that the modifications of the heme electronic configuration are linked to surface charges.
Collapse
Affiliation(s)
| | | | | | | | | | - David J Fermin
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| |
Collapse
|
7
|
Bharmoria P, Trivedi TJ, Pabbathi A, Samanta A, Kumar A. Ionic liquid-induced all-α to α + β conformational transition in cytochrome c with improved peroxidase activity in aqueous medium. Phys Chem Chem Phys 2015; 17:10189-99. [DOI: 10.1039/c4cp06044j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Choline dioctylsulfosuccinate [Cho][AOT] (a surface active ionic liquid) has been found to induce all-α to α + β conformational transition in the secondary structure of enzyme cytochrome c (Cyt c) with an enhanced peroxidase activity in its aqueous vesicular phase at pH 7.0.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- Academy of Scientific and Innovative research (AcSIR)
- Central Salt and Marine Chemicals Research Institute
- Council of Scientific and Industrial Research (CSIR)
- Bhavnagar-364002
- India
| | - Tushar J. Trivedi
- Graduate School of EEWS (Energy Environment Water Sustainability)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Ashok Pabbathi
- School of Chemistry
- University of Hyderabad
- Hyderabad 500 046
- India
| | - Anunay Samanta
- School of Chemistry
- University of Hyderabad
- Hyderabad 500 046
- India
| | - Arvind Kumar
- Academy of Scientific and Innovative research (AcSIR)
- Central Salt and Marine Chemicals Research Institute
- Council of Scientific and Industrial Research (CSIR)
- Bhavnagar-364002
- India
| |
Collapse
|
8
|
Simon M, Metzinger-Le Meuth V, Chevance S, Delalande O, Bondon A. Versatility of non-native forms of human cytochrome c: pH and micellar concentration dependence. J Biol Inorg Chem 2012; 18:27-38. [DOI: 10.1007/s00775-012-0946-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/30/2012] [Indexed: 12/13/2022]
|
9
|
Otzen D. Protein–surfactant interactions: A tale of many states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:562-91. [DOI: 10.1016/j.bbapap.2011.03.003] [Citation(s) in RCA: 362] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/23/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
|
10
|
Gebicka L, Banasiak E. Interactions of anionic surfactants with methemoglobin. Colloids Surf B Biointerfaces 2010; 83:116-21. [PMID: 21131182 DOI: 10.1016/j.colsurfb.2010.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/29/2010] [Accepted: 11/08/2010] [Indexed: 11/15/2022]
Abstract
Interactions of two anionic surfactants, sodium dodecyl sulphate (SDS) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) at concentrations below and above critical micelle concentration with methemoglobin (metHb) have been investigated by conventional as well as by stopped-flow absorption and fluorescence spectroscopy. The absorption spectra of metHb in AOT reverse micelles have been also analyzed. Both surfactants in their monomeric form convert metHb to reversible hemichrome. This is connected with a diminution of peroxidase-like activity of metHb and with an increase of the susceptibility of heme for a damage by H(2)O(2). In micellar solutions of AOT and SDS as well as in AOT reverse micelles pentacoordinated ferric species seems to be the predominant form of this protein. It has been concluded, basing on a kinetic analysis, that conformational changes in the heme environment of metHb as induced by both surfactants occur independently of the alterations in the tertiary structure of this protein.
Collapse
Affiliation(s)
- Lidia Gebicka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz, Poland.
| | | |
Collapse
|
11
|
Zou A, Liu J, Garamus VM, Zheng K, Willumeit R, Mu B. Interaction between the natural lipopeptide [Glu1, Asp5)] surfactin-C15 and hemoglobin in aqueous solution. Biomacromolecules 2010; 11:593-9. [PMID: 20099842 DOI: 10.1021/bm9011453] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between natural lipopeptide [Glu(1), Asp(5)] surfactin-C15 (surfactin) and hemoglobin (Hb) has been studied. Surface tension measurements show that the critical micelle concentration (cmc) of surfactin increases from 1.54 x 10(-5) to 3.86 x 10(-5) mol/L with Hb. The UV spectra display that the effect of surfactin on Hb exhibits strong concentration-dependent fashion and the aquometHb convert to hemichrome at high surfactin concentration. Small-angle neutron scattering (SANS) and freeze-fracture transmission electron microscopy (FF-TEM) measurements show that surfactin result in the formation of a fractal structure representing a "necklace model" of micelle-like clusters randomly distributed along the protein polypeptide chain at high surfactin concentration. Far-UV circular dichroism (CD) results confirmed that surfactin can disrupt the helical structure of protein at high concentrations, although the enhanced native-like behavior of protein by low concentration of surfactin was observed. The microenvironment change around Phe amino residues and disulfide bonds of Hb was obtained from near-UV CD spectra.
Collapse
Affiliation(s)
- Aihua Zou
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
To understand the mechanism of ionic detergent-induced protein denaturation, this study examines the action of sodium dodecyl sulfate on ferrocytochrome c conformation under neutral and strongly alkaline conditions. Equilibrium and stopped-flow kinetic results consistently suggest that tertiary structure unfolding in the submicellar and chain expansion in the micellar range of SDS concentrations are the two major and discrete events in the perturbation of protein structure. The nature of interaction between the detergent and the protein is predominantly hydrophobic in the submicellar and exclusively hydrophobic at micellar levels of SDS concentration. The observation that SDS also interacts with a highly denatured and negatively charged form of ferrocytochrome c suggests that the interaction is independent of structure, conformation, and ionization state of the protein. The expansion of the protein chain at micellar concentration of SDS is driven by coulombic repulsion between the protein-bound micelles, and the micelles and anionic amino acid side chains.
Collapse
Affiliation(s)
- Abani K Bhuyan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
13
|
Mechanism for stabilization of the molten globule state of papain by sodium n-alkyl sulfates: Spectroscopic and calorimetric approaches. J Colloid Interface Sci 2008; 322:119-27. [DOI: 10.1016/j.jcis.2008.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 02/29/2008] [Accepted: 03/01/2008] [Indexed: 11/17/2022]
|
14
|
Chen E, Van Vranken V, Kliger DS. The Folding Kinetics of the SDS-Induced Molten Globule Form of Reduced Cytochrome c. Biochemistry 2008; 47:5450-9. [DOI: 10.1021/bi702452u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Vanessa Van Vranken
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - David S. Kliger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
15
|
Moreira LM, Santiago PS, de Almeida EV, Tabak M. Interaction of giant extracellular Glossoscolex paulistus hemoglobin (HbGp) with zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS): Effects of oligomeric dissociation. Colloids Surf B Biointerfaces 2008; 61:153-63. [PMID: 17825537 DOI: 10.1016/j.colsurfb.2007.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 07/27/2007] [Accepted: 07/28/2007] [Indexed: 10/23/2022]
Abstract
The present work focuses on the interaction between the zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp). Electronic optical absorption, fluorescence emission and circular dichroism spectroscopy techniques, together with Gel-filtration chromatography, were used in order to evaluate the oligomeric dissociation as well as the autoxidation of HbGp as a function of the interaction with HPS. A peculiar behavior was observed for the HPS-HbGp interaction: a complex ferric species formation equilibrium was promoted, as a consequence of the autoxidation and oligomeric dissociation processes. At pH 7.0, HPS is more effective up to 1mM while at pH 9.0 the surfactant effect is more intense above 1mM. Furthermore, the interaction of HPS with HbGp was clearly less intense than the interaction of this hemoglobin with cationic (CTAC) and anionic (SDS) surfactants. Probably, this lower interaction with HPS is due to two factors: (i) the lower electrostatic attraction between the HPS surfactant and the protein surface ionic sites when compared to the electrostatic interaction between HbGp and cationic and anionic surfactants, and (ii) the low cmc of HPS, which probably reduces the interaction of the surfactant in the monomeric form with the protein. The present work emphasizes the importance of the electrostatic contribution in the interaction between ionic surfactants and HbGp. Furthermore, in the whole HPS concentration range used in this study, no folding and autoxidation decrease induced by this surfactant were observed. This is quite different from the literature data on the interaction between surfactants and tetrameric hemoglobins, that supports the occurrence of this behavior for the intracellular hemoglobins at low surfactant concentration range. Spectroscopic data are discussed and compared with the literature in order to improve the understanding of hemoglobin-surfactant interaction as well as the acid isoelectric point (pI) influence of the giant extracellular hemoglobins on their structure-activity relationship.
Collapse
Affiliation(s)
- Leonardo M Moreira
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
16
|
Spectroscopic, structural, and functional characterization of the alternative low-spin state of horse heart cytochrome C. Biophys J 2008; 94:4066-77. [PMID: 18227133 DOI: 10.1529/biophysj.107.116483] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The alternative low-spin states of Fe(3+) and Fe(2+) cytochrome c induced by SDS or AOT/hexane reverse micelles exhibited the heme group in a less rhombic symmetry and were characterized by electron paramagnetic resonance, UV-visible, CD, magnetic CD, fluorescence, and Raman resonance. Consistent with the replacement of Met(80) by another strong field ligand at the sixth heme iron coordination position, Fe(3+) ALSScytc exhibited 1-nm Soret band blue shift and epsilon enhancement accompanied by disappearance of the 695-nm charge transfer band. The Raman resonance, CD, and magnetic CD spectra of Fe(3+) and Fe(2+) ALSScytc exhibited significant changes suggestive of alterations in the heme iron microenvironment and conformation and should not be assigned to unfold because the Trp(59) fluorescence remained quenched by the neighboring heme group. ALSScytc was obtained with His(33) and His(26) carboxyethoxylated horse cytochrome c and with tuna cytochrome c (His(33) replaced by Asn) pointing out Lys(79) as the probable heme iron ligand. Fe(3+) ALSScytc retained the capacity to cleave tert-butylhydroperoxide and to be reduced by dithiothreitol and diphenylacetaldehyde but not by ascorbate. Compatible with a more open heme crevice, ALSScytc exhibited a redox potential approximately 200 mV lower than the wild-type protein (+220 mV) and was more susceptible to the attack of free radicals.
Collapse
|
17
|
Benvenuti M, Mangani S. Crystallization of soluble proteins in vapor diffusion for x-ray crystallography. Nat Protoc 2007; 2:1633-51. [PMID: 17641629 DOI: 10.1038/nprot.2007.198] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The preparation of protein single crystals represents one of the major obstacles in obtaining the detailed 3D structure of a biological macromolecule. The complete automation of the crystallization procedures requires large investments in terms of money and labor, which are available only to large dedicated infrastructures and is mostly suited for genomic-scale projects. On the other hand, many research projects from departmental laboratories are devoted to the study of few specific proteins. Here, we try to provide a series of protocols for the crystallization of soluble proteins, especially the difficult ones, tailored for small-scale research groups. An estimate of the time needed to complete each of the steps described can be found at the end of each section.
Collapse
Affiliation(s)
- Manuela Benvenuti
- Dipartimento di Chimica, Università di Siena, Via Aldo Moro 2, Siena 53100, Italy
| | | |
Collapse
|
18
|
Santiago PS, Moreira LM, de Almeida EV, Tabak M. Giant extracellular Glossoscolex paulistus Hemoglobin (HbGp) upon interaction with cethyltrimethylammonium chloride (CTAC) and sodium dodecyl sulphate (SDS) surfactants: Dissociation of oligomeric structure and autoxidation. Biochim Biophys Acta Gen Subj 2007; 1770:506-17. [PMID: 17196340 DOI: 10.1016/j.bbagen.2006.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 11/19/2022]
Abstract
The effects of two ionic surfactants on the oligomeric structure of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) in the oxy - form have been studied through the use of several spectroscopic techniques such as electronic optical absorption, fluorescence emission, light scattering, and circular dichroism. The use of anionic sodium dodecyl sulphate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) has allowed to differentiate the effects of opposite headgroup charges on the oligomeric structure dissociation and hemoglobin autoxidation. At pH 7.0, both surfactants induce the protein dissociation and a significant oxidation. Spectral changes occur at very low CTAC concentrations suggesting a significant electrostatic contribution to the protein-surfactant interaction. At low protein concentration, 0.08 mg/ml, some light scattering within a narrow CTAC concentration range occurs due to protein-surfactant precipitation. Light scattering experiments showed the dissociation of the oligomeric structure by SDS and CTAC, and the effect of precipitation induced by CTAC. At higher protein concentrations, 3.0 mg/ml, a precipitation was observed due to the intense charge neutralization upon formation of ion pair in the protein-surfactant precipitate. The spectral changes are spread over a much wider SDS concentration range, implying a smaller electrostatic contribution to the protein-surfactant interactions. The observed effects are consistent with the acid isoelectric point (pI) of this class of hemoglobins, which favors the intense interaction of HbGp with the cationic surfactant due to the existence of excess acid anionic residues at the protein surface. Protein secondary structure changes are significant for CTAC at low concentrations while they occur at significantly higher concentrations for SDS. In summary, the cationic surfactant seems to interact more strongly with the protein producing more dramatic spectral changes as compared to the anionic one. This is opposite as observed for several other hemoproteins. The surfactants at low concentrations produce the oligomeric dissociation, which facilitates the iron oxidation, an important factor modulating further oligomeric protein dissociation.
Collapse
Affiliation(s)
- Patricia S Santiago
- Instituto de Quimica de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
19
|
Gitlin I, Gudiksen KL, Whitesides GM. Peracetylated Bovine Carbonic Anhydrase (BCA-Ac18) Is Kinetically More Stable than Native BCA to Sodium Dodecyl Sulfate. J Phys Chem B 2006; 110:2372-7. [PMID: 16471827 DOI: 10.1021/jp055699f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine carbonic anhydrase (BCA) and its derivative with all lysine groups acetylated (BCA-Ac18) have different stabilities toward denaturation by sodium dodecyl sulfate (SDS). This difference is kinetic: BCA-Ac18 denatures more slowly than BCA by several orders of magnitude over concentrations of SDS ranging from 2.5 to 10 mM. The rates of renaturation of BCA-Ac18 are greater than those of BCA, when these proteins are allowed to refold from a denatured state ([SDS]=10 mM) to a folded state ([SDS]=0.1 to 1.5 mM). On renaturation, the yields of the correctly folded protein (either BCA or BCA-Ac18) decrease with increasing concentration of SDS. At intermediate concentrations of SDS (from 0.7 to 2 mM for BCA, and from 1.5 to 2 mM for BCA-Ac18), both unfolding and refolding of the proteins are too slow to be observed; an alternative process-probably aggregation-competes with refolding of the denatured proteins at those intermediate concentrations. Because it is experimentally impractical to prove equilibrium, it is not possible to establish whether there is a difference in the thermodynamics of unfolding/refolding between BCA and BCA-Ac18.
Collapse
Affiliation(s)
- Irina Gitlin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
20
|
Simonneaux G, Bondon A. Mechanism of Electron Transfer in Heme Proteins and Models: The NMR Approach. Chem Rev 2005; 105:2627-46. [PMID: 15941224 DOI: 10.1021/cr030731s] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gérard Simonneaux
- Laboratoire de Chimie Organométallique et Biologique, UMR CNRS 6509, Institut de Chimie, Université de Rennes 1, France.
| | | |
Collapse
|
21
|
Yohannes G, Wiedmer SK, Tuominen EKJ, Kinnunen PKJ, Riekkola ML. Cytochrome c?dimyristoylphosphatidylglycerol interactions studied by asymmetrical flow field-flow fractionation. Anal Bioanal Chem 2004; 380:757-66. [PMID: 15747405 DOI: 10.1007/s00216-004-2842-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lipid membranes are well recognized ligands that bind peripheral and integral proteins in a specific manner and regulate their function. Cytochrome c (cyt c) is one of the partner peripheral protein that binds to the lipid membranes via electrostatic and hydrophobic interactions. In this study, asymmetrical flow field-flow fractionation (AsFlFFF) was used to compare the interactions of cyt c with the acidic phospholipid 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG), oleic acid (OA), and sodium dodecyl sulfate (SDS). The influence of pH and the cyt c-lipid molar mass ratios were evaluated by monitoring the diffusion coefficients and particle diameter distributions obtained for the free and lipid-bound protein. The hydrodynamic particle diameter of cyt c (pI 10) was 4.1 nm at pH 11.4 and around 4.2 nm at pH 7.0 and 8.0. Standard molar mass marker proteins were used for calibration to obtain the molar masses of free cyt c and its complexes with lipids. AsFlFFF revealed the binding of cyt c to DMPG and to OA to be mainly electrostatic. In the absence of electrostatic interactions, minor complex formation occurred, possibly due to the extended lipid anchorage involving the hydrophobic cavity of cyt c and the hydrocarbon chains of DMPG or SDS. The possibility of the formation of the molten globule state of cyt c, induced by the interaction between cyt c and lipids, is discussed.
Collapse
Affiliation(s)
- Gebrenegus Yohannes
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
22
|
Xu Q, Keiderling TA. Effect of sodium dodecyl sulfate on folding and thermal stability of acid-denatured cytochrome c: a spectroscopic approach. Protein Sci 2004; 13:2949-59. [PMID: 15459332 PMCID: PMC2286590 DOI: 10.1110/ps.04827604] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The molten globule (MG) state can be an intermediate in the protein folding pathway; thus, its detailed description can help understanding protein folding. Sodium dodecyl sulfate (SDS), an anionic surfactant that is commonly used to mimic hydrophobic binding environments such as cell membranes, is known to denature some native state proteins, including horse cytochrome c (cyt c). In this article, refolding of acid denatured cyt c is studied under the influence of SDS to form MG-like states at both low concentration and above the critical micelle concentration using Fourier transform Infrared (FTIR) and ultraviolet and visible absorption as well as fluorescence and circular dichroism (CD). Thermal denaturation monitored with FTIR and CD shows distinct final high temperature states starting from MG-like states formed with different SDS/protein ratios. The results suggest that the SDS/protein ratio as well as the actual SDS (or protein) concentration affects structure and its thermal stability. Thermal denaturation monitored with CD and FTIR for cyt c at neutral pH but denatured with SDS showed that at a high SDS/protein ratio, the thermal behavior of MG-like states formed at low and neutral pH are quite similar. Based on the results obtained, the merits of two models of the protein-surfactant structure are discussed for different SDS concentrations.
Collapse
Affiliation(s)
- Qi Xu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street (m/c 111), Chicago, IL 60607-7061, USA
| | | |
Collapse
|
23
|
Chevance S, Le Rumeur E, de Certaines JD, Simonneaux G, Bondon A. 1H NMR structural characterization of the cytochrome c modifications in a micellar environment. Biochemistry 2004; 42:15342-51. [PMID: 14690444 DOI: 10.1021/bi035044+] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of cytochrome c with micelles of sodium dodecyl sulfate was studied by proton NMR spectroscopy. The protein/micelles ratio was found to be crucial in controlling the extent of the conformational changes in the heme crevice. Over a range of ratios between 1:30 and 1:60, the NMR spectra of the ferric form display no paramagnetic signals due to a moderately fast exchange between intermediate species on the NMR time scale. This is consistent with an interconversion of bis-histidine derivatives (His18-Fe-His26 and His18-Fe-His33). Further addition of micelles induces a high-spin species that is proposed to involve pentacoordinated iron. The resulting free binding site, also encountered in the ferrous form, is used to complex exogenous ligands such as cyanide or carbon monoxide. Attribution of the heme methyls was performed by means of exchange spectroscopy through ligand exchange or electron transfer. The heme methyl shift pattern of the micellar cyanocytochrome in the ferric low spin form is different from the pattern of both the native and the cyanide cytochrome c adduct, in the absence of micelles, reflecting a complete change of the heme electronic structure. Analysis of the electron self-exchange reaction between the two redox states of the micellar cyanocytochrome c yields a rate constant of 2.4 x 10(4) M(-1) s(-1) at 298 K, which is surprisingly close to the value observed in the native protein.
Collapse
Affiliation(s)
- S Chevance
- Laboratoire de Chimie Organométallique et Biologique, UMR CNRS 6509, Institut de Chimie, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
24
|
Oellerich S, Wackerbarth H, Hildebrandt P. Conformational equilibria and dynamics of cytochrome c induced by binding of sodium dodecyl sulfate monomers and micelles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:599-613. [PMID: 12768249 DOI: 10.1007/s00249-003-0306-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Revised: 04/07/2003] [Accepted: 04/07/2003] [Indexed: 10/26/2022]
Abstract
Circular dichroism, nuclear magnetic resonance, electron paramagnetic resonance, UV-vis absorption, and resonance Raman (RR) spectroscopic techniques were employed to study protein and heme structural changes of cytochrome c (Cyt-c) induced by sodium dodecyl sulfate (SDS) monomers and micelles via hydrophobic and electrostatic interactions, respectively. Both modes of interactions cause the transition to the conformational state B2, which is implicated to be involved in the physiological processes of Cyt-c. At sub-micellar concentrations of SDS, specific binding of only ca. three SDS monomers, which is likely to occur at the hydrophobic peptide segment 81-85, is sufficient for a complete conversion to a B2 state in which Met80 is replaced by His33 (His26). These heme pocket structural changes are not linked to secondary structure changes of the protein brought about by nonspecific binding of SDS monomers in different regions of the protein. Upon binding of micelles, B2 high-spin species can also be stabilized by electrostatic interactions. In addition, the micelle interaction domain is located on the front surface of Cyt-c, which includes a ring-like arrangement of lysine residues appropriate for binding one micelle. According to freeze-quench RR and stopped-flow experiments, state B2 is formed on the long millisecond timescale and reveals a complex dependence on the SDS concentration that can be interpreted in terms of competitive binding of monomers and micelles.
Collapse
Affiliation(s)
- Silke Oellerich
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, 45470 Mulheim, Germany
| | | | | |
Collapse
|
25
|
Gebicka L. Peroxidase-like activity of cytochrome c in the presence of anionic surfactants. RESEARCH ON CHEMICAL INTERMEDIATES 2001. [DOI: 10.1163/15685670152621988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|