1
|
Gargiulo-Monachelli G, Meyer M, Lara A, Garay L, Lima A, Roig P, De Nicola AF, Gonzalez Deniselle MC. Comparative effects of progesterone and the synthetic progestin norethindrone on neuroprotection in a model of spontaneous motoneuron degeneration. J Steroid Biochem Mol Biol 2019; 192:105385. [PMID: 31150830 DOI: 10.1016/j.jsbmb.2019.105385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/21/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
Abstract
The Wobbler mouse has been proposed as an experimental model of the sporadic form of amyotrophic lateral sclerosis (ALS). The administration of natural progesterone (PROG) to Wobbler mice attenuates neuropathology, inhibits oxidative stress, enhances the expression of genes involved in motoneuron function, increases survival and restores axonal transport. However, current pharmacological treatments for ALS patients are still partially effective. This encouraged us to investigate if the synthetic progestin norethindrone (NOR), showing higher potency than PROG and used for birth control and hormone therapy might also afford neuroprotection. Two-month-old Wobbler mice (wr/wr) were left untreated or received either a 20 mg pellet of PROG or a 1 mg pellet of NOR for 18 days. Untreated control NFR/NFR mice (background strain for Wobbler) were also employed. Wobblers showed typical clinical and spinal cord abnormalities, while these abnormalities were normalized with PROG treatment. Surprisingly, we found that NOR did not increase immunoreactivity and gene expression for choline-acetyltransferase, drastically decreased GFAP + astrogliosis, favored proinflammatory mediators, promoted the inflammatory phenotype of IBA1+ microglia, increased the receptor for advanced glycation end products (RAGE) mRNA and protein expression and the activity of nitric oxide synthase (NOS)/NADPH diaphorase in the cervical spinal cord. Additionally, NOR treatment produced atrophy of the thymus. The combined negative effects of NOR on clinical assessments (forelimb atrophy and rotarod performance) suggest a detrimental effect on muscle trophism and motor function. These findings reinforce the evidence that the type of progestin used for contraception, endometriosis or replacement therapy, may condition the outcome of preclinical and clinical studies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Gisella Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Agustina Lara
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Laura Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Depto. de Bioquímica Humana, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Depto. de Bioquímica Humana, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Depto. de Ciencias Fisiológicas, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
2
|
Evans MC, Gaillard PJ, de Boer M, Appeldoorn C, Dorland R, Sibson NR, Turner MR, Anthony DC, Stolp HB. CNS-targeted glucocorticoid reduces pathology in mouse model of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2014; 2:66. [PMID: 24923195 PMCID: PMC4229735 DOI: 10.1186/2051-5960-2-66] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/02/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hallmarks of CNS inflammation, including microglial and astrocyte activation, are prominent features in post-mortem tissue from amyotrophic lateral sclerosis (ALS) patients and in mice overexpressing mutant superoxide dismutase-1 (SOD1G93A). Administration of non-targeted glucocorticoids does not significantly alter disease progression, but this may reflect poor CNS delivery. Here, we sought to discover whether CNS-targeted, liposomal encapsulated glucocorticoid would inhibit the CNS inflammatory response and reduce motor neuron loss. SOD1G93A mice were treated with saline, free methylprednisolone (MP, 10 mg/kg/week) or glutathione PEGylated liposomal MP (2B3-201, 10 mg/kg/week) and compared to saline treated wild-type animals. Animals were treated weekly with intravenous injections for 9 weeks from 60 days of age. Weights and motor performance were monitored during this period. At the end of the experimental period (116 days) mice were imaged using T2-weighted MRI for brainstem pathology; brain and spinal cord tissue were then collected for histological analysis. RESULTS All SOD1G93A groups showed a significant decrease in motor performance, compared to baseline, from ~100 days. SOD1G93A animals showed a significant increase in signal intensity on T2 weighted MR images, which may reflect the combination of neuronal vacuolation and glial activation in these motor nuclei. Treatment with 2B3-201, but not free MP, significantly reduced T2 hyperintensity observed in SOD1G93A mice. Compared to saline-treated and free-MP-treated SOD1G93A mice, those animals given 2B3-201 displayed significantly improved histopathological outcomes in brainstem motor nuclei, which included reduced gliosis and neuronal loss. CONCLUSIONS In contrast to previous reports that employed free steroid preparations, CNS-targeted anti-inflammatory agent 2B3-201 (liposomal methylprednisolone) has therapeutic potential, reducing brainstem pathology in the SOD1G93A mouse model of ALS. 2B3-201 reduced neuronal loss and vacuolation in brainstem nuclei, and reduced activation preferentially in astrocytes compared with microglia. These data also suggest that other previously ineffective therapies could be of therapeutic value if delivered specifically to the CNS.
Collapse
Affiliation(s)
- Matthew C Evans
- />Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK
| | | | | | | | - Rick Dorland
- />to-BBB technologies BV, Leiden, the Netherlands
| | - Nicola R Sibson
- />CR-UK/MRC Gray Institute for Radiation, Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7LJ UK
| | - Martin R Turner
- />Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU UK
| | - Daniel C Anthony
- />Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT UK
| | - Helen B Stolp
- />Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX UK
| |
Collapse
|
3
|
Moser JM, Bigini P, Schmitt-John T. The wobbler mouse, an ALS animal model. Mol Genet Genomics 2013; 288:207-29. [PMID: 23539154 PMCID: PMC3664746 DOI: 10.1007/s00438-013-0741-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.
Collapse
Affiliation(s)
- Jakob Maximilian Moser
- Molecular Biology and Genetics Department, Aarhus University, C. F. Møllers Alle 3, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
4
|
Sun XC, Chen WN, Li SQ, Cai JS, Li WB, Xian XH, Hu YY, Zhang M, Li QJ. Fluorocitrate, an Inhibitor of Glial Metabolism, Inhibits the Up-Regulation of NOS Expression, Activity and NO Production in the Spinal Cord Induced by Formalin Test in Rats. Neurochem Res 2008; 34:351-9. [DOI: 10.1007/s11064-008-9785-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 06/13/2008] [Indexed: 12/22/2022]
|
5
|
Bigini P, Gardoni F, Barbera S, Cagnotto A, Fumagalli E, Longhi A, Corsi MM, Di Luca M, Mennini T. Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice. BMC Neurosci 2006; 7:71. [PMID: 17067377 PMCID: PMC1635720 DOI: 10.1186/1471-2202-7-71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 10/26/2006] [Indexed: 12/11/2022] Open
Abstract
Background The localisation of AMPA and NMDA receptor subunits was studied in a model of degeneration of cervical spinal motoneurons, the wobbler mouse. Cervical regions from early or late symptomatic wobbler mice (4 or 12 weeks of age) were compared to lumbar tracts (unaffected) and to those of healthy mice. Results No differences were found in the distribution of AMPA and NMDA receptor subunits at both ages. Western blots analysis showed a trend of reduction in AMPA and NMDA receptor subunits, mainly GluR1 and NR2A, exclusively in the cervical region of late symptomatic mice in the triton-insoluble post-synaptic fraction but not whole homogenates. Colocalisation experiments evidenced the expression of GluR1 and NR2A receptors in activated astrocytes from the cervical spinal cord of wobbler mice, GluR2 did not colocalise with GFAP positive cells. No differences were found in the expression of AMPA and NMDA receptor subunits in the lumbar tract of wobbler mice, where neither motoneuron loss nor reactive gliosis occurs. Conclusion In late symptomatic wobbler mice altered levels of GluR1 and NR2A receptor subunits may be a consequence of motoneuron loss rather than an early feature of motoneuron vulnerability.
Collapse
Affiliation(s)
- Paolo Bigini
- Laboratory of Receptor Pharmacology, Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Fabrizio Gardoni
- Centre of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, 20133 Milano, Italy
| | - Sara Barbera
- Laboratory of Receptor Pharmacology, Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Alfredo Cagnotto
- Laboratory of Receptor Pharmacology, Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Elena Fumagalli
- Centre of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, 20133 Milano, Italy
| | - Annalisa Longhi
- Centre of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, 20133 Milano, Italy
| | | | - Monica Di Luca
- Centre of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, 20133 Milano, Italy
| | - Tiziana Mennini
- Laboratory of Receptor Pharmacology, Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| |
Collapse
|
6
|
Schwartz M. Are neurodegenerative disorders systemic diseases? Outlook for future immune-based therapies. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.1.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prevalence of neurodegenerative diseases increases exponentially with age. Increasing life expectancies in Western countries have, therefore, been accompanied by a growing increase in the number of victims, and in the future we can expect to see an increased number of the geriatric population suffering from these diseases. Despite improvements in our understanding of the pathogeneses, the prospects for finding a cure remain bleak. Many questions remain unanswered: are we dealing with a family of diseases or with individual unrelated syndromes? Is there a systemic malfunction that operates via a common pathway but affects different tissues or organs in different individuals? How will the answers to these questions affect future therapy?
Collapse
|
7
|
Gonzalez Deniselle MC, Garay L, Gonzalez S, Guennoun R, Schumacher M, De Nicola AF. Progesterone restores retrograde labeling of cervical motoneurons in Wobbler mouse motoneuron disease. Exp Neurol 2005; 195:518-23. [PMID: 16095593 DOI: 10.1016/j.expneurol.2005.06.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 06/13/2005] [Indexed: 12/16/2022]
Abstract
The Wobbler mouse, a mutant characterized by motoneuron degeneration in the cervical spinal cord, has been used to test the efficacy of novel treatments for human motoneuron diseases (HMD). Previous reports have shown that slow axonal transport is impaired in Wobblers and other models of HMD. Since progesterone (PROG) corrects some morphological, molecular, and functional abnormalities of Wobbler mice, we studied if steroid exposure for 8 weeks restored retrograde axonal transport by measuring motoneuron labeling after injection of fluorogold into the limb muscles. The dye was injected into forelimb biceps bracchii and flexor or into the rearlimb gastrocnemius muscles; 6 days later, the number of fluorescent motoneurons and the total number of cresyl violet stained motoneurons were counted in the cervical (C5-T1) or lumbar (L3-L5) spinal cord regions. A pronounced reduction (- 42.2%) of the percent of fluorescent motoneurons in Wobbler mice cervical cord was noted, which was significantly corrected after PROG treatment. In contrast, labeling of lumbar motoneurons was not reduced in Wobbler mice and was not affected by PROG treatment. In no case PROG showed an effect in control mice. Concomitantly, PROG slightly but significantly increased biceps weight of Wobbler mice. Behaviorally, PROG-treated Wobblers performed better on a motor test (hanging time from a horizontal rope) compared to untreated counterparts. We postulate a dual role for PROG in the Wobbler mouse, in part by prevention of motoneuron degeneration and also by enhancement of axonal transport. The latter mechanism could improve the traffic of neurotrophic factors from the forelimb muscles into the ailing motoneurons, improving neuromuscular function in this murine model of HMD.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, and Department of Biochemistry, Faculty of Medicine, University of Buenos, Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
8
|
González Deniselle MC, Garay L, López-Costa JJ, González S, Mougel A, Guennoun R, Schumacher M, De Nicola AF. Progesterone treatment reduces NADPH-diaphorase/nitric oxide synthase in Wobbler mouse motoneuron disease. Brain Res 2004; 1014:71-9. [PMID: 15212993 DOI: 10.1016/j.brainres.2004.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
Previous work demonstrated that progesterone (PROG) treatment attenuates morphological, molecular and functional abnormalities in the spinal cord of the Wobbler (Wr) mouse, a genetic model of motoneuron degeneration. Wr mice show a marked up-regulation of the nitric oxide synthesizing enzyme (NOS). Since nitric oxide is a highly reactive species, it may play a role in neuropathology of Wr mice. We now studied if PROG neuroprotection involved changes of NOS activity in motoneurons and astrocytes, determined by the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHD) histochemical reaction. Two and four-month-old Wr mice at the progressive and stabilization stages of the disease, respectively, and their age-matched controls were left untreated or received a single 20-mg PROG pellet for 18 days. PROG reduced the high number of NADPHD-active motoneurons and white matter astrocytes in 2-month-old Wr mice but was unable to change the low number of NADPHD-active motoneurons in 4-month-old Wr mice or astrocytes in this age group. A large number of motoneurons in 2-month-old Wr mice showed a vacuolated phenotype, which was significantly reverted by PROG treatment. In summary, PROG treatment during the early symptomatic stage of the disease caused a significant reduction of NADPHD-active motoneurons and astrocytes and also reduced vacuolated degenerating cells, suggesting that blockade of NO synthesis and oxidative damage may contribute to steroid neuroprotection.
Collapse
|
9
|
Pong K. Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin Biol Ther 2003; 3:127-39. [PMID: 12718737 DOI: 10.1517/14712598.3.1.127] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence of oxidative stress is apparent in both acute and chronic neurodegenerative diseases, such as stroke, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Increased generation of reactive oxygen species simply overwhelm endogenous antioxidant defences, leading to subsequent oxidative damage and cell death. Tissue culture and animal models have been developed to mimic some of the biochemical changes and neuropathology found in these diseases. In doing so, it has been experimentally demonstrated that oxidative stress plays a critical role in neuronal cell death. Antioxidant enzymes, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) have demonstrated therapeutic efficacy in models of neurodegeneration. However, delivery and stability issues have reduced the enthusiasm to clinically develop these proteins. Most recently, SOD mimetics, small molecules which mimic the activity of endogenous superoxide dismutase, have come to the forefront of antioxidant therapeutics. This review will examine the experimental evidence supporting the use of scavengers of superoxide anions in treating some neurodegenerative diseases, such as stroke, PD and ALS, but also the pitfalls that have met antioxidant molecules in clinical trials.
Collapse
Affiliation(s)
- Kevin Pong
- Department of Neuroscience, Wyeth Research, Princeton, NJ 08543, USA.
| |
Collapse
|
10
|
Gonzalez Deniselle MC, Lopez Costa JJ, Gonzalez SL, Labombarda F, Garay L, Guennoun R, Schumacher M, De Nicola AF. Basis of progesterone protection in spinal cord neurodegeneration. J Steroid Biochem Mol Biol 2002; 83:199-209. [PMID: 12650717 DOI: 10.1016/s0960-0760(02)00262-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Progesterone neuroprotection has been reported in experimental brain, peripheral nerve and spinal cord injury. To investigate for a similar role in neurodegeneration, we studied progesterone effects in the Wobbler mouse, a mutant presenting severe motoneuron degeneration and astrogliosis of the spinal cord. Implant of a single progesterone pellet (20 mg) during 15 days produced substantial changes in Wobbler mice spinal cord. Morphologically, motoneurons of untreated Wobbler mice showed severe vacuolation of intracellular organelles including mitochondria. In contrast, neuropathology was less pronounced in Wobbler mice receiving progesterone, together with a reduction of vacuolated cells and preservation of mitochondrial ultrastructure. Determination of mRNAs for the alpha 3 and beta 1 subunits of neuronal Na, K-ATPase, showed that mRNA levels in untreated mice were significantly reduced, whereas progesterone therapy re-established the expression of both subunits. Additionally, progesterone treatment of Wobbler mice attenuated the aberrant expression of the growth-associated protein (GAP-43) mRNA which otherwise occurred in motoneurons of untreated animals. The hormone, however, was without effect on astrocytosis of Wobbler mice, determined by glial fibrillary acidic protein (GFAP)-immunostaining. Lastly, progesterone treatment of Wobbler mice enhanced grip strength and prolonged survival at the end of the 15-day observation period. Recovery of morphology and molecular motoneuron parameters of Wobbler mice receiving progesterone, suggest a new and important role for this hormone in the prevention of spinal cord neurodegenerative disorders.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Department of Human Biochemistry, Faculty of Medicine, Instituto de Biologia y Medicina Experimental, University of Buenos Aires, Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
11
|
González S, Labombarda F, Gonzalez Deniselle MC, Saravia FE, Roig P, De Nicola AF. Glucocorticoid effects on Fos immunoreactivity and NADPH-diaphorase histochemical staining following spinal cord injury. Brain Res 2001; 912:144-53. [PMID: 11532430 DOI: 10.1016/s0006-8993(01)02717-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucocorticoids (GC) provide neuroprotection and early recovery after spinal cord injury (SCI). While several mechanisms were proposed to account for these effects, limited information exists regarding GC actions in sensory areas of the spinal cord. Presently, we studied the time course of Fos expression, and reduced nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemical staining to monitor neuronal responses to SCI with or without GC treatment. Rats with sham-operation or transection at the thoracic level (T7-T8) received vehicle or 5 mg/kg of the GC dexamethasone (DEX) at 5 min post-lesion and were sacrificed 2 or 4 h after surgery. Another group of SCI rats received vehicle or intensive DEX treatment (5 min, 6 h, 18 h and 46 h post-lesion) and were sacrificed 48 h after surgery. The number of NADPH-d positive neurons or Fos immunoreactive nuclei was studied by computer-assisted image analysis in superficial dorsal horn (Laminae I-III) and central canal area (Lamina X) below the lesion. While constitutive Fos immunoreactive nuclei were sparse in controls, SCI increased Fos expression at 2 and 4 h after injury. DEX treatment significantly enhanced the number of Fos positive nuclei in Laminae I-III by 4 h after transection, although the response was not maintained by intensive steroid treatment when tested at 48 h after SCI. NADPH-d positive neurons in Laminae I-III increased at 2 and 4 h after SCI while a delayed increased was found in central canal area (Lamina X). DEX treatment decreased NADPH-d positive neurons to sham-operated levels at all time points examined. Thus, while GC stimulation of Fos suggests activation of neurons involved in sympathetic outflow and/or pain, down-regulation of NADPH-d indicates attenuation of nociceptive outflow, considering the role of enzyme-derived nitric oxide in pain-related mechanisms. Differential hormonal effects on these molecules agree with their localization in different cell populations.
Collapse
Affiliation(s)
- S González
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
12
|
González Deniselle MC, González SL, De Nicola AF. Cellular basis of steroid neuroprotection in the wobbler mouse, a genetic model of motoneuron disease. Cell Mol Neurobiol 2001; 21:237-54. [PMID: 11569536 DOI: 10.1023/a:1010943104315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. The Wobbler mouse suffers an autosomal recessive mutation producing severe motoneuron degeneration and astrogliosis in the spinal cord. It has been considered a suitable model of human motoneuron disease, including the sporadic form of amyotrophic lateral sclerosis (ALS). 2. Evidences exist demonstrating increased oxidative stress in the spinal cord of Wobbler mice, whereas antioxidant therapy delayed neurodegeneration and improved muscle trophism. 21-Aminosteroids are glucocorticoid-derived hydrophobic compounds with antioxidant potency 3 times higher than vitamin E and 100 times higher than methylprednisolone. They do not bind to intracellular receptors, and prevent lipid peroxidation by insertion into membrane lipid bilayers. 3. In common with the spinal cord of ALS patients, Wobbler mice present astrocytosis with hyperexpression of glial fibrillary acidic protein (GFAP), and increased expression of nitric oxide synthase (NOS) and growth-associated protein (GAP-43) in motoneurons. Here, we review our studies on the effects of a 21-aminosteroid on GFAP, NOS, and GAP-43. 4. First, we showed that 21-aminosteroid treatment further increased GFAP-expressing astrocytes in gray matter of the Wobbler spinal cord. This effect may provide neuroprotection if one considers a trophic and beneficial function of astrocytes during the course of degeneration. Other neuroprotectans used in Wobbler mice (T-588) also increased pre-existing astrocytosis. 5. Second, histochemical determination of NADPH-diaphorase, a parameter indicative of neuronal NOS activity, showed that the 21-aminosteroid down-regulated the high activity of this enzyme in ventral horn motoneurons. Therefore, suppression of nitric oxide by decreasing NADPH-diaphorase (NOS) activity may provide neuroprotection considering that excess NO is highly toxic to motoneurons. 6. Finally, 21-aminosteroid treatment significantly attenuated the aberrant expression of both GAP-43 protein and mRNA in Wobbler motoneurons. Hyperexpression of GAP-43 possibly indicated abnormal synaptogenesis, denervation, and muscle atrophy, parameters which may return to normal following antioxidant steroid treatment. 7. Besides 21-aminosteroids, other steroids also behave as neuroprotectans. In this regard, degenerative diseases may constitute potential targets of these hormones, based on the fact that the spinal cord expresses in a regional and cell-specific fashion, receptors for androgens. progesterone, adrenal steroids, and estrogens.
Collapse
Affiliation(s)
- M C González Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina.
| | | | | |
Collapse
|
13
|
Pioro EP. Antioxidant therapy in ALS. AMYOTROPHIC LATERAL SCLEROSIS AND OTHER MOTOR NEURON DISORDERS : OFFICIAL PUBLICATION OF THE WORLD FEDERATION OF NEUROLOGY, RESEARCH GROUP ON MOTOR NEURON DISEASES 2000; 1 Suppl 4:5-12; discussion 13-5. [PMID: 11466960 DOI: 10.1080/14660820050515656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- E P Pioro
- Center for ALS and Related Disorders, Section of Neuromuscular Diseases and EMG, Department of Neurology, S90, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
14
|
Labombarda F, Gonzalez S, Roig P, Lima A, Guennoun R, Schumacher M, De Nicola AF. Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. J Steroid Biochem Mol Biol 2000; 73:159-69. [PMID: 10925216 DOI: 10.1016/s0960-0760(00)00064-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Progesterone (P4) can be synthesized in both central and peripheral nervous system (PNS) and exerts trophic effects in the PNS. To study its potential effects in the spinal cord, we investigated P4 modulation (4 mg/kg/day for 3 days) of two proteins responding to injury: NADPH-diaphorase, an enzyme with nitric oxide synthase activity, and glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivity. The proteins were studied at three levels of the spinal cord from rats with total transection (TRX) at T10: above (T5 level), below (L1 level) and caudal to the lesion (L3 level). Equivalent regions were dissected in controls. The number and area of NADPH-diaphorase active or GFAP immunoreactive astrocytes/0.1 mm(2) in white matter (lateral funiculus) or gray matter (Lamina IX) was measured by computerized image analysis. In controls, P4 increased the number of GFAP-immunoreactive astrocytes in gray and white matter at all levels of the spinal cord, while astrocyte area also increased in white matter throughout and in gray matter at the T5 region. In control rats P4 did not change NADPH-diaphorase activity. In rats with TRX and not receiving hormone, a general up-regulation of the number and area of GFAP-positive astrocytes was found at all levels of the spinal cord. In rats with TRX, P4 did not change the already high GFAP-expression. In the TRX group, instead, P4 increased the number and area of NADPH-diaphorase active astrocytes in white and gray matter immediately above and below, but not caudal to the lesion. Thus, the response of the two proteins to P4 was conditioned by environmental factors, in that NADPH-diaphorase activity was hormonally modulated in astrocytes reacting to trauma, whereas up-regulation of GFAP by P4 was produced in resting astrocytes from non-injured animals.
Collapse
Affiliation(s)
- F Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
15
|
González Deniselle MC, Grillo CA, González S, Roig P, De Nicola AF. Evidence for down-regulation of GAP-43 mRNA in Wobbler mouse spinal motoneurons by corticosterone and a 21-aminosteroid. Brain Res 1999; 841:78-84. [PMID: 10546990 DOI: 10.1016/s0006-8993(99)01783-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Expression of the growth-associated protein GAP-43 is increased in the spinal cord of ALS patients and Wobbler (wr) mice, murine models of the disease. In this work we examined if expression of GAP-43 mRNA in control and wr mice was sensitive to steroid treatment. A group of control and wr mice received s.c. a 50 mg pellet of the natural hormone corticosterone (CORT) or the antioxidant 21-aminosteroid U-74389F during 4 days. Basal levels of GAP-43 mRNA were 10-fold elevated in ventral horn motoneurons of untreated wr mice, compared to the low levels in controls. The high expression of GAP-43 mRNA in wr was attenuated by treatment with CORT (41%, p < 0.001) and U-74389F (36%, p < 0.001). Although specific GAP-43 mRNA labelling was present in some neurons around the central canal, its cellular expression was similar in controls and wr. Also, steroid treatment was ineffective in neurons around the central canal. Other regions of the spinal cord (i.e., dorsal horn neurons) expressed GAP-43 mRNA slightly above background levels. It is possible that attenuation of GAP-43 expression due to the natural hormone and the antioxidant steroid resulted from reversal of motoneuron degeneration or aberrant sprouting. Therefore, steroid therapy may be of value to prevent denervation and/or muscular atrophy in this animal model.
Collapse
|