1
|
Rahman AA, Ohkura T, Bhave S, Pan W, Ohishi K, Ott L, Han C, Leavitt A, Stavely R, Burns AJ, Goldstein AM, Hotta R. Enteric neural stem cell transplant restores gut motility in mice with Hirschsprung disease. JCI Insight 2024; 9:e179755. [PMID: 39042470 PMCID: PMC11385093 DOI: 10.1172/jci.insight.179755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
The goal of this study was to determine if transplantation of enteric neural stem cells (ENSCs) can rescue the enteric nervous system, restore gut motility, reduce colonic inflammation, and improve survival in the Ednrb-KO mouse model of Hirschsprung disease (HSCR). ENSCs were isolated from mouse intestine, expanded to form neurospheres, and microinjected into the colons of recipient Ednrb-KO mice. Transplanted ENSCs were identified in recipient colons as cell clusters in "neo-ganglia." Immunohistochemical evaluation demonstrated extensive cell migration away from the sites of cell delivery and across the muscle layers. Electrical field stimulation and optogenetics showed significantly enhanced contractile activity of aganglionic colonic smooth muscle following ENSC transplantation and confirmed functional neuromuscular integration of the transplanted ENSC-derived neurons. ENSC injection also partially restored the colonic migrating motor complex. Histological examination revealed a significant reduction in inflammation in ENSC-transplanted aganglionic recipient colon compared with that of sham-operated mice. Interestingly, mice that received cell transplant also had prolonged survival compared with controls. This study demonstrates that ENSC transplantation can improve outcomes in HSCR by restoring gut motility and reducing the severity of Hirschsprung-associated enterocolitis, the leading cause of death in human HSCR.
Collapse
Affiliation(s)
- Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kensuke Ohishi
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Hiroshima, Japan
| | - Leah Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abigail Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan J Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Hotta R, Rahman A, Bhave S, Stavely R, Pan W, Srinivasan S, de Couto G, Rodriguez-Borlado L, Myers R, Burns AJ, Goldstein AM. Transplanted ENSCs form functional connections with intestinal smooth muscle and restore colonic motility in nNOS-deficient mice. Stem Cell Res Ther 2023; 14:232. [PMID: 37667277 PMCID: PMC10478362 DOI: 10.1186/s13287-023-03469-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Enteric neuropathies, which result from abnormalities of the enteric nervous system, are associated with significant morbidity and high health-care costs, but current treatments are unsatisfactory. Cell-based therapy offers an innovative approach to replace the absent or abnormal enteric neurons and thereby restore gut function. METHODS Enteric neuronal stem cells (ENSCs) were isolated from the gastrointestinal tract of Wnt1-Cre;R26tdTomato mice and generated neurospheres (NS). NS transplants were performed via injection into the mid-colon mesenchyme of nNOS-/- mouse, a model of colonic dysmotility, using either 1 (n = 12) or 3 (n = 12) injections (30 NS per injection) targeted longitudinally 1-2 mm apart. Functional outcomes were assessed up to 6 weeks later using electromyography (EMG), electrical field stimulation (EFS), optogenetics, and by measuring colorectal motility. RESULTS Transplanted ENSCs formed nitrergic neurons in the nNOS-/- recipient colon. Multiple injections of ENSCs resulted in a significantly larger area of coverage compared to single injection alone and were associated with a marked improvement in colonic function, demonstrated by (1) increased colonic muscle activity by EMG recording, (2) faster rectal bead expulsion, and (3) increased fecal pellet output in vivo. Organ bath studies revealed direct neuromuscular communication by optogenetic stimulation of channelrhodopsin-expressing ENSCs and restoration of smooth muscle relaxation in response to EFS. CONCLUSIONS These results demonstrate that transplanted ENSCs can form effective neuromuscular connections and improve colonic motor function in a model of colonic dysmotility, and additionally reveal that multiple sites of cell delivery led to an improved response, paving the way for optimized clinical trial design.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ahmed Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Shriya Srinivasan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Geoffrey de Couto
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Luis Rodriguez-Borlado
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Richard Myers
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Alan J Burns
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Simankova A, Bizen N, Saitoh S, Shibata S, Ohno N, Abe M, Sakimura K, Takebayashi H. Ddx20, DEAD box helicase 20, is essential for the differentiation of oligodendrocyte and maintenance of myelin gene expression. Glia 2021; 69:2559-2574. [PMID: 34231259 DOI: 10.1002/glia.24058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Oligodendrocytes form myelin sheaths that surround axons, contributing to saltatory conduction and proper central nervous system (CNS) function. Oligodendrocyte progenitor cells (OPCs) are generated during the embryonic stage and differentiate into myelinating oligodendrocytes postnatally. Ddx20 is a multifunctional, DEAD-box helicase involved in multiple cellular processes, including transcription, splicing, microRNA biogenesis, and translation. Although defects in each of these processes result in abnormal oligodendrocyte differentiation and myelination, the involvement of Ddx20 in oligodendrocyte terminal differentiation remains unknown. To address this question, we used Mbp-Cre mice to generate Ddx20 conditional knockout (cKO) mice to allow for the deletion of Ddx20 from mature oligodendrocytes. Mbp-Cre;Ddx20 cKO mice demonstrated small body sizes, behavioral abnormalities, muscle weakness, and short lifespans, with mortality by the age of 2 months old. Histological analyses demonstrated significant reductions in the number of mature oligodendrocytes and drastic reductions in the expression levels of myelin-associated mRNAs, such as Mbp and Plp at postnatal day 42. The number of OPCs did not change. A thin myelin layer was observed for large-diameter axons in Ddx20 cKO mice, based on electron microscopic analysis. A bromodeoxyuridine (BrdU) labeling experiment demonstrated that terminal differentiation was perturbed from ages 2 weeks to 7 weeks in the CNS of Mbp-Cre;Ddx20 cKO mice. The activation of mitogen-activated protein (MAP) kinase, which promotes myelination, was downregulated in the Ddx20 cKO mice based on immunohistochemical detection. These results indicate that Ddx20 is an essential factor for terminal differentiation of oligodendrocytes and maintenance of myelin gene expression.
Collapse
Affiliation(s)
- Anna Simankova
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sei Saitoh
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Biomedical Molecular Sciences (Anatomy II), Fujita Health University School of Medicine, Toyoake, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Yang SW, Li L, Connelly JP, Porter SN, Kodali K, Gan H, Park JM, Tacer KF, Tillman H, Peng J, Pruett-Miller SM, Li W, Potts PR. A Cancer-Specific Ubiquitin Ligase Drives mRNA Alternative Polyadenylation by Ubiquitinating the mRNA 3' End Processing Complex. Mol Cell 2020; 77:1206-1221.e7. [PMID: 31980388 DOI: 10.1016/j.molcel.2019.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022]
Abstract
Alternative polyadenylation (APA) contributes to transcriptome complexity by generating mRNA isoforms with varying 3' UTR lengths. APA leading to 3' UTR shortening (3' US) is a common feature of most cancer cells; however, the molecular mechanisms are not understood. Here, we describe a widespread mechanism promoting 3' US in cancer through ubiquitination of the mRNA 3' end processing complex protein, PCF11, by the cancer-specific MAGE-A11-HUWE1 ubiquitin ligase. MAGE-A11 is normally expressed only in the male germline but is frequently re-activated in cancers. MAGE-A11 is necessary for cancer cell viability and is sufficient to drive tumorigenesis. Screening for targets of MAGE-A11 revealed that it ubiquitinates PCF11, resulting in loss of CFIm25 from the mRNA 3' end processing complex. This leads to APA of many transcripts affecting core oncogenic and tumor suppressors, including cyclin D2 and PTEN. These findings provide insights into the molecular mechanisms driving APA in cancer and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Seung Wook Yang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lei Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA; Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jon P Connelly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shaina N Porter
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kiran Kodali
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haiyun Gan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jung Mi Park
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Klementina Fon Tacer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather Tillman
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wei Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA; Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
5
|
Groh J, Friedman HC, Orel N, Ip CW, Fischer S, Spahn I, Schäffner E, Hörner M, Stadler D, Buttmann M, Varallyay C, Solymosi L, Sendtner M, Peterson AC, Martini R. Pathogenic inflammation in the CNS of mice carrying human PLP1 mutations. Hum Mol Genet 2018; 25:4686-4702. [PMID: 28173160 DOI: 10.1093/hmg/ddw296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/12/2016] [Accepted: 08/21/2016] [Indexed: 01/03/2023] Open
Abstract
Progressive forms of multiple sclerosis lead to chronic disability, substantial decline in quality of life and reduced longevity. It is often suggested that they occur independently of inflammation. Here we investigated the disease progression in mouse models carrying PLP1 point mutations previously found in patients displaying clinical features of multiple sclerosis. These mouse models show loss-of-function of PLP1 associated with neuroinflammation; the latter leading to clinically relevant axonal degeneration, neuronal loss and brain atrophy as demonstrated by inactivation of the recombination activating gene 1. Moreover, these pathological hallmarks were substantially amplified when we attenuated immune regulation by inactivation of the programmed cell death-1 gene. Our observations support the view that primary oligodendroglial abnormalities can evoke pathogenically relevant neuroinflammation that drives neurodegeneration, as observed in some forms of multiple sclerosis but also in other, genetically-mediated neurodegenerative disorders of the human nervous system. As many potent immunomodulatory drugs have emerged during the last years, it is tempting to consider immunomodulation as a treatment option not only for multiple sclerosis, but also for so far non-treatable, genetically-mediated disorders of the nervous system accompanied by pathogenic neuroinflammation.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Hana C Friedman
- Laboratory of Developmental Biology, Ludmer Research and Training Building, McGill University, Montreal, QC, Canada
| | - Nadiya Orel
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Stefan Fischer
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Irene Spahn
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Erik Schäffner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - David Stadler
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, Multiple Sclerosis and Neuroimmunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Csanad Varallyay
- Division of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - László Solymosi
- Division of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Alan C Peterson
- Laboratory of Developmental Biology, Ludmer Research and Training Building, McGill University, Montreal, QC, Canada
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| |
Collapse
|
6
|
Belkind-Gerson J, Graham HK, Reynolds J, Hotta R, Nagy N, Cheng L, Kamionek M, Shi HN, Aherne CM, Goldstein AM. Colitis promotes neuronal differentiation of Sox2+ and PLP1+ enteric cells. Sci Rep 2017; 7:2525. [PMID: 28566702 PMCID: PMC5451421 DOI: 10.1038/s41598-017-02890-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Mechanisms mediating adult enteric neurogenesis are largely unknown. Using inflammation-associated neurogenesis models and a transgenic approach, we aimed to understand the cell-source for new neurons in infectious and inflammatory colitis. Dextran sodium sulfate (DSS) and Citrobacter rodentium colitis (CC) was induced in adult mice and colonic neurons were quantified. Sox2GFP and PLP1GFP mice confirmed the cell-type specificity of these markers. Sox2CreER:YFP and PLP1creER:tdT mice were used to determine the fate of these cells after colitis. Sox2 expression was investigated in colonic neurons of human patients with Clostridium difficile or ulcerative colitis. Both DSS and CC led to increased colonic neurons. Following colitis in adult Sox2CreER:YFP mice, YFP initially expressed predominantly by glia becomes expressed by neurons following colitis, without observable DNA replication. Similarly in PLP1CreER:tdT mice, PLP1 cells that co-express S100b but not RET also give rise to neurons following colitis. In human colitis, Sox2-expressing neurons increase from 1–2% to an average 14% in colitis. The new neurons predominantly express calretinin, thus appear to be excitatory. These results suggest that colitis promotes rapid enteric neurogenesis in adult mice and humans through differentiation of Sox2- and PLP1-expressing cells, which represent enteric glia and/or neural progenitors. Further defining neurogenesis will improve understanding and treatment of injury-associated intestinal motility/sensory disorders.
Collapse
Affiliation(s)
- Jaime Belkind-Gerson
- Neurogastroenterology Program, Digestive Health Institute, Children's Hospital Colorado University of Colorado, Aurora, USA.
| | - Hannah K Graham
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Justin Reynolds
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryo Hotta
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lily Cheng
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michal Kamionek
- Pathology department, Carolinas Healthcare System, Charlotte, NC, USA
| | - Hai Ning Shi
- Neurogastroenterology Program, Digestive Health Institute, Children's Hospital Colorado University of Colorado, Aurora, USA
| | - Carol M Aherne
- Department of Anesthesiology, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, USA
| | - Allan M Goldstein
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Kocabas A, Duarte T, Kumar S, Hynes MA. Widespread Differential Expression of Coding Region and 3' UTR Sequences in Neurons and Other Tissues. Neuron 2016; 88:1149-1156. [PMID: 26687222 DOI: 10.1016/j.neuron.2015.10.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/10/2015] [Accepted: 10/26/2015] [Indexed: 11/25/2022]
Abstract
Mature messenger RNAs (mRNAs) consist of coding sequence (CDS) and 5' and 3' UTRs, typically expected to show similar abundance within a given neuron. Examining mRNA from defined neurons, we unexpectedly show extremely common unbalanced expression of cognate 3' UTR and CDS sequences; many genes show high 3' UTR relative to CDS, others show high CDS to 3' UTR. In situ hybridization (19 of 19 genes) shows a broad range of 3' UTR-to-CDS expression ratios across neurons and tissues. Ratios may be spatially graded or change with developmental age but are consistent across animals. Further, for two genes examined, a 3' UTR-to-CDS ratio above a particular threshold in any given neuron correlated with reduced or undetectable protein expression. Our findings raise questions about the role of isolated 3' UTR sequences in regulation of protein expression and highlight the importance of separately examining 3' UTR and CDS sequences in gene expression analyses.
Collapse
Affiliation(s)
- Arif Kocabas
- Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Terence Duarte
- Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Saranya Kumar
- Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mary A Hynes
- Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
8
|
Osaka H, Inoue K. Pathophysiology and emerging therapeutic strategies in Pelizaeus–Merzbacher disease. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1106315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Espinosa-Jeffrey A, Paez PM, Cheli VT, Spreuer V, Wanner I, de Vellis J. Impact of simulated microgravity on oligodendrocyte development: implications for central nervous system repair. PLoS One 2013; 8:e76963. [PMID: 24324574 PMCID: PMC3850904 DOI: 10.1371/journal.pone.0076963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/28/2013] [Indexed: 01/11/2023] Open
Abstract
We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies.
Collapse
Affiliation(s)
- Araceli Espinosa-Jeffrey
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Intellectual and Developmental Disabilities Research Center, Los Angeles, California, United States of America
- * E-mail:
| | - Pablo M. Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY at Buffalo, NYS Center of Excellence, Buffalo, New York, United States of America
| | - Veronica T. Cheli
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY at Buffalo, NYS Center of Excellence, Buffalo, New York, United States of America
| | - Vilma Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY at Buffalo, NYS Center of Excellence, Buffalo, New York, United States of America
| | - Ina Wanner
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Intellectual and Developmental Disabilities Research Center, Los Angeles, California, United States of America
| | - Jean de Vellis
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Intellectual and Developmental Disabilities Research Center, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Kumar S, Patel R, Moore S, Crawford DK, Suwanna N, Mangiardi M, Tiwari-Woodruff SK. Estrogen receptor β ligand therapy activates PI3K/Akt/mTOR signaling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. Neurobiol Dis 2013; 56:131-44. [PMID: 23603111 DOI: 10.1016/j.nbd.2013.04.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022] Open
Abstract
The identification of a drug that stimulates endogenous myelination and spares axon degeneration during multiple sclerosis (MS) could potentially reduce the rate of disease progression. Using experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, we have previously shown that prophylactic administration of the estrogen receptor (ER) β ligand 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) decreases clinical disease, is neuroprotective, stimulates endogenous myelination, and improves axon conduction without altering peripheral cytokine production or reducing central nervous system (CNS) inflammation. Here, we assessed the effects of therapeutic DPN treatment during peak EAE disease, which represents a more clinically relevant treatment paradigm. In addition, we investigated the mechanism of action of DPN treatment-induced recovery during EAE. Given that prophylactic and therapeutic treatments with DPN during EAE improved remyelination-induced axon conduction, and that ER (α and β) and membrane (m)ERs are present on oligodendrocyte lineage cells, a direct effect of treatment on oligodendrocytes is likely. DPN treatment of EAE animals resulted in phosphorylated ERβ and activated the phosphatidylinositol 3-kinase (PI3K)/serine-threonine-specific protein kinase (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, a pathway required for oligodendrocyte survival and axon myelination. These results, along with our previous studies of prophylactic DPN treatment, make DPN and similar ERβ ligands immediate and favorable therapeutic candidates for demyelinating disease.
Collapse
Affiliation(s)
- Shalini Kumar
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Patel R, Moore S, Crawford DK, Hannsun G, Sasidhar MV, Tan K, Molaie D, Tiwari-Woodruff SK. Attenuation of corpus callosum axon myelination and remyelination in the absence of circulating sex hormones. Brain Pathol 2013; 23:462-75. [PMID: 23311751 DOI: 10.1111/bpa.12029] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 01/02/2013] [Indexed: 01/01/2023] Open
Abstract
Sex differences in the structure and organization of the corpus callosum (CC) can be attributed to genetic, hormonal or environmental effects, or a combination of these factors. To address the role of gonadal hormones on axon myelination, functional axon conduction and immunohistochemistry analysis of the CC in intact, gonadectomized and hormone-replaced gonadectomized animals were used. These groups were subjected to cuprizone diet-induced demyelination followed by remyelination. The myelinated component of callosal compound action potential was significantly decreased in ovariectomized and castrated animals under normal myelinating condition. Compared to gonadally intact cohorts, both gonadectomized groups displayed more severe demyelination and inhibited remyelination. Castration in males was more deleterious than ovariectomy in females. Callosal conduction in estradiol-supplemented ovariectomized females was significantly increased during normal myelination, less attenuated during demyelination, and increased beyond placebo-treated ovariectomized or intact female levels during remyelination. In castrated males, the non-aromatizing steroid dihydrotestosterone was less efficient than testosterone and estradiol in restoring normal myelination/axon conduction and remyelination to levels of intact males. Furthermore, in both sexes, estradiol supplementation in gonadectomized groups increased the number of oligodendrocytes. These studies suggest an essential role of estradiol to promote efficient CC myelination and axon conduction in both sexes.
Collapse
Affiliation(s)
- Rhusheet Patel
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, CA 90095-1769, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang E, Cambi F. MicroRNA expression in mouse oligodendrocytes and regulation of proteolipid protein gene expression. J Neurosci Res 2012; 90:1701-12. [PMID: 22504928 DOI: 10.1002/jnr.23055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/19/2012] [Accepted: 02/20/2012] [Indexed: 12/22/2022]
Abstract
Overexpression of the major myelin proteolipid protein (PLP) is detrimental to brain development and function and is the most common cause of Pelizaeus-Merzbacher disease. microRNA (miRNA), small, noncoding RNAs, have been shown to play critical roles in oligodendrocyte lineage. In this study, we sought to investigate whether miRNAs control PLP abundance. To identify candidate miRNAs involved in this regulation, we have examined differentiation-induced changes in the expression of miRNAs in the oligodendroglial cell line Oli-neu and in enhanced green fluorescent protein positive oligodendrocytes ex vivo. We have identified 145 miRNAs that are expressed in oligodendrocyte cell lineage progression. Dicer1 expression decreases in differentiated oligodendrocytes, and knock down of Dicer1 results in changes in miRNAs similar to those associated with differentiation. To identify miRNAs that control the PLP expression, we have selected miRNAs whose expression is lower in differentiated vs. undifferentiated Oli-neu cells and that have one or more binding site(s) in the PLP 3'-untranslated region (3'UTR). The PLP 3'UTR fused to the luciferase gene reduces the activity of the reporter, suggesting that it negatively regulates message stability or translation. Such suppression is relieved by knock down of miR-20a. Overexpression of miR-20a decreases expression of the endogenous PLP in primary oligodendrocytes and of the reporter gene. Deletion or mutation of the putative binding site for miR-20a in the PLP 3'UTR abrogated such effects. Our data indicate that miRNA expression is regulated by Dicer1 levels in differentiated oligodendrocytes and that miR-20a, a component of the cluster that controls oligodendrocyte cell number, regulates PLP gene expression through its 3'UTR.
Collapse
Affiliation(s)
- Erming Wang
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA.
| | | |
Collapse
|
13
|
Bolognani F, Gallani AI, Sokol L, Baskin DS, Meisner-Kober N. mRNA stability alterations mediated by HuR are necessary to sustain the fast growth of glioma cells. J Neurooncol 2011; 106:531-42. [PMID: 21935689 DOI: 10.1007/s11060-011-0707-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
Regulation of mRNA decay is an important mechanism controlling gene expression. Steady state levels of mRNAs can be markedly altered by changes in the decay rate. The control of mRNA stability depends on sequences in the transcript itself and on RNA-binding proteins that dynamically bind to these sequences. A well characterized sequence motif, which has been shown to be present in many short-lived mRNAs, is the de-stabilizing adenylate/uridylate-rich element (ARE) located at the 3' untranslated region (3'UTR) of mRNAs. HuR is an RNA-binding protein, which binds to AREs and in doing so, increases the half-life and steady state levels of the corresponding mRNA. Using tissue microarray technology, we found that HuR is over-expressed in human gliomas. We also found that there is a change in HuR localization from being solely in the nucleus to being expressed at high levels in the cytosol. Moreover, a positive correlation was found between total HuR levels, cytosolic localization and tumor grade. We also studied the decay rate of several HuR target mRNAs and found that these mRNAs have a slower rate of decay in glioma cell lines than in astrocytes. Finally, we have been able to decrease both the stability and steady state level of these transcripts in glioma cells using an RNA decoy. More importantly, the decoy transfected cells and cells exposed to a HuR inhibitor have reduced cell growth. In addition, pharmacological inhibition of HuR also resulted in glioma cell growth inhibition. In conclusion, our data suggest that post-transcriptional control abnormalities mediated by HuR are necessary to sustain the rapid growth of this devastating type of cancer.
Collapse
Affiliation(s)
- Federico Bolognani
- Department of Neurosurgery, The Methodist Hospital and The Methodist Hospital Research Institute, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
14
|
Ziehn MO, Avedisian AA, Tiwari-Woodruff S, Voskuhl RR. Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. J Transl Med 2010; 90:774-86. [PMID: 20157291 PMCID: PMC3033772 DOI: 10.1038/labinvest.2010.6] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Over half of multiple sclerosis (MS) patients experience cognitive deficits, including learning and memory dysfunction, and the mechanisms underlying these deficits remain poorly understood. Neuronal injury and synaptic loss have been shown to occur within the hippocampus in other neurodegenerative disease models, and these pathologies have been correlated with cognitive impairment. Whether hippocampal abnormalities occur in MS models is unknown. Using experimental autoimmune encephalomyelitis (EAE), we evaluated hippocampal neurodegeneration and inflammation during disease. Hippocampal pathology began early in EAE disease course, and included decreases in CA1 pyramidal layer volume, loss of inhibitory interneurons and increased cell death of neurons and glia. It is interesting to note that these effects occurred in the presence of chronic microglial activation, with a relative paucity of infiltrating blood-borne immune cells. Widespread diffuse demyelination occurred in the hippocampus, but there was no significant decrease in axonal density. Furthermore, there was a significant reduction in pre-synaptic puncta and synaptic protein expression within the hippocampus, as well as impaired performance on a hippocampal-dependent spatial learning task. Our results demonstrate that neurodegenerative changes occur in the hippocampus during autoimmune-mediated demyelinating disease. This work establishes a preclinical model for assessing treatments targeted toward preventing hippocampal neuropathology and dysfunction in MS.
Collapse
Affiliation(s)
- Marina O Ziehn
- Interdepartmental Program of Neuroscience, University of California, Los Angeles, CA, USA,Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Andrea A Avedisian
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Seema Tiwari-Woodruff
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Rhonda R Voskuhl
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Miller MJ, Kangas CD, Macklin WB. Neuronal expression of the proteolipid protein gene in the medulla of the mouse. J Neurosci Res 2010; 87:2842-53. [PMID: 19479988 DOI: 10.1002/jnr.22121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proteolipid protein (PLP) gene (Plp) encodes the major myelin proteins, PLP and DM20. Expression of Plp occurs predominantly in oligodendrocytes, but evidence is accumulating that this gene is also expressed in neurons. In earlier studies, we demonstrated that myelin-deficient (MD) rats, which carry a mutation in the Plp gene, exhibit lethal hypoxic ventilatory depression. Furthermore, we found that, in the MD rat, PLP accumulated in neuronal cell bodies in the medulla oblongata. In the current study, we sought to determine which neurons expressed the Plp gene in the medulla oblongata and whether Plp gene expression changed in neurons with maturation. A transgenic mouse expressing the Plp promoter driving expression of enhanced green fluorescent protein (Plp-EGFP) was used to identify neurons expressing this gene. Plp expression in neurons was confirmed by immunostaining EGFP-positive cells for NeuN and by in situ hybridization for PLP mRNA. The numbers of neurons expressing Plp-EGFP and their distribution increased between P5 and P10 in the medulla. Immunostaining for surface receptors and classes of neurons expressing Plp-EGFP revealed that Plp gene expression in brainstem neurons was restricted to neurons expressing specific ligand-gated channels and biosynthetic enzymes, including glutamatergic NMDA receptors, GABA(A) receptors, and ChAT in defined areas of the medulla. Plp gene expression was rarely found in interneurons expressing GABA and was never found in AMPA receptor- or tyrosine hydroxylase-expressing neurons. Thus, Plp expression in the mouse caudal medulla was found to be developmentally regulated and restricted to specific groups of neurons.
Collapse
Affiliation(s)
- Martha J Miller
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
16
|
Wight PA, Duchala CS, Shick HE, Gudz TI, Macklin WB. Expression of a myelin proteolipid protein (Plp)-lacZ transgene is reduced in both the CNS and PNS of Plp(jp) mice. Neurochem Res 2006; 32:343-51. [PMID: 17191136 PMCID: PMC1976413 DOI: 10.1007/s11064-006-9202-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 10/11/2006] [Indexed: 12/19/2022]
Abstract
Jimpy (Plp(jp)) is an X-linked recessive mutation in mice that causes CNS dysmyelination and early death in affected males. It results from a point mutation in the acceptor splice site of myelin proteolipid protein (Plp) exon 5, producing transcripts that are missing exon 5, with a concomitant shift in the downstream reading frame. Expression of the mutant PLP product in Plp(jp) males leads to hypomyelination and oligodendrocyte death. Expression of our Plp-lacZ fusion gene, PLP(+)Z, in transgenic mice is an excellent readout for endogenous Plp transcriptional activity. The current studies assess expression of the PLP(+)Z transgene in the Plp(jp) background. These studies demonstrate that expression of the transgene is decreased in both the central and peripheral nervous systems of affected Plp(jp) males. Thus, expression of mutated PLP protein downregulates Plp gene activity both in oligodendrocytes, which eventually die, and in Schwann cells, which are apparently unaffected in Plp(jp) mice.
Collapse
Affiliation(s)
- Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | | | | | | |
Collapse
|
17
|
Gao L, Macklin W, Gerson J, Miller RH. Intrinsic and extrinsic inhibition of oligodendrocyte development by rat retina. Dev Biol 2006; 290:277-86. [PMID: 16388796 DOI: 10.1016/j.ydbio.2005.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 11/02/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
Cell patterning in the vertebrate CNS reflects the combination of localized cell induction, migration and differentiation. A striking example of patterning is the myelination of visual system. In many species, retinal ganglion cell axons are myelinated in the optic nerve but are unmyelinated in the retina. Here, we confirm that rat and mouse retina lack oligodendrocytes and their precursors and identify multiple mechanisms that might contribute to their absence. Soluble cues from embryonic retina inhibit the induction of oligodendrocytes from neural stem cells and their differentiation from optic nerve precursors. This inhibition is mediated by retinal-derived BMPs. During development BMPs are expressed in the retina and addition of the BMP antagonist Noggin reversed retinal inhibition of oligodendrocyte development. The lack of retinal oligodendrocytes does not simply reflect expression of BMPs, since no oligodendrocytes or their precursors developed when embryonic retinal cells were grown in the presence of Noggin and/or inductive cues such as Shh and IGF-1. Similarly, injection of Noggin into the postnatal rat eye failed to induce oligodendrocyte differentiation. These data combined with the proposed inhibition of OPC migration by molecules selectively expressed at the nerve retina junction suggest that multiple mechanisms combine to suppress retinal myelination during development.
Collapse
Affiliation(s)
- Limin Gao
- Department of Neurosciences, Case School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|