1
|
Wang Y, Demirer GS. Synthetic biology for plant genetic engineering and molecular farming. Trends Biotechnol 2023; 41:1182-1198. [PMID: 37012119 DOI: 10.1016/j.tibtech.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Many efforts have been put into engineering plants to improve crop yields and stress tolerance and boost the bioproduction of valuable molecules. Yet, our capabilities are still limited due to the lack of well-characterized genetic building blocks and resources for precise manipulation and given the inherently challenging properties of plant tissues. Advancements in plant synthetic biology can overcome these bottlenecks and release the full potential of engineered plants. In this review, we first discuss the recently developed plant synthetic elements from single parts to advanced circuits, software, and hardware tools expediting the engineering cycle. Next, we survey the advancements in plant biotechnology enabled by these recent resources. We conclude the review with outstanding challenges and future directions of plant synthetic biology.
Collapse
Affiliation(s)
- Yunqing Wang
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gozde S Demirer
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Dawe RK, Gent JI, Zeng Y, Zhang H, Fu FF, Swentowsky KW, Kim DW, Wang N, Liu J, Piri RD. Synthetic maize centromeres transmit chromosomes across generations. NATURE PLANTS 2023; 9:433-441. [PMID: 36928774 DOI: 10.1038/s41477-023-01370-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/10/2023] [Indexed: 05/18/2023]
Abstract
Centromeres are long, often repetitive regions of genomes that bind kinetochore proteins and ensure normal chromosome segregation. Engineering centromeres that function in vivo has proven to be difficult. Here we describe a tethering approach that activates functional maize centromeres at synthetic sequence arrays. A LexA-CENH3 fusion protein was used to recruit native Centromeric Histone H3 (CENH3) to long arrays of LexO repeats on a chromosome arm. Newly recruited CENH3 was sufficient to organize functional kinetochores that caused chromosome breakage, releasing chromosome fragments that were passed through meiosis and into progeny. Several fragments formed independent neochromosomes with centromeres localized over the LexO repeat arrays. The new centromeres were self-sustaining and transmitted neochromosomes to subsequent generations in the absence of the LexA-CENH3 activator. Our results demonstrate the feasibility of using synthetic centromeres for karyotype engineering applications.
Collapse
Affiliation(s)
- R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA, USA.
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Yibing Zeng
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Han Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Fang-Fang Fu
- Department of Plant Biology, University of Georgia, Athens, GA, USA
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | | | - Dong Won Kim
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Na Wang
- Department of Plant Biology, University of Georgia, Athens, GA, USA
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jianing Liu
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Rebecca D Piri
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research. Int J Mol Sci 2022; 23:ijms23031737. [PMID: 35163658 PMCID: PMC8835832 DOI: 10.3390/ijms23031737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
Collapse
|
4
|
Samalova M, Moore I. The steroid-inducible pOp6/LhGR gene expression system is fast, sensitive and does not cause plant growth defects in rice (Oryza sativa). BMC PLANT BIOLOGY 2021; 21:461. [PMID: 34627147 PMCID: PMC8501728 DOI: 10.1186/s12870-021-03241-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Inducible systems for transgene expression activated by a chemical inducer or an inducer of non-plant origin are desirable tools for both basic plant research and biotechnology. Although, the technology has been widely exploited in dicotyledonous model plants such as Arabidopsis, it has not been optimised for use with the monocotyledonous model species, namely rice. We have adapted the dexamethasone-inducible pOp6/LhGR system for rice and the results indicated that it is fast, sensitive and tightly regulated, with high levels of induction that remain stable over several generations. Most importantly, we have shown that the system does not cause negative growth defects in vitro or in soil grown plants. Interestingly in the process of testing, we found that another steroid, triamcinolone acetonide, is a more potent inducer in rice than dexamethasone. We present serious considerations for the construct design to avoid undesirable effects caused by the system in plants, leakiness and possible silencing, as well as simple steps to maximize translation efficiency of a gene of interest. Finally, we compare the performance of the pOp6/LhGR system with other chemically inducible systems tested in rice in terms of the properties of an ideal inducible system.
Collapse
Affiliation(s)
- Marketa Samalova
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.
| | - Ian Moore
- Department of Plant Sciences, Oxford University, Oxford, UK
| |
Collapse
|
5
|
Bernabé-Orts JM, Quijano-Rubio A, Vazquez-Vilar M, Mancheño-Bonillo J, Moles-Casas V, Selma S, Gianoglio S, Granell A, Orzaez D. A memory switch for plant synthetic biology based on the phage ϕC31 integration system. Nucleic Acids Res 2020; 48:3379-3394. [PMID: 32083668 PMCID: PMC7102980 DOI: 10.1093/nar/gkaa104] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic biology has advanced from the setup of basic genetic devices to the design of increasingly complex gene circuits to provide organisms with new functions. While many bacterial, fungal and mammalian unicellular chassis have been extensively engineered, this progress has been delayed in plants due to the lack of reliable DNA parts and devices that enable precise control over these new synthetic functions. In particular, memory switches based on DNA site-specific recombination have been the tool of choice to build long-term and stable synthetic memory in other organisms, because they enable a shift between two alternative states registering the information at the DNA level. Here we report a memory switch for whole plants based on the bacteriophage ϕC31 site-specific integrase. The switch was built as a modular device made of standard DNA parts, designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally operated by action of the ϕC31 integrase (Int), and its recombination directionality factor (RDF). The kinetics, memory, and reversibility of the switch were extensively characterized in Nicotiana benthamiana plants.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Alfredo Quijano-Rubio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Mancheño-Bonillo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Victor Moles-Casas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Selma
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Gianoglio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
6
|
Kassaw TK, Donayre-Torres AJ, Antunes MS, Morey KJ, Medford JI. Engineering synthetic regulatory circuits in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:13-22. [PMID: 29907304 DOI: 10.1016/j.plantsci.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 05/21/2023]
Abstract
Plant synthetic biology is a rapidly emerging field that aims to engineer genetic circuits to function in plants with the same reliability and precision as electronic circuits. These circuits can be used to program predictable plant behavior, producing novel traits to improve crop plant productivity, enable biosensors, and serve as platforms to synthesize chemicals and complex biomolecules. Herein we introduce the importance of developing orthogonal plant parts and the need for quantitative part characterization for mathematical modeling of complex circuits. In particular, transfer functions are important when designing electronic-like genetic controls such as toggle switches, positive/negative feedback loops, and Boolean logic gates. We then discuss potential constraints and challenges in synthetic regulatory circuit design and integration when using plants. Finally, we highlight current and potential plant synthetic regulatory circuit applications.
Collapse
Affiliation(s)
- Tessema K Kassaw
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Alberto J Donayre-Torres
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Mauricio S Antunes
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Kevin J Morey
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - June I Medford
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA.
| |
Collapse
|
7
|
Lee S, Won M, Hwang RH, Hur GM, Ro H. An Ecdysone Receptor-based Singular Gene Switch for Deliberate Expression of Transgene with Robustness, Reversibility, and Negligible Leakiness. J Vis Exp 2018. [PMID: 29781995 DOI: 10.3791/57494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Precise control of transgene expression is desirable in biological and clinical studies. However, because the binary feature of currently employed gene switches requires the transfer of two therapeutic expression units concurrently into a single cell, the practical application of the system for gene therapy is limited. To simplify the transgene expression system, we generated a gene switch designated as pEUI(+) encompassing a complete set of transgene expression modules in a single vector. Comprising of the GAL4 DNA-binding domain and modified EcR (GvEcR), a minimal VP16 activation domain fused with a GAL4 DNA-binding domain, as well as a modified Drosophila ecdysone receptor (EcR), the newly developed singular gene switch is highly responsive to the administration of a chemical inducer in a time- and dosage-dependent manner. The pEUI(+) vector is a potentially powerful tool for improving the control of transgene expression in both biological research and pre-clinical studies. Here, we present a detailed protocol for modulation of a transient and stable transgene expression using pEUI(+) vector by the treatment of tebufenozide (Teb). Additionally, we share important guidelines for the use of Teb as a chemical inducer.
Collapse
Affiliation(s)
- Seoghyun Lee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University
| | - Minho Won
- Department of Pharmacology, College of Medicine, Chungnam National University
| | | | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University;
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University;
| |
Collapse
|
8
|
Abstract
Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits.
Collapse
Affiliation(s)
- Christian R Boehm
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Bernardo Pollak
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
9
|
Giritch A, Klimyuk V, Gleba Y. 125 years of virology and ascent of biotechnologies based on viral expressio. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717020037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Lee S, Sohn KC, Choi DK, Won M, Park KA, Ju SK, Kang K, Bae YK, Hur GM, Ro H. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e367. [PMID: 27673563 PMCID: PMC5056996 DOI: 10.1038/mtna.2016.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/25/2016] [Indexed: 11/09/2022]
Abstract
Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet)-regulated system. Exploiting a Drosophila ecdysone receptor (EcR)-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+) and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site). Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion.
Collapse
Affiliation(s)
- Seoghyun Lee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dae-Kyoung Choi
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Minho Won
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyeong Ah Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung-Kyu Ju
- Affiliated Research (and Development) Institute, Daejeon, Republic of Korea
| | - Kidong Kang
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Ki Bae
- Comparative Biomedical Research Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Updates in inducible transgene expression using viral vectors: from transient to stable expression. Curr Opin Biotechnol 2014; 32:85-92. [PMID: 25437638 DOI: 10.1016/j.copbio.2014.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 01/19/2023]
Abstract
The prospect of economically producing useful biologics in plants has greatly increased with the advent of viral vectors. The ability of viral vectors to amplify transgene expression has seen them develop into robust transient platforms for the high-level, rapid production of recombinant proteins. To adapt these systems to stably transformed plants, new ways of deconstructing the virus machinery and linking its expression and replication to chemically controlled promoters have been developed. The more advanced of these stable, inducible hyper-expression vectors provide both activated and amplified heterologous transgene expression. Such systems could be deployed in broad acre crops and provide a pathway to fully exploit the advantages of plants as a platform for the manufacture of a wide spectrum of products.
Collapse
|
12
|
Müller K, Siegel D, Rodriguez Jahnke F, Gerrer K, Wend S, Decker EL, Reski R, Weber W, Zurbriggen MD. A red light-controlled synthetic gene expression switch for plant systems. MOLECULAR BIOSYSTEMS 2014; 10:1679-88. [PMID: 24469598 DOI: 10.1039/c3mb70579j] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
On command control of gene expression in time and space is required for the comprehensive analysis of key plant cellular processes. Even though some chemical inducible systems showing satisfactory induction features have been developed, they are inherently limited in terms of spatiotemporal resolution and may be associated with toxic effects. We describe here the first synthetic light-inducible system for the targeted control of gene expression in plants. For this purpose, we applied an interdisciplinary synthetic biology approach comprising mammalian and plant cell systems to customize and optimize a split transcription factor based on the plant photoreceptor phytochrome B and one of its interacting factors (PIF6). Implementation of the system in transient assays in tobacco protoplasts resulted in strong (95-fold) induction in red light (660 nm) and could be instantaneously returned to the OFF state by subsequent illumination with far-red light (740 nm). Capitalizing on this toggle switch-like characteristic, we demonstrate that the system can be kept in the OFF state in the presence of 740 nm-supplemented white light, opening up perspectives for future application of the system in whole plants. Finally we demonstrate the system's applicability in basic research, by the light-controlled tuning of auxin signalling networks in N. tabacum protoplasts, as well as its biotechnological potential for the chemical-inducer free production of therapeutic proteins in the moss P. patens.
Collapse
Affiliation(s)
- Konrad Müller
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Faden F, Mielke S, Lange D, Dissmeyer N. Generic tools for conditionally altering protein abundance and phenotypes on demand. Biol Chem 2014; 395:737-62. [DOI: 10.1515/hsz-2014-0160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/15/2014] [Indexed: 12/23/2022]
Abstract
Abstract
Conditional gene expression and modulating protein stability under physiological conditions are important tools in biomedical research. They led to a thorough understanding of the roles of many proteins in living organisms. Current protocols allow for manipulating levels of DNA, mRNA, and of functional proteins. Modulating concentrations of proteins of interest, their post-translational processing, and their targeted depletion or accumulation are based on a variety of underlying molecular modes of action. Several available tools allow a direct as well as rapid and reversible variation right on the spot, i.e., on the level of the active form of a gene product. The methods and protocols discussed here include inducible and tissue-specific promoter systems as well as portable degrons derived from instable donor sequences. These are either constitutively active or dormant so that they can be triggered by exogenous or developmental cues. Many of the described techniques here directly influencing the protein stability are established in yeast, cell culture and in vitro systems only, whereas the indirectly working promoter-based tools are also commonly used in higher eukaryotes. Our major goal is to link current concepts of conditionally modulating a protein of interest’s activity and/or abundance and approaches for generating cell and tissue types on demand in living, multicellular organisms with special emphasis on plants.
Collapse
|
14
|
Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:109-19. [PMID: 24467902 DOI: 10.1016/j.plantsci.2013.12.007] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 05/18/2023]
Abstract
Studies of promoters that largely regulate gene expression at the transcriptional level are crucial for improving our basic understanding of gene regulation and will expand the toolbox of available promoters for use in plant biotechnology. In this review, we present a comprehensive analysis of promoters and their underlying mechanisms in transcriptional regulation, including epigenetic marks and chromatin-based regulation. Large-scale prediction of promoter sequences and their contributing cis-acting elements has become routine due to recent advances in transcriptomic technologies and genome sequencing of several plants. However, predicted regulatory sequences may or may not be functional and demonstration of the contribution of the element to promoter activity is essential for confirmation of regulatory sequences. Synthetic promoters and introns provide useful approaches for functional validation of promoter sequences. The development and improvement of gene expression tools for rapid, efficient, predictable, and high-throughput analysis of promoter components will be critical for confirmation of the functional regulatory element sequences identified through transcriptomic and genomic analyses.
Collapse
Affiliation(s)
- Carlos M Hernandez-Garcia
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.
| |
Collapse
|
15
|
Ding BJ, Hofvander P, Wang HL, Durrett TP, Stymne S, Löfstedt C. A plant factory for moth pheromone production. Nat Commun 2014; 5:3353. [PMID: 24569486 PMCID: PMC3948062 DOI: 10.1038/ncomms4353] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/30/2014] [Indexed: 11/12/2022] Open
Abstract
Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| | - Per Hofvander
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, SE-23053 Alnarp, Sweden
| | - Hong-Lei Wang
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sten Stymne
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, SE-23053 Alnarp, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| |
Collapse
|
16
|
Skarjinskaia M, Ruby K, Araujo A, Taylor K, Gopalasamy-Raju V, Musiychuk K, Chichester JA, Palmer GA, de la Rosa P, Mett V, Ugulava N, Streatfield SJ, Yusibov V. Hairy Roots as a Vaccine Production and Delivery System. BIOTECHNOLOGY OF HAIRY ROOT SYSTEMS 2013; 134:115-34. [DOI: 10.1007/10_2013_184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Gleba YY, Tusé D, Giritch A. Plant viral vectors for delivery by Agrobacterium. Curr Top Microbiol Immunol 2013; 375:155-92. [PMID: 23949286 DOI: 10.1007/82_2013_352] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plant viral vectors delivered by Agrobacterium are the basis of several manufacturing processes that are currently in use for producing a wide range of proteins for multiple applications, including vaccine antigens, antibodies, protein nanoparticles such as virus-like particles (VLPs), and other protein and protein-RNA scaffolds. Viral vectors delivered by agrobacterial T-DNA transfer (magnifection) have also become important tools in research. In recent years, essential advances have been made both in the development of second-generation vectors designed using the 'deconstructed virus' approach, as well as in the development of upstream manufacturing processes that are robust and fully scalable. The strategy relies on Agrobacterium as a vector to deliver DNA copies of one or more viral RNA/DNA replicons; the bacteria are delivered into leaves by vacuum infiltration, and the viral machinery takes over from the point of T-DNA transfer to the plant cell nucleus, driving massive RNA and protein production and, if required, cell-to-cell spread of the replicons. Among the most often used viral backbones are those of the RNA viruses Tobacco mosaic virus (TMV), Potato virus X (PVX) and Cowpea mosaic virus (CPMV), and the DNA geminivirus Bean yellow dwarf virus. Prototypes of industrial processes that provide for high yield, rapid scale up and fast manufacturing cycles have been designed, and several GMP-compliant and GMP-certified manufacturing facilities are in place. These efforts have been successful as evidenced by the fact that several antibodies and vaccine antigens produced by magnifection are currently in clinical development.
Collapse
Affiliation(s)
- Yuri Y Gleba
- Nomad Bioscience GmbH, Weinbergweg 22, Halle (Saale), Germany,
| | | | | |
Collapse
|
18
|
Ben-Ari G. The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis. PLANT CELL REPORTS 2012; 31:1357-69. [PMID: 22660953 DOI: 10.1007/s00299-012-1292-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 05/08/2023]
Abstract
The phytohormone abscisic acid (ABA) affects a wide range of stages of plant development as well as the plant's response to biotic and abiotic stresses. Manipulation of ABA signaling in commercial crops holds promising potential for improving crop yields. Several decades of research have been invested in attempts to identify the first components of the ABA signaling cascade. It was only in 2009, that two independent groups identified the PYR/PYL/RCAR protein family as the plant ABA receptor. This finding was followed by a surge of studies on ABA signal transduction, many of them using Arabidopsis as their model. The ABA signaling cascade was found to consist of a double-negative regulatory mechanism assembled from three protein families. These include the ABA receptors, the PP2C family of inhibitors, and the kinase family, SnRK2. It was found that ABA-bound PYR/RCARs inhibit PP2C activity, and that PP2Cs inactivate SnRK2s. Researchers today are examining how the elucidation of the ABA signaling cascade in Arabidopsis can be applied to improvements in commercial agriculture. In this article, we have attempted to review recent studies which address this issue. In it, we discuss various approaches useful in identifying the genetic and protein components involved. Finally, we suggest possible commercial applications of genetic manipulation of ABA signaling to improve crop yields.
Collapse
Affiliation(s)
- Giora Ben-Ari
- Institute of Plant Sciences, The Volcani Center, ARO, Bet Dagan, Israel.
| |
Collapse
|
19
|
Abstract
Synthetic biology methods are routinely applied in the plant field as in other eukaryotic model systems. Several synthetic components have been developed in plants and an increasing number of studies report on the assembly into functional synthetic genetic circuits. This chapter gives an overview of the existing plant genetic networks and describes in detail the application of two systems for inducible gene expression. The ethanol-inducible system relies on the ethanol-responsive interaction of the AlcA transcriptional activator and the AlcR receptor resulting in the transcription of the gene of interest (GOI). In comparison, the translational fusion of GOI and the glucocorticoid receptor (GR) domain leads to the dexamethasone-dependent nuclear translocation of the GOI::GR protein. This chapter contains detailed protocols for the application of both systems in the model plants potato and Arabidopsis, respectively.
Collapse
Affiliation(s)
- Astrid Junker
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | |
Collapse
|
20
|
Yang J, Isabel Ordiz M, Jaworski JG, Beachy RN. Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1448-55. [PMID: 22078383 DOI: 10.1016/j.plaphy.2011.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 09/07/2011] [Indexed: 05/19/2023]
Abstract
Cuticular waxes are involved in the regulation of the exchange of gases and water in plants and can impact tolerance to drought. However, the molecular mechanisms of the relationship between wax accumulation and drought tolerance are largely unknown. We applied the methoxyfenozide gene switching system to regulate expression of the WIN1/SHN1 gene (WAX INDUCER 1/SHINE1; At1G15360), a transcriptional activator, to regulate production of cuticular waxes and cutin and followed changes of gene expression, metabolites, and drought tolerance. Treatment with the inducer resulted in expression of the target gene and specific downstream genes, and gradually increased cuticular waxes. Induction of cuticular wax conferred tolerance to drought and recovery from drought, and was correlated with reduced numbers of stomata. Quantitative RT-PCR assays using RNAs from transgenic plants revealed that when expression of the WIN1/SHN1 gene was induced there was increased expression of genes involved in wax development, and reduced expression of selected genes, including SPCH (At5g53210); MUTE (At3g06120); and FAMA (At3g241400); and YODA (At1g63700), each of which is involved in stomatal development. These studies suggest that drought tolerance caused by the induction of WIN1/SHIN gene may be due to reduced numbers of stomata as well as to cuticular wax accumulation.
Collapse
Affiliation(s)
- Jaemo Yang
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | | | | | | |
Collapse
|
21
|
A safe and effective plant gene switch system for tissue-specific induction of gene expression in Arabidopsis thaliana and Brassica juncea. Transgenic Res 2011; 21:879-83. [DOI: 10.1007/s11248-011-9572-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 10/12/2011] [Indexed: 12/30/2022]
|
22
|
Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. Proc Natl Acad Sci U S A 2011; 108:17225-9. [PMID: 21969557 DOI: 10.1073/pnas.1112151108] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.
Collapse
|
23
|
Yang J, Chen F, Yu O, Beachy RN. Controlled silencing of 4-coumarate:CoA ligase alters lignocellulose composition without affecting stem growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:103-109. [PMID: 21094613 DOI: 10.1016/j.plaphy.2010.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 05/30/2023]
Abstract
Many bioenergy feedstocks are not easily converted to fermentable substrates due to of high proportions of lignin, which impedes the degradation of cell wall polysaccharides to fermentable sugars. To reduce lignin levels during plant growth, we generated transgenic Arabidopsis plants that contain a gene that confers inducible silencing of both 4CL1 and 4CL2 genes; these genes play a compensatory role in normal development of Arabidopsis, including in mechanisms of stem growth. To alter lignocellulose composition at specific times in plant development, genes were silenced at bolting, immature stages (5-7 cm high), and intermediate stages (10-15 cm high). The stems of induced plants at all stages of development exhibited increased cellulose content and reduced amounts of total lignin when compared with non-induced stems. Furthermore, treating plants at advanced stages of development (the immature and intermediate stages) had little impact on plant growth and development while plants treated at the bolting stage exhibited modest abnormal development. Our results suggest that it is possible to alter lignocellulose composition in plants without negative effects on plant growth.
Collapse
Affiliation(s)
- Jaemo Yang
- Donald Danforth Plant Science Center, 975 N. Warson RD, St. Louis, MO 63132, USA.
| | | | | | | |
Collapse
|
24
|
Semenyuk EG, Schmidt MA, Beachy RN, Moravec T, Woodford-Thomas T. Adaptation of an ecdysone-based genetic switch for transgene expression in soybean seeds. Transgenic Res 2010; 19:987-99. [PMID: 20191320 DOI: 10.1007/s11248-010-9377-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
Abstract
Soybean was used as a model for studies of chemical induction of gene expression in seeds. A chimeric transcriptional activator, VGE, driven by the soybean seed glycinin G1 promoter, was used to induce the expression of an ER-targeted GFP(KDEL) reporter protein upon addition of the chemical ligand, methoxyfenozide. The chemical gene switch activated gene expression under in vitro conditions in somatic cotyledonary embryos and zygotic seed embryos cultured from transgenic soybean plants, as well as in seeds in planta under greenhouse conditions. The efficiency of induction of GFP expression under different growth conditions was strongly influenced by the developmental stage of the seed and availability of the inducer. The formation of ER-derived GFP-containing protein bodies in seed storage parenchyma cells was correlated with the level of induced expression.
Collapse
Affiliation(s)
- E G Semenyuk
- Donald Danforth Plant Science Center, 975 N. Warson Road, Saint Louis, MO 63132, USA.
| | | | | | | | | |
Collapse
|
25
|
Singh AK, Tavva VS, Collins GB, Palli SR. Improvement of ecdysone receptor gene switch for applications in plants: Locusta migratoria retinoid X receptor (LmRXR) mutagenesis and optimization of translation start site. FEBS J 2010; 277:4640-50. [PMID: 20929459 DOI: 10.1111/j.1742-4658.2010.07871.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene switches have potential applications for the regulation of transgene expression in plants and animals. Recently, we have developed a two-hybrid ecdysone receptor (EcR) gene switch using chimera 9 [CH9, a chimera between helices 1-8 of Homo sapiens retinoid X receptor (HsRXR) and helices 9-12 of Locusta migratoria RXR (LmRXR)] as a partner for Choristoneura fumiferana EcR (CfEcR). As CH9 includes a region of human RXR, public acceptance of this gene switch for use in genetically modified crops may be an issue. The current studies were conducted to identify an LmRXR mutant that could replace CH9 as a partner for CfEcR. The amino acid identity between LmRXR and HsRXR is fairly high. However, there are a few amino acid residues that are different between these two proteins. LmRXR mutants were produced by changing the amino acids in the helices 1-8 that are different between LmRXR and HsRXR to HsRXR residues. Screening of these mutants in tobacco protoplasts identified a triple mutant, A62S:T81H:V123I (SHILmRXR), that performed as well as CH9. The performance of the EcR gene switch was further improved by optimizing the translational start site (Kozak sequence, AACAATGG) of the transgene. The EcR gene switch containing SHILmRXR and the modified translation start site supported very low background activity in the absence of a ligand and a higher induced activity in the presence of a ligand in tobacco protoplasts, as well as Arabidopsis thaliana transgenic plants. At 16-80 nm methoxyfenozide, the induction of luciferase activity was better than that observed with the CfEcR:CH9 switch.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | | | | | | |
Collapse
|
26
|
Ordiz MI, Yang J, Barbazuk WB, Beachy RN. Functional analysis of the activation domain of RF2a, a rice transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:835-44. [PMID: 20408988 DOI: 10.1111/j.1467-7652.2010.00520.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Rice transcription factor RF2a binds to the BoxII cis element of the promoter of rice tungro bacilliform virus and activates promoter expression. The acidic acid-rich domain of RF2a is a transcription activator and has been partially characterized (Dai et al., 2003). The RF2a acidic domain (A; amino acids 49-116) was fused with the synthetic zinc finger ZF-TF 2C7 and was co-introduced with a reporter gene into transgenic Arabidopsis plants. Expression of the reporter gene was increased up to seven times by the effector. In transient assays in tobacco BY-2 protoplasts, we identified a subdomain comprising amino acids 56-84 (A5) that was equally as effective as an activator as the entire acidic domain. A chemically inducible system was used to show determined that A and A5 domains are equally as effective in transcription activation as the well-characterized VP16 activation domain. Bioinformatics analyses revealed that the A5 domain is present only in b-ZIP transcription factors. In dicots, the A domain contains an insertion of four amino acids that is not present in monocot proteins. The A5 domain, and similar domains in other b-ZIP transcription factors, is predicted to form an anti-parallel beta sheet structure.
Collapse
Affiliation(s)
- M Isabel Ordiz
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | | | | | | |
Collapse
|
27
|
Peremarti A, Twyman RM, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T. Promoter diversity in multigene transformation. PLANT MOLECULAR BIOLOGY 2010; 73:363-78. [PMID: 20354894 DOI: 10.1007/s11103-010-9628-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/11/2010] [Indexed: 05/03/2023]
Abstract
Multigene transformation (MGT) is becoming routine in plant biotechnology as researchers seek to generate more complex and ambitious phenotypes in transgenic plants. Every nuclear transgene requires its own promoter, so when coordinated expression is required, the introduction of multiple genes leads inevitably to two opposing strategies: different promoters may be used for each transgene, or the same promoter may be used over and over again. In the former case, there may be a shortage of different promoters with matching activities, but repetitious promoter use may in some cases have a negative impact on transgene stability and expression. Using illustrative case studies, we discuss promoter deployment strategies in transgenic plants that increase the likelihood of successful and stable multiple transgene expression.
Collapse
Affiliation(s)
- Ariadna Peremarti
- Departament de Producció Vegetal i Ciència Forestal, ETSEA, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fan Z, Yuan L. Production of multifunctional chimaeric enzymes in plants: a promising approach for degrading plant cell wall from within. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:308-15. [PMID: 20070871 DOI: 10.1111/j.1467-7652.2009.00484.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multifunctional chimaeric hydrolases can be created by covalently linking heterologous catalytic and functional domains in a single polypeptide. Previously, we have generated a number of chimaeric lignocellulosic hydrolases that contain two to five modules [Biotechnol Bioeng (2009) 102: 1045; Appl Environ Microbiol (2009) 75: 1754]. These chimaeras closely resemble the parental enzymes in kinetics and other enzymatic properties, and some exhibit improved synergy in degrading natural substrates when compared to mixtures of parental enzymes. In addition to the applications in fermentative enzyme production, the chimaeric genes can be used in the construction of a single plant transformation binary vector carrying several genes that encode a complete set of lignocellulosic hydrolase activities. The advantages of this approach include ease in vector construction and transformation, as well as downstream plant analysis and breeding. The hydrolases sequestered in biomass feedstock can potentially assist enzymatic pretreatment and sugar conversion. Here, we report the gene expression and functional characterization of a chimaeric hemicellulase in transgenic tobacco plants. T1 transgenic plants produced up to 19-mg active enzymes per gram of total-soluble leaf proteins. The results demonstrate the feasibility of producing multifunctional lignocellulosic hydrolases in plants. Key considerations in the design, construction and plant expression of the chimaeric genes are discussed.
Collapse
Affiliation(s)
- Zhanmin Fan
- The Department of Plant and Soil Sciences, and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
29
|
Corrado G, Karali M. Inducible gene expression systems and plant biotechnology. Biotechnol Adv 2009; 27:733-743. [DOI: 10.1016/j.biotechadv.2009.05.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/29/2022]
|
30
|
Sylvestre M, Macek T, Mackova M. Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Curr Opin Biotechnol 2009; 20:242-7. [PMID: 19250817 DOI: 10.1016/j.copbio.2009.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Recent investigations have shown that the three components of the biphenyl dioxygenase and the 2,3-dihydroxybiphenyl dioxygenase can be produced actively in transgenic plants. Both enzymes catalyze critical steps of the bacterial polychlorinated biphenyl (PCB) degrading pathway. On the basis of these observations, optimized plant-microbe bioremediation processes in which transgenic plants would initiate PCB metabolism and release the metabolites for further degradation by rhizobacteria has been proposed. Since this is still a relatively new approach for PCB remediation, its successful application will require efforts first, to engineer improved PCB-degrading enzymes; second, to co-ordinately express these enzymes' components in plants; and third, to better understand the mechanisms by which plants and rhizobacteria interact to degrade organic pollutants.
Collapse
Affiliation(s)
- Michel Sylvestre
- Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada.
| | | | | |
Collapse
|
31
|
|
32
|
Abstract
The design of reverse genetic experiments that utilize transgenic approaches often requires transgenes to be expressed in a predefined pattern and there is limited information regarding the gene expression profile for specific promoters. It is important that expression patterns are predetermined in the specific genotype targeted for transformation because the same promoter-transgene construct can produce different expression patterns in different host species. This chapter compares constitutive, targeted, or inducible promoters that have been characterized in specific cereal species.
Collapse
Affiliation(s)
- Huw D Jones
- Department of Plant Sciences, Rothamsted Research, Centre for Crop Genetic Improvement, Harpenden, Hertfordshire, UK
| | | |
Collapse
|
33
|
Kim HJ, Oh SA, Brownfield L, Hong SH, Ryu H, Hwang I, Twell D, Nam HG. Control of plant germline proliferation by SCF(FBL17) degradation of cell cycle inhibitors. Nature 2008; 455:1134-7. [PMID: 18948957 DOI: 10.1038/nature07289] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 07/24/2008] [Indexed: 01/23/2023]
Abstract
Flowering plants possess a unique reproductive strategy, involving double fertilization by twin sperm cells. Unlike animal germ lines, the male germ cell lineage in plants only forms after meiosis and involves asymmetric division of haploid microspores, to produce a large, non-germline vegetative cell and a germ cell that undergoes one further division to produce the twin sperm cells. Although this switch in cell cycle control is critical for sperm cell production and delivery, the underlying molecular mechanisms are unknown. Here we identify a novel F-box protein of Arabidopsis thaliana, designated FBL17 (F-box-like 17), that enables this switch by targeting the degradation of cyclin-dependent kinase A;1 inhibitors specifically in male germ cells. We show that FBL17 is transiently expressed in the male germ line after asymmetric division and forms an SKP1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase complex (SCF(FBL17)) that targets the cyclin-dependent kinase inhibitors KRP6 and KRP7 for proteasome-dependent degradation. Accordingly, the loss of FBL17 function leads to the stabilization of KRP6 and inhibition of germ cell cycle progression. Our results identify SCF(FBL17) as an essential male germ cell proliferation complex that promotes twin sperm cell production and double fertilization in flowering plants.
Collapse
Affiliation(s)
- Hyo Jung Kim
- Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Halpern ME, Rhee J, Goll MG, Akitake CM, Parsons M, Leach SD. Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish 2008; 5:97-110. [PMID: 18554173 DOI: 10.1089/zeb.2008.0530] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The ability to regulate gene expression in a cell-specific and temporally restricted manner provides a powerful means to test gene function, bypass the action of lethal genes, label subsets of cells for developmental studies, monitor subcellular structures, and target tissues for selective ablation or physiological analyses. The galactose-inducible system of yeast, mediated by the transcriptional activator Gal4 and its consensus UAS binding site, has proven to be a highly successful and versatile system for controlling transcriptional activation in Drosophila. It has also been used effectively, albeit in a more limited manner, in the mouse. While zebrafish has lagged behind other model systems in the widespread application of Gal4 transgenic approaches to modulate gene activity during development, recent technological advances are permitting rapid progress. Here we review Gal4-regulated genetic tools and discuss how they have been used in zebrafish as well as their potential drawbacks. We describe some exciting new directions, in large part afforded by the Tol2 transposition system, that are generating valuable new Gal4/UAS reagents for zebrafish research.
Collapse
|
35
|
Shestopalov IA, Chen JK. Chemical technologies for probing embryonic development. Chem Soc Rev 2008; 37:1294-307. [PMID: 18568156 DOI: 10.1039/b703023c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Embryogenesis is a remarkable program of cell proliferation, migration, and differentiation that transforms a single fertilized egg into a complex multicellular organism. Understanding this process at the molecular and systems levels will require an interdisciplinary approach, including the concepts and technologies of chemical biology. This tutorial review provides an overview of chemical tools that have been used in developmental biology research, focusing on methods that enable spatiotemporal control of gene function and the visualization of embryonic patterning. Limitations of current approaches and future challenges are also discussed.
Collapse
Affiliation(s)
- Ilya A Shestopalov
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
36
|
Tavva VS, Palli SR, Dinkins RD, Collins GB. Improvement of a monopartite ecdysone receptor gene switch and demonstration of its utility in regulation of transgene expression in plants. FEBS J 2008; 275:2161-76. [PMID: 18384377 DOI: 10.1111/j.1742-4658.2008.06370.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
In plants, regulation of transgene expression is typically accomplished through the use of inducible promoter systems. The ecdysone receptor (EcR) gene switch is one of the best inducible systems available to regulate transgene expression in plants. However, the monopartite EcR gene switches developed to date require micromolar concentrations of ligand for activation. We tested several EcR mutants that were generated by changing one or two amino acid residues in the highly flexible ligand-binding domain of Choristoneura fumiferana EcR (CfEcR). Based on the transient expression assays, we selected a double mutant, V395I + Y415E (VY), of CfEcR (CfEcR(VY)) for further testing in stable transformation experiments. The CfEcR(VY) mutant only slightly improved the induction characteristics of the two-hybrid gene switch, whereas the CfEcR(VY) mutant significantly improved the induction characteristics of the monopartite gene switch (VGCfE(VY)). The ligand sensitivity of the VGCfE(VY) switch was improved by 125-15 625-fold in different transgenic lines analyzed, compared to the VGCfE(Wt) switch. The utility of the VGCfE(VY) switch was tested by regulating the expression of an Arabidopsis zinc finger protein gene (AtZFP11) in both tobacco and Arabidopsis plants. These data showed that the VGCfE(VY) switch efficiently regulated the expression of AtZFP11 and that the phenotype of AtZFP11 could be induced by the application of ligand. In addition, the affected plants recovered after withdrawal of the ligand, demonstrating the utility of this gene switch in regulating the expression of critical transgenes in plants.
Collapse
Affiliation(s)
- Venkata S Tavva
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | | | | | | |
Collapse
|
37
|
Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:284-98. [PMID: 18208516 DOI: 10.1111/j.1365-313x.2008.03420.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis, and downregulation of this enzyme provides a means for exploring sphingolipid function in cells. We have previously demonstrated that Arabidopsis SPT requires LCB1 and LCB2 subunits for activity, as is the case in other eukaryotes. In this study, we show that Arabidopsis has two genes (AtLCB2a and AtLCB2b) that encode functional isoforms of the LCB2 subunit. No alterations in sphingolipid content or growth were observed in T-DNA mutants for either gene, but homozygous double mutants were not recoverable, suggesting that these genes are functionally redundant. Reciprocal crosses conducted with Atlcb2a and Atlcb2b mutants indicated that lethality is associated primarily with the inability to transmit the lcb2 null genotype through the haploid pollen. Consistent with this, approximately 50% of the pollen obtained from plants homozygous for a mutation in one gene and heterozygous for a mutation in the second gene arrested during transition from uni-nucleate microspore to bicellular pollen. Ultrastructural analyses revealed that these pollen grains contained aberrant endomembranes and lacked an intine layer. To examine sphingolipid function in sporophytic cells, Arabidopsis lines were generated that allowed inducible RNAi silencing of AtLCB2b in an Atlcb2a mutant background. Studies conducted with these lines demonstrated that sphingolipids are essential throughout plant development, and that lethality resulting from LCB2 silencing in seedlings could be partially rescued by supplying exogenous long-chain bases. Overall, these studies provide insights into the genetic and biochemical properties of SPT and sphingolipid function in Arabidopsis.
Collapse
Affiliation(s)
- Charles R Dietrich
- USDA-ARS Plant Genetics Research Unit, Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO 63132, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Study of plant cell biology has benefited tremendously from the use of fluorescent proteins (FPs). Development of well-established techniques in genetics, by transient expression or by Agrobacterium-mediated plant cell transformation, makes it possible to readily create material for imaging molecules tagged with FPs. Confocal microscopy of FPs is routine and, in highly scattering tissues, multiphoton microscopy improves deep imaging. The abundance of autofluorescent compounds in plants in some cases potentially interferes with FP signals, but spectral imaging is an effective tool in unmixing overlapping signals. This approach allows separate detection of DsRed and chlorophyll, DsRed and GFP, and green fluorescent protein (GFP) and yellow fluorescent protein (YFP). FPs have been targeted to most plant organelles. Free (untargeted) FPs in plant cells are not only cytoplasmic, but also go into the nucleus due to their small size. FP fluorescence is potentially unstable in acidic vacuoles. FPs have been targeted to novel compartments, including protein storage vacuoles in seeds. Endoplasmic reticulum (ER)-targeted GFP has identified novel inclusion bodies that are surprisingly dynamic. FP-tagged Rab GTPases have allowed documentation of the dynamics of membrane trafficking. Investigation of virus infections has progressed significantly with the aid of FP-tagged virus proteins. Advanced techniques are giving plant scientists the ability to quantitatively analyze the behavior of FP-tagged proteins. Fluorescence lifetime microscopy is becoming the method of choice for fluorescence resonance energy transfer (FRET) analysis of FP-tagged proteins. Fluorescence correlation spectroscopy (FCS) of FPs provides information on molecular diffusion and intermolecular interactions. Use of FPs in elucidating the behavior of plant cells has a bright future.
Collapse
Affiliation(s)
- R Howard Berg
- Integrated Microscopy Facility, Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | |
Collapse
|
39
|
Esengil H, Chen JK. Gene regulation technologies in zebrafish. MOLECULAR BIOSYSTEMS 2008; 4:300-8. [DOI: 10.1039/b718447f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Tavva VS, Dinkins RD, Palli SR, Collins GB. Development of a tightly regulated and highly inducible ecdysone receptor gene switch for plants through the use of retinoid X receptor chimeras. Transgenic Res 2007; 16:599-612. [PMID: 17139530 DOI: 10.1007/s11248-006-9054-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
Chemical inducible gene regulation systems provide essential tools for the precise regulation of transgene expression in plants and animals. Recent development of a two-hybrid ecdysone receptor (EcR) gene regulation system has solved some of the drawbacks that were associated with the monopartate gene switch. To further improve the versatility of the two-hybrid EcR gene switch for wide spread use in plants, chimeras between Homo sapiens retinoid X receptor (HsRXR) and insect, Locusta migratoria RXR (LmRXR) were tested in tobacco protoplasts as partners with Choristoneura fumiferana EcR (CfEcR) in inducing expression of the luciferase reporter gene. The RXR chimera 9 (CH9) along with CfEcR, in a two-hybrid format gave the best results in terms of low-background expression levels in the absence of ligand and high-induced expression levels of the reporter gene in the presence of nanomolar concentrations of the methoxyfenozide ligand. The performance of CH9 was further tested in corn and soybean protoplasts and the data obtained was compared with the other EcR switches that contained the wild-type LmRXR or HsRXR as EcR partners. In both transient expression studies and stable transformation experiments, the fold induction values obtained with the CH9 switch were several times higher than the values obtained with the other EcR switches containing LmRXR or HsRXR. The new CfEcR two-hybrid gene switch that uses the RXR CH9 as a partner in inducing reporter gene expression provides an efficient, ligand-sensitive and tightly regulated gene switch for plants.
Collapse
Affiliation(s)
- Venkata S Tavva
- Plant and Soil Sciences Department, University of Kentucky, 1405 Veterans Road, Lexington, KY 40546-0312, USA.
| | | | | | | |
Collapse
|
41
|
Koo J, Kim Y, Kim J, Yeom M, Lee IC, Nam HG. A GUS/Luciferase Fusion Reporter for Plant Gene Trapping and for Assay of Promoter Activity with Luciferin-Dependent Control of the Reporter Protein Stability. ACTA ACUST UNITED AC 2007; 48:1121-31. [PMID: 17597079 DOI: 10.1093/pcp/pcm081] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A gene-trapping vector carrying a GUS/Luciferase dual reporter gene was developed to establish an efficient and convenient screening system for T-DNA-based gene trapping in plants. A key feature of this gene trap scheme is to place two different types of reporters, luciferase (Luc) and beta-glucuronidase (GUS), as a fusion protein within a trapped gene to probe the activity of the gene. Luc is then utilized as a non-invasive, vital and highly sensitive screening reporter to identify trapped lines, including direct screening of the trapped lines from the primary T-DNA mutant pools. GUS is utilized as a histochemical assay reporter to analyze detailed cellular expression patterns. Transgenic expression studies in Arabidopsis showed that this fusion reporter protein retains functional enzyme activity for both GUS and Luc. Using this system in Arabidopsis, we were able to identify 3,737 trapped lines from 26,900 individual T-DNA insertion lines. Sequence determination of the T-DNA insertion loci in the genome of 78 trapped lines identified GUS/Luc fusions with 27 annotated Arabidopsis genes which included a subset of transcription factors, protein kinases, regulatory proteins and metabolic enzymes. Of these, particular expression patterns of four tagged genes were further confirmed by analyzing putative promoter regions of the corresponding wild-type genes. Furthermore, the protein stability of the GUS/Luc fusion reporter was controlled by application of luciferase substrate (luciferin), overcoming the excessive stability problem of GUS that causes misrepresentation of the transcriptional activity of a promoter. These results demonstrate the utility of the GUS/Luc dual reporter system as a gene trap reporter for studying plant genome function and also as a convenient dual reporter system for study of gene expression.
Collapse
MESH Headings
- Arabidopsis/genetics
- Base Sequence
- Blotting, Northern
- Blotting, Western
- DNA, Bacterial/genetics
- Firefly Luciferin/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Genes, Reporter/genetics
- Genome, Plant/genetics
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Jachoon Koo
- Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Tavva VS, Palli SR, Dinkins RD, Collins GB. Applications of EcR gene switch technology in functional genomics. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 65:164-79. [PMID: 17570490 DOI: 10.1002/arch.20193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genetic engineering of plants using transgenic technology is targeted to enhance agronomic performance or improved quality traits in a wide variety of plant species, and has become a fundamental tool for basic research in plant biotechnology. Constitutive promoters are presently the primary means used to express transgenes in plants. However, inducible gene regulation systems based on specific chemicals have many potential applications in agriculture and for enhancing the basic understanding of gene function. As a result, several gene switches have been developed. The ecdysone receptor gene switch is one of the best inducible gene regulation systems available, because the chemical, methoxyfenozide, required for its regulation is registered for field use. An EcR gene switch with a potential for use in large-scale field applications has been developed by adopting a two-hybrid format. In a two-hybrid switch format, the GAL4 DNA binding domain (GAL4 DBD) was fused to the ligand binding domain (LBD) of the Choristoneura fumiferana ecdysone receptor (CfEcR); and, the VP16 activation domain (VP16 AD) was fused to the LBD of Locust migratoria retinoid X receptor (LmRXR). The sensitivity of the CfEcR gene switch was improved from micromolar to nanomolar concentrations of ligand by using the CfEcR:LmRXR two-hybrid switch. In this report, we demonstrate the utility of CfEcR:LmRXR two-hybrid gene switch in functional genomics applications for regulating the expression of a Superman-like single zinc finger protein 11 (ZFP11) gene in both Arabidopsis and tobacco transgenic plants.
Collapse
Affiliation(s)
- Venkata S Tavva
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | | | | | | |
Collapse
|
43
|
Mohammadi M, Chalavi V, Novakova-Sura M, Laliberté JF, Sylvestre M. Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 2007; 97:496-505. [PMID: 17006888 DOI: 10.1002/bit.21188] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Optimized plant-microbe bioremediation processes in which the plant initiates the metabolism of xenobiotics and releases the metabolites in the rhizosphere to be further degraded by the rhizobacteria is a promising alternative to restore contaminated sites in situ. However, such processes require that plants produce the metabolites that bacteria can readily oxidize. The biphenyl dioxygenase is the first enzyme of the bacterial catabolic pathway involved in the degradation of polychlorinated biphenyls. This enzyme consists of three components: the two sub-unit oxygenase (BphAE) containing a Rieske-type iron-sulfur cluster and a mononuclear iron center, the Rieske-type ferredoxin (BphF), and the FAD-containing ferredoxin reductase (BphG). In this work, based on analyses with Nicotiana benthamiana plants transiently expressing the biphenyl dioxygenase genes from Burkholderia xenovorans LB400 and transgenic Nicotiana tabacum plants transformed with each of these four genes, we have shown that each of the three biphenyl dioxygenase components can be produced individually as active protein in tobacco plants. Therefore, when BphAE, BphF, and BphG purified from plant were used to catalyze the oxygenation of 4-chlorobiphenyl, detectable amounts of 2,3-dihydro-2, 3-dihydroxy-4'-chlorobiphenyl were produced. This suggests that creating transgenic plants expressing simultaneously all four genes required to produce active biphenyl dioxygenase is feasible.
Collapse
Affiliation(s)
- Mahmood Mohammadi
- Institut National de la Recherche Scientifique, INRS-Institut-Armand-Frappier, 531 Boul des Prairies, Laval, Quebec, Canada
| | | | | | | | | |
Collapse
|
44
|
Kourtz L, Dillon K, Daughtry S, Peoples OP, Snell KD. Chemically inducible expression of the PHB biosynthetic pathway in Arabidopsis. Transgenic Res 2007; 16:759-69. [PMID: 17279436 DOI: 10.1007/s11248-007-9067-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Arabidopsis plants were transformed with a multi-gene construct for expression of the polyhydroxybutyrate (PHB) biosynthetic pathway containing a gene switch that can be activated by commercially available non-steroidal ecdysone analogs approved for use on some crops as pesticides. T(1) progeny of transgenic Arabidopsis plants were isolated and screened for PHB production in the presence of ecdysone analogs. T(2) progeny derived from selected T(1) lines were subjected to further analysis by comparing PHB production levels prior to treatment with inducing agent and 21 days after initiation of induction. Significant PHB production was delayed in many of the engineered plants until after induction. PHB levels of up to 14.3% PHB per unit dry weight were observed in young leaves harvested from engineered T(2) plants after applications of the commercial ecdysone analog Mimic. PHB in older leaves reached levels of up to 7% PHB per unit dry weight. This study represents a first step towards engineering a chemically inducible gene switch for PHB production in plants using inducing agents that are approved for field use.
Collapse
|
45
|
Esengil H, Chang V, Mich JK, Chen JK. Small-molecule regulation of zebrafish gene expression. Nat Chem Biol 2007; 3:154-5. [PMID: 17237798 DOI: 10.1038/nchembio858] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/02/2007] [Indexed: 11/09/2022]
Abstract
The zebrafish has emerged as a versatile model organism for biomedical research, yet its potential has been limited by a lack of conditional reverse-genetic tools. Here we report a chemically inducible gene expression technology that has orthogonality to vertebrate signaling processes, high induction levels, and rapid kinetics. Coupled with tissue-specific promoters, this system provides multidimensional control of gene expression and will enable new models of human disorders and diseases.
Collapse
Affiliation(s)
- Hanife Esengil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Center for Clinical Sciences Research, Room 3155, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
46
|
Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR. Recent developments and future prospects in insect pest control in transgenic crops. TRENDS IN PLANT SCIENCE 2006; 11:302-8. [PMID: 16690346 DOI: 10.1016/j.tplants.2006.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/22/2006] [Accepted: 04/25/2006] [Indexed: 05/03/2023]
Abstract
The adoption of insect-resistant transgenic crops has been increasing annually at double-digit rates since the commercial release of first-generation maize and cotton expressing a single modified Bacillus thuringiensis toxin (Bt) nine years ago. Studies have shown that these Bt crops can be successfully deployed in agriculture, which has led to a decrease in pesticide usage, and that they are environmentally benign. However, the sustainability and durability of pest resistance continues to be discussed. In this review, we focus on the science that underpins second- and third-generation insect-resistant transgenic plants and examine the appropriateness and relevance of models that are currently being used to determine deployment strategies to maximize sustainability and durability. We also review strategies that are being developed for novel approaches to transgenic insect pest control.
Collapse
Affiliation(s)
- Paul Christou
- ICREA, Universitat de Lleida, PVCF, Av Alcalde Rovira Roure, 191, E-25198, Lleida, Spain.
| | | | | | | | | |
Collapse
|
47
|
Cao J, Bates SL, Zhao JZ, Shelton AM, Earle ED. Bacillus thuringiensis protein production, signal transduction, and insect control in chemically inducible PR-1a/cry1Ab broccoli plants. PLANT CELL REPORTS 2006; 25:554-60. [PMID: 16418860 DOI: 10.1007/s00299-005-0091-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 09/19/2005] [Accepted: 11/04/2005] [Indexed: 05/06/2023]
Abstract
In an effort to develop a chemically inducible system for insect management, we studied production of Cry1Ab Bacillus thuringiensis (Bt) protein and control of the diamondback moth (DBM), Plutella xylostella L., in inducer-treated and untreated tissues of a broccoli line transformed with a PR-1a/cry1Ab expression cassette. Spraying leaves of these plants with the inducer acibenzolar-S-methyl (= 1,2,3 benzothiadiazole-7-thiocarboxylic acid-S-methyl-ester) (ASM) triggered expression of the cry1Ab gene and produced a high level of Cry1Ab protein within 2-3 days. Cry1Ab protein persisted in leaves for at least 8 weeks, providing prolonged protection from P. xylostella attack. Signals generated in inducer-treated leaves were transferred to untreated newly emerged leaves or heads, as seen by production of Cry1Ab protein and/or protection from insect damage in these plant parts. Signal transduction proceeded in an attenuated manner up to the sixth newly emerged leaf. No Cry1Ab protein was detectable by ELISA in uninduced young leaves, but small amounts of the protein were present in uninduced leaves older than 3 weeks and caused some insect mortality. Such basal expression of Bt genes without induction may favor the evolution of resistant insect populations and therefore limits the application of the PR-1a/cry1Ab system for insect management. However, the rapid production and steady maintenance of a high level of transgenic protein upon induction, the signal transduction observed, and the fact that the chemical inducer can be used in field conditions make the PR-1a promoter attractive for chemical regulation of other agriculturally or pharmaceutically important genes for which low expression in the absence of induction is not a concern.
Collapse
Affiliation(s)
- Jun Cao
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
48
|
Dai S, Zhang Z, Bick J, Beachy RN. Essential role of the Box II cis element and cognate host factors in regulating the promoter of Rice tungro bacilliform virus. J Gen Virol 2006; 87:715-722. [PMID: 16476995 DOI: 10.1099/vir.0.81488-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rice tungro bacilliform virus (RTBV) is a double-stranded DNA virus with a single, tissue-specific promoter that is expressed primarily in phloem tissues. Rice transcription factors RF2a and RF2b bind to Box II, a cis element adjacent to the TATA box, and control gene expression from the promoter. Mutations were made in the promoter to delete or mutate Box II and the mutated promoters were fused to a reporter gene; the chimeric genes were expressed in transient BY-2 protoplast assays and in transgenic Arabidopsis plants. The results of these studies showed that Box II is essential to the activity of the RTBV promoter. A chimeric beta-glucuronidase (GUS) reporter gene containing the Box II sequence and a minimal promoter derived from the Cauliflower mosaic virus 35S promoter were co-transfected into protoplasts with gene constructs that encoded RF2a or RF2b. The reporter gene produced threefold higher GUS activity when co-transfected with RF2a, and 11-fold higher activity when co-transfected with RF2b, than in the absence of added transcription factors. Moreover, chimeric reporter genes were activated by approximately threefold following induction of expression of the RF2a gene in transgenic Arabidopsis plants. The work presented here and earlier findings show that Box II and its interactions with cognate rice transcription factors, including RF2a and RF2b, are essential to the activity of the RTBV promoter and are probably involved in expression of the RTBV genome during virus replication.
Collapse
Affiliation(s)
- Shunhong Dai
- The Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA
| | - Zhihong Zhang
- The Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA
| | - Jennifer Bick
- The Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA
| | - Roger N Beachy
- The Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA
| |
Collapse
|
49
|
Tavva VS, Dinkins RD, Palli SR, Collins GB. Development of a methoxyfenozide-responsive gene switch for applications in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:457-69. [PMID: 16412090 DOI: 10.1111/j.1365-313x.2005.02628.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The ecdysone receptor (EcR) has been used to develop gene switches for conditional regulation of transgene expression in plants and humans. All EcR-based gene switches developed to date for use in plants are monopartate and require micromolar concentrations of ligand for activation of the transgene; this has limited the use of these gene switches. We have developed a Choristoneura fumiferana ecdysone receptor (CfEcR)-based two-hybrid gene switch that works through the formation of a functional heterodimer between EcR and the retinoid X receptor (RXR) upon application of the chemical ligand methoxyfenozide. Methoxyfenozide is already registered for field use with an excellent safety profile, and it has potential as a gene switch ligand for applications in the field. The receptor constructs were prepared by fusing DEF domains (hinge region plus ligand-binding domain) of CfEcR to the GAL4 DNA-binding domain and EF domains (ligand-binding domain) of ultraspiracle from Choristoneura fumiferana (CfUSP) or RXR from Locusta migratoria (LmRXR), Mus musculus (MmRXR) or Homo sapiens (HsRXR) to the VP16 activation domain. These receptor constructs were tested for their ability to induce expression of the luciferase gene placed under the control of 5x GAL4 response elements and -46 35S minimal promoter in tobacco, corn and soybean protoplasts and in transgenic Arabidopsis and tobacco plants. By adopting the two-hybrid format, the sensitivity of the CfEcR gene switch has been improved from micromolar to nanomolar concentrations of methoxyfenozide. The sensitivity of the CfEcR + LmRXR two-hybrid switch was 25 to 625 times greater than the monopartate gene switch, depending on the plant species tested.
Collapse
Affiliation(s)
- Venkata S Tavva
- Plant and Soil Sciences Department, 1405 Veterans Road, University of Kentucky, Lexington, KY 40546-0312, USA
| | | | | | | |
Collapse
|
50
|
Moore I, Samalova M, Kurup S. Transactivated and chemically inducible gene expression in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:651-83. [PMID: 16441354 DOI: 10.1111/j.1365-313x.2006.02660.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Several vector systems are available for tissue-specific transactivation or chemical induction of transgene expression in plants. The choice facing researchers is which promoter system to commit to as this determines the range and characteristics of the expression resources available. The decision will not be the same for all species or applications. We present some general discussion on the use of these technologies and review in detail the properties in various (mainly angiosperm) species of the most promising: mGal4:VP16/UAS and pOp/LhG4 for transactivation, and the alc-switch, GVE/VGE, GVG, pOp6/LhGR, and XVE systems for chemical induction.
Collapse
Affiliation(s)
- Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | | | | |
Collapse
|