1
|
Ahmad A, Zhang W. Genomic exploration of retrocopies in Insect pests of plants and their role in the expansion of heat shock proteins superfamily as evolutionary targets. BMC Genomics 2024; 25:1116. [PMID: 39567882 PMCID: PMC11577761 DOI: 10.1186/s12864-024-11056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Gene duplication is a dominant mechanism for the evolution of genomes and plays a key role in genome expansion. Gene duplication via retroposition produces RNA-mediated intron-less copies called retrocopies, that may gain regulatory sequence and biological function to generate retrogenes. Retrocopies dynamics have been reported in several model insect species, but there is still a huge knowledge gap about retrocopies dynamics in most insects, and their role in adaptation. RESULTS In this study, we reported retrocopy dynamics in 40 species of insect pests of plants belonging to six insect orders. We identified a total of 9,930 retrocopies, which is so far the largest set of retrocopies identified in insects. The identified retrocopies were further grouped into 2,599 Retrogenes, 4,578 Chimeras, 1,241 Intact retrocopies, and 1,512 Pseudogene. We also analyzed all the identified retrogenes that were annotated into 506 gene families. The highest number of retrogenes annotated belong to the heat shock proteins superfamily and are present across all the 40 species from the six orders. We found a significant expansion of the heat shock protein superfamily in the studied species. Almost all the retrogenes, including those belonging to heat shock proteins, are under purifying selection. In summary, we report the retrocopies and retrogenes dynamics in a large set of insect pests of plants and the expansion of the heat shock protein family due to retroposition. CONCLUSION This study unveils retrocopy dynamics in the insect pests of plants and highlights the evolution of new genes due to retroposition, and their role in important gene families' expansion.
Collapse
Affiliation(s)
- Aftab Ahmad
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wenyu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Ueda K, Mizuuchi R, Ichihashi N. Emergence of linkage between cooperative RNA replicators encoding replication and metabolic enzymes through experimental evolution. PLoS Genet 2023; 19:e1010471. [PMID: 37540715 PMCID: PMC10431678 DOI: 10.1371/journal.pgen.1010471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/16/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
The integration of individually replicating genes into a primitive chromosome is a key evolutionary transition in the development of life, allowing the simultaneous inheritance of genes. However, how this transition occurred is unclear because the extended size of primitive chromosomes replicate slower than unlinked genes. Theoretical studies have suggested that a primitive chromosome can evolve in the presence of cell-like compartments, as the physical linkage prevents the stochastic loss of essential genes upon division, but experimental support for this is lacking. Here, we demonstrate the evolution of a chromosome-like RNA from two cooperative RNA replicators encoding replication and metabolic enzymes. Through their long-term replication in cell-like compartments, linked RNAs emerged with the two cooperative RNAs connected end-to-end. The linked RNAs had different mutation patterns than the two unlinked RNAs, suggesting that they were maintained as partially distinct lineages in the population. Our results provide experimental evidence supporting the plausibility of the evolution of a primitive chromosome from unlinked gene fragments, an important step in the emergence of complex biological systems.
Collapse
Affiliation(s)
- Kensuke Ueda
- Department of Life Science, Graduate School of Arts and Science, the University of Tokyo, Meguro, Tokyo, Japan
| | - Ryo Mizuuchi
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- JST, FOREST, Kawaguchi, Saitama, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, the University of Tokyo, Meguro, Tokyo, Japan
- Komaba Institute for Science, the University of Tokyo, Meguro, Tokyo, Japan
- Universal Biology Institute, the University of Tokyo, Meguro, Tokyo, Japan
| |
Collapse
|
3
|
Szilágyi A, Kovács VP, Szathmáry E, Santos M. Evolution of linkage and genome expansion in protocells: The origin of chromosomes. PLoS Genet 2020; 16:e1009155. [PMID: 33119583 PMCID: PMC7665907 DOI: 10.1371/journal.pgen.1009155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/13/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022] Open
Abstract
Chromosomes are likely to have assembled from unlinked genes in early evolution. Genetic linkage reduces the assortment load and intragenomic conflict in reproducing protocell models to the extent that chromosomes can go to fixation even if chromosomes suffer from a replicative disadvantage, relative to unlinked genes, proportional to their length. Here we numerically show that chromosomes spread within protocells even if recurrent deleterious mutations affecting replicating genes (as ribozymes) are considered. Dosage effect selects for optimal genomic composition within protocells that carries over to the genic composition of emerging chromosomes. Lacking an accurate segregation mechanism, protocells continue to benefit from the stochastic corrector principle (group selection of early replicators), but now at the chromosome level. A remarkable feature of this process is the appearance of multigene families (in optimal genic proportions) on chromosomes. An added benefit of chromosome formation is an increase in the selectively maintainable genome size (number of different genes), primarily due to the marked reduction of the assortment load. The establishment of chromosomes is under strong positive selection in protocells harboring unlinked genes. The error threshold of replication is raised to higher genome size by linkage due to the fact that deleterious mutations affecting protocells metabolism (hence fitness) show antagonistic (diminishing return) epistasis. This result strengthens the established benefit conferred by chromosomes on protocells allowing for the fixation of highly specific and efficient enzymes. The emergence of chromosomes harboring several genes is a crucial ingredient of the major evolutionary transition from naked replicators to cells. Linkage of replicating genes reduces conflict between them and alleviates the problem of chance loss of genes upon stochastic protocell fission. The emerging organization of protocells maintaining several segregating chromosomes with balanced gene composition also allows for an increase in the number of gene types despite recurrent deleterious mutations. We suggest that this interim genomic organization enabled protocells to evolve specific and efficient enzymes and paved the way toward an accurate mechanism for chromosome segregation later in evolution.
Collapse
Affiliation(s)
- András Szilágyi
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pullach/Munich, Germany
| | | | - Eörs Szathmáry
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pullach/Munich, Germany
- * E-mail:
| | - Mauro Santos
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Exaptation at the molecular genetic level. SCIENCE CHINA-LIFE SCIENCES 2018; 62:437-452. [PMID: 30798493 DOI: 10.1007/s11427-018-9447-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
The realization that body parts of animals and plants can be recruited or coopted for novel functions dates back to, or even predates the observations of Darwin. S.J. Gould and E.S. Vrba recognized a mode of evolution of characters that differs from adaptation. The umbrella term aptation was supplemented with the concept of exaptation. Unlike adaptations, which are restricted to features built by selection for their current role, exaptations are features that currently enhance fitness, even though their present role was not a result of natural selection. Exaptations can also arise from nonaptations; these are characters which had previously been evolving neutrally. All nonaptations are potential exaptations. The concept of exaptation was expanded to the molecular genetic level which aided greatly in understanding the enormous potential of neutrally evolving repetitive DNA-including transposed elements, formerly considered junk DNA-for the evolution of genes and genomes. The distinction between adaptations and exaptations is outlined in this review and examples are given. Also elaborated on is the fact that such distinctions are sometimes more difficult to determine; this is a widespread phenomenon in biology, where continua abound and clear borders between states and definitions are rare.
Collapse
|
5
|
Willett CS, Wilson EM. Evolution of Melanoma Antigen-A11 (MAGEA11) During Primate Phylogeny. J Mol Evol 2018; 86:240-253. [PMID: 29574604 DOI: 10.1007/s00239-018-9838-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
Abstract
Melanoma antigen-A11 (MAGE-A11) is an X-linked and primate-specific steroid hormone receptor transcriptional coregulator and proto-oncogenic protein whose increased expression promotes the growth of prostate cancer. The MAGEA11 gene is expressed at low levels in normal human testis, ovary, and endometrium, and at highest levels in castration-resistant prostate cancer. Annotated genome predictions throughout the surviving primate lineage show that MAGEA11 acquired three 5' coding exons unique within the MAGEA subfamily during the evolution of New World monkeys (NWM), Old World monkeys (OWM), and apes. MAGE-A11 in all primates has a conserved FXXIF coactivator-binding motif that suggests interaction with p160 coactivators contributed to its early evolution as a transcriptional coregulator. An ancestral form of MAGE-A11 in the more distantly related lemur has significant amino acid sequence identity with human MAGE-A11, but lacks coregulator activity based on the absence of the three 5' coding exons that include a nuclear localization signal (NLS). NWM MAGE-A11 has greater amino acid sequence identity than lemur to human MAGE-A11, but inframe premature stop codons suggest that MAGEA11 is a pseudogene in NWM. MAGE-A11 in OWM and apes has nearly identical 5' coding exon amino acid sequence and conserved interaction sites for p300 acetyltransferase and cyclin A. We conclude that the evolution of MAGEA11 within the lineage leading to OWM and apes resulted in steroid hormone receptor transcriptional coregulator activity through the acquisition of three 5' coding exons that include a NLS sequence and nonsynonymous substitutions required to interact with cell cycle regulatory proteins and transcription factors.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-7500, USA
| | - Elizabeth M Wilson
- Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599-7500, USA.
| |
Collapse
|
6
|
Brosius J. The persistent contributions of RNA to eukaryotic gen(om)e architecture and cellular function. Cold Spring Harb Perspect Biol 2014; 6:a016089. [PMID: 25081515 DOI: 10.1101/cshperspect.a016089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
7
|
Livnat A. Interaction-based evolution: how natural selection and nonrandom mutation work together. Biol Direct 2013; 8:24. [PMID: 24139515 PMCID: PMC4231362 DOI: 10.1186/1745-6150-8-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/26/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. PRESENTATION OF THE HYPOTHESIS Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation-while not Lamarckian, or "directed" to increase fitness-is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination's fitness. TESTING AND IMPLICATIONS OF THE HYPOTHESIS This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional theory can actually experience selection on interactions and thus has a much greater adaptive potential than previously considered. Empirical evidence for the proposed mechanism from both molecular evolution and evolution at the organismal level is discussed, and multiple predictions are offered by which it may be tested. REVIEWERS This article was reviewed by Nigel Goldenfeld (nominated by Eugene V. Koonin), Jürgen Brosius and W. Ford Doolittle.
Collapse
Affiliation(s)
- Adi Livnat
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061,
USA
| |
Collapse
|
8
|
Abstract
Prions are agents of analog, protein conformation-based inheritance that can confer beneficial phenotypes to cells, especially under stress. Combined with genetic variation, prion-mediated inheritance can be channeled into prion-independent genomic inheritance. Latest screening shows that prions are common, at least in fungi. Thus, there is non-negligible flow of information from proteins to the genome in modern cells, in a direct violation of the Central Dogma of molecular biology. The prion-mediated heredity that violates the Central Dogma appears to be a specific, most radical manifestation of the widespread assimilation of protein (epigenetic) variation into genetic variation. The epigenetic variation precedes and facilitates genetic adaptation through a general 'look-ahead effect' of phenotypic mutations. This direction of the information flow is likely to be one of the important routes of environment-genome interaction and could substantially contribute to the evolution of complex adaptive traits.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Liu L, Oliveira NMM, Cheney KM, Pade C, Dreja H, Bergin AMH, Borgdorff V, Beach DH, Bishop CL, Dittmar MT, McKnight A. A whole genome screen for HIV restriction factors. Retrovirology 2011; 8:94. [PMID: 22082156 PMCID: PMC3228845 DOI: 10.1186/1742-4690-8-94] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/14/2011] [Indexed: 01/01/2023] Open
Abstract
Background Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV) human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme), p21 and tetherin are well characterised. Results To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line. Conclusions We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.
Collapse
Affiliation(s)
- Li Liu
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ma W. The scenario on the origin of translation in the RNA world: in principle of replication parsimony. Biol Direct 2010; 5:65. [PMID: 21110883 PMCID: PMC3002371 DOI: 10.1186/1745-6150-5-65] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/27/2010] [Indexed: 01/06/2023] Open
Abstract
Background It is now believed that in the origin of life, proteins should have been "invented" in an RNA world. However, due to the complexity of a possible RNA-based proto-translation system, this evolving process seems quite complicated and the associated scenario remains very blurry. Considering that RNA can bind amino acids with specificity, it has been reasonably supposed that initial peptides might have been synthesized on "RNA templates" containing multiple amino acid binding sites. This "Direct RNA Template (DRT)" mechanism is attractive because it should be the simplest mechanism for RNA to synthesize peptides, thus very likely to have been adopted initially in the RNA world. Then, how this mechanism could develop into a proto-translation system mechanism is an interesting problem. Presentation of the hypothesis Here an explanation to this problem is shown considering the principle of "replication parsimony" --- genetic information tends to be utilized in a parsimonious way under selection pressure, due to its replication cost (e.g., in the RNA world, nucleotides and ribozymes for RNA replication). Because a DRT would be quite long even for a short peptide, its replication cost would be great. Thus the diversity and the length of functional peptides synthesized by the DRT mechanism would be seriously limited. Adaptors (proto-tRNAs) would arise to allow a DRT's complementary strand (called "C-DRT" here) to direct the synthesis of the same peptide synthesized by the DRT itself. Because the C-DRT is a necessary part in the DRT's replication, fewer turns of the DRT's replication would be needed to synthesize definite copies of the functional peptide, thus saving the replication cost. Acting through adaptors, C-DRTs could transform into much shorter templates (called "proto-mRNAs" here) and substitute the role of DRTs, thus significantly saving the replication cost. A proto-rRNA corresponding to the small subunit rRNA would then emerge to aid the binding of proto-tRNAs and proto-mRNAs, allowing the reduction of base pairs between them (ultimately resulting in the triplet anticodon/codon pair), thus further saving the replication cost. In this context, the replication cost saved would allow the appearance of more and longer functional peptides and, finally, proteins. The hypothesis could be called "DRT-RP" ("RP" for "replication parsimony"). Testing the hypothesis The scenario described here is open for experimental work at some key scenes, including the compact DRT mechanism, the development of adaptors from aa-aptamers, the synthesis of peptides by proto-tRNAs and proto-mRNAs without the participation of proto-rRNAs, etc. Interestingly, a recent computer simulation study has demonstrated the plausibility of one of the evolving processes driven by replication parsimony in the scenario. Implication of the hypothesis An RNA-based proto-translation system could arise gradually from the DRT mechanism according to the principle of "replication parsimony" --- to save the replication cost of RNA templates for functional peptides. A surprising side deduction along the logic of the hypothesis is that complex, biosynthetic amino acids might have entered the genetic code earlier than simple, prebiotic amino acids, which is opposite to the common sense. Overall, the present discussion clarifies the blurry scenario concerning the origin of translation with a major clue, which shows vividly how life could "manage" to exploit potential chemical resources in nature, eventually in an efficient way over evolution. Reviewers This article was reviewed by Eugene V. Koonin, Juergen Brosius, and Arcady Mushegian.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
11
|
Abstract
While once almost synonymous, there is an increasing gap between the expanding definition of what constitutes a gene and the conservative and narrowly defined terms code or coding, which for a long time, almost exclusively constituted the open reading frame. Much confusion results from this disparity, especially in light of the plethora of noncoding RNAs (more correctly termed "non-protein-coding RNAs") that usually are encoded and transcribed by their own genes. A simple solution would be to adopt Ed Trifonov's less constrained definition of a code as any sequence pattern that can have a biological function. Such consideration favors not only a more complex view of the gene as an entity composed of many more or less conserved subgenic modules, but also a concept of modular evolution of genes and entire genomes.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
12
|
Koonin EV, Wolf YI. Is evolution Darwinian or/and Lamarckian? Biol Direct 2009; 4:42. [PMID: 19906303 PMCID: PMC2781790 DOI: 10.1186/1745-6150-4-42] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/11/2009] [Indexed: 12/15/2022] Open
Abstract
Background The year 2009 is the 200th anniversary of the publication of Jean-Bapteste Lamarck's Philosophie Zoologique and the 150th anniversary of Charles Darwin's On the Origin of Species. Lamarck believed that evolution is driven primarily by non-randomly acquired, beneficial phenotypic changes, in particular, those directly affected by the use of organs, which Lamarck believed to be inheritable. In contrast, Darwin assigned a greater importance to random, undirected change that provided material for natural selection. The concept The classic Lamarckian scheme appears untenable owing to the non-existence of mechanisms for direct reverse engineering of adaptive phenotypic characters acquired by an individual during its life span into the genome. However, various evolutionary phenomena that came to fore in the last few years, seem to fit a more broadly interpreted (quasi)Lamarckian paradigm. The prokaryotic CRISPR-Cas system of defense against mobile elements seems to function via a bona fide Lamarckian mechanism, namely, by integrating small segments of viral or plasmid DNA into specific loci in the host prokaryote genome and then utilizing the respective transcripts to destroy the cognate mobile element DNA (or RNA). A similar principle seems to be employed in the piRNA branch of RNA interference which is involved in defense against transposable elements in the animal germ line. Horizontal gene transfer (HGT), a dominant evolutionary process, at least, in prokaryotes, appears to be a form of (quasi)Lamarckian inheritance. The rate of HGT and the nature of acquired genes depend on the environment of the recipient organism and, in some cases, the transferred genes confer a selective advantage for growth in that environment, meeting the Lamarckian criteria. Various forms of stress-induced mutagenesis are tightly regulated and comprise a universal adaptive response to environmental stress in cellular life forms. Stress-induced mutagenesis can be construed as a quasi-Lamarckian phenomenon because the induced genomic changes, although random, are triggered by environmental factors and are beneficial to the organism. Conclusion Both Darwinian and Lamarckian modalities of evolution appear to be important, and reflect different aspects of the interaction between populations and the environment. Reviewers this article was reviewed by Juergen Brosius, Valerian Dolja, and Martijn Huynen. For complete reports, see the Reviewers' reports section.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
13
|
Ben Amor B, Wirth S, Merchan F, Laporte P, d'Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 2008; 19:57-69. [PMID: 18997003 DOI: 10.1101/gr.080275.108] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Long non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles. Numerous 24-nt siRNA matched to five different npcRNAs, suggesting that these npcRNAs are precursors of this type of siRNA. Expression analyses of the 76 npcRNAs identified a novel npcRNA that accumulates in a dcl1 mutant but does not appear to produce trans-acting siRNA or miRNA. Additionally, another npcRNA was the precursor of miR869 and shown to be up-regulated in dcl4 but not in dcl1 mutants, indicative of a young miRNA gene. Abiotic stress altered the accumulation of 22 npcRNAs among the 76, a fraction significantly higher than that observed for the RNA binding protein-coding fraction of the transcriptome. Overexpression analyses in Arabidopsis identified two npcRNAs as regulators of root growth during salt stress and leaf morphology, respectively. Hence, together with small RNAs, long npcRNAs encompass a sensitive component of the transcriptome that have diverse roles during growth and differentiation.
Collapse
Affiliation(s)
- Besma Ben Amor
- Institut des Sciences du Végétal (ISV), CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liebau E, Höppner J, Mühlmeister M, Burmeister C, Lüersen K, Perbandt M, Schmetz C, Büttner D, Brattig N. The secretory omega-class glutathione transferase OvGST3 from the human pathogenic parasite Onchocerca volvulus. FEBS J 2008; 275:3438-53. [PMID: 18537826 DOI: 10.1111/j.1742-4658.2008.06494.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Onchocerciasis or river blindness, caused by the filarial nematode Onchocerca volvulus, is the second leading cause of blindness due to infectious diseases. The protective role of the omega-class glutathione transferase 3 from O. volvulus (OvGST3) against intracellular and environmental reactive oxygen species has been described previously. In the present study, we continue our investigation of the highly stress-responsive OvGST3. Alternative splicing of two exons and one intron retention generates five different transcript isoforms that possess a spliced leader at their 5'-end, indicating that the mechanism of mature mRNA production involves alternative-, cis- and trans-splicing processes. Interestingly, the first two exons of the ovgst3 gene encode a signal peptide before sequence identity to other omega-class glutathione transferases begins. Only the recombinant expression of the isoform that encodes the longest deduced amino acid sequence (OvGST3/5) was successful, with the purified enzyme displaying modest thiol oxidoreductase activity. Significant IgG1 and IgG4 responses against recombinantly expressed OvGST3/5 were detected in sera from patients with the generalized as well as the chronic hyperreactive form of onchocerciasis, indicating exposure of the secreted protein to the human host's immune system and its immunogenicity. Immunohistological localization studies performed at light and electron microscopy levels support the extracellular localization of the protein. Intensive labeling of the OvGST3 was observed in the egg shell at the morula stage of the embryo, indicating extremely defined, stage-specific expression for a short transient period only.
Collapse
Affiliation(s)
- Eva Liebau
- Institute of Animal Physiology, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Amit M, Sela N, Keren H, Melamed Z, Muler I, Shomron N, Izraeli S, Ast G. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene. BMC Mol Biol 2007; 8:109. [PMID: 18047649 PMCID: PMC2231382 DOI: 10.1186/1471-2199-8-109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 11/29/2007] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. RESULTS Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. CONCLUSION The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.
Collapse
Affiliation(s)
- Maayan Amit
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Noa Sela
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Hadas Keren
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Ze'ev Melamed
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Inna Muler
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
- Chaim Sheba Cancer Research Center, Tel Hashomer, Israel
- Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Noam Shomron
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Shai Izraeli
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
- Chaim Sheba Cancer Research Center, Tel Hashomer, Israel
- Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
16
|
Abstract
Epiphenomena are those processes that ostensibly have no precedent at lower levels of scientific organization. In this review, it is argued that many genetic processes, including ploidy, dominance, heritability, pleiotropy, epistasis, mutational load and recombination, all are at least analogous to biochemical events that were requisite features of the RNA world. Most, if not all, of these features of contemporary whole organisms and populations may have their ultimate evolutionary roots in the chemical repertoire of catalytic RNAs. Some of these phenomena will eventually prove to be not only analogous but homologous to ribozyme activities.
Collapse
Affiliation(s)
- N Lehman
- Department of Chemistry, Portland State University, Portland, OR, USA.
| |
Collapse
|
17
|
Panzitt K, Tschernatsch MMO, Guelly C, Moustafa T, Stradner M, Strohmaier HM, Buck CR, Denk H, Schroeder R, Trauner M, Zatloukal K. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 2007; 132:330-42. [PMID: 17241883 DOI: 10.1053/j.gastro.2006.08.026] [Citation(s) in RCA: 624] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 07/20/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Recent studies have highlighted the role of noncoding RNAs (ncRNAs) in carcinogenesis, and suggested that this class of genes might be used as biomarkers in cancer. We searched the human genome for novel genes including ncRNAs related to hepatocellular carcinoma (HCC). METHODS An HCC-specific gene library was generated and screened for deregulated genes with 46 HCCs, 4 focal nodular hyperplasias, and 7 cirrhoses utilizing cDNA arrays. Sequencing of library clones identified a novel ncRNA as the most up-regulated gene in HCC. This gene was also cloned from different monkeys and characterized by quantitative RT-PCR, Northern blot analysis and in situ hybridization. Structural and functional studies included comparative sequence and protein expression analyses, quantitative RT-PCR of polysomal preparations, and siRNA-mediated knockdown experiments. RESULTS The most up-regulated gene in HCC named highly up-regulated in liver cancer (HULC) was characterized as a novel mRNA-like ncRNA. HULC RNA is spliced and polyadenlyated, and resembles the mammalian LTR transposon 1A. It does not contain substantial open reading frames, and no native translation product was detected. HULC is present in the cytoplasm, where it copurifies with ribosomes. siRNA-mediated knockdown of HULC RNA in 2 HCC cell lines altered the expression of several genes, 5 of which were known to be affected in HCC, suggesting a role for HULC in post-transcriptional modulation of gene expression. CONCLUSIONS HULC is the first ncRNA with highly specific up-regulation in HCC. Because HULC was detected in blood of HCC patients, a potential use as novel biomarker can be envisaged.
Collapse
Affiliation(s)
- Katrin Panzitt
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fridmanis D, Fredriksson R, Kapa I, Schiöth HB, Klovins J. Formation of new genes explains lower intron density in mammalian Rhodopsin G protein-coupled receptors. Mol Phylogenet Evol 2006; 43:864-80. [PMID: 17188520 DOI: 10.1016/j.ympev.2006.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 10/06/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
Mammalian G protein-coupled receptor (GPCR) genes are characterised by a large proportion of intronless genes or a lower density of introns when compared with GPCRs of invertebrates. It is unclear which mechanisms have influenced intron density in this protein family, which is one of the largest in the mammalian genomes. We used a combination of Hidden Markov Models (HMM) and BLAST searches to establish the comprehensive repertoire of Rhodopsin GPCRs from seven species and performed overall alignments and phylogenetic analysis using the maximum parsimony method for over 1400 receptors in 12 subgroups. We identified 14 different Ancestral Receptor Groups (ARGs) that have members in both vertebrate and invertebrate species. We found that there exists a remarkable difference in the intron density among ancestral and new Rhodopsin GPCRs. The intron density among ARGs members was more than 3.5-fold higher than that within non-ARG members and more than 2-fold higher when considering only the 7TM region. This suggests that the new GPCR genes have been predominantly formed intronless while the ancestral receptors likely accumulated introns during their evolution. Many of the intron positions found in mammalian ARG receptor sequences were found to be present in orthologue invertebrate receptors suggesting that these intron positions are ancient. This analysis also revealed that one intron position is much more frequent than any other position and it is common for a number of phylogenetically different Rhodopsin GPCR groups. This intron position lies within a functionally important, conserved, DRY motif which may form a proto-splice site that could contribute to positional intron insertion. Moreover, we have found that other receptor motifs, similar to DRY, also contain introns between the second and third nucleotide of the arginine codon which also forms a proto-splice site. Our analysis presents compelling evidence that there was not a major loss of introns in mammalian GPCRs and formation of new GPCRs among mammals explains why these have fewer introns compared to invertebrate GPCRs. We also discuss and speculate about the possible role of different RNA- and DNA-based mechanisms of intron insertion and loss.
Collapse
Affiliation(s)
- Davids Fridmanis
- Biomedical Research and Study Centre, University of Latvia, Ratsupites 1, Riga, Latvia
| | | | | | | | | |
Collapse
|
19
|
Koonin EV, Martin W. On the origin of genomes and cells within inorganic compartments. Trends Genet 2005; 21:647-54. [PMID: 16223546 PMCID: PMC7172762 DOI: 10.1016/j.tig.2005.09.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/16/2005] [Accepted: 09/28/2005] [Indexed: 12/30/2022]
Abstract
Building on the model of Russell and Hall for the emergence of life at a warm submarine hydrothermal vent, we suggest that, within a hydrothermally formed system of contiguous iron-sulfide (FeS) compartments, populations of virus-like RNA molecules, which eventually encoded one or a few proteins each, became the agents of both variation and selection. The initial darwinian selection was for molecular self-replication. Combinatorial sorting of genetic elements among compartments would have resulted in preferred proliferation and selection of increasingly complex molecular ensembles--those compartment contents that achieved replication advantages. The last universal common ancestor (LUCA) we propose was not free-living but an inorganically housed assemblage of expressed and replicable genetic elements. The evolution of the enzymatic systems for (i) DNA replication; and (ii) membrane and cell wall biosynthesis, enabled independent escape of the first archaebacterial and eubacterial cells from their hydrothermal hatchery, within which the LUCA itself remained confined.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
20
|
Brosius J. Echoes from the past--are we still in an RNP world? Cytogenet Genome Res 2005; 110:8-24. [PMID: 16093654 DOI: 10.1159/000084934] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/04/2004] [Indexed: 11/19/2022] Open
Abstract
Availability of the human genome sequence and those of other species is unmeasured in their value for a comprehensive understanding of the architecture, function and evolution of genomes and cells. Various mechanisms keep genomes in flux and generate intra- and interspecies variation. The conversion of RNA modules into DNA and their more or less random integration into chromosomes (retroposition) is in many lineages including our own the most pervasive and perhaps the most enigmatic. The proclivity of such events in extant multicellular eukaryotes, even in more recent evolutionary times, gives the impression that the transition period from the RNP (ribonucleoprotein) world to the emergence of modern cells, where DNA became the predominant carrier of genetic information, has lasted billions of years and is an endlessly drawn-out process rather than the punctuated event one might expect. Apart from the impact of such RNA-mediated processes as retroposition, the role of RNA in a wide variety of cellular functions has only recently become more widely appreciated.
Collapse
Affiliation(s)
- J Brosius
- Institute of Experimental Pathology, ZMBE, University of Munster, Munster, Germany.
| |
Collapse
|
21
|
Cañete-Soler R, Reddy KS, Tolan DR, Zhai J. Aldolases a and C are ribonucleolytic components of a neuronal complex that regulates the stability of the light-neurofilament mRNA. J Neurosci 2005; 25:4353-64. [PMID: 15858061 PMCID: PMC6725117 DOI: 10.1523/jneurosci.0885-05.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/16/2005] [Accepted: 03/22/2005] [Indexed: 01/26/2023] Open
Abstract
A 68 nucleotide segment of the light neurofilament (NF-L) mRNA, spanning the translation termination signal, participates in regulating the stability of the transcript in vivo. Aldolases A and C, but not B, interact specifically with this segment of the transcript in vitro. Aldolases A and C are glycolytic enzymes expressed in neural cells, and their mRNA binding activity represents a novel function of these isozymes. This unsuspected new activity was first uncovered by Northwestern blotting of a brainstem/spinal cord cDNA library. It was confirmed by two-dimensional fractionation of mouse brain cytosol followed by Northwestern hybridization and protein sequencing. Both neuronal aldolases interact specifically with the NF-L but not the heavy neurofilament mRNA, and their binding to the transcript excludes the poly(A)-binding protein (PABP) from the complex. Constitutive ectopic expression of aldolases A and C accelerates the decay of a neurofilament transgene (NF-L) driven by a tetracycline inducible system. In contrast, mutant transgenes lacking mRNA sequence for aldolase binding are stabilized. Our findings strongly suggest that aldolases A and C are regulatory components of a light neurofilament mRNA complex that modulates the stability of NF-L mRNA. This modulation likely involves endonucleolytic cleavage and a competing interaction with the PABP. Interactions of aldolases A and C in NF-L expression may be linked to regulatory pathways that maintain the highly asymmetrical form and function of large neurons.
Collapse
Affiliation(s)
- Rafaela Cañete-Soler
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19103, USA.
| | | | | | | |
Collapse
|
22
|
Chen W, Liu M, Cheng G, Yan W, Fei L, Zheng Z. RNA silencing: A remarkable parallel to protein-based immune systems in vertebrates? FEBS Lett 2005; 579:2267-72. [PMID: 15848156 DOI: 10.1016/j.febslet.2005.03.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 03/24/2005] [Accepted: 03/25/2005] [Indexed: 12/26/2022]
Abstract
Sequence-specific gene silencing by double-strand RNA has been observed in many eukaryotes. Accumulating data suggest that it is the major antiviral defense mechanism in plants and invertebrates. The discovery that this cellular mechanism is also highly conserved though somewhat impaired in mammals has stimulated debate about the evolution of antiviral systems. Here we suggest that the existence of the interferon response as an evolutionary intermediate could account for both the relative decline of RNA silencing and the development of protein-based immune systems in vertebrates. In addition, we emphasize the opportunities presented by RNA silencing and the deeper understanding of vertebrate antiviral systems that is needed.
Collapse
Affiliation(s)
- Weizao Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
A series of Amino Acid Assessment Workshops (AAAWs) are being organized and conducted to bring together experts in amino acid nutrition, metabolism, cell and molecular biology, toxicology, and regulation/policy with the eventual goal to establish a paradigm for the characterization of risks associated with ingestion of specific intakes of amino acids by humans. In this brief introductory article, I present the rationale behind these AAAWs, which basically emerges from the fact that there is little systematic information about the adverse effects and the pathophysiological mechanisms of excessive intakes of single amino acids or of mixtures of amino acids in human subjects. This 3rd AAAW extends, as well as builds upon, the information collected at the 1st and 2nd AAAWs. The previous two workshops focused attention largely on the metabolism, mechanism of action, and functions of amino acids. This 3rd AAAW will focus particular attention on intakes needed to meet physiological requirements and above, host and diet factors that affect these needs and responses, as well as variation in responses to and levels of intake of amino acids among individuals. In this context, the overall objective is to establish the science and knowledge base required for use in determining and/or predicting the upper level of the safe range of intake of specific amino acids under various host, agent (diet), and environmental conditions.
Collapse
Affiliation(s)
- Vernon R Young
- Laboratory of Human Nutrition, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Abstract
For the first time during evolution of life on this planet, a species has acquired the ability to direct its own genetic destiny. Following 200,000 years of evolution, modern man now has the technologies not only to eradicate genetic disease but also to prolong life and enhance desired physical and mental traits. These technologies include preimplantation diagnosis, cloning, and gene therapy in the germline on native chromosomes or by adding artificial ones. At first glance, we should all be in favor of eliminating genetic diseases and enhancing genetic traits. Evolutionary considerations, however, uncover hidden dangers and suggest caution against the total embracement of such actions. The first major concern is that the genome will never be a completely reliable crystal ball for predicting human phenotypes. This is especially true for predictions concerning the performance of alleles in future generations whose populations might be subjected to different environmental and social challenges. The second, and perhaps more important, concern is that the end result of germline intervention and genetic enhancement will likely lead to the impoverishment of gene variants in the human population and deprive us of one of our most valued assets for survival in the future, our genetic diversity.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology, ZMBE, University of Münster, Von-Esmarch-Str. 56, Münster, Germany.
| |
Collapse
|
25
|
Brosius J. The contribution of RNAs and retroposition to evolutionary novelties. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|