1
|
Tripathi JN, Ntui VO, Tripathi L. Precision genetics tools for genetic improvement of banana. THE PLANT GENOME 2024; 17:e20416. [PMID: 38012108 DOI: 10.1002/tpg2.20416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Banana is an important food security crop for millions of people in the tropics but it faces challenges from diseases and pests. Traditional breeding methods have limitations, prompting the exploration of precision genetic tools like genetic modification and genome editing. Extensive efforts using transgenic approaches have been made to develop improved banana varieties with resistance to banana Xanthomonas wilt, Fusarium wilt, and nematodes. However, these efforts should be extended for other pests, diseases, and abiotic stresses. The commercialization of transgenic crops still faces continuous challenges with regulatory and public acceptance. Genome editing, particularly CRISPR/Cas, offers precise modifications to the banana genome and has been successfully applied in the improvement of banana. Targeting specific genes can contribute to the development of improved banana varieties with enhanced resistance to various biotic and abiotic constraints. This review discusses recent advances in banana improvement achieved through genetic modification and genome editing.
Collapse
Affiliation(s)
| | | | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| |
Collapse
|
2
|
Chang H, Chen YT, Huang HE, Ger MJ. Overexpressing plant ferredoxin-like protein enhances photosynthetic efficiency and carbohydrates accumulation in Phalaenopsis. Transgenic Res 2023; 32:547-560. [PMID: 37851307 DOI: 10.1007/s11248-023-00370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Crassulacean acid metabolism (CAM) is one of three major models of carbon dioxide assimilation pathway with better water-use efficiency and slower photosynthetic efficiency in photosynthesis. Previous studies indicated that the gene of sweet pepper plant ferredoxin-like protein (PFLP) shows high homology to the ferredoxin-1(Fd-1) family that belongs to photosynthetic type Fd and involves in photosystem I. It is speculated that overexpressing pflp in the transgenic plant may enhance photosynthetic efficiency through the electron transport chain (ETC). To reveal the function of PFLP in photosynthetic efficiency, pflp transgenic Phalaenopsis, a CAM plant, was generated to analyze photosynthetic markers. Transgenic plants exhibited 1.2-folds of electron transport rate than that of wild type (WT), and higher CO2 assimilation rates up to 1.6 and 1.5-folds samples at 4 pm and 10 pm respectively. Enzyme activity of phosphoenolpyruvate carboxylase (PEPC) was increased to 5.9-folds in Phase III, and NAD+-linked malic enzyme (NAD+-ME) activity increased 1.4-folds in Phase IV in transgenic plants. The photosynthesis products were analyzed between transgenic plants and WT. Soluble sugars contents such as glucose, fructose, and sucrose were found to significantly increase to 1.2, 1.8, and 1.3-folds higher in transgenic plants. The starch grains were also accumulated up to 1.4-folds in transgenic plants than that of WT. These results indicated that overexpressing pflp in transgenic plants increases carbohydrates accumulation by enhancing electron transport flow during photosynthesis. This is the first evidence for the PFLP function in CAM plants. Taken altogether, we suggest that pflp is an applicable gene for agriculture application that enhances electron transport chain efficiency during photosynthesis.
Collapse
Affiliation(s)
- Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
3
|
Bao X, Hu Y, Li Y, Chen X, Shang H, Hu X. The interaction of two Puccinia striiformis f. sp. tritici effectors modulates high-temperature seedling-plant resistance in wheat. MOLECULAR PLANT PATHOLOGY 2023; 24:1522-1534. [PMID: 37786323 PMCID: PMC10632793 DOI: 10.1111/mpp.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Wheat cultivar Xiaoyan 6 (XY6) has high-temperature seedling-plant (HTSP) resistance to Puccinia striiformis f. sp. tritici (Pst). However, the molecular mechanism of Pst effectors involved in HTSP resistance remains unclear. In this study, we determined the interaction between two Pst effectors, PstCEP1 and PSTG_11208, through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and pull-down assays. Transient overexpression of PSTG_11208 enhanced HTSP resistance in different temperature treatments. The interaction between PstCEP1 and PSTG_11208 inhibited the resistance enhancement by PSTG_11208. Furthermore, the wheat apoplastic thaumatin-like protein 1 (TaTLP1) appeared to recognize Pst invasion by interacting with PSTG_11208 and initiate the downstream defence response by the pathogenesis-related protein TaPR1. Silencing of TaTLP1 and TaPR1 separately or simultaneously reduced HTSP resistance to Pst in XY6. Moreover, we found that PstCEP1 targeted wheat ferredoxin 1 (TaFd1), a homologous protein of rice OsFd1. Silencing of TaFd1 affected the stability of photosynthesis in wheat plants, resulting in chlorosis on the leaves and reducing HTSP resistance. Our findings revealed the synergistic mechanism of effector proteins in the process of pathogen infection.
Collapse
Affiliation(s)
- Xiyue Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yangshan Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Yuxiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant PathologyWashington State UniversityPullmanWashingtonUSA
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
4
|
Liu F, Sun X, Wang L, Zhou K, Yao Q, Zhan RL. Transcriptomic and proteomic analyses of Mangifera indica in response to Xanthomonas critis pv. mangiferaeindicae. Front Microbiol 2023; 14:1220101. [PMID: 37469435 PMCID: PMC10352610 DOI: 10.3389/fmicb.2023.1220101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Mango is an important tropical fruit with the reputation of "Tropical Fruit King." It is widely cultivated in tropical and subtropical regions. Mango bacterial leaf spot, which is caused by Xanthomonas critis pv. mangiferaeindicae (Xcm), poses a great threat to the development of mango planting industry. In this study, we used RNA sequencing and data-independent acquisition techniques to compare the transcriptome and proteome of the highly resistant cultivar "Renong No.1" (RN) and the highly susceptible cultivar "Keitt" (KT) in response to Xcm infection at different stages (0, 2, and 6 days). A total of 14,397 differentially expressed genes (DEGs) were identified in the transcriptome of the two varieties, and 4,400 and 8,926 genes were differentially expressed in RN and KT, respectively. Among them, 217 DEGs were related to plant hormone signaling pathway, and 202 were involved in the maintenance of cellular redox homeostasis. A total of 3,438 differentially expressed proteins (DEPs) were identified in the proteome of the two varieties. Exactly 1,542 and 1,700 DEPs were detected in RN and KT, respectively. In addition, 39 DEPs were related to plant hormone signaling pathway, whereas 68 were involved in the maintenance of cellular redox homeostasis. Through cross-validation of the two omics, 1,470 genes were found to be expressed in both groups, and a large number of glutathione metabolism-related genes, such as HSP26-A, G6PD4, and GPX2, were up-regulated in both omics. Peroxisome-related genes, such as LACS6, LACS9, PED1, GLO4, and HACL, were up-regulated or down-regulated in both omics. ABCB11, SAPK2, MYC2, TAG7, PYL1, and other genes related to indole-3-acetic acid and abscisic acid signal transduction and plant-pathogen interaction were up-regulated or down-regulated in both omics. We also used weighted gene co-expression network analysis to combine physiological and biochemical data (superoxide dismutase and catalase activity changes) with transcriptome and proteome data and finally identified three hub genes/proteins (SAG113, SRK2A, and ABCB1) that play an important role in plant hormone signal transduction. This work was the first study of gene/protein changes in resistant and susceptible mango varieties, and its results improved our understanding of the molecular mechanism of mango resistance to Xcm.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Xin Sun
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Lulu Wang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Kaibing Zhou
- College of Horticulture, Hainan University, Haikou, China
| | - Quansheng Yao
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Ru-lin Zhan
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Huang HE, Ho MH, Chang H, Chao HY, Ger MJ. Overexpression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:136-146. [PMID: 32750653 DOI: 10.1016/j.plaphy.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 05/02/2023]
Abstract
High-salinity stress is one of the major limiting factors on crop productivity. Physiological strategies against high-salinity stress include generation of reactive oxygen species (ROS), induction of stress-related genes expression, accumulation of abscisic acid (ABA) and up-regulation of antiporters. ROS are metabolism by-products and involved in signal transduction pathway. Constitutive expression of plant ferrodoxin-like protein (PFLP) gene enhances pathogen-resistance activities and root-hair growth through promoting ROS generation. However, the function of PFLP in abiotic stress responses is unclear. In this study, PFLP-1 and PFLP-2-transgenic rice plants were generated to elucidate the role of PFLP under salinity stress. PFLP overexpression significantly increased salt tolerance in PFLP-transgenic rice plants compared with non-transgenic plants (Oryza sativa japonica cv. Tainung 67, designated as TNG67). In high-salinity conditions, PFLP-transgenic plants exhibited earlier ROS production, higher antioxidant enzyme activities, higher ABA accumulation, up-regulated expression of stress-related genes (OsRBOHa, Cu/Zn SOD, OsAPX, OsNCED2, OsSOS1, OsCIPK24, OsCBL4, and OsNHX2), and leaf sodium ion content was lower compared with TNG67 plant. In addition, transgenic lines maintained electron transport rates and contained lower malondialdhyde (MDA) content than TNG67 plant did under salt-stress conditions. Overall results indicated salinity tolerance was improved by PFLP overexpression in transgenic rice plant. The PFLP gene is a potential candidate for improving salinity tolerance for valuable agricultural crops.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan.
| | - Mei-Hsuan Ho
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
| | - Hsien-Yu Chao
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
6
|
Hu Y, Zhong S, Zhang M, Liang Y, Gong G, Chang X, Tan F, Yang H, Qiu X, Luo L, Luo P. Potential Role of Photosynthesis in the Regulation of Reactive Oxygen Species and Defence Responses to Blumeria graminis f. sp. tritici in Wheat. Int J Mol Sci 2020; 21:ijms21165767. [PMID: 32796723 PMCID: PMC7460852 DOI: 10.3390/ijms21165767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
Photosynthesis is not only a primary generator of reactive oxygen species (ROS) but also a component of plant defence. To determine the relationships among photosynthesis, ROS, and defence responses to powdery mildew in wheat, we compared the responses of the Pm40-expressing wheat line L658 and its susceptible sister line L958 at 0, 6, 12, 24, 48, and 72 h post-inoculation (hpi) with powdery mildew via analyses of transcriptomes, cytology, antioxidant activities, photosynthesis, and chlorophyll fluorescence parameters. The results showed that H2O2 accumulation in L658 was significantly greater than that in L958 at 6 and 48 hpi, and the enzymes activity and transcripts expression of peroxidase and catalase were suppressed in L658 compared with L958. In addition, the inhibition of photosynthesis in L658 paralleled the global downregulation of photosynthesis-related genes. Furthermore, the expression of the salicylic acid-related genes non-expressor of pathogenesis related genes 1 (NPR1), pathogenesis-related 1 (PR1), and pathogenesis-related 5 (PR5) was upregulated, while the expression of jasmonic acid- and ethylene-related genes was inhibited in L658 compared with L958. In conclusion, the downregulation of photosynthesis-related genes likely led to a decline in photosynthesis, which may be combined with the inhibition of peroxidase (POD) and catalase (CAT) to generate two stages of H2O2 accumulation. The high level of H2O2, salicylic acid and PR1 and PR5 in L658 possible initiated the hypersensitive response.
Collapse
Affiliation(s)
- Yuting Hu
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
- College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (X.Q.); (L.L.)
| | - Shengfu Zhong
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Min Zhang
- College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (X.Q.); (L.L.)
- Correspondence: (M.Z.); (P.L.)
| | - Yinping Liang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Guoshu Gong
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Xiaoli Chang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Feiquan Tan
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Huai Yang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Xiaoyan Qiu
- College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (X.Q.); (L.L.)
| | - Liya Luo
- College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (X.Q.); (L.L.)
| | - Peigao Luo
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
- Correspondence: (M.Z.); (P.L.)
| |
Collapse
|
7
|
van Esse HP, Reuber TL, van der Does D. Genetic modification to improve disease resistance in crops. THE NEW PHYTOLOGIST 2020; 225:70-86. [PMID: 31135961 PMCID: PMC6916320 DOI: 10.1111/nph.15967] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Plant pathogens are a significant challenge in agriculture despite our best efforts to combat them. One of the most effective and sustainable ways to manage plant pathogens is to use genetic modification (GM) and genome editing, expanding the breeder's toolkit. For use in the field, these solutions must be efficacious, with no negative effect on plant agronomy, and deployed thoughtfully. They must also not introduce a potential allergen or toxin. Expensive regulation of biotech crops is prohibitive for local solutions. With 11-30% average global yield losses and greater local impacts, tackling plant pathogens is an ethical imperative. We need to increase world food production by at least 60% using the same amount of land, by 2050. The time to act is now and we cannot afford to ignore the new solutions that GM provides to manage plant pathogens.
Collapse
Affiliation(s)
- H. Peter van Esse
- 2Blades Foundation1630 Chicago AvenueEvanstonIL 60201USA
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNR4 7UHUK
| | | | | |
Collapse
|
8
|
Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, Saxena A. Deployment of Stacked Antimicrobial Genes in Banana for Stable Tolerance Against Fusarium oxysporum f.sp. cubense Through Genetic Transformation. Mol Biotechnol 2019; 62:8-17. [PMID: 31667713 DOI: 10.1007/s12033-019-00219-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enhanced tolerance to wilt disease (Fusarium oxysporum f.sp. cubense) was achieved in banana variety Rasthali (AAB) by the transformation of embryogenic cells with two antimicrobial genes viz., Ace-AMP1 and pflp using Agrobacterium mediated transformation. The transgene copy numbers in stable transformants were confirmed by Southern analysis. The expression of stacked genes in the transgenic lines was validated by RT-PCR as well as Northern analysis. Bioassay using Foc race 1 in pot culture experiments demonstrated enhanced tolerance after 180 days of planting. Two independent transformants showed 10-20% Vascular Discoloration Index compared to untransformed banana cv. Rasthali (96%). The stacked lines revealed higher activity of Super Oxide Dismutase and Peroxidase compared to untransformed control which depicted higher tolerance to oxidative stress caused by Foc infection.
Collapse
Affiliation(s)
- C Sunisha
- Department of Biotechnology and Biochemistry, Centre for Post-Graduate Studies, Jain University, Bangalore, India
| | - H D Sowmya
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089, India
| | - T R Usharani
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089, India.
| | - M Umesha
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089, India
| | - H R Gopalkrishna
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089, India
| | - Arvindkumar Saxena
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089, India
| |
Collapse
|
9
|
Merga IF, Tripathi L, Hvoslef-Eide AK, Gebre E. Application of Genetic Engineering for Control of Bacterial Wilt Disease of Enset, Ethiopia's Sustainability Crop. FRONTIERS IN PLANT SCIENCE 2019; 10:133. [PMID: 30863414 PMCID: PMC6399475 DOI: 10.3389/fpls.2019.00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/28/2019] [Indexed: 05/05/2023]
Abstract
Enset (Ensete ventricosum (Welw.) Cheesman) is one of the Ethiopia's indigenous sustainability crops supporting the livelihoods of about 20 million people, mainly in the densely populated South and Southwestern parts of the country. Enset serves as a food security crop for humans, animal feed, and source of fiber for the producers. The production of enset has been constrained by plant pests, diseases, and abiotic factors. Among these constraints, bacterial wilt disease has been the most important limiting factor for enset production since its outbreak five decades ago. There is no known bacterial wilt disease resistant genetic material in the enset genetic pool to transfer this trait to susceptible enset varieties through conventional breeding. Moreover, the absence of effective chemicals against the disease has left farmers without means to combat bacterial wilt for decades. Genetic engineering has been the alternative approach to develop disease resistant plant materials in other crops where traditional breeding tools are ineffective. This review discusses enset cultivation and recent developments addressing the control of bacterial wilt disease in enset and related crops like banana to help design effective strategies.
Collapse
Affiliation(s)
- Ibsa Fite Merga
- International Institute of Tropical Agriculture, Nairobi, Kenya
- Norwegian University of Life Sciences, Ås, Norway
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | | | - Endale Gebre
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| |
Collapse
|
10
|
Hong CY, Zheng JL, Chen TY, Chao HR, Lin YH. PFLP-Intensified Disease Resistance Against Bacterial Soft Rot Through the MAPK Pathway in PAMP-Triggered Immunity. PHYTOPATHOLOGY 2018; 108:1467-1474. [PMID: 29975159 DOI: 10.1094/phyto-03-18-0100-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial soft rot is a devastating disease affecting a variety of vegetable crops worldwide. One strategy for controlling this disease could be the ectopic expression of the plant ferredoxin-like protein (pflp) gene. PFLP was previously shown to intensify pathogen-associated molecular pattern-triggered immunity (PTI), an immune response triggered, for example, by the flagellin epitope flg22. To gain further insight into how PFLP intensifies PTI, flg22 was used as an elicitor in Arabidopsis thaliana. First, PFLP was confirmed to intensify the rapid generation of H2O2, callose deposition, and the hypersensitive response when coinfiltrated with flg22. This response correlated with increased expression of the FLG22-induced receptor kinase 1 gene, which is part of the mitogen-activated protein kinase (MAPK) pathway. Although the increased response to flg22 alone did not depend on the MAPK pathway genes MEKK1, MKK5, and MPK6, the protective effect of PFLP decreased when plants mutated in these genes were inoculated with Pectobacterium carotovorum subsp. carotovorum. Furthermore, expression of PR1 and PDF1.2 also increased upon treatment with flg22 in the presence of PFLP. Taken together, these results suggest that activation of the MAPK pathway contributes to the increased resistance to bacterial soft rot observed in plants treated with PFLP.
Collapse
Affiliation(s)
- Chuan-Yu Hong
- First, second, third, and fifth authors: Department of Plant Medicine, and fourth author: Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jing-Lin Zheng
- First, second, third, and fifth authors: Department of Plant Medicine, and fourth author: Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tzu-Yi Chen
- First, second, third, and fifth authors: Department of Plant Medicine, and fourth author: Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - How-Ran Chao
- First, second, third, and fifth authors: Department of Plant Medicine, and fourth author: Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Hsien Lin
- First, second, third, and fifth authors: Department of Plant Medicine, and fourth author: Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
11
|
Hou H, Hu Y, Wang Q, Xu X, Qian Y, Zhou X. Gene Expression Profiling Shows That NbFDN1 Is Involved in Modulating the Hypersensitive Response-Like Cell Death Induced by the Oat dwarf virus RepA Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1006-1020. [PMID: 29649964 DOI: 10.1094/mpmi-12-17-0291-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we used high-throughput deep nucleotide sequencing to characterize the global transcriptional response of Nicotiana benthamiana plants to transient expression of the RepA protein from Oat dwarf virus (ODV). We identified 7,878 significantly differentially expressed genes (DEG) that mapped to 125 pathways, suggesting that comprehensive networks are involved in regulation of RepA-induced cell death. Of the 202 DEG associated with photosynthesis, expression of 195 was found to be downregulated, indicating a significant inhibition of photosynthesis in response to RepA expression, which is associated with chloroplast disruption and physiological changes. We focused our analysis on NbFDN1, a member of the ferredoxin protein family that participates in the chloroplast electron transport chain performing oxygenic photosynthesis, which was identified to directly interact with NbTsip1. We separately knocked down the expression of NbFDN1 and NbTsip1 using virus-induced gene silencing, and found that NbFDN1 silencing speeded up the development of RepA-induced cell death, unlike NbTsip1 silencing, which showed an opposite effect on RepA-induced response. Further study showed increased H2O2 accumulation and a negative correlation between the transcripts of NbFDN1 and NbTsip1 in NbFDN1-silenced plants. Hence, we speculate that NbFDN1 has an effect on RepA-induced hypersensitive response-like response by modulating NbTsip1 transcription as well as H2O2 production.
Collapse
Affiliation(s)
- Huwei Hou
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ya Hu
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Qian Wang
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Xiongbiao Xu
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Yajuan Qian
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Xueping Zhou
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
- 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
12
|
Wang M, Rui L, Yan H, Shi H, Zhao W, Lin JE, Zhang K, Blakeslee JJ, Mackey D, Tang D, Wei Z, Wang G. The major leaf ferredoxin Fd2 regulates plant innate immunity in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2018; 19:1377-1390. [PMID: 28976113 PMCID: PMC6637997 DOI: 10.1111/mpp.12621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/30/2017] [Accepted: 09/29/2017] [Indexed: 05/06/2023]
Abstract
Ferredoxins, the major distributors for electrons to various acceptor systems in plastids, contribute to redox regulation and antioxidant defence in plants. However, their function in plant immunity is not fully understood. In this study, we show that the expression of the major leaf ferredoxin gene Fd2 is suppressed by Pseudomonas syringae pv. tomato (Pst) DC3000 infection, and that knockout of Fd2 (Fd2-KO) in Arabidopsis increases the plant's susceptibility to both Pst DC3000 and Golovinomyces cichoracearum. On Pst DC3000 infection, the Fd2-KO mutant accumulates increased levels of jasmonic acid and displays compromised salicylic acid-related immune responses. Fd2-KO also shows defects in the accumulation of reactive oxygen species induced by pathogen-associated molecular pattern-triggered immunity. However, Fd2-KO shows enhanced R-protein-mediated resistance to Pst DC3000/AvrRpt2 infection, suggesting that Fd2 plays a negative role in effector-triggered immunity. Furthermore, Fd2 interacts with FIBRILLIN4 (FIB4), a harpin-binding protein localized in chloroplasts. Interestingly, Fd2, but not FIB4, localizes to stromules that extend from chloroplasts. Taken together, our results demonstrate that Fd2 plays an important role in plant immunity.
Collapse
Affiliation(s)
- Mo Wang
- Department of Plant PathologyOhio State UniversityColumbusOH 43210USA
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- Fujian University Key Laboratory for Plant–Microbe InteractionFujian Agriculture and Forestry UniversityFuzhou 350002China
| | - Lu Rui
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsFujian Agriculture and Forestry UniversityFuzhou 350002China
| | - Haojie Yan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing 100101China
| | - Hua Shi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsFujian Agriculture and Forestry UniversityFuzhou 350002China
| | - Wanying Zhao
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
| | - Jinshan Ella Lin
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
- Department of Horticulture and Crop SciencesOARDC Metabolite Analysis Cluster (OMAC)WoosterOH 44691USA
| | - Kai Zhang
- Department of Plant PathologyOhio State UniversityColumbusOH 43210USA
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing 100193China
| | - Joshua J. Blakeslee
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
- Department of Horticulture and Crop SciencesOARDC Metabolite Analysis Cluster (OMAC)WoosterOH 44691USA
| | - David Mackey
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
| | - Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsFujian Agriculture and Forestry UniversityFuzhou 350002China
| | | | - Guo‐Liang Wang
- Department of Plant PathologyOhio State UniversityColumbusOH 43210USA
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing 100193China
| |
Collapse
|
13
|
Jin Y, Goodman RE, Tetteh AO, Lu M, Tripathi L. Bioinformatics analysis to assess potential risks of allergenicity and toxicity of HRAP and PFLP proteins in genetically modified bananas resistant to Xanthomonas wilt disease. Food Chem Toxicol 2017; 109:81-89. [PMID: 28830835 DOI: 10.1016/j.fct.2017.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 11/17/2022]
Abstract
Banana Xanthomonas wilt (BXW) disease threatens banana production and food security throughout East Africa. Natural resistance is lacking among common cultivars. Genetically modified (GM) bananas resistant to BXW disease were developed by inserting the hypersensitive response-assisting protein (Hrap) or/and the plant ferredoxin-like protein (Pflp) gene(s) from sweet pepper (Capsicum annuum). Several of these GM banana events showed 100% resistance to BXW disease under field conditions in Uganda. The current study evaluated the potential allergenicity and toxicity of the expressed proteins HRAP and PFLP based on evaluation of published information on the history of safe use of the natural source of the proteins as well as established bioinformatics sequence comparison methods to known allergens (www.AllergenOnline.org and NCBI Protein) and toxins (NCBI Protein). The results did not identify potential risks of allergy and toxicity to either HRAP or PFLP proteins expressed in the GM bananas that might suggest potential health risks to humans. We recognize that additional tests including stability of these proteins in pepsin assay, nutrient analysis and possibly an acute rodent toxicity assay may be required by national regulatory authorities.
Collapse
Affiliation(s)
- Yuan Jin
- University of Nebraska-Lincoln, Food Allergy Research and Resource Program, 1901 North 21st Street, P.O. Box 886207, Lincoln, NE 68588-6207, USA
| | - Richard E Goodman
- University of Nebraska-Lincoln, Food Allergy Research and Resource Program, 1901 North 21st Street, P.O. Box 886207, Lincoln, NE 68588-6207, USA
| | - Afua O Tetteh
- University of Nebraska-Lincoln, Food Allergy Research and Resource Program, 1901 North 21st Street, P.O. Box 886207, Lincoln, NE 68588-6207, USA
| | - Mei Lu
- University of Nebraska-Lincoln, Food Allergy Research and Resource Program, 1901 North 21st Street, P.O. Box 886207, Lincoln, NE 68588-6207, USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture, P.O. Box 30709, Nairobi, Kenya.
| |
Collapse
|
14
|
Chang H, Huang HE, Cheng CF, Ho MH, Ger MJ. Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa). Transgenic Res 2017; 26:279-289. [PMID: 28054169 DOI: 10.1007/s11248-016-0005-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
The plant ferredoxin-like protein (PFLP) gene, cloned from sweet peppers predicted as an electron carrier in photosynthesis, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Most of pflp related studies focused on anti-pathogenic effects, while less understanding for the effects in photosynthesis with physiological aspects, such as photosynthesis rate, and levels of carbohydrate metabolites. This project focuses on the effects of pflp overexpression on photosynthesis by physiological evaluations of carbon assimilation with significant higher levels of carbohydrates with higher photosynthesis efficiency. In this report, two independent transgenic lines of rice plants (designated as pflp-1 and pflp-2) were generated from non-transgenic TNG67 rice plant (WT). Both transgenic pflp rice plants exhibited enhanced photosynthesis efficiency, and gas exchange rates of photosynthesis were 1.3- and 1.2-fold higher for pflp-1 and pflp-2 than WT respectively. Significantly higher electron transport rates of pflp rice plants were observed. Moreover, photosynthetic products, such as fructose, glucose, sucrose and starch contents of pflp transgenic lines were increased accordingly. Molecular evidences of carbohydrate metabolism related genes activities (osHXK5, osHXK6, osAGPL3, osAGPS2α, osSPS, ospFBPase, oscFBPase, and osSBPase) in transgenic lines were higher than those of WT. For performance of crop production, 1000-grain weight for pflp-1 and pflp-2 rice plants were 52.9 and 41.1 g that were both significantly higher than 31.6 g for WT, and panicles weights were 1.4- and 1.2-fold higher than WT. Panicle number, tiller number per plants for pflp rice plants were all significantly higher compared with those of WT where there was no significant difference observed between two pflp rice plants. Taken altogether; this study demonstrated that constitutive pflp expression can improve rice production by enhancing the capacity of photosynthetic carbon assimilation.
Collapse
Affiliation(s)
- Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
| | - Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95092, Taiwan
| | - Chin-Fu Cheng
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Mei-Hsuan Ho
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
15
|
Anderson JA, Gipmans M, Hurst S, Layton R, Nehra N, Pickett J, Shah DM, Souza TLPO, Tripathi L. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:383-393. [PMID: 26785813 DOI: 10.1021/acs.jafc.5b04543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.
Collapse
Affiliation(s)
| | - Martijn Gipmans
- BASF Bioscience Research, c/o metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Susan Hurst
- Arcadia Biosciences, Seattle, Washington 98119, United States
| | | | - Narender Nehra
- Institute for International Crop Improvement, Donald Danforth Plant Science Center , St. Louis, Missouri 63132, United States
| | - John Pickett
- Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Dilip M Shah
- Donald Danforth Plant Science Center , St. Louis, Missouri 63132, United States
| | - Thiago Lívio P O Souza
- Embrapa Arroz e Feijão, Rod. GO-462, km 12, Santo Antônio de Goiás, GO 75.375-000, Brazil
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| |
Collapse
|
16
|
Kumar A, Bimolata W, Kannan M, Kirti PB, Qureshi IA, Ghazi IA. Comparative proteomics reveals differential induction of both biotic and abiotic stress response associated proteins in rice during Xanthomonas oryzae pv. oryzae infection. Funct Integr Genomics 2015; 15:425-37. [PMID: 25648443 DOI: 10.1007/s10142-014-0431-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 12/13/2014] [Accepted: 12/25/2014] [Indexed: 01/16/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease in rice and brutally affects the yield up to 50 % of total production. Here, we report a comparative proteomics analysis of total foliar protein isolated from infected rice leaves of susceptible Pusa Basmati 1 (PB1) and resistant Oryza longistaminata genotypes. Two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) approaches identified 29 protein spots encoding unique proteins from both the genotypes. Identified proteins belonged to a large number of biological and molecular functions related to biotic and abiotic stress proteins which are potentially involved during Xoo infection. Biotic and abiotic stress-related proteins were induced during Xoo infection, indicating the activation of common stress pathway during bacterial blight infection. Candidate genes conferring tolerance against bacterial blight, which include germin-like protein, putative r40c1, cyclin-dependent kinase C, Ent-isokaur-15-ene synthase and glutathione-dependent dehydroascorbate reductase 1 (GSH-DHAR1), were also induced, with germin-like proteins induced only in the resistant rice genotype O. longistaminata. Energy, metabolism and hypothetical proteins were common among both the genotypes. Further, host defence/stress-related proteins were mostly expressed in resistant genotype O. longistaminata, indicating possible co-evolution of the pathogen and the wild rice, O. longistaminata.
Collapse
Affiliation(s)
- Anirudh Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad, 500046, India
| | | | | | | | | | | |
Collapse
|
17
|
Lin YH, Huang LF, Hase T, Huang HE, Feng TY. Expression of plant ferredoxin-like protein (PFLP) enhances tolerance to heat stress in Arabidopsis thaliana. N Biotechnol 2014; 32:235-42. [PMID: 25527360 DOI: 10.1016/j.nbt.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/10/2014] [Accepted: 12/08/2014] [Indexed: 01/22/2023]
Abstract
Under adverse environments, plants produce reactive oxygen species (ROS), which can trigger cell death when their accumulation surpasses the antioxidant capacity of ROS scavenging systems. These systems function in chloroplasts mainly through the ascorbate-mediated water-water cycle, in which ascorbate is photoreduced by ferredoxin in the photosynthetic system. Our previous study showed that the fraction of the reduced form of ascorbate was increased in ferredoxin-transgenic Arabidopsis (CPF) plants which overexpressed plant ferredoxin-like protein (PFLP) in their chloroplasts. Thus, we hypothesized that expression of PFLP could alter the tolerance of plants to abiotic stresses through increasing reduced form of ascorbate. In this study, we found that two CPF lines exhibited lower mortality rates at five days, following two days of heat treatment. Compared to non-transgenic wild type (Col-0) plants, CPF plants exhibited decreased H2O2 content, MDA accumulation, and ion leakage after heat treatment. To confirm the efficacy of ferredoxin against heat stress in chloroplasts, we evaluated two RNA interference (RNAi) lines on two endogenous ferredoxin isoforms, Atfd1 or Atfd2, of Arabidopsis plants. Both lines not only decreased their amounts of ascorbate, but also exhibited adverse reactions following heat treatment. Based on these results, we conclude that expression of PFLP in chloroplasts can confer tolerance to heat stress. This tolerance might be associated with the increasing of ascorbate in plants.
Collapse
Affiliation(s)
- Yi-Hsien Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Tashiharu Hase
- Laboratory of Regulation of Biological Reactions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hsiang-En Huang
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Teng-Yung Feng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Ger MJ, Louh GY, Lin YH, Feng TY, Huang HE. Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2014; 15:892-906. [PMID: 24796566 PMCID: PMC6638834 DOI: 10.1111/mpp.12150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant ferredoxin-like protein (PFLP) is a photosynthesis-type ferredoxin (Fd) found in sweet pepper. It contains an iron-sulphur cluster that receives and delivers electrons between enzymes involved in many fundamental metabolic processes. It has been demonstrated that transgenic plants overexpressing PFLP show a high resistance to many bacterial pathogens, although the mechanism remains unclear. In this investigation, the PFLP gene was transferred into Arabidopsis and its defective derivatives, such as npr1 (nonexpresser of pathogenesis-related gene 1) and eds1 (enhanced disease susceptibility 1) mutants and NAHG-transgenic plants. These transgenic plants were then infected with the soft-rot bacterial pathogen Pectobacterium carotovorum subsp. carotovorum (Erwinia carotovora ssp. carotovora, ECC) to investigate the mechanism behind PFLP-mediated resistance. The results revealed that, instead of showing soft-rot symptoms, ECC activated hypersensitive response (HR)-associated events, such as the accumulation of hydrogen peroxide (H2 O2 ), electrical conductivity leakage and expression of the HR marker genes (ATHSR2 and ATHSR3) in PFLP-transgenic Arabidopsis. This PFLP-mediated resistance could be abolished by inhibitors, such as diphenylene iodonium (DPI), 1-l-trans-epoxysuccinyl-leucylamido-(4-guanidino)-butane (E64) and benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), but not by myriocin and fumonisin. The PFLP-transgenic plants were resistant to ECC, but not to its harpin mutant strain ECCAC5082. In the npr1 mutant and NAHG-transgenic Arabidopsis, but not in the eds1 mutant, overexpression of the PFLP gene increased resistance to ECC. Based on these results, we suggest that transgenic Arabidopsis contains high levels of ectopic PFLP; this may lead to the recognition of the harpin and to the activation of the HR and other resistance mechanisms, and is dependent on the protease-mediated pathway.
Collapse
Affiliation(s)
- Mang-Jye Ger
- Department of Life Science, National University of Kaohsiung, Kaohsiung, 811, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Coppola V, Coppola M, Rocco M, Digilio MC, D'Ambrosio C, Renzone G, Martinelli R, Scaloni A, Pennacchio F, Rao R, Corrado G. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomics 2013; 14:515. [PMID: 23895395 PMCID: PMC3733717 DOI: 10.1186/1471-2164-14-515] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/26/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Aphids are among the most destructive pests in temperate climates, causing significant damage on several crops including tomato. We carried out a transcriptomic and proteomic study to get insights into the molecular mechanisms and dynamics of the tomato response to the Macrosyphum euphorbiae aphid. RESULTS The time course analysis of aphid infestation indicated a complex, dynamic pattern of gene expression. Several biological functions were affected and genes related to the stress and defence response were the most represented. The Gene Ontology categories of the differentially expressed genes (899) and identified proteins (57) indicated that the tomato response is characterized by an increased oxidative stress accompanied by the production of proteins involved in the detoxification of oxygen radicals. Aphids elicit a defense reaction based on the cross-communication of different hormone-related signaling pathways such as those related to the salicylic acid (SA), jasmonic acid (JA), ethylene and brassinosteroids. Among them, the SA-signaling pathway and stress-responsive SA-dependent genes play a dominant role. Furthermore, tomato response is characterized by a reduced accumulation of photosynthetic proteins and a modification of the expression of various cell wall related genes. CONCLUSIONS Our work allowed a more comprehensive understanding of the signaling events and the defense dynamics of the tomato response to aphids in a compatible interaction and, based on experimental data, a model of the tomato-aphid molecular interaction was proposed. Considering the rapid advancement of tomato genomics, this information will be important for the development of new protection strategies.
Collapse
Affiliation(s)
- Valentina Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li W, Shao M, Zhong W, Yang J, Okada K, Yamane H, Zhang L, Wang G, Wang D, Xiao S, Chang S, Qian G, Liu F. Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice. PLoS One 2012; 7:e43914. [PMID: 22970151 PMCID: PMC3435380 DOI: 10.1371/journal.pone.0043914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022] Open
Abstract
Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo), Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo) protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2)O(2)) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2)O(2), silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens.
Collapse
Affiliation(s)
- Wenqi Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Min Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Weigong Zhong
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Lei Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Guang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Dong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Shanshan Xiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Shanshan Chang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
- * E-mail:
| |
Collapse
|
21
|
Jia MA, Li Y, Lei L, Di D, Miao H, Fan Z. Alteration of gene expression profile in maize infected with a double-stranded RNA fijivirus associated with symptom development. MOLECULAR PLANT PATHOLOGY 2012; 13:251-62. [PMID: 21955602 PMCID: PMC6638758 DOI: 10.1111/j.1364-3703.2011.00743.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Maize rough dwarf disease caused by Rice black-streaked dwarf virus (RBSDV) is a major viral disease in China. It has been suggested that the viral infection of plants might cause distinct disease symptoms through the inhibition or activation of host gene transcription. We scanned the gene expression profile of RBSDV-infected maize through oligomer-based microarrays to reveal possible expression changes associated with symptom development. Our results demonstrate that various resistance-related maize genes and cell wall- and development-related genes, such as those for cellulose synthesis, are among the genes whose expression is dramatically altered. These results could aid in research into new strategies to protect cereal crops against viruses, and reveal the molecular mechanisms of development of specific symptoms in rough dwarf-related diseases.
Collapse
Affiliation(s)
- Meng-Ao Jia
- State Key Laboratory of Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
22
|
Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK. Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res 2011; 21:855-65. [DOI: 10.1007/s11248-011-9574-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
|
23
|
Lin YH, Huang HE, Chen YR, Liao PL, Chen CL, Feng TY. C-terminal region of plant ferredoxin-like protein is required to enhance resistance to bacterial disease in Arabidopsis thaliana. PHYTOPATHOLOGY 2011; 101:741-749. [PMID: 21261469 DOI: 10.1094/phyto-08-10-0220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Protein phosphorylation is an important biological process associated with elicitor-induced defense responses in plants. In a previous report, we described how plant ferredoxin-like protein (PFLP) in transgenic plants enhances resistance to bacterial pathogens associated with the hypersensitive response (HR). PFLP possesses a putative casein kinase II phosphorylation (CK2P) site at the C-terminal in which phosphorylation occurs rapidly during defense response. However, the contribution of this site to the enhancement of disease resistance and the intensity of HR has not been clearly demonstrated. In this study, we generated two versions of truncated PFLP, PEC (extant CK2P site) and PDC (deleted CK2P site), and assessed their ability to trigger HR through harpin (HrpZ) derived from Pseudomonas syringae as well as their resistance to Ralstonia solanacearum. In an infiltration assay of HrpZ, PEC intensified harpin-mediated HR; however, PDC negated this effect. Transgenic plants expressing these versions indicate that nonphosphorylated PFLP loses its ability to induce HR or enhance disease resistance against R. solanacearum. Interestingly, the CK2P site of PFLP is required to induce the expression of the NADPH oxidase gene, AtrbohD, which is a reactive oxygen species producing enzyme. This was further confirmed by evaluating the HR on NADPH oxidase in mutants of Arabidopsis. As a result, we have concluded that the CK2P site is required for the phosphorylation of PFLP to enhance disease resistance.
Collapse
Affiliation(s)
- Yi-Hsien Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Shin LJ, Huang HE, Chang H, Lin YH, Feng TY, Ger MJ. Ectopic ferredoxin I protein promotes root hair growth through induction of reactive oxygen species in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:434-440. [PMID: 20828872 DOI: 10.1016/j.jplph.2010.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
Ferredoxin I (Fd-1) is a protein existing in green tissues as an electron carrier for photosynthesis. Reactive oxygen species (ROS) are generated from an over-accumulation of electrons in photosynthetic electron chains. In previous studies, plant ferredoxin-like protein (PFLP) transgenic plants could be made resistant to virulent pathogens, by inducing the generation of ROS. The generation of ROS is closely associated with root hair development, increasing with the elongation of root hairs. We propose that an ectopic expression of pflp may alter root hair development through the enhanced generation of ROS. In this report, Arabidopsis transformed with pflp was generated to determine the potential role of PFLP in root development. Transgenic Arabidopsis exhibited longer root hairs with a significant increase in endogenous H(2)O(2) compared with wild type. The growth of transgenic lines in root hairs was inhibited when treated with NADPH oxidase inhibitor. Results suggest that an over-expression of pflp had enhanced the accumulation of H(2)O(2) in the roots and further promoted the growth of root hairs. Transcriptional activities of root hair development-related and redox-regulated genes were mediated through increased levels of ROS, to alter the growth of transgenic lines in root hairs. In summary, we propose that an ectopic expression of pflp promotes root hair growth, resulting from an enhancement of ROS production.
Collapse
Affiliation(s)
- Lung-Jiun Shin
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Lin YH, Huang HE, Wu FS, Ger MJ, Liao PL, Chen YR, Tzeng KC, Feng TY. Plant ferredoxin-like protein (PFLP) outside chloroplast in Arabidopsis enhances disease resistance against bacterial pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:450-458. [PMID: 21802603 DOI: 10.1016/j.plantsci.2010.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 05/31/2023]
Abstract
Protection of crops against bacterial disease is an important issue in agricultural production. One of the strategies to lead plants become resistant against bacterial pathogens is employing a transgene, like plant ferredoxin-like protein (PFLP). PFLP is a photosynthetic type ferredoxin isolated from sweet pepper and contains a signal peptide for targeting towards chloroplasts. Our previous reports indicated that transgenic plants with this protein are more resistant against bacterial pathogens. However, this heterologous protein was visualized not only inside the chloroplasts, but also in the cytoplasm. In this article, we moved to study its heterologous expression in Arabidopsis by expressing the protein in chloroplast, apoplast and cytoplasm. This work was achieved by engineering a chloroplast target (CPF), an apoplast target (ESF), and cytoplasm target (DF) plants. The expression and subcellular localization of PFLP were analyzed by Western blot and immuno-staining by confocal microscopy, respectively. We tested the ability of the transgenic Arabidopsis for resistance to two Ralstonia solanacearum strains and their ability to increase the hypersensitive response (HR) triggered by harpin (HrpZ) from Pseudomonas syringae. The DF and ESF plants conferred resistance against bacterial wilt strains and increased HR by harpin, but no resistance found in the CPF plants. In addition, we determined the level of reduced ascorbate in all transgenic plants and further analyzed the expression of two NADPH-oxidase genes (AtrbohD and AtrbohF) in ESF plant. Among the transgenic Arabidopsis plants, ESF plants confer the highest resistance to bacterial pathogens and followed by DF plants. We concluded that PFLP enhances disease resistance in Arabidopsis when expressed in the apoplast or in cytoplasm but not when targeted into the chloroplast. This study provides a strategy for molecular breeding to improve resistance of crops against bacterial pathogens.
Collapse
Affiliation(s)
- Yi-Hsien Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH. Biotic stress globally downregulates photosynthesis genes. PLANT, CELL & ENVIRONMENT 2010; 33:1597-613. [PMID: 20444224 DOI: 10.1111/j.1365-3040.2010.02167.x] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To determine if damage to foliage by biotic agents, including arthropods, fungi, bacteria and viral pathogens, universally downregulates the expression of genes involved in photosynthesis, we compared transcriptome data from microarray experiments after twenty two different forms of biotic damage on eight different plant species. Transcript levels of photosynthesis light reaction, carbon reduction cycle and pigment synthesis genes decreased regardless of the type of biotic attack. The corresponding upregulation of genes coding for the synthesis of jasmonic acid and those involved in the responses to salicylic acid and ethylene suggest that the downregulation of photosynthesis-related genes was part of a defence response. Analysis of the sub-cellular targeting of co-expressed gene clusters revealed that the transcript levels of 84% of the genes that carry a chloroplast targeting peptide sequence decreased. The majority of these downregulated genes shared common regulatory elements, such as G-box (CACGTG), T-box (ACTTTG) and SORLIP (GCCAC) motifs. Strong convergence in the response of transcription suggests that the universal downregulation of photosynthesis-related gene expression is an adaptive response to biotic attack. We hypothesize that slow turnover of many photosynthetic proteins allows plants to invest resources in immediate defence needs without debilitating near term losses in photosynthetic capacity.
Collapse
Affiliation(s)
- Damla D Bilgin
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
27
|
Silencing of SlFTR-c, the catalytic subunit of ferredoxin:thioredoxin reductase, induces pathogenesis-related genes and pathogen resistance in tomato plants. Biochem Biophys Res Commun 2010; 399:750-4. [DOI: 10.1016/j.bbrc.2010.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 11/29/2022]
|
28
|
Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC PLANT BIOLOGY 2010; 10:67. [PMID: 20398293 PMCID: PMC3095341 DOI: 10.1186/1471-2229-10-67] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 04/15/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful. RESULTS Hpa1Xoo is a harpin protein from Xanthomonas oryzae pv. oryzae which induces the hypersensitive cell death in plants. When hpa1Xoo was transformed into the susceptible cotton line Z35 through Agrobacterium-mediated transformation, the transgenic cotton line (T-34) with an improved resistance to Verticillium dahliae was obtained. Cells of the transgenic T-34, when mixed with the conidia suspension of V. dahliae, had a higher tolerance to V. dahliae compared to cells of untransformed Z35. Cells of T-34 were more viable 12 h after mixing with V. dahliae conidia suspension. Immunocytological analysis showed that Hpa1Xoo, expressed in T-34, accumulated as clustered particles along the cell walls of T-34. In response to the infection caused by V. dahliae, the microscopic cell death and the generation of reactive oxygen intermediates were observed in leaves of T-34 and these responses were absent in leaves of Z35 inoculated with V. dahliae. Quantitative RT-PCR analysis indicated that five defense-related genes, ghAOX1, hin1, npr1, ghdhg-OMT, and hsr203J, were up-regulated in T-34 inoculated with V. dahliae. The up-regulations of these defense-relate genes were not observed or in a less extent in leaves of Z-35 after the inoculation. CONCLUSIONS Hpa1Xoo accumulates along the cell walls of the transgenic T-34, where it triggers the generation of H2O2 as an endogenous elicitor. T-34 is thus in a primed state, ready to protect the host from the pathogen. The results of this study suggest that the transformation of cotton with hpa1Xoo could be an effective approach for the development of cotton varieties with the improved resistance against soil-borne pathogens.
Collapse
Affiliation(s)
- Weiguo Miao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China
| | - Xiben Wang
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, R3T 2N9, Canada
| | - Ming Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Congfeng Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongwei Hu
- Biotechnology Institute of Zhejiang University, Hangzhou 310029, China
| | - Jinsheng Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Feng TY, Lin YH, Huang HE. Improvement of Agronomic Traits Using Different Isoforms of Ferredoxin for Plant Development and Disease Resistance. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2009. [DOI: 10.1201/9781420077070.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Venegas-Calerón M, Zambelli A, Ruiz-López N, Youssar L, León A, Garcés R, Martínez-Force E. cDNA cloning, expression levels and gene mapping of photosynthetic and non-photosynthetic ferredoxin genes in sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:891-901. [PMID: 19130032 DOI: 10.1007/s00122-008-0947-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 12/04/2008] [Indexed: 05/27/2023]
Abstract
Fatty acid desaturation in plastids and chloroplasts depends on the electron-donor activity of ferredoxins. Using degenerate oligonucleotides designed from known photosynthetic and heterotrophic plant ferredoxin sequences, two full-length ferredoxin cDNAs were cloned from sunflower (Helianthus annuus L.) leaves and developing seeds, HaFd1 and HaFd2, homologous to photosynthetic and non-photosynthetic ferredoxins, respectively. Based on these cDNAs, the respective genomic sequences were obtained and the presence of DNA polymorphisms was investigated. Complete sequencing of the HaFd1 and HaFd2 genes in different lines indicated the presence of two haplotypes for HaFd2 and their alignment showed that sequence polymorphisms are restricted to the 5'-NTR intron. In addition, specific DNA markers for the HaFd1 and HaFd2 genes were developed that enabled the genes to be mapped. Accordingly, the HaFd1 locus maps to linkage group 10 of the public sunflower map, while the HaFd2 locus maps to linkage group 11. Both ferredoxins display different spatial-temporal patterns of expression. While HaFd2 is expressed at similar levels in all tissues tested (leaves, stem, roots, cotyledons and developing seeds), HaFd1 is more strongly expressed in green tissues than in all the other tissues tested. Both photosynthetic- and heterotrophic-ferredoxins are present in sunflower seeds and may contribute to fatty acid desaturation during oil accumulation. Nevertheless, the levels of HaFd2 expression during seed formation are distinct in lines that only varied in the HaFd2 haplotypes they expressed.
Collapse
Affiliation(s)
- M Venegas-Calerón
- Instituto de la Grasa (CSIC), Av. Padre García Tejero 4, 41012, Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Garmier M, Priault P, Vidal G, Driscoll S, Djebbar R, Boccara M, Mathieu C, Foyer CH, De Paepe R. Light and oxygen are not required for harpin-induced cell death. J Biol Chem 2007; 282:37556-66. [PMID: 17951254 DOI: 10.1074/jbc.m707226200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Nicotiana sylvestris leaves challenged by the bacterial elicitor harpin N(Ea) were used as a model system in which to determine the respective roles of light, oxygen, photosynthesis, and respiration in the programmed cell death response in plants. The appearance of cell death markers, such as membrane damage, nuclear fragmentation, and induction of the stress-responsive element Tnt1, was observed in all conditions. However, the cell death process was delayed in the dark compared with the light, despite a similar accumulation of superoxide and hydrogen peroxide in the chloroplasts. In contrast, harpin-induced cell death was accelerated under very low oxygen (<0.1% O(2)) compared with air. Oxygen deprivation impaired accumulation of chloroplastic reactive oxygen species (ROS) and the induction of cytosolic antioxidant genes in both the light and the dark. It also attenuates the collapse of photosynthetic capacity and the respiratory burst driven by mitochondrial alternative oxidase activity observed in air. Since alternative oxidase is known to limit overreduction of the respiratory chain, these results strongly suggest that mitochondrial ROS accumulate in leaves elicited under low oxygen. We conclude that the harpin-induced cell death does not require ROS accumulation in the apoplast or in the chloroplasts but that mitochondrial ROS could be important in the orchestration of the cell suicide program.
Collapse
Affiliation(s)
- Marie Garmier
- Institut de Biotechnologie des Plantes, Université Paris-Sud 11, UMR-CNRS 8618, Bâtiment 630, 91405, Orsay Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang HE, Liu CA, Lee MJ, Kuo CG, Chen HM, Ger MJ, Tsai YC, Chen YR, Lin MK, Feng TY. Resistance enhancement of transgenic tomato to bacterial pathogens by the heterologous expression of sweet pepper ferredoxin-I protein. PHYTOPATHOLOGY 2007; 97:900-906. [PMID: 18943629 DOI: 10.1094/phyto-97-8-0900] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Expression of a foreign gene to enhance plant disease resistance to bacterial pathogens is a favorable strategy. It has been demonstrated that expressing sweet pepper ferredoxin-I protein (PFLP) in transgenic plants can enhance disease resistance to bacterial pathogens that infect leaf tissue. In this study, PFLP was applied to protect tomato (Lycopersicon esculentum cv. cherry Cln1558a) from the root-infecting pathogen, Ralstonia solanacearum. Independent R. solanacearum resistant T(1) lines were selected and bred to produce homozygous T(2) generations. Selected T(2) transgenic lines 24-18-7 and 26-2-1a, which showed high expression levels of PFLP in root tissue, were resistant to disease caused by R. solanacearum. In contrast, the transgenic line 23-17-1b and nontransgenic tomato, which showed low expression levels of PFLP in root tissue, were not resistant to R. solanacearum infection. The expansion of R. solanacearum populations in stem tissue of transgenic tomato line 24-18-7 was limited compared with the nontransgenic tomato Cln1558a. Using a detached leaf assay, transgenic line 24-18-7 was also resistant to maceration caused by E. carotovora subsp. carotovora; however, resistance to E. carotovora subsp. carotovora was less apparent in transgenic lines 26-2-1a and 23-17-1b. These results demonstrate that PFLP is able to enhance disease resistance at different levels to bacterial pathogens in individual tissue of transgenic tomato.
Collapse
|
33
|
Yip MK, Huang HE, Ger MJ, Chiu SH, Tsai YC, Lin CI, Feng TY. Production of soft rot resistant calla lily by expressing a ferredoxin-like protein gene (pflp) in transgenic plants. PLANT CELL REPORTS 2007; 26:449-57. [PMID: 17033825 DOI: 10.1007/s00299-006-0246-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/30/2006] [Accepted: 09/04/2006] [Indexed: 05/12/2023]
Abstract
An efficient protocol for the Agrobacterium tumefaciens-mediated transformation of calla lily (Zantedeschia elliottiana (W. Wats.) Engl. cultivar 'Florex Gold') is described. Shoot basal discs were co-cultivated with A. tumefaciens C58C1 carrying a plasmid containing neomycin phosphotransferase (nptII) and plant ferredoxin-like protein (pflp) genes. After Agrobacterium co-cultivation, the shoot basal discs were exposed to 100 mg l(-1) kanamycin for selection. Twenty-eight out of 260 discs (10.8%) were found to have survived and produced shoot clusters. Twenty-six of these were confirmed to contain the pflp transgene by PCR, ending up in 10% transformation efficiency. The disease resistance investigation revealed that 18 transgenic plants exhibited resistance to soft rot disease caused by Erwinia carotovora subsp. carotovora. The presence of pflp gene was demonstrated by PCR, and its accumulation and activity was confirmed by Western blot and disease resistance assay. This was the first report to show the successful transformation and resistance to a bacterial pathogen in Zantedeschia. The protocol is useful for the quality improvement of calla lily through genetic transformation.
Collapse
Affiliation(s)
- Mei-Kuen Yip
- Institute of Plant and Microbial Biology, Academic Sinica, Nankang, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
34
|
Huang HE, Ger MJ, Chen CY, Pandey AK, Yip MK, Chou HW, Feng TY. Disease resistance to bacterial pathogens affected by the amount of ferredoxin-I protein in plants. MOLECULAR PLANT PATHOLOGY 2007; 8:129-37. [PMID: 20507485 DOI: 10.1111/j.1364-3703.2006.00378.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
SUMMARY Ferredoxin-I (Fd-I) is a fundamental protein that is involved in several metabolic pathways. The amount of Fd-I found in plants is generally regulated by environmental stress, including biotic and abiotic events. In this study, the correlation between quantity of Fd-I and plant disease resistance was investigated. Fd-I levels were increased by inoculation with Pseudomonas syringae pv. syringae but were reduced by Erwinia carotovora ssp. carotovora. Transgenic tobacco over-expressing Fd-I with the sense sweet pepper Fd-I gene (pflp) was resistant to E. carotovora ssp. carotovora and the saprophytic bacterium P. fluorescens. By contrast, transgenic tobacco with reduced total Fd-I and the antisense pflp gene was susceptible to E. carotovora ssp. carotovora and P. fluorescens. Both of these transgenic tobaccos were resistant to P. syringae pv. syringae. By contrast, the mutated E. carotovora ssp. carotovora, with a defective harpin protein, was able to invade the sense-pflp transgenic tobacco as well as the non-transgenic tobacco. An in vitro kinase assay revealed that harpin could activate unidentified kinases to phosphorylate PFLP. These results demonstrate that Fd-I plays an important role in the disease defence mechanism.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
35
|
Samadi L, Shahsavan Behboodi B. Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2. PLANTA 2006; 225:223-34. [PMID: 16868776 DOI: 10.1007/s00425-006-0345-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/09/2006] [Indexed: 05/11/2023]
Abstract
Programmed cell death (PCD), now known as apoptosis, is accompanied by specific morphological features. In this study, fusaric acid, a fusarium mycotoxin, was used to examine cell death in saffron (Crocus sativus Linnaeus) roots, using several apoptosis assays. Our results show that moderate FA doses (50-100 microM) induce apoptotic features while high FA doses (> 200 microM) stimulate necrosis. The apoptotic-like features induced by moderate doses of FA include chromatin condensation, formation of condensed chromatin spheres which bud from the nucleus, fragmentation of nucleosomal DNA into approximately 180 bp fragments, exposure of phosphatidyl serine to the external membrane leaflet, delivery of cytochrome c to cytosol, and generation of H(2)O(2). These apoptotic alterations in root cells are not observed in the presence of serine protease, caspase-1 or caspase-3 inhibitors. It is proposed that production of H(2)O(2) and release of cytochrome c into the cytosol may activate caspase-like proteases and thus establish the apoptotic pathway. As nuclei budding spheres formed in plant root cells after exposure to 50-100 microM FA doses seem to be digested inside the cytosol, we suggest labeling them as internal apoptotic bodies (IAB) that may be more informative than previously used term, apoptotic-like bodies.
Collapse
Affiliation(s)
- Leili Samadi
- Cell Biology Lab, Department of Biology, Faculty of Science, University of Tehran, Tehran 14155-6455, Iran
| | | |
Collapse
|
36
|
Liu F, Liu H, Jia Q, Wu X, Guo X, Zhang S, Song F, Dong H. The Internal Glycine-Rich Motif and Cysteine Suppress Several Effects of the HpaG(Xooc) Protein in Plants. PHYTOPATHOLOGY 2006; 96:1052-9. [PMID: 18943492 DOI: 10.1094/phyto-96-1052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ABSTRACT HpaG(Xooc), produced by Xanthomonas oryzae pv. oryzicola, is a member of harpin group of proteins that stimulate plant growth, hypersensitive cell death (HCD), and pathogen defense. The protein contains two copies of the glycine-rich motif (GRM), a characteristic of harpins, and a cysteine, which is absent in other harpins. Genetic modification generated the pro-tein mutants HpaG(Xooc)MG (MG) by deleting GRMs and HpaG(Xooc)C47T (C47T) by replacing cysteine with threonine. When applied to tobacco plants, C47T and MG were 1.2- and 1.7-fold stronger, respectively, than HpaG(Xooc) in inducing HCD, which occurred consistently with expression of the marker genes hin1 and hsr203. The proteins markedly alleviated infection of tobacco by Tobacco mosaic virus and Arabidopsis and tomato by Pseudomonas syringae. Treating tobacco plants with HpaG(Xooc), C47T, and MG decreased the viral infection by 58, 81, and 92%, respectively. In Arabidopsis and tomato plants treated with HpaG(Xooc), C47T, or MG, P. syringae multiplication was inhibited; bacterial population multiplied in 5 days in these plants were ca. 160-, 1,260-, or 15,860-fold smaller than that in control plants. So pathogen defense was induced in both plants. Defense-related genes Chia5, NPR1, and PR-1a were expressed consistently with resistance. In response to HpaG(Xooc), C47T, and MG, aerial parts and roots of tomato plants increased growth by 15 and 53%, 25 and 77%, and 46 and 106%, relative to controls. The expansin gene, EXP2, involved in the cell expansion and plant growth was expressed coordinately with plant growth promotion. These results suggest that the presence of GRM and cysteine in HpaG(Xooc) represses the effects of the protein in plants.
Collapse
|
37
|
Park SJ, Huang Y, Ayoubi P. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. PLANTA 2006; 223:932-47. [PMID: 16292568 DOI: 10.1007/s00425-005-0148-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/28/2005] [Indexed: 05/03/2023]
Abstract
The phloem-feeding by greenbug (Schizaphis graminum) elicits unique interactions with their host plants. To investigate the expression profiles of sorghum genes responsive to greenbug feeding, two subtractive cDNA libraries were constructed through different combinatorial subtractions in a strong greenbug resistance sorghum M627 line and a susceptible Tx7000 line with or without greenbug infestation. A total of 3,508 cDNAs were selected from the two cDNA libraries, and subsequent cDNA microarray and northern blot analyses were performed for identification of sorghum genes responsive to greenbugs. In total, 157 sorghum transcripts were identified to be differentially expressed by greenbug feeding. The greenbug responsive genes were isolated and classified into nine categories according to the functional roles in plant metabolic pathways, such as defense, signal transduction, cell wall fortification, oxidative burst/stress, photosynthesis, development, cell maintenance, abiotic stress, and unknown function. Overall, the profiles of sorghum genes, responsive to greenbug phloem-feeding shared common identities with other expression profiles known to be elicited by diverse stresses, including pathogenesis, abiotic stress, and wounding. In addition to well-known defense related regulators such as salicylic acid, jasmonic acid, and abscisic acid, auxin and gibberellic acid were also involved in mediation of the defense responses against greenbug phloem-feeding in sorghum.
Collapse
Affiliation(s)
- Sung-Jin Park
- Plant Science Program and Department of Forestry, Oklahoma State University, Stillwater, 74078, USA
| | | | | |
Collapse
|
38
|
Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H. The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. PLANTA 2005; 221:313-27. [PMID: 15599761 DOI: 10.1007/s00425-004-1444-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 10/30/2004] [Indexed: 05/22/2023]
Abstract
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.
Collapse
Affiliation(s)
- Hong-Ping Dong
- Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Peng JL, Bao ZL, Ren HY, Wang JS, Dong HS. Expression of harpin(xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. PHYTOPATHOLOGY 2004; 94:1048-55. [PMID: 18943792 DOI: 10.1094/phyto.2004.94.10.1048] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ABSTRACT Harpin(Xoo), encoded by the hpaG(Xoo) gene of Xanthomonas oryzae pv. oryzae, is a member of the harpin group of proteins that induce pathogen resistance and hypersensitive cell death (HCD) in plants. We elaborated whether both processes are correlated in hpaG(Xoo)-expressing tobacco (HARTOB) plants, which produced harpin(Xoo) intracellularly. Resistance to fungal, bacterial, and viral pathogens increased in HARTOB, in correlation with the expression of hpaG(Xoo), the gene NPR1 that regulates several resistance pathways, and defense genes GST1, Chia5, PR-1a, and PR-1b that are mediated by different signals. However, reactive oxygen intermediate burst, the expression of HCD marker genes hsr203 and hin1, and cell death did not occur spontaneously in HARTOB, though they did in untransformed and HARTOB plants treated exogenously with harpin(Xoo). Thus, the transgenic expression of harpin(Xoo) confers nonspecific pathogen defense in the absence of HCD.
Collapse
|