1
|
Cupellini L, Gwizdala M, Krüger TPJ. Energetic Landscape and Terminal Emitters of Phycobilisome Cores from Quantum Chemical Modeling. J Phys Chem Lett 2024; 15:9746-9756. [PMID: 39288324 DOI: 10.1021/acs.jpclett.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Phycobilisomes (PBs) are giant antenna supercomplexes of cyanobacteria that use phycobilin pigments to capture sunlight and transfer the collected energy to membrane-bound photosystems. In the PB core, phycobilins are bound to particular allophycocyanin (APC) proteins. Some phycobilins are thought to be terminal emitters (TEs) with red-shifted fluorescence. However, the precise identification of TEs is still under debate. In this work, we employ multiscale quantum-mechanical calculations to disentangle the excitation energy landscape of PB cores. Using the recent atomistic PB structures from Synechoccoccus PCC 7002 and Synechocystis PCC 6803, we compute the spectral properties of different APC trimers and assign the low-energy pigments. We show that the excitation energy of APC phycobilins is determined by geometric and electrostatic factors and is tuned by the specific protein-protein interactions within the core. Our findings challenge the simple picture of a few red-shifted bilins in the PB core and instead suggest that the red-shifts are established by the entire TE-containing APC trimers. Our work provides a theoretical microscopic basis for the interpretation of energy migration and time-resolved spectroscopy in phycobilisomes.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- National Institute of Theoretical and Computational Sciences (NITheCS), https://nithecs.ac.za/
| |
Collapse
|
2
|
Schomaker RA, Richardson TL, Dudycha JL. Consequences of light spectra for pigment composition and gene expression in the cryptophyte Rhodomonas salina. Environ Microbiol 2023; 25:3280-3297. [PMID: 37845005 DOI: 10.1111/1462-2920.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Algae with a more diverse suite of pigments can, in principle, exploit a broader swath of the light spectrum through chromatic acclimation, the ability to maximize light capture via plasticity of pigment composition. We grew Rhodomonas salina in wide-spectrum, red, green, and blue environments and measured how pigment composition differed. We also measured expression of key light-capture and photosynthesis-related genes and performed a transcriptome-wide expression analysis. We observed the highest concentration of phycoerythrin in green light, consistent with chromatic acclimation. Other pigments showed trends inconsistent with chromatic acclimation, possibly due to feedback loops among pigments or high-energy light acclimation. Expression of some photosynthesis-related genes was sensitive to spectrum, although expression of most was not. The phycoerythrin α-subunit was expressed two-orders of magnitude greater than the β-subunit even though the peptides are needed in an equimolar ratio. Expression of genes related to chlorophyll-binding and phycoerythrin concentration were correlated, indicating a potential synthesis relationship. Pigment concentrations and expression of related genes were generally uncorrelated, implying post-transcriptional regulation of pigments. Overall, most differentially expressed genes were not related to photosynthesis; thus, examining associations between light spectrum and other organismal functions, including sexual reproduction and glycolysis, may be important.
Collapse
Affiliation(s)
| | - Tammi L Richardson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- School of the Earth, Ocean, & Environment, University of South Carolina, Columbia, South Carolina, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
3
|
Dodson EJ, Ma J, Suissa Szlejf M, Maroudas-Sklare N, Paltiel Y, Adir N, Sun S, Sui SF, Keren N. The structural basis for light acclimation in phycobilisome light harvesting systems systems in Porphyridium purpureum. Commun Biol 2023; 6:1210. [PMID: 38012412 PMCID: PMC10682464 DOI: 10.1038/s42003-023-05586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Photosynthetic organisms adapt to changing light conditions by manipulating their light harvesting complexes. Biophysical, biochemical, physiological and genetic aspects of these processes are studied extensively. The structural basis for these studies is lacking. In this study we address this gap in knowledge by focusing on phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. In this study we focus on the phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. Specifically, we examine red algae (Porphyridium purpureum) grown under a low light intensity (LL) and a medium light intensity (ML). Using cryo-electron microscopy, we resolve the structure of ML-PBS and compare it to the LL-PBS structure. The ML-PBS is 13.6 MDa, while the LL-PBS is larger (14.7 MDa). The LL-PBS structure have a higher number of closely coupled chromophore pairs, potentially the source of the red shifted fluorescence emission from LL-PBS. Interestingly, these differences do not significantly affect fluorescence kinetics parameters. This indicates that PBS systems can maintain similar fluorescence quantum yields despite an increase in LL-PBS chromophore numbers. These findings provide a structural basis to the processes by which photosynthetic organisms adapt to changing light conditions.
Collapse
Affiliation(s)
- Emma Joy Dodson
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maayan Suissa Szlejf
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Naama Maroudas-Sklare
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Yossi Paltiel
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Nir Keren
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Patel SN, Sonani RR, Roy D, Singh NK, Subudhi S, Pabbi S, Madamwar D. Exploring the structural aspects and therapeutic perspectives of cyanobacterial phycobiliproteins. 3 Biotech 2022; 12:224. [PMID: 35975025 PMCID: PMC9375810 DOI: 10.1007/s13205-022-03284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/28/2022] [Indexed: 11/01/2022] Open
Abstract
Phycobiliproteins (PBPs) of cyanobacteria and algae possess unique light harvesting capacity which expand the photosynthetically active region (PAR) and allow them to thrive in extreme niches where higher plants cannot. PBPs of cyanobacteria/algae vary in abundance, types, amino acid composition and in structure as a function of species and the habitat that they grow in. In the present review, the key aspects of structure, stability, and spectral properties of PBPs, and their correlation with ecological niche of cyanobacteria are discussed. Besides their role in light-harvesting, PBPs possess antioxidant, anti-aging, neuroprotective, hepatoprotective and anti-inflammatory properties, which can be used in therapeutics. Recent developments in therapeutic applications of PBPs are reviewed with special focus on 'route of PBPs administration' and 'therapeutic potential of PBP-derived peptide and chromophores'.
Collapse
Affiliation(s)
- Stuti N. Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat 388315 India
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ravi R. Sonani
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 USA
| | - Diya Roy
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Niraj Kumar Singh
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, Gujarat 388001 India
- Present Address: Gujarat Biotechnology Research Centre (GBRC), Deaprtment of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat 382011 India
| | - Sanjukta Subudhi
- The Energy and Resources Institute Darbari Seth Block, India Habitat Centre, Lodi Road, New Delhi, 110003 India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
| |
Collapse
|
5
|
Khani-Juyabad F, Mohammadi P, Zarrabi M. Insights from cyanobacterial genomic and transcriptomic analyses into adaptation strategies in terrestrial environments. Genomics 2022; 114:110438. [PMID: 35902068 DOI: 10.1016/j.ygeno.2022.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
Phylogenomic analysis of Nostoc sp. MG11, a terrestrial cyanobacterium, and some terrestrial and freshwater Nostoc strains showed that the terrestrial strains grouped together in a distinctive clade, which reveals the effect of habitat on shaping Nostoc genomes. Terrestrial strains showed larger genomes and had higher predicted CDS contents than freshwater strains. Comparative genomic analysis demonstrated that genome expansion in the terrestrial Nostoc is supported by an increase in copy number of the core genes and acquisition of shared genes. Transcriptomic profiling analysis under desiccation stress revealed that Nostoc sp. MG11 protected its cell by induction of catalase, proteases, sucrose synthase, trehalose biosynthesis and maltodextrin utilization genes and maintained its normal metabolism during this condition by up-regulation of genes related to phycobilisomes and light reactions of photosynthesis, CO2 fixation and protein metabolism. These results provide insights into the strategies related to survival and adaptation of Nostoc strains to terrestrial environments.
Collapse
Affiliation(s)
- Fatemeh Khani-Juyabad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Mahbubeh Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
6
|
Collini E. Light-Harvesting: The Never-Ending Lesson of Nature. ACS CENTRAL SCIENCE 2022; 8:306-308. [PMID: 35350603 PMCID: PMC8949631 DOI: 10.1021/acscentsci.2c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Elisabetta Collini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
7
|
Li Y, Chen M. The specificity of the bilin lyase CpcS for chromophore attachment to allophycocyanin in the chlorophyll f-containing cyanobacterium Halomicronima hongdechloris. PHOTOSYNTHESIS RESEARCH 2022; 151:213-223. [PMID: 34564824 DOI: 10.1007/s11120-021-00878-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Phycobilisomes are light-harvesting antenna complexes of cyanobacteria and red algae that are comprised of chromoproteins called phycobiliproteins. PBS core structures are made up of allophycocyanin subunits. Halomicronema hongdechloris (H. hongdechloris) is one of the cyanobacteria that produce chlorophyll f (Chl f) under far-red light and is regulated by the Far-Red Light Photoacclimation gene cluster. There are five genes encoding APC in this specific gene cluster, and they are responsible for assembling the red-shifted PBS in H. hongdechloris grown under far-red light. In this study, the five apc genes located in the FaRLiP gene cluster were heterologously expressed in an Escherichia coli reconstitution system. The canonical APC-encoding genes were also constructed in the same system for comparison. Additionally, five annotated phycobiliprotein lyase-encoding genes (cpcS) from the H. hongdechloris genome were phylogenetically classified and experimentally tested for their catalytic properties including their contribution to the shifted absorption of PBS. Through analysis of recombinant proteins, we determined that the heterodimer of CpcS-I and CpcU are able to ligate a chromophore to the APC-α/APC-β subunits. We discuss some hypotheses towards understanding the roles of the specialised APC and contributions of PBP lyases.
Collapse
Affiliation(s)
- Yaqiong Li
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Min Chen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
8
|
Duval C, Hamlaoui S, Piquet B, Toutirais G, Yéprémian C, Reinhardt A, Duperron S, Marie B, Demay J, Bernard C. Diversity of cyanobacteria from thermal muds (Balaruc-Les-Bains, France) with the description of Pseudochroococcus coutei gen. nov., sp. nov. FEMS MICROBES 2021. [DOI: 10.1093/femsmc/xtab006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Cyanobacteria are able to synthesize a high diversity of natural compounds that account for their success in the colonization of a variety of ecological niches. Many of them have beneficial properties. The mud from the thermal baths of Balaruc-Les-Bains, one of the oldest thermal baths in France, has long been recognized as a healing treatment for arthro-rheumatic diseases. To characterize the cyanobacteria living in these muds, several strains were isolated from the water column and biofilms of the retention basin and analyzed using a polyphasic approach. Morphological, ultrastructural and molecular (16S rRNA gene and 16S-23S ITS region sequencing) methods were employed to identify nine cyanobacterial strains belonging to the orders Chroococcales, Synechococcales, Oscillatoriales and Nostocales. The combination of morphological and genetic characteristics supported the description of a new genus and species with the type species as Pseudochroococcus coutei. The taxonomic diversity in the muds from Thermes de Balaruc-Les-Bains appears higher than previously documented, providing new candidate taxa for their observed therapeutic properties.
Collapse
Affiliation(s)
- C Duval
- UMR7245 MCAM MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - S Hamlaoui
- UMR7245 MCAM MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - B Piquet
- Electron Microscopy Platform, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - G Toutirais
- Electron Microscopy Platform, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - C Yéprémian
- UMR7245 MCAM MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - A Reinhardt
- Thermes de Balaruc-Les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France
| | - S Duperron
- UMR7245 MCAM MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - B Marie
- UMR7245 MCAM MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - J Demay
- UMR7245 MCAM MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - C Bernard
- UMR7245 MCAM MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| |
Collapse
|
9
|
Gwizdala M, Lebre PH, Maggs-Kölling G, Marais E, Cowan DA, Krüger TPJ. Sub-lithic photosynthesis in hot desert habitats. Environ Microbiol 2021; 23:3867-3880. [PMID: 33817951 DOI: 10.1111/1462-2920.15505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/03/2021] [Indexed: 11/26/2022]
Abstract
In hyper-arid soil environments, photosynthetic microorganisms are largely restricted to hypolithic (sub-lithic) habitats: i.e., on the ventral surfaces of translucent pebbles in desert pavements. Here, we combined fluorometric, spectroscopic, biochemical and metagenomic approaches to investigate in situ the light transmission properties of quartz stones in the Namib Desert, and assess the photosynthetic activity of the underlying hypolithic cyanobacterial biofilms. Quartz pebbles greatly reduced the total photon flux to the ventral surface biofilms and filtered out primarily the short wavelength portion of the solar spectrum. Chlorophylls d and f were not detected in biofilm pigment extracts; however, hypolithic cyanobacterial communities showed some evidence of adaptation to sub-lithic conditions, including the prevalence of genes encoding Helical Carotenoid Proteins, which are associated with desiccation stress. Under water-saturated conditions, hypolithic communities showed no evidence of light stress, even when the quartz stones were exposed to full midday sunlight. This initial study creates a foundation for future in-situ and laboratory exploration of various adaptation mechanisms employed by photosynthetic organisms forming hypolithic microbial communities.
Collapse
Affiliation(s)
- Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.,Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | | | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.,Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| |
Collapse
|
10
|
β-Ν-Methylamino-L-alanine interferes with nitrogen assimilation in the cyanobacterium, non-BMAA producer, Synechococcus sp. TAU-MAC 0499. Toxicon 2020; 185:147-155. [PMID: 32687889 DOI: 10.1016/j.toxicon.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
The production of β-Ν-methylamino-L-alanine (BMAA) in cyanobacteria is triggered by nitrogen-starvation conditions and its biological role, albeit unknown, is associated with nitrogen assimilation. In the present study, the effect of BMAA (773 μg L-1) on nitrogen metabolism and physiology of the non-diazotrophic cyanobacterium and non-BMAA producer, Synechococcus sp. TAU-MAC 0499, was investigated. In order to study the combined effect of nitrogen availability and BMAA, nitrogen-starvation conditions were induced by transferring cells in nitrogen-free medium and subsequently exposing the cultures to BMAA. After short-term treatment (180 min) and in the presence of nitrogen, BMAA inhibited glutamine synthetase, which resulted in low concentration of glutamine. In the absence of nitrogen, although there was no effect on glutamine synthetase, a possible perturbation in nitrogen assimilation is reflected on the significant decrease in glutamate levels. During the long-term exposure (24-96 h), growth, photosynthetic pigments and total protein were not affected by BMAA exposure, except for an increase in protein and phycocyanin levels at 48 h in nitrogen replete conditions. Results suggest that BMAA interferes with nitrogen assimilation, in a different way, depending on the presence or absence of combined nitrogen, providing novel data on the potential biological role of BMAA.
Collapse
|
11
|
Heidenreich KM, Richardson TL. Photopigment, Absorption, and Growth Responses of Marine Cryptophytes to Varying Spectral Irradiance. JOURNAL OF PHYCOLOGY 2020; 56:507-520. [PMID: 31876286 DOI: 10.1111/jpy.12962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
The underwater light field of lakes, estuaries, and oceans may vary greatly in spectral composition. Phytoplankton in these environments must contain pigments that absorb the available colors of light. If spectral quality changes, acclimation to the new spectral environment would confer an ecological advantage in terms of photosynthesis and growth. Here, we explored the capacity of eight marine cryptophytes to adjust pigmentation in response to changes in spectral irradiance and related effects on light absorption, photosynthetically useable radiation (PUR), and growth rate. The pigment composition of all species changed in some way in response to shifts in spectral irradiance, but not all pigment changes could be considered advantageous in the context of chromatic acclimation. For most species, absorption by chl-a and chl-c2 resulted in highest absorption in the blue region, highest PUR values for blue-light grown cells, and highest growth rates in blue light. The exception was Chroomonas mesostigmatica (CCMP 1168), which contains a high percentage of Cryptophyte-Phycocyanin (Cr-PC) 645, absorbs strongly in the orange-to-red region of the spectrum, and grew fastest under red light. The position and magnitude of the maximum and secondary absorption peak of Cr-PC 569, the phycobiliprotein pigment of Hemiselmis cryptochromatica, varied with spectral irradiance. The underlying cause remains unknown, but may represent a mechanism by which cryptophytes optimize photon capture.
Collapse
Affiliation(s)
- Kristin M Heidenreich
- Department of Biological Sciences and School of the Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Tammi L Richardson
- Department of Biological Sciences and School of the Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina, 29208, USA
| |
Collapse
|
12
|
Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 2020; 17:37-50. [PMID: 30410070 DOI: 10.1038/s41579-018-0110-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyanobacteria are an evolutionarily and ecologically important group of prokaryotes. They exist in diverse habitats, ranging from hot springs and deserts to glaciers and the open ocean. The range of environments that they inhabit can be attributed in part to their ability to sense and respond to changing environmental conditions. As photosynthetic organisms, one of the most crucial parameters for cyanobacteria to monitor is light. Cyanobacteria can sense various wavelengths of light and many possess a range of bilin-binding photoreceptors belonging to the phytochrome superfamily. Vital cellular processes including growth, phototaxis, cell aggregation and photosynthesis are tuned to environmental light conditions by these photoreceptors. In this Review, we examine the physiological responses that are controlled by members of this diverse family of photoreceptors and discuss the signal transduction pathways through which these photoreceptors operate. We highlight specific examples where the activities of multiple photoreceptors function together to fine-tune light responses. We also discuss the potential application of these photosensing systems in optogenetics and synthetic biology.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
13
|
Vedalankar P, Tripathy BC. Evolution of light-independent protochlorophyllide oxidoreductase. PROTOPLASMA 2019; 256:293-312. [PMID: 30291443 DOI: 10.1007/s00709-018-1317-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The nonhomologous enzymes, the light-independent protochlorophyllide reductase (DPOR) and the light-dependent protochlorophyllide oxidoreductase (LPOR), catalyze the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) in the penultimate step of biosynthesis of chlorophyll (Chl) required for photosynthetic light absorption and energy conversion. The two enzymes differ with respect to the requirement of light for catalysis and oxygen sensitivity. DPOR and LPOR initially evolved in the ancestral prokaryotic genome perhaps at different times. DPOR originated in the anoxygenic environment of the Earth from nitrogenase-like enzyme of methanogenic archaea. Due to the transition from anoxygenic to oxygenic photosynthesis in the prokaryote, the DPOR was mostly inactivated in the daytime by photosynthetic O2 leading to the evolution of oxygen-insensitive LPOR that could function in the light. The primary endosymbiotic event transferred the DPOR and LPOR genes to the eukaryotic phototroph; the DPOR remained in the genome of the ancestor that turned into the plastid, whereas LPOR was transferred to the host nuclear genome. From an evolutionary point of view, several compelling theories that explain the disappearance of DPOR from several species cutting across different phyla are as follows: (i) pressure of the oxygenic environment; (ii) change in the light conditions and temperature; and (iii) lineage-specific gene losses, RNA editing, and nonsynonymous substitution. Certain primary amino acid sequence and the physiochemical properties of the ChlL subunit of DPOR have similarity with that of LPOR suggesting a convergence of these two enzymes in certain evolutionary event. The newly obtained sequence data from different phototrophs will further enhance the width of the phylogenetic information on DPOR.
Collapse
Affiliation(s)
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
Herrera-Salgado P, Leyva-Castillo LE, Ríos-Castro E, Gómez-Lojero C. Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: The phycobilisomes, a proteomic approach. PHOTOSYNTHESIS RESEARCH 2018; 138:39-56. [PMID: 29943359 DOI: 10.1007/s11120-018-0536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Synechococcus ATCC 29403 (PCC 7335) is a unicellular cyanobacterium isolated from Puerto Peñasco, Sonora Mexico. This cyanobacterium performs complementary chromatic acclimation (CCA), far-red light photoacclimation (FaRLiP), and nitrogen fixation. The Synechococcus PCC 7335 genome contains at least 31 genes for proteins of the phycobilisome (PBS). Nine constitutive genes were expressed when cells were grown under white or red lights and the resulting proteins were identified by mass spectrometry in isolated PBS. Five inducible genes were expressed under white light, and phycoerythrin subunits and associated linker proteins were detected. The proteins of five inducible genes expressed under red light were identified, the induced phycocyanin subunits, two rod linkers and the rod-capping linker. The five genes for FaRLiP phycobilisomes were expressed under far-red light together with the apcF gene, and the proteins were identified by mass spectrometry after isoelectric focusing and SDS-PAGE. Based on in silico analysis, Phylogenetic trees, and the observation of a highly conserved amino acid sequence in far-red light absorbing alpha allophycoproteins encoded by FaRLiP gene cluster, we propose a new nomenclature for the genes. Based on a ratio of ApcG2/ApcG3 of six, a model with the arrangement of the allophycocyanin trimers of the core is proposed.
Collapse
Affiliation(s)
- Priscila Herrera-Salgado
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico
| | - Lourdes E Leyva-Castillo
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico
| | - Emmanuel Ríos-Castro
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico
| | - Carlos Gómez-Lojero
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico.
| |
Collapse
|
15
|
Kleinteich J, Golubic S, Pessi IS, Velázquez D, Storme JY, Darchambeau F, Borges AV, Compère P, Radtke G, Lee SJ, Javaux EJ, Wilmotte A. Cyanobacterial Contribution to Travertine Deposition in the Hoyoux River System, Belgium. MICROBIAL ECOLOGY 2017; 74:33-53. [PMID: 28138721 DOI: 10.1007/s00248-017-0937-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Travertine deposition is a landscape-forming process, usually building a series of calcareous barriers differentiating the river flow into a series of cascades and ponds. The process of carbonate precipitation is a complex relationship between biogenic and abiotic causative agents, involving adapted microbial assemblages but also requiring high levels of carbonate saturation, spontaneous degassing of carbon dioxide and slightly alkaline pH. We have analysed calcareous crusts and water chemistry from four sampling sites along the Hoyoux River and its Triffoy tributary (Belgium) in winter, spring, summer and autumn 2014. Different surface textures of travertine deposits correlated with particular microenvironments and were influenced by the local water flow. In all microenvironments, we have identified the cyanobacterium Phormidium incrustatum (Nägeli) Gomont as the organism primarily responsible for carbonate precipitation and travertine fabric by combining morphological analysis with molecular sequencing (16S rRNA gene and ITS, the Internal Transcribed Spacer fragments), targeting both field populations and cultures to exclude opportunistic microorganisms responding favourably to culture conditions. Several closely related cyanobacterial strains were cultured; however, only one proved identical with the sequences obtained from the field population by direct PCR. This strain was the dominant primary producer in the calcareous deposits under study and in similar streams in Europe. The dominance of one organism that had a demonstrated association with carbonate precipitation presented a valuable opportunity to study its function in construction, preservation and fossilisation potential of ambient temperature travertine deposits. These relationships were examined using scanning electron microscopy and Raman microspectroscopy.
Collapse
Affiliation(s)
- Julia Kleinteich
- InBios Center for Protein Engineering, University of Liège, B-4000, Liège, Belgium.
- Center for Applied Geosciences, University of Tübingen, D-72074, Tübingen, Germany.
| | - Stjepko Golubic
- InBios Center for Protein Engineering, University of Liège, B-4000, Liège, Belgium
- Biological Science Center, Boston University, Boston, MA, 02215, USA
- Palaeobiogeology, Palaeobotany, Palaeopalynology, Department of Geology, UR Geology B18, University of Liège, B-4000, Liège, Belgium
| | - Igor S Pessi
- InBios Center for Protein Engineering, University of Liège, B-4000, Liège, Belgium
| | - David Velázquez
- InBios Center for Protein Engineering, University of Liège, B-4000, Liège, Belgium
- Department of Biology, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Jean-Yves Storme
- Palaeobiogeology, Palaeobotany, Palaeopalynology, Department of Geology, UR Geology B18, University of Liège, B-4000, Liège, Belgium
| | - François Darchambeau
- Chemical Oceanography Unit, Institut de Physique (B5), University of Liege, B-4000, Liège, Belgium
| | - Alberto V Borges
- Chemical Oceanography Unit, Institut de Physique (B5), University of Liege, B-4000, Liège, Belgium
| | - Philippe Compère
- Department of Biology, Ecology and Evolution (BEE)/Centre of Aid for Research and Education in Microscopy (CAREM), University of Liège, B-4000, Liège, Belgium
| | - Gudrun Radtke
- Hessisches Landesamt für Naturschutz, Umwelt und Geologie, Rheingaustr. 186, D-65203, Wiesbaden, Germany
| | - Seong-Joo Lee
- Department of Geology, Kyungpook National University, 1370 Sankyuck-dong, Daegu, 702-701, South Korea
| | - Emmanuelle J Javaux
- Palaeobiogeology, Palaeobotany, Palaeopalynology, Department of Geology, UR Geology B18, University of Liège, B-4000, Liège, Belgium
| | - Annick Wilmotte
- InBios Center for Protein Engineering, University of Liège, B-4000, Liège, Belgium
| |
Collapse
|
16
|
Montgomery BL. Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4079-4090. [PMID: 27217547 DOI: 10.1093/jxb/erw206] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photosynthetic organisms absorb photons and convert light energy to chemical energy through the process of photosynthesis. Photosynthetic efficiency is tuned in response to the availability of light, carbon dioxide and nutrients to promote maximal levels of carbon fixation, while simultaneously limiting the potential for light-associated damage or phototoxicity. Given the central dependence on light for energy production, photosynthetic organisms possess abilities to tune their growth, development and metabolism to external light cues in the process of photomorphogenesis. Photosynthetic organisms perceive light intensity and distinct wavelengths or colors of light to promote organismal acclimation. Cyanobacteria are oxygenic photosynthetic prokaryotes that exhibit abilities to alter specific aspects of growth, including photosynthetic pigment composition and morphology, in responses to changes in available wavelengths and intensity of light. This form of photomorphogenesis is known as chromatic acclimation and has been widely studied. Recent insights into the photosensory photoreceptors found in cyanobacteria and developments in our understanding of the molecular mechanisms initiated by light sensing to affect the changes characteristic of chromatic acclimation are discussed. I consider cyanobacterial responses to light, the broad diversity of photoreceptors encoded by these organisms, specific mechanisms of photomorphogenesis, and associated fitness implications in chromatically acclimating cyanobacteria.
Collapse
Affiliation(s)
- Beronda L Montgomery
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Abstract
Certain cyanobacteria look green if grown in red light and vice versa. This dramatic color change, called complementary chromatic adaptation (CCA), is caused by alterations of the major colored light-harvesting proteins. A major controller of CCA is the cyanobacteriochrome (CBCR) RcaE, a red-green reversible photoreceptor that triggers a complex signal transduction pathway. Now, a new study demonstrates that CCA is also modulated by DpxA, a CBCR that senses yellow and teal (greenish blue) light. DpxA acts to expand the range of wavelengths that can impact CCA, by fine-tuning the process. This dual control of CCA might positively impact the fitness of cells growing in the shade of competing algae or in a water column where light levels and spectral quality change gradually with depth. This discovery adds to the growing number of light-responsive phenomena controlled by multiple CBCRs. Furthermore, the diverse CBCRs which are exclusively found in cyanobacteria have significant biotechnological potential.
Collapse
|
18
|
Wiltbank LB, Kehoe DM. Two Cyanobacterial Photoreceptors Regulate Photosynthetic Light Harvesting by Sensing Teal, Green, Yellow, and Red Light. mBio 2016; 7:e02130-15. [PMID: 26861023 PMCID: PMC4752607 DOI: 10.1128/mbio.02130-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The genomes of many photosynthetic and nonphotosynthetic bacteria encode numerous phytochrome superfamily photoreceptors whose functions and interactions are largely unknown. Cyanobacterial genomes encode particularly large numbers of phytochrome superfamily members called cyanobacteriochromes. These have diverse light color-sensing abilities, and their functions and interactions are just beginning to be understood. One of the best characterized of these functions is the regulation of photosynthetic light-harvesting antenna composition in the cyanobacterium Fremyella diplosiphon by the cyanobacteriochrome RcaE in response to red and green light, a process known as chromatic acclimation. We have identified a new cyanobacteriochrome named DpxA that maximally senses teal (absorption maximum, 494 nm) and yellow (absorption maximum, 568 nm) light and represses the accumulation of a key light-harvesting protein called phycoerythrin, which is also regulated by RcaE during chromatic acclimation. Like RcaE, DpxA is a two-component system kinase, although these two photoreceptors can influence phycoerythrin expression through different signaling pathways. The peak responsiveness of DpxA to teal and yellow light provides highly refined color discrimination in the green spectral region, which provides important wavelengths for photosynthetic light harvesting in cyanobacteria. These results redefine chromatic acclimation in cyanobacteria and demonstrate that cyanobacteriochromes can coordinately impart sophisticated light color sensing across the visible spectrum to regulate important photosynthetic acclimation processes. IMPORTANCE The large number of cyanobacteriochrome photoreceptors encoded by cyanobacterial genomes suggests that these organisms are capable of extremely complex light color sensing and responsiveness, yet little is known about their functions and interactions. Our work uncovers previously undescribed cooperation between two photoreceptors with very different light color-sensing capabilities that coregulate an important photosynthetic light-harvesting protein in response to teal, green, yellow, and red light. Other cyanobacteriochromes that have been shown to interact functionally sense wavelengths of light that are close to each other, which makes it difficult to clearly identify their physiological roles in the cell. Our finding of two photoreceptors with broad light color-sensing capabilities and clearly defined physiological roles provides new insights into complex light color sensing and its regulation.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana, USA Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
19
|
Li Y, Lin Y, Garvey CJ, Birch D, Corkery RW, Loughlin PC, Scheer H, Willows RD, Chen M. Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:107-114. [PMID: 26514405 DOI: 10.1016/j.bbabio.2015.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/17/2015] [Accepted: 10/24/2015] [Indexed: 02/04/2023]
Abstract
Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 Å with two α/β allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions.
Collapse
Affiliation(s)
- Yaqiong Li
- ARC Centre of Excellence for Translational Photosynthesis and School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Yuankui Lin
- ARC Centre of Excellence for Translational Photosynthesis and School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organisation, Lucas Heights Campus, NSW 2234, Australia
| | - Debra Birch
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Robert W Corkery
- Applied Physical Chemistry, KTH Royal Institute of Technology, StockholmSE-100 44, Sweden
| | - Patrick C Loughlin
- ARC Centre of Excellence for Translational Photosynthesis and School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Hugo Scheer
- Department of Biology I, University of Munich, Menzinger Str. 67, D-80638 München, Germany
| | - Robert D Willows
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| | - Min Chen
- ARC Centre of Excellence for Translational Photosynthesis and School of Biological Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
20
|
Extreme Sensory Complexity Encoded in the 10-Megabase Draft Genome Sequence of the Chromatically Acclimating Cyanobacterium Tolypothrix sp. PCC 7601. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00355-15. [PMID: 25953173 PMCID: PMC4424289 DOI: 10.1128/genomea.00355-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome.
Collapse
|
21
|
Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnol Lett 2015; 37:1663-9. [PMID: 25864176 DOI: 10.1007/s10529-015-1831-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/03/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides). RESULTS Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m(-2) s(-1) than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a. CONCLUSION White light at 90 μmol m(-2) s(-1) or blue light 30 μmol m(-2) s(-1) were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.
Collapse
|
22
|
Gan F, Shen G, Bryant DA. Occurrence of Far-Red Light Photoacclimation (FaRLiP) in Diverse Cyanobacteria. Life (Basel) 2014; 5:4-24. [PMID: 25551681 PMCID: PMC4390838 DOI: 10.3390/life5010004] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria have evolved a number of acclimation strategies to sense and respond to changing nutrient and light conditions. Leptolyngbya sp. JSC-1 was recently shown to photoacclimate to far-red light by extensively remodeling its photosystem (PS) I, PS II and phycobilisome complexes, thereby gaining the ability to grow in far-red light. A 21-gene photosynthetic gene cluster (rfpA/B/C, apcA2/B2/D2/E2/D3, psbA3/D3/C2/B2/H2/A4, psaA2/B2/L2/I2/F2/J2) that is specifically expressed in far-red light encodes the core subunits of the three major photosynthetic complexes. The growth responses to far-red light were studied here for five additional cyanobacterial strains, each of which has a gene cluster similar to that in Leptolyngbya sp. JSC-1. After acclimation all five strains could grow continuously in far-red light. Under these growth conditions each strain synthesizes chlorophylls d, f and a after photoacclimation, and each strain produces modified forms of PS I, PS II (and phycobiliproteins) that absorb light between 700 and 800 nm. We conclude that these photosynthetic gene clusters are diagnostic of the capacity to photoacclimate to and grow in far-red light. Given the diversity of terrestrial environments from which these cyanobacteria were isolated, it is likely that FaRLiP plays an important role in optimizing photosynthesis in terrestrial environments.
Collapse
Affiliation(s)
- Fei Gan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
23
|
Guidi-Rontani C, Jean MR, Gonzalez-Rizzo S, Bolte-Kluge S, Gros O. Description of new filamentous toxicCyanobacteria(Oscillatoriales) colonizing the sulfidic periphyton mat in marine mangroves. FEMS Microbiol Lett 2014; 359:173-81. [DOI: 10.1111/1574-6968.12551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022] Open
Affiliation(s)
- Chantal Guidi-Rontani
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- Equipe Biologie de la Mangrove; UMR 7138 - Evolution Paris-Seine; Paris France
| | - Maïtena R.N. Jean
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- UFR des Sciences Exactes et Naturelles; Département de Biologie; UMR 7138 - Evolution Paris-Seine, Equipe Biologie de la Mangrove; Université des Antilles et de la Guyane; Pointe-à-Pitre Guadeloupe France
| | - Silvina Gonzalez-Rizzo
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- UFR des Sciences Exactes et Naturelles; Département de Biologie; UMR 7138 - Evolution Paris-Seine, Equipe Biologie de la Mangrove; Université des Antilles et de la Guyane; Pointe-à-Pitre Guadeloupe France
| | - Susanne Bolte-Kluge
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- Plateform: Cellular Imaging Facility-Department of Platforms and Technology Development; Paris France
| | - Olivier Gros
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- UFR des Sciences Exactes et Naturelles; Département de Biologie; UMR 7138 - Evolution Paris-Seine, Equipe Biologie de la Mangrove; Université des Antilles et de la Guyane; Pointe-à-Pitre Guadeloupe France
| |
Collapse
|
24
|
Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME JOURNAL 2014; 8:1892-903. [PMID: 24621524 PMCID: PMC4139726 DOI: 10.1038/ismej.2014.35] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
Photoautotrophic picocyanobacteria harvest light via phycobilisomes (PBS) consisting of the pigments phycocyanin (PC) and phycoerythrin (PE), encoded by genes in conserved gene clusters. The presence and arrangement of these gene clusters give picocyanobacteria characteristic light absorption properties and allow the colonization of specific ecological niches. To date, a full understanding of the evolution and distribution of the PBS gene cluster in picocyanobacteria has been hampered by the scarcity of genome sequences from fresh- and brackish water-adapted strains. To remediate this, we analysed genomes assembled from metagenomic samples collected along a natural salinity gradient, and over the course of a growth season, in the Baltic Sea. We found that while PBS gene clusters in picocyanobacteria sampled in marine habitats were highly similar to known references, brackish-adapted genotypes harboured a novel type not seen in previously sequenced genomes. Phylogenetic analyses showed that the novel gene cluster belonged to a clade of uncultivated picocyanobacteria that dominate the brackish Baltic Sea throughout the summer season, but are uncommon in other examined aquatic ecosystems. Further, our data suggest that the PE genes were lost in the ancestor of PC-containing coastal picocyanobacteria and that multiple horizontal gene transfer events have re-introduced PE genes into brackish-adapted strains, including the novel clade discovered here.
Collapse
|
25
|
Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression. Proc Natl Acad Sci U S A 2013; 110:16253-8. [PMID: 24048028 DOI: 10.1073/pnas.1306332110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes.
Collapse
|
26
|
Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus. Proc Natl Acad Sci U S A 2012; 109:20136-41. [PMID: 23161909 DOI: 10.1073/pnas.1211777109] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.
Collapse
|
27
|
Gutu A, Kehoe DM. Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. MOLECULAR PLANT 2012; 5:1-13. [PMID: 21772031 DOI: 10.1093/mp/ssr054] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chromatic acclimation (CA) provides many cyanobacteria with the ability to tailor the properties of their light-harvesting antennae to the spectral distribution of ambient light. CA was originally discovered as a result of its dramatic cellular phenotype in red and green light. However, discoveries over the past decade have revealed that many pairs of light colors, ranging from blue to infrared, can trigger CA responses. The capacity to undergo CA is widespread geographically, occurs in most habitats around the world, and is found within all major cyanobacterial groups. In addition, many other cellular activities have been found to be under CA control, resulting in distinct physiological and morphological states for cells under different light-color conditions. Several types of CA appear to be the result of convergent evolution, where different strategies are used to achieve the final goal of optimizing light-harvesting antenna composition to maximize photon capture. The regulation of CA has been found to occur primarily at the level of RNA abundance. The CA-regulatory pathways uncovered thus far are two-component systems that use phytochrome-class photoreceptors with sensor-kinase domains to control response regulators that function as transcription factors. However, there is also at least one CA-regulatory pathway that operates at the post-transcriptional level. It is becoming increasingly clear that large numbers of cyanobacterial species have the capacity to acclimate to a wide variety of light colors through the use of a range of different CA processes.
Collapse
Affiliation(s)
- Andrian Gutu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
28
|
Light-dependent attenuation of phycoerythrin gene expression reveals convergent evolution of green light sensing in cyanobacteria. Proc Natl Acad Sci U S A 2011; 108:18542-7. [PMID: 22042852 DOI: 10.1073/pnas.1107427108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The colorful process of chromatic acclimation allows many cyanobacteria to change their pigmentation in response to ambient light color changes. In red light, cells produce red-absorbing phycocyanin (PC), whereas in green light, green-absorbing phycoerythrin (PE) is made. Controlling these pigment levels increases fitness by optimizing photosynthetic activity in different light color environments. The light color sensory system controlling PC expression is well understood, but PE regulation has not been resolved. In the filamentous cyanobacterium Fremyella diplosiphon UTEX 481, two systems control PE synthesis in response to light color. The first is the Rca pathway, a two-component system controlled by a phytochrome-class photoreceptor, which transcriptionally represses cpeCDESTR (cpeC) expression during growth in red light. The second is the Cgi pathway, which has not been characterized. We determined that the Cgi system also regulates PE synthesis by repressing cpeC expression in red light, but acts posttranscriptionally, requiring the region upstream of the CpeC translation start codon. cpeC RNA stability was comparable in F. diplosiphon cells grown in red and green light, and a short transcript that included the 5' region of cpeC was detected, suggesting that the Cgi system operates by transcription attenuation. The roles of four predicted stem-loop structures within the 5' region of cpeC RNA were analyzed. The putative stem-loop 31 nucleotides upstream of the translation start site was required for Cgi system function. Thus, the Cgi system appears to be a unique type of signal transduction pathway in which the attenuation of cpeC transcription is regulated by light color.
Collapse
|
29
|
Stowe WC, Brodie-Kommit J, Stowe-Evans E. Characterization of complementary chromatic adaptation in Gloeotrichia UTEX 583 and identification of a transposon-like insertion in the cpeBA operon. PLANT & CELL PHYSIOLOGY 2011; 52:553-562. [PMID: 21288891 DOI: 10.1093/pcp/pcr014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many cyanobacteria are able to alter the pigment composition of the phycobilisome in a process called complementary chromatic adaptation (CCA). The regulatory mechanisms of CCA have been identified in Fremyella diplosiphon, which regulates both phycoerythrin and phycocyanin levels, and Nostoc punctiforme, which regulates only phycoerythrin production. Recent studies show that these species use different regulatory proteins for CCA. We chose to study the CCA response of Gloeotrichia UTEX 583 in an effort to expand our knowledge about CCA and its regulation. We found that Gloeotrichia 583 has a CCA pigment response more similar to that of N. punctiforme rather than F. diplosiphon and exhibits none of the CCA-regulated morphological responses seen in F. diplosiphon. Preliminary experiments suggest that Gloeotrichia 583 contains a homolog to the CCA photoreceptor from N. punctiforme but not the CCA photoreceptor from F. diplosiphon. Additionally, two spontaneous mutants lacking phycoerythrin production were identified. Analysis has shown that these mutants contain a transposon-like insertion in the cpeA gene, which encodes the α subunit of phycoerythrin. These results suggest that CCA in Gloeotrichia UTEX 583 is more similar to that of N. punctiforme than it is to F. diplosiphon, a closely related species.
Collapse
Affiliation(s)
- Wilmer C Stowe
- Biology Department, 701 Moore Avenue, Bucknell University, Lewisburg, PA 17837, USA
| | | | | |
Collapse
|
30
|
Mass T, Kline DI, Roopin M, Veal CJ, Cohen S, Iluz D, Levy O. The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. ACTA ACUST UNITED AC 2011; 213:4084-91. [PMID: 21075950 DOI: 10.1242/jeb.039891] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Depth zonation on coral reefs is largely driven by the amount of downwelling, photosynthetically active radiation (PAR) that is absorbed by the symbiotic algae (zooxanthellae) of corals. The minimum light requirements of zooxanthellae are related to both the total intensity of downwelling PAR and the spectral quality of the light. Here we used Stylophora pistillata colonies collected from shallow (3 m) and deep (40 m) water; colonies were placed in a respirometer under both ambient PAR irradiance and a filter that only transmits blue light. We found that the colonies exhibited a clear difference in their photosynthetic rates when illuminated under PAR and filtered blue light, with higher photosynthetic performance when deep colonies were exposed to blue light compared with full-spectrum PAR for the same light intensity and duration. By contrast, colonies from shallow water showed the opposite trend, with higher photosynthetic performances under full-spectrum PAR than under filtered blue light. These findings are supported by the absorption spectra of corals, with deeper colonies absorbing higher energy wavelengths than the shallow colonies, with different spectral signatures. Our results indicate that S. pistillata colonies are chromatically adapted to their surrounding light environment, with photoacclimation probably occurring via an increase in photosynthetic pigments rather than algal density. The spectral properties of the downwelling light are clearly a crucial component of photoacclimation that should be considered in future transplantation and photoacclimation studies.
Collapse
Affiliation(s)
- T Mass
- Evolution Systematics and Ecology Department, Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Sulfate-driven elemental sparing is regulated at the transcriptional and posttranscriptional levels in a filamentous cyanobacterium. J Bacteriol 2011; 193:1449-60. [PMID: 21239582 DOI: 10.1128/jb.00885-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfur is an essential nutrient that can exist at growth-limiting concentrations in freshwater environments. The freshwater cyanobacterium Fremyella diplosiphon (also known as Tolypothrix sp. PCC 7601) is capable of remodeling the composition of its light-harvesting antennae, or phycobilisomes, in response to changes in the sulfur levels in its environment. Depletion of sulfur causes these cells to cease the accumulation of two forms of a major phycobilisome protein called phycocyanin and initiate the production of a third form of phycocyanin, which possesses a minimal number of sulfur-containing amino acids. Since phycobilisomes make up approximately 50% of the total protein in these cells, this elemental sparing response has the potential to significantly influence the fitness of this species under low-sulfur conditions. This response is specific for sulfate and occurs over the physiological range of sulfate concentrations likely to be encountered by this organism in its natural environment. F. diplosiphon has two separate sulfur deprivation responses, with low sulfate levels activating the phycobilisome remodeling response and low sulfur levels activating the chlorosis or bleaching response. The phycobilisome remodeling response results from changes in RNA abundance that are regulated at both the transcriptional and posttranscriptional levels. The potential of this response, and the more general bleaching response of cyanobacteria, to provide sulfur-containing amino acids during periods of sulfur deprivation is examined.
Collapse
|
32
|
Exploiting the autofluorescent properties of photosynthetic pigments for analysis of pigmentation and morphology in live Fremyella diplosiphon cells. SENSORS 2010; 10:6969-79. [PMID: 22163584 PMCID: PMC3231140 DOI: 10.3390/s100706969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 01/05/2023]
Abstract
Fremyella diplosiphon is a freshwater, filamentous cyanobacterium that exhibits light-dependent regulation of photosynthetic pigment accumulation and cellular and filament morphologies in a well-known process known as complementary chromatic adaptation (CCA). One of the techniques used to investigate the molecular bases of distinct aspects of CCA is confocal laser scanning microscopy (CLSM). CLSM capitalizes on the autofluorescent properties of cyanobacterial phycobiliproteins and chlorophyll a. We employed CLSM to perform spectral scanning analyses of F. diplosiphon strains grown under distinct light conditions. We report optimized utilization of CLSM to elucidate the molecular basis of the photoregulation of pigment accumulation and morphological responses in F. diplosiphon.
Collapse
|
33
|
Chromatic adaptation and the evolution of light color sensing in cyanobacteria. Proc Natl Acad Sci U S A 2010; 107:9029-30. [PMID: 20457899 DOI: 10.1073/pnas.1004510107] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter. Proc Natl Acad Sci U S A 2010; 107:8854-9. [PMID: 20404166 DOI: 10.1073/pnas.1000177107] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Responding to green and red light, certain cyanobacteria change the composition of their light-harvesting pigments, phycoerythrin (PE) and phycocyanin (PC). Although this phenomenon-complementary chromatic adaptation-is well known, the green light-sensing mechanism for PE accumulation is unclear. The filamentous cyanobacterium Nostoc punctiforme ATCC 29133 (N. punctiforme) regulates PE synthesis in response to green and red light (group II chromatic adaptation). We disrupted the green/red-perceiving histidine-kinase gene (ccaS) or the cognate response regulator gene (ccaR), which are clustered with several PE and PC genes (cpeC-cpcG2-cpeR1 operon) in N. punctiforme. Under green light, wild-type cells accumulated a significant amount of PE upon induction of cpeC-cpcG2-cpeR1 expression, whereas they accumulated little PE with suppression of cpeC-cpcG2-cpeR1 expression under red light. Under both green and red light, the ccaS mutant constitutively accumulated some PE with constitutively low cpeC-cpcG2-cpeR1 expression, whereas the ccaR mutant accumulated little PE with suppression of cpeC-cpcG2-cpeR1 expression. The results of an electrophoretic mobility shift assay suggest that CcaR binds to the promoter region of cpeC-cpcG2-cpeR1, which contains a conserved direct-repeat motif. Taken together, the results suggest that CcaS phosphorylates CcaR under green light and that phosphorylated CcaR then induces cpeC-cpcG2-cpeR1 expression, leading to PE accumulation. In contrast, CcaS probably represses cpeC-cpcG2-cpeR1 expression by dephosphorylation of CcaR under red light. We also found that the cpeB-cpeA operon is partially regulated by green and red light, suggesting that the green light-induced regulatory protein CpeR1 activates cpeB-cpeA expression together with constitutively induced CpeR2.
Collapse
|
35
|
Prasanna R, Sood A, Jaiswal P, Nayak S, Gupta V, Chaudhary V, Joshi M, Natarajan C. Rediscovering cyanobacteria as valuable sources of bioactive compounds (Review). APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810020018] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Shui J, Saunders E, Needleman R, Nappi M, Cooper J, Hall L, Kehoe D, Stowe-Evans E. Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. PLANT & CELL PHYSIOLOGY 2009; 50:1507-21. [PMID: 19561333 DOI: 10.1093/pcp/pcp095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cyanobacterium Fremyella diplosiphon can alternate its light-harvesting pigments, a process called comple-mentary chromatic adaptation (CCA), allowing it to photosynthesize in green light (GL) and in fluctuating light conditions. Nevertheless, F. diplosiphon requires chlorophylls for photosynthesis under all light conditions. Two alternative enzymes catalyze the penultimate step of chlorophyll synthesis, light-dependent protochlorophyllide oxidoreductase (LPOR) and dark-operative protochlo-rophyllide oxidoreductase (DPOR). DPOR enzymatic activity is light independent, while LPOR requires light. Therefore, we hypothesize that F. diplosiphon up-regulates DPOR gene expression in GL, so that DPOR is more abundant when LPOR is less functional. We cloned the genes encoding the three subunits of DPOR, chlL, chlN and chlB, and the LPOR gene, por, to determine the abundance of the transcripts under red light (RL), GL and dark conditions. We found that F. diplosiphon chlL and chlN genes are transcribed as parts of a single operon, a gene structure that is conserved within cyanobacteria. Tran-scripts levels of all DPOR genes are up-regulated approximately 2-fold in GL relative to levels in RL, whereas LPOR transcript levels are reduced in GL. Moreover, mutations in CCA regulators, RcaE and CpeR, modify DPOR and LPOR transcript levels under specific light conditions. Finally, both DPOR and LPOR transcripts are down-regulated 2- to 5-fold in the dark. These results provide the first evidence that light quality and CCA affect the genetic regulation of chlorophyll biosynthesis in freshwater cyanobacteria, ecologically important photosynthetic organisms.
Collapse
Affiliation(s)
- Jessica Shui
- Biology Department, 701 Moore Avenue, Bucknell University, Lewisburg, PA 17837, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Duxbury Z, Schliep M, Ritchie RJ, Larkum AWD, Chen M. Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2009; 101:69-75. [PMID: 19582591 DOI: 10.1007/s11120-009-9466-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/23/2009] [Indexed: 05/28/2023]
Abstract
Chromatic photoacclimation and photosynthesis were examined in two strains of Acaryochloris marina (MBIC11017 and CCMEE5410) and in Synechococcus PCC7942. Acaryochloris contains Chl d, which has an absorption peak at ca 710 nm in vivo. Cultures were grown in one of the three wavelengths (525 nm, 625 nm and 720 nm) of light from narrow-band photodiodes to determine the effects on pigment composition, growth rate and photosynthesis: no growth occurred in 525 nm light. Synechococcus did not grow in 720 nm light because Chl a does not absorb effectively at this long wavelength. Acaryochloris did grow in 720 nm light, although strain MBIC11017 showed a decrease in phycobilins over time. Both Synechococcus and Acaryochloris MBIC11017 showed a dramatic increase in phycobilin content when grown in 625 nm light. Acaryochloris CCMEE5410, which lacks phycobilins, would not grow satisfactorily under 625 nm light. The cells adjusted their pigment composition in response to the light spectral conditions under which they were grown. Photoacclimation and the Q (y) peak of Chl d could be understood in terms of the ecological niche of Acaryochloris, i.e. habitats enriched in near infrared radiation.
Collapse
Affiliation(s)
- Zane Duxbury
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | |
Collapse
|
38
|
Abundance changes of the response regulator RcaC require specific aspartate and histidine residues and are necessary for normal light color responsiveness. J Bacteriol 2008; 190:7241-50. [PMID: 18757544 DOI: 10.1128/jb.00762-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RcaC is a large, complex response regulator that controls transcriptional responses to changes in ambient light color in the cyanobacterium Fremyella diplosiphon. The regulation of RcaC activity has been shown previously to require aspartate 51 and histidine 316, which appear to be phosphorylation sites that control the DNA binding activity of RcaC. All available data suggest that during growth in red light, RcaC is phosphorylated and has relatively high DNA binding activity, while during growth in green light RcaC is not phosphorylated and has less DNA binding activity. RcaC has also been found to be approximately sixfold more abundant in red light than in green light. Here we demonstrate that the light-controlled abundance changes of RcaC are necessary, but not sufficient, to direct normal light color responses. RcaC abundance changes are regulated at both the RNA and protein levels. The RcaC protein is significantly less stable in green light than in red light, suggesting that the abundance of this response regulator is controlled at least in part by light color-dependent proteolysis. We provide evidence that the regulation of RcaC abundance does not depend on any RcaC-controlled process but rather depends on the presence of the aspartate 51 and histidine 316 residues that have previously been shown to control the activity of this protein. We propose that the combination of RcaC abundance changes and modification of RcaC by phosphorylation may be necessary to provide the dynamic range required for transcriptional control of RcaC-regulated genes.
Collapse
|
39
|
Paoli A, Celussi M, Del Negro P, Fonda Umani S, Talarico L. Ecological advantages from light adaptation and heterotrophic-like behavior in Synechococcus harvested from the Gulf of Trieste (Northern Adriatic Sea). FEMS Microbiol Ecol 2008; 64:219-29. [DOI: 10.1111/j.1574-6941.2008.00459.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Li L, Alvey RM, Bezy RP, Kehoe DM. Inverse transcriptional activities during complementary chromatic adaptation are controlled by the response regulator RcaC binding to red and green light-responsive promoters. Mol Microbiol 2008; 68:286-97. [PMID: 18346116 DOI: 10.1111/j.1365-2958.2008.06151.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Complementary chromatic adaptation (CCA) provides cyanobacteria with the ability to shift between red and blue-green phenotypes that are optimized for absorption of different wavelengths of light. Controlled by the ratio of green to red light, this process results from differential expression of two groups of operons, many of which encode proteins involved in photosynthetic light harvesting antennae biogenesis. In the freshwater species Fremyella diplosiphon, the inverse regulation of these two classes is complex and occurs through different mechanisms. It also involves a two-component pathway that includes a phytochrome-class photoreceptor and the response regulator RcaC. Here we uncover the mechanism through which this system controls CCA by demonstrating that RcaC binds to the L Box within promoters of both classes of light-regulated operons. We provide functional evidence that complementary regulation of these operons occurs by RcaC's simultaneous activation and repression of transcription in red light. We identify rcaC and L Boxes in the genome of a marine cyanobacterium capable of CCA, suggesting widespread use of this control system. These results provide important insights into the long-standing enigma of CCA regulation and complete the first description of an entire two-component system controlled by a phytochrome-class photoreceptor.
Collapse
Affiliation(s)
- Lina Li
- Department of Biology, 1001 East Third Street, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
41
|
Krogmann DW, Pérez-Gómez B, Gutiérrez-Cirlos EB, Chagolla-López A, González de la Vara L, Gómez-Lojero C. The presence of multidomain linkers determines the bundle-shape structure of the phycobilisome of the cyanobacterium Gloeobacter violaceus PCC 7421. PHOTOSYNTHESIS RESEARCH 2007; 93:27-43. [PMID: 17310305 DOI: 10.1007/s11120-007-9133-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 01/07/2007] [Indexed: 05/14/2023]
Abstract
The complete genome sequence of Gloeobacter violaceus [Nakamura et al. (2003a, b) DNA Res 10:37-45, 181-201] allows us to understand better the structure of the phycobilisomes (PBS) of this cyanobacterium. Genomic analysis revealed peculiarities in these PBS: the presence of genes for two multidomain linker proteins, a core membrane linker with four repetitive sequences (REP domains), the absence of rod core linkers, two sets of phycocyanin (PC) alpha and beta subunits, two copies of a rod PC associated linker (CpcC), and two rod cap associated linkers (CpcD). Also, there is one ferredoxin-NADP(+) oxidoreductase with only two domains. The PBS proteins were investigated by gel electrophoresis, amino acid sequencing and peptide mass fingerprinting (PMF). The two unique multidomain linkers contain three REP domains with high similarity and these were found to be in tandem and were separated by dissimilar Arms. One of these, with a mass of 81 kDa, is found in heavy PBS fragments rich in PC. We propose that it links six PC hexamers in two parallel rows in the rods. The other unique linker has a mass of 91 kDa and is easily released from the heavy fragments of PBS. We propose that this links the rods to the core. The presence of these multidomain linkers could explain the bundle shaped rods of the PBS. The presence of 4 REP domains in the core membrane linker protein (129 kDa) was established by PMF. This core linker may hold together 16 AP trimers of the pentacylindrical core, or alternatively, a tetracylindrical core of the PBS of G. violaceus.
Collapse
Affiliation(s)
- David W Krogmann
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1157, USA
| | | | | | | | | | | |
Collapse
|
42
|
Alvey RM, Bezy RP, Frankenberg-Dinkel N, Kehoe DM. A light regulated OmpR-class promoter element co-ordinates light-harvesting protein and chromophore biosynthetic enzyme gene expression. Mol Microbiol 2007; 64:319-32. [PMID: 17381552 DOI: 10.1111/j.1365-2958.2007.05656.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Co-ordination of chromophore and apoprotein biosynthesis is required during photosynthetic light-harvesting antennae production, such as occurs during complementary chromatic adaptation (CCA). This response to ambient light colour changes is controlled by a phytochrome-class photoreceptor and involves changes in the synthesis of cyanobacterial light-harvesting antennae. During growth in red light, CCA activates cpc2 transcription, an operon that encodes the light-harvesting protein phycocyanin. In order to function, this apoprotein must have covalently attached phycocyanobilin chromophores, which are synthesized by PcyA. We show that pcyA is also transcriptionally activated by CCA during red light growth and is not regulated via feedback that senses cpc2 RNA levels. The pcyA and cpc2 promoters contain a common regulatory element, a direct repeat typical of OmpR-class transcription factor binding sites, at similar positions relative to their red light-controlled transcription start sites. Deletion of this element from the pcyA promoter eliminated CCA-regulated transcription, and insertion of the element into a non-light responsive promoter conferred CCA regulation. We conclude that this element is necessary and sufficient to confer CCA transcriptional regulation and that it co-ordinates phycocyanin and phycocyanobilin biosynthesis in red light.
Collapse
MESH Headings
- Adaptation, Physiological/radiation effects
- Bacterial Proteins/genetics
- Base Sequence
- Cluster Analysis
- Cyanobacteria/genetics
- Cyanobacteria/radiation effects
- Feedback, Physiological/radiation effects
- Gene Expression Regulation, Bacterial/radiation effects
- Genes, Bacterial
- Light
- Light-Harvesting Protein Complexes/genetics
- Light-Harvesting Protein Complexes/radiation effects
- Models, Genetic
- Molecular Sequence Data
- Oxidoreductases/metabolism
- Phycobilins/biosynthesis
- Phycobilisomes/metabolism
- Phycobilisomes/radiation effects
- Phycocyanin/biosynthesis
- Promoter Regions, Genetic/genetics
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Trans-Activators/genetics
- Transcription Initiation Site
- Transcription, Genetic/radiation effects
Collapse
Affiliation(s)
- Richard M Alvey
- Department of Biology, 1001 East Third Street, Indiana University, Bloomington, IN47405, USA
| | | | | | | |
Collapse
|
43
|
Venugopal V, Prasanna R, Sood A, Jaiswal P, Kaushik BD. Stimulation of pigment accumulation in Anabaena azollae strains: effect of light intensity and sugars. Folia Microbiol (Praha) 2006; 51:50-6. [PMID: 16821712 DOI: 10.1007/bf02931450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of high light intensity on the growth and pigment accumulating ability of Anabaena azollae was investigated. A. azollae responded positively to high light intensity (6 klx) and was further evaluated at higher intensities (10 and 15 klx), in the presence of glucose, sucrose and jaggery +/- DCMU. Significant enhancement in phycobiliproteins and carotenoids was observed in the sugar supplemented cultures at high light intensities. SDS-PAGE profiles of whole cell proteins revealed the presence of unique bands in such treatments. Sucrose supplementation induced a 30-90 % increase in carotenoids, phycocyanin and phycoerythrin content at 10 klx. Molecular analysis of the stimulatory and interactive role of sugars on pigment enhancement at high light intensity may aid in better exploitation of cyanobacteria as a source of pigments.
Collapse
Affiliation(s)
- V Venugopal
- Center for Conservation and Utilization of Blue-Green Algae, Indian Agricultural Research Institute, New Delhi
| | | | | | | | | |
Collapse
|
44
|
Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM. Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp. J Bacteriol 2006; 188:3345-56. [PMID: 16621829 PMCID: PMC1447437 DOI: 10.1128/jb.188.9.3345-3356.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatic adaptation (CA) in cyanobacteria has provided a model system for the study of the environmental control of photophysiology for several decades. All forms of CA that have been examined so far (types II and III) involve changes in the relative contents of phycoerythrin (PE) and/or phycocyanin when cells are shifted from red to green light and vice versa. However, the chromophore compositions of these polypeptides are not altered. Some marine Synechococcus species strains, which possess two PE forms (PEI and PEII), carry out another type of CA (type IV), occurring during shifts from blue to green or white light. Two chromatically adapting strains of marine Synechococcus recently isolated from the Gulf of Mexico were utilized to elucidate the mechanism of type IV CA. During this process, no change in the relative contents of PEI and PEII was observed. Instead, the ratio of the two chromophores bound to PEII, phycourobilin and phycoerythrobilin, is high under blue light and low under white light. Mass spectroscopy analyses of isolated PEII alpha- and beta-subunits show that there is a single PEII protein type under all light climates. The CA process seems to specifically affect the chromophorylation of the PEII (and possibly PEI) alpha chain. We propose a likely process for type IV CA, which involves the enzymatic activity of one or several phycobilin lyases and/or lyase-isomerases differentially controlled by the ambient light quality. Phylogenetic analyses based on the 16S rRNA gene confirm that type IV CA is not limited to a single clade of marine Synechococcus.
Collapse
Affiliation(s)
- Craig Everroad
- Center for Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | | | |
Collapse
|
45
|
Liu LN, Chen XL, Zhang YZ, Zhou BC. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:133-42. [PMID: 15922288 DOI: 10.1016/j.bbabio.2005.04.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/13/2005] [Accepted: 04/14/2005] [Indexed: 10/25/2022]
Abstract
Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker polypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed.
Collapse
Affiliation(s)
- Lu-Ning Liu
- State Key Lab of Microbial Technology, Shandong University, Jinan 250100, PR China
| | | | | | | |
Collapse
|
46
|
Stowe-Evans EL, Ford J, Kehoe DM. Genomic DNA microarray analysis: identification of new genes regulated by light color in the cyanobacterium Fremyella diplosiphon. J Bacteriol 2004; 186:4338-49. [PMID: 15205436 PMCID: PMC421618 DOI: 10.1128/jb.186.13.4338-4349.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Accepted: 03/03/2004] [Indexed: 11/20/2022] Open
Abstract
Many cyanobacteria use complementary chromatic adaptation to efficiently utilize energy from both green and red regions of the light spectrum during photosynthesis. Although previous studies have shown that acclimation to changing light wavelengths involves many physiological responses, research to date has focused primarily on the expression and regulation of genes that encode proteins of the major photosynthetic light-harvesting antennae, the phycobilisomes. We have used two-dimensional gel electrophoresis and genomic DNA microarrays to expand our understanding of the physiology of acclimation to light color in the cyanobacterium Fremyella diplosiphon. We found that the levels of nearly 80 proteins are altered in cells growing in green versus red light and have cloned and positively identified 17 genes not previously known to be regulated by light color in any species. Among these are homologs of genes present in many bacteria that encode well-studied proteins lacking clearly defined functions, such as tspO, which encodes a tryptophan-rich sensory protein, and homologs of genes encoding proteins of clearly defined function in many species, such as nblA and chlL, encoding phycobilisome degradation and chlorophyll biosynthesis proteins, respectively. Our results suggest novel roles for several of these gene products and highly specialized, unique uses for others.
Collapse
|