1
|
Tummolo A, Carella R, Carone P, Paterno G, De Giovanni D. Intake Modalities of Amino Acid Supplements: A Real-World Data Collection from Phenylketonuria Patients. Nutrients 2024; 16:669. [PMID: 38474797 DOI: 10.3390/nu16050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND To achieve a normal nutritional status, patients suffering from phenylketonuria (PKU) are typically prescribed amino acid (AA) supplements with low or no phenylalanine (Phe) content. Studies evaluating patient preferences regarding the intake modalities of AA supplements are limited. This study aimed to collect real-world data regarding prescription adherence and intake modalities of AA supplements reported by PKU patients while monitoring metabolic control. METHODS This cross-sectional study included 33 PKU patients (16 female and 17 male) with a mean age of 27.2 years. Questionnaires were provided to assess information on AA supplement intake, such as prescription adherence rate, frequency and timing of administration, supplement formulation, and combination with food or drinks. Plasma phenylalanine levels were monitored during the study period. RESULTS 51.5% (n = 17) of patients reported to lay within an adherence range of 75-100%. The majority of patients consumed AA supplements twice daily, with breakfast (87.9%) and afternoon snacks (51.5%). Powder supplements were most commonly used (72.7%) and often combined with milk and/or fruit juices (45.4%). CONCLUSIONS Despite the known concerns related to treatment compliance among PKU adolescents and adults, most of the study participants reported a high level of adherence to AA supplement prescription. The personalized dietary regimens followed by the patients included in the current study represent a treatment approach that might be worth trying in non-compliant patients.
Collapse
Affiliation(s)
- Albina Tummolo
- Division of Metabolic and Genetic Diseases, Children Hospital Giovanni XXIII, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Rosa Carella
- Division of Metabolic and Genetic Diseases, Children Hospital Giovanni XXIII, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Pasquale Carone
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Giulia Paterno
- Division of Metabolic and Genetic Diseases, Children Hospital Giovanni XXIII, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Donatella De Giovanni
- Division of Metabolic and Genetic Diseases, Children Hospital Giovanni XXIII, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| |
Collapse
|
2
|
Ahring K, Bélanger-Quintana A, Burlina A, Giżewska M, Maillot F, Muntau A, Roscher A, MacDonald A. Management of phenylketonuria in European PKU centres remains heterogeneous. Mol Genet Metab 2024; 141:108120. [PMID: 38159545 DOI: 10.1016/j.ymgme.2023.108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Phenylketonuria (PKU) is a genetic disorder that follows an autosomal recessive inheritance pattern. Dietary treatment is the cornerstone of therapy and is based on natural protein restriction, Phe-free L-amino acid supplements (protein substitutes) and low protein foods. The aim of this project was to collect information about the clinical management of patients with PKU, focusing on understudied or unresolved issues such as blood phenylalanine (Phe) fluctuations and clinical symptoms, particularly gastro intestinal (GI) discomfort and sleep problems. The survey consisted of 10 open-ended and 12 multiple-choice questions that collected information about size of the PKU population in each center, the center's clinical practices and the outcomes observed by the center concerning adherence, clinical and biochemical abnormalities and clinical symptoms (GI and sleep). The questionnaire was sent to 72 experts from metabolic centers in 11 European countries. Thirty-three centers answered. The results of this survey provide information about the clinical practice in different age groups, concentrating on dietary tolerance, treatment adherence, and metabolic control. All the centers prescribed a Phe-restricted diet, with Phe-free/low Phe protein substitutes and low protein foods. Daily doses given of protein substitutes varied from 1 to 5, with adherence to the prescribed amounts decreasing with increasing age. Respondents identified that improvement in the flavor, taste, volume and smell of protein substitutes may improve adherence. Finally, the survey showed that clinical symptoms, such as GI discomfort and sleep problems occur in patients with PKU but are not systematically evaluated. Twenty-four-hour Phe fluctuations were not routinely assessed. The results highlight a strong heterogeneity of approach to management despite international PKU guidelines. More clinical attention should be given to gastrointestinal and sleep problems in PKU.
Collapse
Affiliation(s)
| | - Amaya Bélanger-Quintana
- Pediatrics Service, Congenital Errors of Metabolism Unit (CSUR and MetabERN), Ramon and Cajal University Hospital, CIBER-ER, Ramon and Cajal Institute for Health Research (IRYCIS), Spain
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, University Hospital Padova, 35129 Padova, Italy
| | - Maria Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Francois Maillot
- CHRU De Tours, Service of Internal Medicine, Reference center for inherited metabolic diseases, Tours' University, INSERM U1253, Labex MabImprove, Tours, France
| | - Ania Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Anne Roscher
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Anita MacDonald
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK.
| |
Collapse
|
3
|
Delsoglio M, Capener R, MacDonald A, Daly A, Ashmore C, Ellerton C, Donald S, Gaff L, VanDorp L, Skeath R, Newby C, Dunning G, Dale C, Hunjan I, White L, Allen H, Hubbard GP, Stratton RJ. Evaluation of a New Glycomacropeptide-Based Protein Substitute in Powdered and Liquid Format in Patients with PKU. Nutrients 2023; 15:3580. [PMID: 37630769 PMCID: PMC10459497 DOI: 10.3390/nu15163580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Good adherence to a Phe-restricted diet supplemented with an adequate amount of a protein substitute (PS) is important for good clinical outcomes in PKU. Glycomacropeptide (cGMP)-PSs are innovative, palatable alternatives to amino acid-based PSs (AA-PS). This study aimed to evaluate a new cGMP-PS in liquid and powder formats in PKU. (2) Methods: Children and adults with PKU recruited from eight centres were prescribed at least one serving/day of cGMP-PS for 7-28 days. Adherence, acceptability, and gastrointestinal tolerance were recorded at baseline and the end of the intervention. The blood Phe levels reported as part of routine care during the intervention were recorded. (3) Results: In total, 23 patients (powder group, n = 13; liquid group, n = 10) completed the study. The majority assessed the products to be palatable (77% of powder group; 100% of liquid group) and well tolerated; the adherence to the product prescription was good. A total of 14 patients provided blood Phe results during the intervention, which were within the target therapeutic range for most patients (n = 11) at baseline and during the intervention. (4) Conclusions: These new cGMP-PSs were well accepted and tolerated, and their use did not adversely affect blood Phe control.
Collapse
Affiliation(s)
- Marta Delsoglio
- Research and Innovation, Nutricia Ltd., White Horse Business Park, Trowbridge BA14 0XQ, UK
| | - Rebecca Capener
- Research and Innovation, Nutricia Ltd., White Horse Business Park, Trowbridge BA14 0XQ, UK
| | - Anita MacDonald
- Dietetic Department, Birmingham Children’s Hospital, Birmingham B4 6NH, UK
| | - Anne Daly
- Dietetic Department, Birmingham Children’s Hospital, Birmingham B4 6NH, UK
| | - Catherine Ashmore
- Dietetic Department, Birmingham Children’s Hospital, Birmingham B4 6NH, UK
| | - Charlotte Ellerton
- University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Sarah Donald
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Lisa Gaff
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Louise VanDorp
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Rachel Skeath
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Camille Newby
- Bristol University Hospitals NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Georgina Dunning
- Bristol University Hospitals NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Clare Dale
- Queen Elizabeth Hospital, Birmingham B15 2TH, UK
| | - Inderdip Hunjan
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford BD5 0NA, UK
| | - Lucy White
- Sheffield Children’s NHS Foundation Trust, Sheffield S10 2TH, UK
| | - Heather Allen
- Sheffield Children’s NHS Foundation Trust, Sheffield S10 2TH, UK
| | - Gary P. Hubbard
- Research and Innovation, Nutricia Ltd., White Horse Business Park, Trowbridge BA14 0XQ, UK
| | - Rebecca J. Stratton
- Research and Innovation, Nutricia Ltd., White Horse Business Park, Trowbridge BA14 0XQ, UK
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Bingöl AC, Bingöl M, Pandis N, Stolz S, Beblo S, Jost-Brinkmann PG, Mönch E, Bartzela T. Dietary and metabolic effects on the oral status of patients with phenylketonuria: a nation-based cross-sectional study. Clin Oral Investig 2023; 27:1981-1991. [PMID: 36805804 PMCID: PMC9939867 DOI: 10.1007/s00784-022-04827-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/06/2022] [Indexed: 02/23/2023]
Abstract
OBJECTIVES The aim of this study was to compare the prevalence of oral diseases (caries, periodontal disease, enamel defects) between patients with phenylketonuria (PKU), their siblings, and a matched control group. MATERIALS AND METHODS A total of 109 patients with PKU, 14 siblings of PKU patients, and 100 healthy individuals aged 6 to 68 years were recruited. All participants completed a questionnaire based on their health status. The patients' decayed/missing/filled teeth index (dmft/DMFT), gingival bleeding index (GBI), plaque control record (PCR), periodontal screening and recording index (PSR), and developmental enamel defects index (DDE) were recorded. Descriptive statistics and regression modeling were used to examine potential associations between the exposure and the outcomes of interest. RESULTS Patients with PKU had 1.6 times more caries (95% confidence interval (CI) 1.22 to 2.20; p = 0.001), seven times more enamel defects (95% CI 3.94 to 14.21; p < 0.001), and four times higher PSR values (95% CI 2.26 to 7.15; p < 0.001) than the control group. The siblings had significantly fewer enamel defects but no significant differences in caries and periodontal parameters compared to the PKU patients. CONCLUSIONS The results showed a higher risk for the development of caries, periodontitis, and enamel defects in PKU patients. CLINICAL RELEVANCE Implementation of preventive measures and regular dental care is necessary for patients with PKU.
Collapse
Affiliation(s)
- Anne Carolin Bingöl
- Department of Orthodontics and Dentofacial Orthopedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute for Oral Health Sciences, Aßmannshauser Str. 4-6, 14197, Berlin, Germany
| | - Memduh Bingöl
- Department of Orthodontics and Dentofacial Orthopedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute for Oral Health Sciences, Aßmannshauser Str. 4-6, 14197, Berlin, Germany
| | - Nikolaos Pandis
- Department of Orthodontics and Dentofacial Orthopedics, Dental School/Medical Faculty, University of Bern, Freiburgstr. 7, 3010, Bern, Switzerland
| | - Simone Stolz
- Department of Pediatric and Adolescent Medicine, Carl-Thiem-Klinikum Cottbus, Thiemstr. 111, 03048, Cottbus, Germany
| | - Skadi Beblo
- Department of Women and Child Health, Centre for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Liebigstr. 20a, Haus 6, 04103, Leipzig, Germany
| | - Paul-Georg Jost-Brinkmann
- Department of Orthodontics and Dentofacial Orthopedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute for Oral Health Sciences, Aßmannshauser Str. 4-6, 14197, Berlin, Germany
| | - Eberhard Mönch
- Interdisciplinary Metabolism Centre, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Theodosia Bartzela
- Department of Orthodontics and Dentofacial Orthopedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute for Oral Health Sciences, Aßmannshauser Str. 4-6, 14197, Berlin, Germany.
- Department of Orthodontics, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
5
|
Tummolo A, Carella R, Paterno G, Bartolomeo N, Giotta M, Dicintio A, De Giovanni D, Fischetto R. Body Composition in Adolescent PKU Patients: Beyond Fat Mass. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091353. [PMID: 36138662 PMCID: PMC9497631 DOI: 10.3390/children9091353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022]
Abstract
There is a lack of evidence on the impact on body composition of high protein intake and types of protein substitutes in PKU patients—particularly in adolescents, who are more inclined to dietary transgressions. In this observational, cross-sectional study, PKU patients were observed during prepubertal age (p) or after the pubertal spurt (P), assessing body composition and bone quality and correlating these parameters with dietary compliance and types of protein substitutes. Anthropometric and dietary data were evaluated together with bioelectrical impedance analysis (BIA), quantitative ultrasound (QUS) and branched-chain amino acids (BCAAs). A total of 36 patients (16 males, 17 prepubertal and 19 post-pubertal; mean ± SD age 11.4 ± 3.9 years) were included. A higher BMI was observed in adolescents (p-value: 0.018). The BIA revealed a significant increase in total body water (TBW) and muscle mass (MM) in P subjects either compliant (p-value: 0.001) or non-compliant with the diet (p-value: 0.001). MM content correlated with increased Phe intake (r = 0.63; p < 0.001). In the subgroup of five patients taking L-AAs and glycomacropeptides (GMPs), BCAA values tended to be lower than those taking only L-AA mixtures, with a significant trend for valine. Maintenance of body composition parameters within the normal range—for both fat and muscle mass—and levels of BCAAs can be helpful in reducing the risk of becoming overweight in adulthood. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Albina Tummolo
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
- Correspondence:
| | - Rosa Carella
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Giulia Paterno
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Nicola Bartolomeo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Massimo Giotta
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annamaria Dicintio
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Donatella De Giovanni
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Rita Fischetto
- Department of Metabolic Diseases and Clinical Genetics, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| |
Collapse
|
6
|
Glycomacropeptide in PKU-Does It Live Up to Its Potential? Nutrients 2022; 14:nu14040807. [PMID: 35215457 PMCID: PMC8875363 DOI: 10.3390/nu14040807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The use of casein glycomacropeptide (CGMP) as a protein substitute in phenylketonuria (PKU) has grown in popularity. CGMP is derived from κ casein and is a sialic-rich glycophosphopeptide, formed by the action of chymosin during the production of cheese. It comprises 20–25% of total protein in whey products and has key biomodulatory properties. In PKU, the amino acid sequence of CGMP has been adapted by adding the amino acids histidine, leucine, methionine, tyrosine and tryptophan naturally low in CGMP. The use of CGMP compared to mono amino acids (L-AAs) as a protein substitute in the treatment of PKU promises several potential clinical benefits, although any advantage is supported only by evidence from non-PKU conditions or PKU animal models. This review examines if there is sufficient evidence to support the bioactive properties of CGMP leading to physiological benefits when compared to L-AAs in PKU, with a focus on blood phenylalanine control and stability, body composition, growth, bone density, breath odour and palatability.
Collapse
|
7
|
Lim JY, Amit N, Ali NM, Leong HY, Mohamad M, Rajikan R. Effect of nutritional intervention on nutritional status among children with disorders of amino acid and nitrogen metabolism (AANMDs): A scoping review. Intractable Rare Dis Res 2021; 10:246-256. [PMID: 34877236 PMCID: PMC8630465 DOI: 10.5582/irdr.2021.01124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
Disorders of amino acid and nitrogen metabolism (AANMDs) occur due to an enzyme deficiency in a normal biochemical pathway. Nutritional intervention is recognized as the mainstay of treatment for children diagnosed with AANMD. Hence, this scoping review aimed to identify the nutritional interventions available in managing AANMD disorders and their effects on nutritional status. A systematic search using PRISMA Extension for Scoping Reviews (PRISMA-ScR) method was conducted across 4 databases: PubMed, ScienceDirect (Elsevier), EBSCOhost and Cochrane Central Register of Controlled Trials (CENTRAL). Inclusion criteria for the study to be selected are: subjects aged less than 18-year-old, article published in English, utilized an experimental design and published within the past 20 years. A total of 22 articles were included in this review. The majority of the subjects are boys (55.6%) and employed a randomized controlled trial (RCT) study design (45.4%). Nutritional interventions were categorized into 4 categories which are: "protein substitute" (n = 5), "protein substitute with modified composition" (n = 6), "nutrient supplementation (n=8)", and "distribution and dosage of protein substitute (n = 3)". The most frequently assessed outcomes were biochemical parameters that gauge the effectiveness of metabolic control (68.2%). Overall, "protein substitute enriched with inhibitive amino acids", "long-chain polyunsaturated fatty acids supplementation", and "evenly distributed protein substitute" demonstrated beneficial effects towards the nutritional status, especially in terms of biochemical parameters. In summary, nutritional intervention plays a significant role in improving the nutritional status of AANMD patients. Further investigations of nutritional intervention among AANMD children using a meta-analysis approach are necessary for better comprehension of their impact in management of AANMD disorders.
Collapse
Affiliation(s)
- Jing Ying Lim
- Dietetics Program & Centre of Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noh Amit
- Clinical Psychology and Behavioural Health Program & Center for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nazlena Mohamad Ali
- Institute of IR4.0 (IIR4.0), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Huey Yin Leong
- Genetics Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Maslina Mohamad
- Dietetics & Food Service Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Roslee Rajikan
- Dietetics Program & Centre of Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Nitrogen Balance after the Administration of a Prolonged-Release Protein Substitute for Phenylketonuria as a Single Dose in Healthy Volunteers. Nutrients 2021; 13:nu13093189. [PMID: 34579066 PMCID: PMC8466970 DOI: 10.3390/nu13093189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
Nitrogen balance is the difference between nitrogen excreted as urea and nitrogen ingested, mainly in proteins. Increased circulating concentrations of amino acids (AA) in the bloodstream are usually associated with proportional increases in the production and excretion of urea. Previously, we reported results from a randomized, controlled, single-dose, crossover trial in healthy adult volunteers (n = 30) (Trial Registration: ISRCTN11016729), in which a Test product (prolonged-release AA mixture formulated with Physiomimic Technology™ (PT™)) significantly slowed down the release and reduced the peak plasma concentrations of essential AAs compared with a free AA mixture (Reference product) while maintaining essential AA bioavailability. Here, we report an assessment of the nitrogen balance from the same study. The amount of nitrogen contained in plasma AAs, levels of blood urea nitrogen (BUN) (p < 0.0001) and changes in BUN (p < 0.0001) were smaller after the Test product compared with the Reference product. These findings suggest that the production of urea in proportion to systemic AA availability was significantly smaller after the administration of the Test product compared with the Reference product and that the test product conferred the increased utilization of AAs for protein synthesis and reduced their oxidation and conversion to urea. In the clinical setting, it is possible that the effects of PT™ observed on the disposition of free AAs in this study may translate to health benefits in terms of physiological body composition and growth if used for the treatment of subjects with phenylketonuria (PKU). Further investigation in patients with PKU is warranted.
Collapse
|
9
|
Growth and Body Composition in PKU Children-A Three-Year Prospective Study Comparing the Effects of L-Amino Acid to Glycomacropeptide Protein Substitutes. Nutrients 2021; 13:nu13041323. [PMID: 33923714 PMCID: PMC8073059 DOI: 10.3390/nu13041323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 01/15/2023] Open
Abstract
Protein quality and quantity are important factors in determining lean body (muscle) mass (LBM). In phenylketonuria (PKU), protein substitutes provide most of the nitrogen, either as amino acids (AA) or glycomacropeptide with supplementary amino acids (CGMP-AA). Body composition and growth are important indicators of long-term health. In a 3-year prospective study comparing the impact of AA and CGMP-AA on body composition and growth in PKU, 48 children were recruited. N = 19 (median age 11.1 years, range 5–15 years) took AA only, n = 16 (median age 7.3 years, range 5–15 years) took a combination of CGMP-AA and AA, (CGMP50) and 13 children (median age 9.2 years, range 5–16 years) took CGMP-AA only (CGMP100). A dual energy X-ray absorptiometry (DXA) scan at enrolment and 36 months measured LBM, % body fat (%BF) and fat mass (FM). Height was measured at enrolment, 12, 24 and 36 months. No correlation or statistically significant differences (after adjusting for age, gender, puberty and phenylalanine blood concentrations) were found between the three groups for LBM, %BF, FM and height. The change in height z scores, (AA 0, CGMP50 +0.4 and CGMP100 +0.7) showed a trend that children in the CGMP100 group were taller, had improved LBM with decreased FM and % BF but this was not statistically significant. There appeared to be no advantage of CGMP-AA compared to AA on body composition after 3-years of follow-up. Although statistically significant differences were not reached, a trend towards improved body composition was observed with CGMP-AA when it provided the entire protein substitute requirement.
Collapse
|
10
|
Ilgaz F, Marsaux C, Pinto A, Singh R, Rohde C, Karabulut E, Gökmen-Özel H, Kuhn M, MacDonald A. Protein Substitute Requirements of Patients with Phenylketonuria on BH4 Treatment: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:1040. [PMID: 33807079 PMCID: PMC8004763 DOI: 10.3390/nu13031040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
The traditional treatment for phenylketonuria (PKU) is a phenylalanine (Phe)-restricted diet, supplemented with a Phe-free/low-Phe protein substitute. Pharmaceutical treatment with synthetic tetrahydrobiopterin (BH4), an enzyme cofactor, allows a patient subgroup to relax their diet. However, dietary protocols guiding the adjustments of protein equivalent intake from protein substitute with BH4 treatment are lacking. We systematically reviewed protein substitute usage with long-term BH4 therapy. Electronic databases were searched for articles published between January 2000 and March 2020. Eighteen studies (306 PKU patients) were eligible. Meta-analyses demonstrated a significant increase in Phe and natural protein intakes and a significant decrease in protein equivalent intake from protein substitute with cofactor therapy. Protein substitute could be discontinued in 51% of responsive patients, but was still required in 49%, despite improvement in Phe tolerance. Normal growth was maintained, but micronutrient deficiency was observed with BH4 treatment. A systematic protocol to increase natural protein intake while reducing protein substitute dose should be followed to ensure protein and micronutrient requirements are met and sustained. We propose recommendations to guide healthcare professionals when adjusting dietary prescriptions of PKU patients on BH4. Studies investigating new therapeutic options in PKU should systematically collect data on protein substitute and natural protein intakes, as well as other nutritional factors.
Collapse
Affiliation(s)
- Fatma Ilgaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey; (F.I.); (H.G.-Ö.)
| | - Cyril Marsaux
- Danone Nutricia Research, 3584CT Utrecht, The Netherlands;
| | - Alex Pinto
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (A.P.); (A.M.)
| | - Rani Singh
- Metabolic Genetics Nutrition Program, Department of Human Genetics, Emory University, Atlanta, GA 30322, USA;
| | - Carmen Rohde
- Department of Paediatrics of the University Clinics Leipzig, University of Leipzig, 04103 Leipzig, Germany;
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey;
| | - Hülya Gökmen-Özel
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey; (F.I.); (H.G.-Ö.)
| | - Mirjam Kuhn
- Danone Nutricia Research, 3584CT Utrecht, The Netherlands;
| | - Anita MacDonald
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (A.P.); (A.M.)
| |
Collapse
|
11
|
Daly A, Evans S, Pinto A, Ashmore C, MacDonald A. Protein Substitutes in PKU; Their Historical Evolution. Nutrients 2021; 13:484. [PMID: 33540516 PMCID: PMC7912909 DOI: 10.3390/nu13020484] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
Protein substitutes developed for phenylketonuria (PKU) are a synthetic source of protein commonly based on L-amino acids. They are essential in the treatment of phenylketonuria (PKU) and other amino acid disorders, allowing the antagonistic amino acid to be removed but with the safe provision of all other amino acids necessary for maintaining normal physiological function. They were first formulated by a chemist and used experimentally on a 2-year-old girl with PKU and their nutritional formulations and design have improved over time. Since 2008, a bioactive macropeptide has been used as a base for protein substitutes in PKU, with potential benefits of improved bone and gut health, nitrogen retention, and blood phenylalanine control. In 2018, animal studies showed that physiomimic technology coating the amino acids with a polymer allows a slow release of amino acids with an improved physiological profile. History has shown that in PKU, the protein substitute's efficacy is determined by its nutritional profile, amino acid composition, dose, timing, distribution, and an adequate energy intake. Protein substitutes are often given little importance, yet their pharmacological actions and clinical benefit are pivotal when managing PKU.
Collapse
Affiliation(s)
- Anne Daly
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| | | | | | | | | |
Collapse
|
12
|
Firman S, Witard OC, O'Keeffe M, Ramachandran R. Dietary protein and protein substitute requirements in adults with phenylketonuria: A review of the clinical guidelines. Clin Nutr 2020; 40:702-709. [PMID: 33308842 DOI: 10.1016/j.clnu.2020.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/17/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
Lifelong dietary treatment is recommended in the management of phenylketonuria (PKU). Accordingly, an increasing adult population require age-specific PKU guidelines on protein requirements to support changing metabolic demands across the lifespan. Given that protein intake for dietary management of PKU is primarily (52-80%) derived from protein substitutes, the prescribing practice of protein substitutes must be underpinned by robust evidence. Whilst dietary guidelines for PKU management is evolving to incorporate adult specific protein recommendations, the scientific evidence underpinning these guidelines is currently limited. Instead, the determination of protein requirements for people with PKU have previously been extrapolated from estimates derived from the general healthy population, based on arguably outdated nitrogen balance methodology. Furthermore, a compensatory factor of 20-40% has been incorporated to account for the reduced uptake and utilisation of the elemental amino acids contained in protein substitutes. However, research informing this compensatory factor has been conducted in younger adults, with the majority of studies in non-PKU individuals. Given extensive evidence that the muscle anabolic response to ingested protein is impaired in older vs. young adults, the validity of current dietary protein recommendations for adults and older adults with PKU has been challenged. This narrative review aims to critically evaluate the existing scientific evidence underpinning current guidelines on protein requirements for adults with PKU, highlighting existing gaps in knowledge and directions for future research. We argue that current guidelines on protein requirements need updating to optimise long-term physical and functional outcomes in older adults with PKU.
Collapse
Affiliation(s)
- Sarah Firman
- Department of Nutritional Sciences, King's College London, London, United Kingdom; Department of Nutrition and Dietetics, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; Adult Inherited Metabolic Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| | - Oliver C Witard
- Department of Nutritional Sciences, King's College London, London, United Kingdom; Centre for Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Majella O'Keeffe
- Department of Nutritional Sciences, King's College London, London, United Kingdom; School of Food and Nutritional Sciences, University College Cork, College Road, Cork, Ireland
| | - Radha Ramachandran
- Adult Inherited Metabolic Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
13
|
Daly A, Evans S, Pinto A, Jackson R, Ashmore C, Rocha JC, MacDonald A. Preliminary Investigation to Review If a Glycomacropeptide Compared to L-Amino Acid Protein Substitute Alters the Pre- and Postprandial Amino Acid Profile in Children with Phenylketonuria. Nutrients 2020; 12:E2443. [PMID: 32823853 PMCID: PMC7468934 DOI: 10.3390/nu12082443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
In Phenylketonuria (PKU), the peptide structure of the protein substitute (PS), casein glycomacropeptide (CGMP), is supplemented with amino acids (CGMP-AA). CGMP may slow the rate of amino acid (AA) absorption compared with traditional phenylalanine-free amino acids (Phe-free AA), which may improve nitrogen utilization, decrease urea production, and alter insulin response. AIM In children with PKU, to compare pre and postprandial AA concentrations when taking one of three PS's: Phe-free AA, CGMP-AA 1 or 2. METHODS 43 children (24 boys, 19 girls), median age 9 years (range 5-16 years) were studied; 11 took CGMP-AA1, 18 CGMP-AA2, and 14 Phe-free AA. Early morning fasting pre and 2 h postprandial blood samples were collected for quantitative AA on one occasion. A breakfast with allocated 20 g protein equivalent from PS was given post fasting blood sample. RESULTS There was a significant increase in postprandial AA for all individual AAs with all three PS. Postprandial AA histidine (p < 0.001), leucine (p < 0.001), and tyrosine (p < 0.001) were higher in CGMP-AA2 than CGMP-AA1, and leucine (p < 0.001), threonine (p < 0.001), and tyrosine (p = 0.003) higher in GCMP-AA2 than Phe-free AA. This was reflective of the AA composition of the three different PS's. CONCLUSIONS In PKU, the AA composition of CGMP-AA influences 2 h postprandial AA composition, suggesting that a PS derived from CGMP-AA may be absorbed similarly to Phe-free AA, but this requires further investigation.
Collapse
Affiliation(s)
- Anne Daly
- Dietetic Department, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| | - Sharon Evans
- Dietetic Department, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| | - Alex Pinto
- Dietetic Department, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| | - Richard Jackson
- Liverpool Clinical Trials Centre, University of Liverpool, Brownlow Hill, Liverpool L69 3GL, UK;
| | - Catherine Ashmore
- Dietetic Department, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| | - Júlio César Rocha
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Centre for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
| | - Anita MacDonald
- Dietetic Department, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| |
Collapse
|
14
|
Manta-Vogli PD, Dotsikas Y, Loukas YL, Schulpis KH. The phenylketonuria patient: A recent dietetic therapeutic approach. Nutr Neurosci 2020; 23:628-639. [PMID: 30359206 DOI: 10.1080/1028415x.2018.1538196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenylalanine hydroxylase (PAH) deficiency, commonly named phenylketonuria (PKU) is a disorder of phenylalanine (Phe) metabolism inherited with an autosomal recessive trait. It is characterized by high blood and cerebral Phe levels, resulting in intellectual disabilities, seizures, etc. Early diagnosis and treatment of the patients prevent major neuro-cognitive deficits. Treatment consists of a lifelong restriction of Phe intake, combined with the supplementation of special medical foods, such as Amino Acid medical food (AA-mf), enriched in tyrosine (Tyr) and other amino acids and nutrients to avoid nutritional deficits. Developmental and neurocognitive outcomes for patients, however, remain suboptimal, especially when adherence to the demanding diet is poor. Additions to treatment include new, more palatable foods, based on Glycomacropeptide that contains limited amounts of Phe, the administration of large neutral amino acids to prevent phenylalanine entry into the brain and tetrahydrobiopterin cofactor capable of increasing residual PAH activity. Moreover, further efforts are underway to develop an oral therapy containing phenylalanine ammonia-lyase. Nutritional support of PKU future mothers (maternal PKU) is also discussed. This review aims to summarize the current literature on new PKU treatment strategies.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition & Dietetics Agia Sofia Children's Hospital, Athens, Greece
| | - Yannis Dotsikas
- Department of Pharmacy, Laboratory of Pharm. Analysis, National and Kapodestrian University of Athens, Panepistimiopolis Zographou, GR 157 71, Athens, Greece
| | - Yannis L Loukas
- Department of Pharmacy, Laboratory of Pharm. Analysis, National and Kapodestrian University of Athens, Panepistimiopolis Zographou, GR 157 71, Athens, Greece
| | | |
Collapse
|
15
|
Ben Abdelaziz R, Tangour N, Ben Chehida A, Haj Taieb S, Feki M, Azzouz H, Tebib N. Morning specimen is not representative of metabolic control in Tunisian children with phenylketonuria: a repeated cross-sectional study. J Pediatr Endocrinol Metab 2020; 33:/j/jpem.ahead-of-print/jpem-2020-0025/jpem-2020-0025.xml. [PMID: 32653876 DOI: 10.1515/jpem-2020-0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/04/2020] [Indexed: 11/15/2022]
Abstract
Objective and methods To evaluate variation of capillary phenylalanine concentrations over the day in patients treated for phenylketonuria and the reliability of the morning sample to assess metabolic control, we conducted a repeated cross-sectional study in 25 Tunisian patients on phenylalanine-low diet. For each patient, we collected nine capillary samples over the day. Phenylalanine was dosed by fluorimetry. Results There was a wide variability of phenylalanine concentrations over the day (p<0.001). Compared to morning sample, phenylalanine concentration was significantly lower before lunch (p=0.038), after lunch (p=0.025), before dinner (p<0.001), after dinner (p=0.035) and at 4:00 a.m. (p=0.011). Compared to the 24 h sampling, the morning sample had a 68% to identify unbalanced patients. 60% of patients, had peak phenylalanine concentration after the morning. Half of the patients with normal morning phenylalanine concentration had low phenylalanine values over 8-20 h. Percentages of high phenylalanine concentrations over the last semester were higher in patients with poor metabolic control over the 24 h (21% ± 43 vs. 0% ± 9%); p=0.043. Conclusion A single morning sample gives an incomplete information on metabolic control in phenylketonuric patients. Using four pre-prandial samples on the day should be considered as alternative in patients with good metabolic control.
Collapse
Affiliation(s)
- Rim Ben Abdelaziz
- Department of Pediatrics, La Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis Elmanar, Tunis, Tunisia
- Research Laboratory LR12SPO2, Ministry of High Education, Tunis, Tunisia
| | - Nizar Tangour
- Department of Pediatrics, La Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis Elmanar, Tunis, Tunisia
- Research Laboratory LR12SPO2, Ministry of High Education, Tunis, Tunisia
| | - Amel Ben Chehida
- Department of Pediatrics, La Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis Elmanar, Tunis, Tunisia
- Research Laboratory LR12SPO2, Ministry of High Education, Tunis, Tunisia
| | - Sameh Haj Taieb
- Biochemistry Laboratory, La Rabta Hospital, Jabbari, 1007, Tunis, Tunisia
| | - Moncef Feki
- Faculty of Medicine of Tunis, University of Tunis Elmanar, Tunis, Tunisia
- Biochemistry Laboratory, La Rabta Hospital, Jabbari, 1007, Tunis, Tunisia
| | - Hatem Azzouz
- Department of Pediatrics, La Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis Elmanar, Tunis, Tunisia
- Research Laboratory LR12SPO2, Ministry of High Education, Tunis, Tunisia
| | - Neji Tebib
- Department of Pediatrics, La Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis Elmanar, Tunis, Tunisia
- Research Laboratory LR12SPO2, Ministry of High Education, Tunis, Tunisia
| |
Collapse
|
16
|
MacDonald A, van Wegberg AMJ, Ahring K, Beblo S, Bélanger-Quintana A, Burlina A, Campistol J, Coşkun T, Feillet F, Giżewska M, Huijbregts SC, Leuzzi V, Maillot F, Muntau AC, Rocha JC, Romani C, Trefz F, van Spronsen FJ. PKU dietary handbook to accompany PKU guidelines. Orphanet J Rare Dis 2020; 15:171. [PMID: 32605583 PMCID: PMC7329487 DOI: 10.1186/s13023-020-01391-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism caused by deficiency in the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. MAIN BODY In 2017 the first European PKU Guidelines were published. These guidelines contained evidence based and/or expert opinion recommendations regarding diagnosis, treatment and care for patients with PKU of all ages. This manuscript is a supplement containing the practical application of the dietary treatment. CONCLUSION This handbook can support dietitians, nutritionists and physicians in starting, adjusting and maintaining dietary treatment.
Collapse
Affiliation(s)
- A MacDonald
- Dietetic Department, Birmingham Children's Hospital, Birmingham, UK
| | - A M J van Wegberg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700, RB, Groningen, The Netherlands
| | - K Ahring
- Department of PKU, Kennedy Centre, Glostrup, Denmark
| | - S Beblo
- Department of Women and Child Health, Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University Hospitals, Leipzig, Germany
| | - A Bélanger-Quintana
- Metabolic Diseases Unit, Department of Paediatrics, Hospital Ramon y Cajal Madrid, Madrid, Spain
| | - A Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - J Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - T Coşkun
- Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - F Feillet
- Department of Paediatrics, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - M Giżewska
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - S C Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - V Leuzzi
- Department of Paediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185, Rome, Italy
| | - F Maillot
- CHRU de Tours, Université François Rabelais, INSERM U1069, Tours, France
| | - A C Muntau
- University Children's Hospital, University Medical Centre Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - J C Rocha
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal. Centre for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | - C Romani
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - F Trefz
- Department of Paediatrics, University of Heidelberg, Heidelberg, Germany
| | - F J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700, RB, Groningen, The Netherlands.
| |
Collapse
|
17
|
Douglas TD, Nucci AM, Berry AM, Henes ST, Singh RH. Large neutral amino acid status in association with P:T ratio and diet in adult and pediatric patients with phenylketonuria. JIMD Rep 2019; 50:50-59. [PMID: 31741827 PMCID: PMC6850973 DOI: 10.1002/jmd2.12076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Intake of large neutral amino acids (LNAA) may inhibit phenylalanine (PHE) transport across the blood brain barrier and assist with blood PHE control in patients with phenylketonuria (PKU). We evaluated the interrelationship between LNAA in plasma and diet on Phe:Tyr (P:T) ratio in patients with PKU and the influence of dietary factors on plasma LNAA markers. METHODS Plasma amino acid values and 3-day food record analysis from two studies (34 male/30 female; age 4.6-47 years) were examined. For pediatrics (<18 years) and adults (≥18 years) the relationship between P:T ratio, plasma LNAA, and dietary intake patterns were investigated. RESULTS Dietary factors influencing P:T ratio included intake of total protein (g/kg), medical food (MF) protein (g/kg, % below Rx), and LNAA (g) in the full cohort (P < .05). Associations were found between plasma valine and other dietary and plasma LNAA in pediatrics (P < .05) and plasma LNAA with dietary LNAA intake in adults (P = .019). Plasma P:T ratio was inversely associated with plasma LNAA concentrations in both age groups (P < .05). Aside from histidine in pediatrics (P = .024), plasma LNAA did not differ by having plasma PHE levels within or above the therapeutic range (120-360 μmol/L). Plasma LNAA in both age groups was similar to reported healthy control values. CONCLUSION P:T ratio is significantly tied to dietary LNAA, adherence to MF Rx, and plasma LNAA concentrations. Additionally, P:T ratio and valine may be effective clinical proxies for determining LNAA metabolic balance and LNAA quality of the diet in patients with PKU.
Collapse
Affiliation(s)
| | - Anita M. Nucci
- Department of NutritionGeorgia State UniversityAtlantaGeorgia
| | - Ann M. Berry
- Department of NutritionGeorgia State UniversityAtlantaGeorgia
| | - Sarah T. Henes
- Department of NutritionGeorgia State UniversityAtlantaGeorgia
| | - Rani H. Singh
- Department of Human GeneticsEmory UniversityAtlantaGeorgia
| |
Collapse
|
18
|
Daly A, Evans S, Chahal S, Santra S, Pinto A, Gingell C, Rocha JC, van Spronsen F, Jackson R, MacDonald A. The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled Trial. Nutrients 2019; 11:nu11030520. [PMID: 30823411 PMCID: PMC6471794 DOI: 10.3390/nu11030520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction: In phenylketonuria (PKU), evidence suggests that casein glycomacropeptide supplemented with rate-limiting amino acids (CGMP-AA) is associated with better protein utilisation and less blood phenylalanine (Phe) variability. Aim: To study the impact of CGMP-AA on blood Phe variability using 3 different dietary regimens in children with PKU. Methods: This was a 6-week randomised controlled cross-over study comparing CGMP-AA vs. Phe-free l-amino acids (l-AA) assessing blood Phe and tyrosine (Tyr) variability over 24 h in 19 children (7 boys) with PKU, with a median age of 10 years (6–16). Subjects were randomised to 3 dietary regimens: (1) R1, CGMP-AA and usual dietary Phe (CGMP + Phe); (2) R2, CGMP-AA − Phe content of CGMP-AA from usual diet (CGMP − Phe); and (3) R3, l-AA and usual dietary Phe. Each regimen was administered for 14 days. Over the last 48 h on days 13 and 14, blood spots were collected every 4 h at 08 h, 12 h, 16 h, 20 h, 24 h, and 04 h. Isocaloric intake and the same meal plan and protein substitute dosage at standardised times were maintained when blood spots were collected. Results: Eighteen children completed the study. Median Phe concentrations over 24 h for each group were (range) R1, 290 (30–580), R2, 220 (10–670), R3, 165 (10–640) μmol/L. R1 vs. R2 and R1 vs. R3 p < 0.0001; R2 vs. R3 p = 0.0009. There was a significant difference in median Phe at each time point between R1 vs. R2, p = 0.0027 and R1 vs. R3, p < 0.0001, but not between any time points for R2 vs. R3. Tyr was significantly higher in both R1 and R2 [70 (20–240 μmol/L] compared to R3 [60 (10–200) μmol/L]. In children < 12 years, blood Phe remained in the target range (120–360 μmol/L), over 24 h, for 75% of the time in R1, 72% in R2 and 64% in R3; for children aged ≥ 12 years, blood Phe was in target range (120–600 μmol/L) in R1 and R2 for 100% of the time, but 64% in R3. Conclusions: The residual Phe in CGMP-AA increased blood Phe concentration in children. CGMP-AA appears to give less blood Phe variability compared to l-AA, but this effect may be masked by the increased blood Phe concentrations associated with its Phe contribution. Reducing dietary Phe intake to compensate for CGMP-AA Phe content may help.
Collapse
Affiliation(s)
- Anne Daly
- Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6 NH, UK.
| | - Sharon Evans
- Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6 NH, UK.
| | - Satnam Chahal
- Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6 NH, UK.
| | - Saikat Santra
- Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6 NH, UK.
| | - Alex Pinto
- Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6 NH, UK.
| | - Cerys Gingell
- Nottingham Queen's Medical Centre, University Hospital, Derby Road, Nottingham NG7 2UH, UK.
| | - Júlio César Rocha
- Centro de Genética Médica, Centro Hospitalar Universitário do Porto (CHUP), 4099-028 Porto, Portugal.
- Centro de Referência na área de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto-CHUP, 4099-001 Porto, Portugal.
- Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal.
| | - Francjan van Spronsen
- Beatrix Children's Hospital, University Medical Centre of Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | - Anita MacDonald
- Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6 NH, UK.
| |
Collapse
|
19
|
Daly A, Evans S, Chahal S, Santra S, Pinto A, Jackson R, Gingell C, Rocha J, Van Spronsen FJ, MacDonald A. Glycomacropeptide: long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU. Orphanet J Rare Dis 2019; 14:44. [PMID: 30770754 PMCID: PMC6377744 DOI: 10.1186/s13023-019-1011-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
Abstract In phenylketonuria, casein glycomacropeptide (CGMP) requires modification with the addition of some essential and semi essential amino acids to ensure suitability as a protein substitute. The optimal amount and ratio of additional amino acids is undefined. Aim A longitudinal, parallel, controlled study over 12 months evaluating a CGMP (CGMP-AA2) formulation compared with phenylalanine-free L-amino acid supplements (L-AA) on blood Phe, Tyr, Phe:Tyr ratio, biochemical nutritional status and growth in children with PKU. The CGMP-AA2 contained 36 mg Phe per 20 g protein equivalent. Methods Children with PKU, with a median age of 9.2 y (5-16y) were divided into 2 groups: 29 were given CGMP-AA2, 19 remained on Phe-free L-AA. The CGMP-AA2 formula gradually replaced L-AA, providing blood Phe concentrations were maintained within target range. Median blood Phe, Tyr, Phe:Tyr ratio and anthropometry, were compared within and between the two groups at baseline, 26 and 52 weeks. Nutritional biochemistry was studied at baseline and 26 weeks only. Results At the end of 52 weeks only 48% of subjects were able to completely use CGMP-AA2 as their single source of protein substitute. At 52 weeks CGMP-AA2 provided a median of 75% (30–100) of the total protein substitute with the remainder being given as L-AA. Within the CGMP-AA2 group, blood Phe increased significantly between baseline and 52 weeks: [baseline to 26 weeks; baseline Phe 270 μmol/L (170–430); 26 weeks, Phe 300 μmol/L (125–485) p = 0.06; baseline to 52 weeks: baseline, Phe 270 μmol/L (170–430), 52 weeks Phe 300 μmol/L (200–490), p < 0.001)]. However, there were no differences between the CGMP-AA2 and L-AA group for Phe, Tyr, Phe:Tyr ratio or anthropometry at any of the three measured time points. Within the CGMP-AA2 group only weight (p = 0.0001) and BMI z scores (p = 0.0001) increased significantly between baseline to 52 weeks. Whole blood and plasma selenium were significantly higher (whole blood selenium [p = 0.0002]; plasma selenium [p = 0.0007]) at 26 weeks in the CGMP-AA2 group compared L-AA. No differences were observed within the L-AA group for any of the nutritional markers. Conclusions CGMP-AA increases blood Phe concentrations and so it can only be used partly to contribute to protein substitute in some children with PKU. CGMP-AA should be carefully introduced in children with PKU and close monitoring of blood Phe control is essential. Electronic supplementary material The online version of this article (10.1186/s13023-019-1011-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Daly
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK.
| | - S Evans
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK
| | - S Chahal
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK
| | - S Santra
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK
| | - A Pinto
- University of Liverpool, Brownlow Street, Liverpool, L69 3GL, UK
| | - R Jackson
- Nottingham Queen's Medical Centre, University Hospital, Derby Road, Nottingham, NG7 2UH, UK
| | - C Gingell
- Centro de Genética Médica JM, CHP EPE, Porto, Portugal.,Centro de Referência na área das Doenças Hereditárias do Metabolismo, Centro Hospitalar do Porto - CHP EPE, Porto, Portugal.,Faculdade de Ciências da Saúde, UFP, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | - J Rocha
- Beatrix Children's Hospital, University Medical Centre of Groningen, University of Groningen, Groningen, The Netherlands
| | - F J Van Spronsen
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK
| | - A MacDonald
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK
| |
Collapse
|
20
|
Rocha JC, MacDonald A. Treatment options and dietary supplements for patients with phenylketonuria. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1536541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Júlio César Rocha
- Centro de Genética Médica, Centro Hospitalar do Porto - CHP, Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | | |
Collapse
|
21
|
Optimising amino acid absorption: essential to improve nitrogen balance and metabolic control in phenylketonuria. Nutr Res Rev 2018; 32:70-78. [PMID: 30284526 PMCID: PMC6536823 DOI: 10.1017/s0954422418000173] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has been nearly 70 years since the discovery that strict adherence to a diet low in phenylalanine prevents severe neurological sequelae in patients with phenylalanine hydroxylase deficiency (phenylketonuria; PKU). Today, dietary treatment with restricted phenylalanine intake supplemented with non-phenylalanine amino acids to support growth and maintain a healthy body composition remains the mainstay of therapy. However, a better understanding is needed of the factors that influence N balance in the context of amino acid supplementation. The aim of the present paper is to summarise considerations for improving N balance in patients with PKU, with a focus on gaining greater understanding of amino acid absorption, disposition and utilisation. In addition, the impact of phenylalanine-free amino acids on 24 h blood phenylalanine/tyrosine circadian rhythm is evaluated. We compare the effects of administering intact protein v. free amino acid on protein metabolism and discuss the possibility of improving outcomes by administering amino acid mixtures so that their absorption profile mimics that of intact protein. Protein substitutes with the ability to delay absorption of phenylalanine and tyrosine, mimicking physiological absorption kinetics, are expected to improve the rate of assimilation into protein and minimise fluctuations in quantitative plasma amino acid levels. They may also help maintain normal glycaemia and satiety sensation. This is likely to play an important role in improving the management of patients with PKU.
Collapse
|
22
|
van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Giżewska M, Huijbregts SC, Kearney S, Leuzzi V, Maillot F, Muntau AC, van Rijn M, Trefz F, Walter JH, van Spronsen FJ. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis 2017; 12:162. [PMID: 29025426 PMCID: PMC5639803 DOI: 10.1186/s13023-017-0685-2] [Citation(s) in RCA: 461] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism caused by deficiency in the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. If left untreated, PKU results in increased phenylalanine concentrations in blood and brain, which cause severe intellectual disability, epilepsy and behavioural problems. PKU management differs widely across Europe and therefore these guidelines have been developed aiming to optimize and standardize PKU care. Professionals from 10 different European countries developed the guidelines according to the AGREE (Appraisal of Guidelines for Research and Evaluation) method. Literature search, critical appraisal and evidence grading were conducted according to the SIGN (Scottish Intercollegiate Guidelines Network) method. The Delphi-method was used when there was no or little evidence available. External consultants reviewed the guidelines. Using these methods 70 statements were formulated based on the highest quality evidence available. The level of evidence of most recommendations is C or D. Although study designs and patient numbers are sub-optimal, many statements are convincing, important and relevant. In addition, knowledge gaps are identified which require further research in order to direct better care for the future.
Collapse
Affiliation(s)
- A. M. J. van Wegberg
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - A. MacDonald
- Dietetic Department, Birmingham Children’s Hospital, Birmingham, UK
| | - K. Ahring
- Department of PKU, Kennedy Centre, Glostrup, Denmark
| | - A. Bélanger-Quintana
- Metabolic Diseases Unit, Department of Paediatrics, Hospital Ramon y Cajal Madrid, Madrid, Spain
| | - N. Blau
- University Children’s Hospital, Dietmar-Hoppe Metabolic Centre, Heidelberg, Germany
- University Children’s Hospital Zürich, Zürich, Switzerland
| | - A. M. Bosch
- Department of Paediatrics, Division of Metabolic Disorders, Academic Medical Centre, University Hospital of Amsterdam, Amsterdam, The Netherlands
| | - A. Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - J. Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - F. Feillet
- Department of Paediatrics, Hôpital d’Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - M. Giżewska
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - S. C. Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - S. Kearney
- Clinical Psychology Department, Birmingham Children’s Hospital, Birmingham, UK
| | - V. Leuzzi
- Department of Paediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - F. Maillot
- CHRU de Tours, Université François Rabelais, INSERM U1069, Tours, France
| | - A. C. Muntau
- University Children’s Hospital, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - M. van Rijn
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| | - F. Trefz
- Department of Paediatrics, University of Heidelberg, Heidelberg, Germany
| | - J. H. Walter
- Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - F. J. van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, PO BOX 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
23
|
Daly A, Evans S, Chahal S, Santra S, MacDonald A. Glycomacropeptide in children with phenylketonuria: does its phenylalanine content affect blood phenylalanine control? J Hum Nutr Diet 2017; 30:515-523. [PMID: 28111827 DOI: 10.1111/jhn.12438] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND In phenylketonuria (PKU), there are no data available for children with respect to evaluating casein glycomacropeptide (CGMP) as an alternative to phenylalanine-free protein substitutes [Phe-free L-amino acid (AA)]. CGMP contains a residual amount of phenylalanine, which may alter blood phenylalanine control. METHODS In a prospective 6-month pilot study, we investigated the effect on blood phenylalanine control of CGMP-amino acid (CGMP-AA) protein substitute in 22 PKU subjects (13 boys, nine girls), median age (range) 11 years (6-16 years). Twelve received CGMP-AA and nine received Phe-free L-AA, (1 CGMP-AA withdrawal). Subjects partially or wholly replaced Phe-free L-AA with CGMP-AA. If blood phenylalanine exceeded the target range, the CGMP-AA dose was reduced and replaced with Phe-free L-amino acids. The control group remained on Phe-free L-AAs. Phenylalanine, tyrosine and Phe : Tyr ratio concentrations were compared with the results for the previous year. RESULTS In the CGMP-AA group, there was a significant increase in blood phenylalanine concentrations (pre-study, 275 μmol L-1 ; CGMP-AA, 317 μmol L-1 ; P = 0.02), a decrease in tyrosine concentrations (pre-study, 50 μmol L-1 ; CGMP-AA, 40 μmol L-1 ; P = 0.03) and an increase in Phe : Tyr ratios (pre-study, Phe : Tyr 4.9:1; CGMP-AA, Phe : Tyr 8:1; P = 0.02). In the control group there was a non-significant fall in phenylalanine concentrations (pre-study 325μmol/L: study 280μmol/L [p = 0.9], and no significant changes for tyrosine or phe/tyr ratios [p = 0.9]. Children taking the CGMP-AA found it more acceptable to L-AA. CONCLUSIONS Blood phenylalanine control declined with CGMP-AA but, by titrating the dose of CGMP-AA, blood phenylalanine control remained within target range. The additional intake of phenylalanine may have contributed to the change in blood phenylalanine concentration. CGMP-AA use requires careful monitoring in children.
Collapse
Affiliation(s)
- A Daly
- Birmingham Children's Hospital, Dietetic Department, Birmingham, UK
| | - S Evans
- Birmingham Children's Hospital, Dietetic Department, Birmingham, UK
| | - S Chahal
- Birmingham Children's Hospital, Dietetic Department, Birmingham, UK
| | - S Santra
- IMD (Inherited metabolic department) Birmingham Children's Hospital, Birmingham, UK
| | - A MacDonald
- Birmingham Children's Hospital, Dietetic Department, Birmingham, UK
| |
Collapse
|
24
|
Ney DM, Stroup BM, Clayton MK, Murali SG, Rice GM, Rohr F, Levy HL. Glycomacropeptide for nutritional management of phenylketonuria: a randomized, controlled, crossover trial. Am J Clin Nutr 2016; 104:334-45. [PMID: 27413125 PMCID: PMC4962165 DOI: 10.3945/ajcn.116.135293] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet restricts intake of Phe from natural proteins in combination with traditional amino acid medical foods (AA-MFs) or glycomacropeptide medical foods (GMP-MFs) that contain primarily intact protein and a small amount of Phe. OBJECTIVE We investigated the efficacy and safety of a low-Phe diet combined with GMP-MFs or AA-MFs providing the same quantity of protein equivalents in free-living subjects with phenylketonuria. DESIGN This 2-stage, randomized crossover trial included 30 early-treated phenylketonuria subjects (aged 15-49 y), 20 with classical and 10 with variant phenylketonuria. Subjects consumed, in random order for 3 wk each, their usual low-Phe diet combined with AA-MFs or GMP-MFs. The treatments were separated by a 3-wk washout with AA-MFs. Fasting plasma amino acid profiles, blood Phe concentrations, food records, and neuropsychological tests were obtained. RESULTS The frequency of medical food intake was higher with GMP-MFs than with AA-MFs. Subjects rated GMP-MFs as more acceptable than AA-MFs and noted improved gastrointestinal symptoms and less hunger with GMP-MFs. ANCOVA indicated no significant mean ± SE increase in plasma Phe (62 ± 40 μmol/L, P = 0.136), despite a significant increase in Phe intake from GMP-MFs (88 ± 6 mg Phe/d, P = 0.026). AA-MFs decreased plasma Phe (-85 ± 40 μmol/L, P = 0.044) with stable Phe intake. Blood concentrations of Phe across time were not significantly different (AA-MFs = 444 ± 34 μmol/L, GMP-MFs = 497 ± 34 μmol/L), suggesting similar Phe control. Results of the Behavior Rating Inventory of Executive Function were not significantly different. CONCLUSIONS GMP-MFs provide a safe and acceptable option for the nutritional management of phenylketonuria. The greater acceptability and fewer side effects noted with GMP-MFs than with AA-MFs may enhance dietary adherence for individuals with phenylketonuria. This trial was registered at www.clinicaltrials.gov as NCT01428258.
Collapse
Affiliation(s)
| | | | - Murray K Clayton
- Statistics, and Plant Pathology, University of Wisconsin-Madison, Madison, WI
| | | | - Gregory M Rice
- Waisman Center and Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI; and
| | - Frances Rohr
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Harvey L Levy
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Singh RH, Cunningham AC, Mofidi S, Douglas TD, Frazier DM, Hook DG, Jeffers L, McCune H, Moseley KD, Ogata B, Pendyal S, Skrabal J, Splett PL, Stembridge A, Wessel A, Rohr F. Updated, web-based nutrition management guideline for PKU: An evidence and consensus based approach. Mol Genet Metab 2016; 118:72-83. [PMID: 27211276 DOI: 10.1016/j.ymgme.2016.04.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND In 2014, recommendations for the nutrition management of phenylalanine hydroxylase deficiency were published as a companion to the concurrently published American College of Medical Genetics and Genomics guideline for the medical treatment of phenylketonuria (PKU). These were developed primarily from a summary of findings from the PKU scientific review conference sponsored by the National Institutes of Health and Agency for Healthcare Research & Quality along with additional systematic literature review. Since that time, the Genetic Metabolic Dietitians International and the Southeast Regional Newborn Screening and Genetics Collaborative have partnered to create a web-based technology platform for the update and development of nutrition management guidelines for inherited metabolic disorders. OBJECTIVE The purpose of this PKU guideline is to establish harmonization in treatment and monitoring, to guide the integration of nutrition therapy in the medical management of PKU, and to improve outcomes (nutritional, cognitive, and developmental) for individuals with PKU in all life stages while reducing associated medical, educational, and social costs. METHODS Six research questions critical to PKU nutrition management were formulated to support guideline development: Review, critical appraisal, and abstraction of peer-reviewed studies and unpublished practice literature, along with expert Delphi survey feedback, nominal group process, and external review from metabolic physicians and dietitians were utilized for development of recommendations relevant to each question. Recommendations address nutrient intake, including updated protein requirements, optimal blood phenylalanine concentrations, nutrition interventions, monitoring parameters specific to life stages, adjunct therapies, and pregnancy and lactation. Recommendations were graded using a rigorous system derived from the Academy of Nutrition and Dietetics. RESULTS AND CONCLUSION These guidelines, updated utilizing a thorough and systematic approach to literature analysis and national consensus process, are now easily accessible to the global community via the newly developed digital platform. For additional details on specific topics, readers are encouraged to review materials on the online portal: https://GMDI.org/.
Collapse
Affiliation(s)
- Rani H Singh
- Department of Human Genetics, Emory University School of Medicine, 2165 North Decatur Road, Decatur, Atlanta, GA 30033, USA; Nutrition Health Sciences Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Arts and Sciences, Atlanta, GA, USA.
| | - Amy C Cunningham
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA.
| | - Shideh Mofidi
- Inherited Metabolic Disease Center, Maria Fareri Childrens Hospital, Westchester Medical Center, New York Medical College, Valhalla, New York, USA.
| | - Teresa D Douglas
- Department of Human Genetics, Emory University School of Medicine, 2165 North Decatur Road, Decatur, Atlanta, GA 30033, USA.
| | - Dianne M Frazier
- Division of Genetics and Metabolism, University of North Carolina School of Medicine, 1100 Manning Drive, Chapel Hill, NC 27599, USA.
| | | | - Laura Jeffers
- Cleveland Clinic, Center for Human Nutrition, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | - Helen McCune
- Pediatric Genetics and Metabolism, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32607, USA.
| | - Kathryn D Moseley
- Genetics Division, USC/Keck School of Medicine, 1801 Marengo St. Rm. 1G-24, Los Angeles, CA 90033, USA.
| | - Beth Ogata
- University of Washington, Department of Pediatrics, UW-CHDD, Box 357920, Seattle, WA 98195, USA.
| | - Surekha Pendyal
- Division of Genetics and Metabolism, University of North Carolina School of Medicine, 1100 Manning Drive, Chapel Hill, NC 27599, USA.
| | - Jill Skrabal
- Department of Medical Genetics, University of Nebraska Medical Center/Children's Hospital and Medical Center, 981200 Nebraska Medical Center, Omaha, NE. 68198-1200, USA.
| | - Patricia L Splett
- Evaluation Consultant Splett & Associates, LLC, 399 Badger Blvd W., Stanchfield, MN 55080, USA.
| | - Adrya Stembridge
- Department of Human Genetics, Emory University School of Medicine, 2165 North Decatur Road, Decatur, Atlanta, GA 30033, USA.
| | - Ann Wessel
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Frances Rohr
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Aguiar A, Ahring K, Almeida MF, Assoun M, Belanger Quintana A, Bigot S, Bihet G, Blom Malmberg K, Burlina A, Bushueva T, Caris A, Chan H, Clark A, Clark S, Cochrane B, Corthouts K, Dalmau J, Dassy M, De Meyer A, Didycz B, Diels M, Dokupil K, Dubois S, Eftring K, Ekengren J, Ellerton C, Evans S, Faria A, Fischer A, Ford S, Freisinger P, Giżewska M, Gokmen-Ozel H, Gribben J, Gunden F, Heddrich-Ellerbrok M, Heiber S, Heidenborg C, Jankowski C, Janssen-Regelink R, Jones I, Jonkers C, Joerg-Streller M, Kaalund-Hansen K, Kiss E, Lammardo AM, Lang K, Lier D, Lilje R, Lowry S, Luyten K, MacDonald A, Meyer U, Moor D, Pal A, Robert M, Robertson L, Rocha JC, Rohde C, Ross K, Saruhan S, Sjöqvist E, Skeath R, Stoelen L, Ter Horst NM, Terry A, Timmer C, Tuncer N, Vande Kerckhove K, van der Ploeg L, van Rijn M, van Spronsen FJ, van Teeffelen-Heithoff A, van Wegberg A, van Wyk K, Vasconcelos C, Vitoria I, Wildgoose J, Webster D, White FJ, Zweers H. Practices in prescribing protein substitutes for PKU in Europe: No uniformity of approach. Mol Genet Metab 2015; 115:17-22. [PMID: 25862610 DOI: 10.1016/j.ymgme.2015.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND There appears little consensus concerning protein requirements in phenylketonuria (PKU). METHODS A questionnaire completed by 63 European and Turkish IMD centres from 18 countries collected data on prescribed total protein intake (natural/intact protein and phenylalanine-free protein substitute [PS]) by age, administration frequency and method, monitoring, and type of protein substitute. Data were analysed by European region using descriptive statistics. RESULTS The amount of total protein (from PS and natural/intact protein) varied according to the European region. Higher median amounts of total protein were prescribed in infants and children in Northern Europe (n=24 centres) (infants <1 year, >2-3g/kg/day; 1-3 years of age, >2-3 g/kg/day; 4-10 years of age, >1.5-2.5 g/kg/day) and Southern Europe (n=10 centres) (infants <1 year, 2.5 g/kg/day, 1-3 years of age, 2 g/kg/day; 4-10 years of age, 1.5-2 g/kg/day), than by Eastern Europe (n=4 centres) (infants <1 year, 2.5 g/kg/day, 1-3 years of age, >2-2.5 g/kg/day; 4-10 years of age, >1.5-2 g/kg/day) and with Western Europe (n=25 centres) giving the least (infants <1 year, >2-2.5 g/kg/day, 1-3 years of age, 1.5-2 g/kg/day; 4-10 years of age, 1-1.5 g/kg/day). Total protein prescription was similar in patients aged >10 years (1-1.5 g/kg/day) and maternal patients (1-1.5 g/kg/day). CONCLUSIONS The amounts of total protein prescribed varied between European countries and appeared to be influenced by geographical region. In PKU, all gave higher than the recommended 2007 WHO/FAO/UNU safe levels of protein intake for the general population.
Collapse
Affiliation(s)
- A Aguiar
- Hospital de Santo Espirito da Ilha Terceira, Portugal
| | - K Ahring
- Kennedy Centre, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - M F Almeida
- Centro de Genética Médica Doutor Jacinto de Magalhães, CHP EPE, Porto, Portugal; Multidisciplinary Unit for Biomedical Research, UMIB-FCT, Porto, Portugal
| | - M Assoun
- Service des Maladies Héréditaires du Métabolisme, Hospital Necker Enfants Malades, Paris, France
| | | | - S Bigot
- Centre Hospitalier Universitaire de Rennes, France
| | - G Bihet
- Centre Hospitalier Chrétien, Centre Pinocchio Liège, Belgium
| | | | - A Burlina
- Division of Inherited Metabolic Diseases, Department of Pediatrics, University Hospital of Padova, Italy
| | - T Bushueva
- Scientific Center of Children's Health, Moscow, Russian Federation
| | - A Caris
- Centre Wallon de Génétique Humaine, Maladies Métaboliques, CHU de Liège Sart-Tilman, Belgium
| | - H Chan
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A Clark
- National Centre for Inherited Metabolic Disorders, Dublin, Ireland
| | - S Clark
- Addenbrooke's Hospital, Cambridge, UK
| | - B Cochrane
- Royal Hospital for Sick Children, Glasgow, Scotland, UK
| | - K Corthouts
- University Hospitals Leuven, Center of Metabolic Diseases, Leuven, Belgium
| | | | - M Dassy
- Cliniques Universitaires St Luc, Brussels, Belgium
| | - A De Meyer
- Center of Metabolic Diseases, University Hospital, Antwerp, Belgium
| | - B Didycz
- University Children's Hospital, Cracow, Poland
| | - M Diels
- University Hospitals Leuven, Center of Metabolic Diseases, ZOL, Genk, Belgium
| | - K Dokupil
- Dr. von Hauner Children's Hospital, Munich, Germany
| | - S Dubois
- Service des Maladies Héréditaires du Métabolisme, Hospital Necker Enfants Malades, Paris, France
| | - K Eftring
- Queen Silvia's Children Hospital, Gothenburg, Sweden
| | - J Ekengren
- Queen Silvia's Children Hospital, Gothenburg, Sweden
| | | | - S Evans
- Birmingham Children's Hospital, Birmingham, UK
| | - A Faria
- Hospital Pediatrico, Centro Hospitalar e Universitário de Coimbra, EPE, Portugal
| | - A Fischer
- Klinikum am Steinenberg, Klinik für Kinder- und Jugendmedizin Reutlingen, Germany
| | - S Ford
- North Bristol NHS Trust Southmead and Frenchay, UK
| | - P Freisinger
- Klinikum am Steinenberg, Klinik für Kinder- und Jugendmedizin Reutlingen, Germany
| | - M Giżewska
- Pomeranian Medical University, Szczecin, Poland
| | - H Gokmen-Ozel
- Haccettepe University Children's Hospital, Ankara, Turkey
| | - J Gribben
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - F Gunden
- Uludag University Medical Faculty, Bursa, Turkey
| | | | - S Heiber
- University Hospital, Basel, Switzerland
| | - C Heidenborg
- Karolinska University Hospital, Stockholm, Sweden
| | - C Jankowski
- University Hospitals Bristol NHS Foundation Trust, UK
| | | | - I Jones
- Center of Metabolic Diseases, University Hospital, Antwerp, Belgium
| | - C Jonkers
- Academic Medical Hospital, Amsterdam, Netherlands
| | - M Joerg-Streller
- Medical University of Innsbruck, Clinic for Pediatrics, Inherited Metabolic Disorders, Austria
| | | | - E Kiss
- Semmelweis University, Hungary
| | | | - K Lang
- Ninewells Hospital, Dundee, Scotland, UK
| | - D Lier
- Klinikum am Steinenberg, Klinik für Kinder- und Jugendmedizin Reutlingen, Germany
| | - R Lilje
- Oslo University Hospital Rikshospitalet, Norway
| | - S Lowry
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - K Luyten
- Center of Metabolic Diseases, University Hospital, Antwerp, Belgium
| | - A MacDonald
- Birmingham Children's Hospital, Birmingham, UK.
| | - U Meyer
- Clinic of Paediatric Kidney, Liver and Metabolic Diseases Medical School Hannover, Germany
| | - D Moor
- Kinderspital Zürich, Switzerland
| | - A Pal
- Akademiska University Hospital (Children's Centre), Sweden
| | - M Robert
- Hôpital Universitaire des Enfants, Reine Fabiola, Bruxelles, Belgium
| | | | - J C Rocha
- Centro de Genética Médica Doutor Jacinto de Magalhães, CHP EPE, Porto, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Portugal
| | - C Rohde
- Hospital for Children and Adolescents, University Hospitals, University of Leipzig, Germany
| | - K Ross
- Royal Aberdeen Children's Hospital, Scotland, UK
| | - S Saruhan
- Haccettepe University Children's Hospital, Ankara, Turkey
| | - E Sjöqvist
- Children's Hospital, University Hospital Skåne, Sweden
| | - R Skeath
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - L Stoelen
- Oslo University Hospital Rikshospitalet, Norway
| | | | - A Terry
- Alderhey Children's Hospital, Liverpool, UK
| | | | - N Tuncer
- Dokuz Eylül University Nevvar-Salih İşgören Children Hospital, Turkey
| | - K Vande Kerckhove
- University Hospitals Leuven, Center of Metabolic Diseases, Leuven, Belgium
| | | | - M van Rijn
- University of Groningen, University Medical Center, Groningen, Netherlands
| | - F J van Spronsen
- University of Groningen, University Medical Center, Groningen, Netherlands
| | | | - A van Wegberg
- Radboud University Nijmegen Medical Centre, Netherlands
| | - K van Wyk
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - C Vasconcelos
- Centro Hospitalar São João - Unidade de Doenças Metabólicas, Porto, Portugal
| | | | | | - D Webster
- University Hospitals Bristol NHS Foundation Trust, UK
| | - F J White
- Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - H Zweers
- Radboud University Nijmegen Medical Centre, Netherlands
| |
Collapse
|
27
|
Kochhar JS, Chan SY, Ong PS, Kang L. Clinical therapeutics for phenylketonuria. Drug Deliv Transl Res 2015; 2:223-37. [PMID: 25787029 DOI: 10.1007/s13346-012-0067-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylketonuria was amongst the first of the metabolic disorders to be characterised, exhibiting an inborn error in phenylalanine metabolism due to a functional deficit of the enzyme phenylalanine hydroxylase. It affects around 700,000 people around the globe. Mutations in the gene coding for hepatic phenylalanine hydroxylase cause this deficiency resulting in elevated plasma phenylalanine concentrations, leading to cognitive impairment, neuromotor disorders and related behavioural symptoms. Inception of low phenylalanine diet in the 1950s marked a revolution in the management of phenylketonuria and has since been a vital element of all therapeutic regimens. However, compliance to dietary therapy has been found difficult and newer supplement approaches are being examined. The current development of gene therapy and enzyme replacement therapeutics may offer promising alternatives for the management of phenylketonuria. This review outlines the pathological basis of phenylketonuria, various treatment regimes, their associated challenges and the future prospects of each approach. Briefly, novel drug delivery systems which can potentially deliver therapeutic strategies in phenylketonuria have been discussed.
Collapse
Affiliation(s)
- Jaspreet Singh Kochhar
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4 Level 2, Singapore, Singapore, 117543
| | | | | | | |
Collapse
|
28
|
Abstract
BACKGROUND Phenylketonuria is an inherited metabolic disorder characterised by an absence or deficiency of the enzyme phenylalanine hydroxylase. The aim of treatment is to lower blood phenylalanine concentrations to the recommended therapeutic range to prevent developmental delay and support normal growth. Current treatment consists of a low-phenylalanine diet in combination with a protein substitute which is free from or low in phenylalanine. Guidance regarding the use, dosage, and distribution of dosage of the protein substitute over a 24-hour period is unclear, and there is variation in recommendations among treatment centres. This is an update of a Cochrane review first published in 2005, and previously updated in 2008. OBJECTIVES To assess the benefits and adverse effects of protein substitute, its dosage, and distribution of dose in children and adults with phenylketonuria who are adhering to a low-phenylalanine diet. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which consists of references identified from comprehensive electronic database searches and hand searches of relevant journals and abstract books of conference proceedings. We also contacted manufacturers of the phenylalanine-free and low-phenylalanine protein substitutes for any data from published and unpublished randomised controlled trials.Date of the most recent search of the Group's Inborn Errors of Metabolism Trials Register: 03 April 2014. SELECTION CRITERIA All randomised or quasi-randomised controlled trials comparing: any dose of protein substitute with no protein substitute; an alternative dosage; or the same dose, but given as frequent small doses throughout the day compared with the same total daily dose given as larger boluses less frequently. DATA COLLECTION AND ANALYSIS Both authors independently extracted data and assessed trial quality. MAIN RESULTS Three trials (69 participants) are included in this review. One trial investigated the use of protein substitute in 16 participants, while a further two trials investigated the dosage of protein substitute in a total of 53 participants. Due to issues with data presentation in each trial, described in full in the review, formal statistical analyses of the data were impossible. Investigators will be contacted for further information. AUTHORS' CONCLUSIONS No conclusions could be drawn about the short- or long-term use of protein substitute in phenylketonuria due to the lack of adequate or analysable trial data. Additional data and randomised controlled trials are needed to investigate the use of protein substitute in phenylketonuria. Until further evidence is available, current practice in the use of protein substitute should continue to be monitored with care.
Collapse
Affiliation(s)
- Sarah HL Yi
- Emory Genetics Metabolic Nutrition Program2165 N. Decatur RoadDecaturGeorgiaUSA30033
| | - Rani H Singh
- Emory University School of MedicineDepartment of Human Genetics2165 North Decatur RoadDecaturGeorgiaUSA30033
| | | |
Collapse
|
29
|
Cleary M, Trefz F, Muntau AC, Feillet F, van Spronsen FJ, Burlina A, Bélanger-Quintana A, Giżewska M, Gasteyger C, Bettiol E, Blau N, MacDonald A. Fluctuations in phenylalanine concentrations in phenylketonuria: a review of possible relationships with outcomes. Mol Genet Metab 2013; 110:418-23. [PMID: 24090706 DOI: 10.1016/j.ymgme.2013.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 11/21/2022]
Abstract
Fluctuations in blood phenylalanine concentrations may be an important determinant of intellectual outcome in patients with early and continuously treated phenylketonuria (PKU). This review evaluates the studies on phenylalanine fluctuations, factors affecting fluctuations, and if stabilizing phenylalanine concentrations affects outcomes, particularly neurocognitive outcome. Electronic literature searches of Embase and PubMed were performed for English-language publications, and the bibliographies of identified publications were also searched. In patients with PKU, phenylalanine concentrations are highest in the morning. Factors that can affect phenylalanine fluctuations include age, diet, timing and dosing of protein substitute and energy intake, dietary adherence, phenylalanine hydroxylase genotype, changes in dietary phenylalanine intake and protein metabolism, illness, and growth rate. Even distribution of phenylalanine-free protein substitute intake throughout 24h may reduce blood phenylalanine fluctuations. Patients responsive to and treated with 6R-tetrahydrobiopterin seem to have less fluctuation in their blood phenylalanine concentrations than controls. An increase in blood phenylalanine concentration may result in increased brain and cerebrospinal fluid phenylalanine concentrations within hours. Although some evidence suggests that stabilization of blood phenylalanine concentrations may have benefits in patients with PKU, more studies are needed to distinguish the effects of blood phenylalanine fluctuations from those of poor metabolic control.
Collapse
Affiliation(s)
- Maureen Cleary
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
MacDonald A, van Rijn M, Feillet F, Lund A, Bernstein L, Bosch A, Gizewska M, van Spronsen F. Adherence Issues in Inherited Metabolic Disorders Treated by Low Natural Protein Diets. ANNALS OF NUTRITION AND METABOLISM 2012. [DOI: 10.1159/000342256] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Van Calcar SC, Ney DM. Food products made with glycomacropeptide, a low-phenylalanine whey protein, provide a new alternative to amino Acid-based medical foods for nutrition management of phenylketonuria. J Acad Nutr Diet 2012; 112:1201-10. [PMID: 22818728 PMCID: PMC3402906 DOI: 10.1016/j.jand.2012.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 04/10/2012] [Indexed: 02/06/2023]
Abstract
Phenylketonuria (PKU), an inborn error in phenylalanine metabolism, requires lifelong nutrition management with a low-phenylalanine diet, which includes a phenylalanine-free amino acid-based medical formula to provide the majority of an individual's protein needs. Compliance with this diet is often difficult for older children, adolescents, and adults with PKU. The whey protein glycomacropeptide (GMP) is ideally suited for the PKU diet because it is naturally low in phenylalanine. Nutritionally complete, acceptable medical foods and beverages can be made with GMP to increase the variety of protein sources for the PKU diet. As an intact protein, GMP improves protein use and increases satiety compared with amino acids. Thus, GMP provides a new, more physiologic source of low-phenylalanine dietary protein for people with PKU.
Collapse
Affiliation(s)
- Sandra C. Van Calcar
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Senior Metabolic Dietitian, Biochemical Genetics Program, Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705, Phone: 608-263-5981, Fax: 608-263-0530
| | - Denise M. Ney
- Billings Bascom Professor, Department of Nutritional Sciences and Waisman Center, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53703, Phone: 608-262-4386, Fax: 608-262-5860
| |
Collapse
|
32
|
Belanger-Quintana A, Dokoupil K, Gokmen-Ozel H, Lammardo AM, MacDonald A, Motzfeldt K, Nowacka M, Robert M, van Rijn M, Ahring K. Diet in phenylketonuria: a snapshot of special dietary costs and reimbursement systems in 10 international centers. Mol Genet Metab 2012; 105:390-4. [PMID: 22217429 DOI: 10.1016/j.ymgme.2011.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND AIMS To gather exploratory data on the costs and reimbursement of special dietary foods used in the management of phenylketonuria (PKU) from ten international specialist PKU centers. METHODS Experts from each center provided data on retail costs of the three most frequently used phenylalanine-free protein substitutes and low-protein foods at their center; reimbursement of protein substitutes and low-protein foods; and state monetary benefits provided to PKU patients. RESULTS The mean annual cost of protein substitutes across 4 age groups (2 y, 8 y, 15 y and adults) ranged from €4273 to €21,590 per patient. The cost of low-protein products also differed; the mean cost of low-protein bread varied from €0.04 to €1.60 per 100 kcal. All protein substitutes were either fully reimbursed or covered by health insurance. However, reimbursement for low-protein products varied and state benefits differed between centers. CONCLUSIONS The variation in the cost and reimbursement of diet therapy and the level of additional state benefits for PKU patients demonstrates the large difference in expenditure on and access to PKU dietary products. This highlights the inequality between healthcare systems and access to special dietary products for people with PKU, ultimately leading to patients in some countries receiving better care than others.
Collapse
Affiliation(s)
- A Belanger-Quintana
- Unidad de Enfermedades Metabolicas, Servicio de Pediatría, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Belanger-Quintana A, Martínez-Pardo M. Physical development in patients with phenylketonuria on dietary treatment: a retrospective study. Mol Genet Metab 2011; 104:480-4. [PMID: 21878401 DOI: 10.1016/j.ymgme.2011.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To evaluate the growth and physical development in patients with phenylalanine hydroxylase deficiency who follow exclusively dietary treatment. METHODS Anthropometric measurements of 160 patients with hyperphenylalaninemia who were followed at our center over a 25 year period were obtained. Only patients treated exclusively with a protein-restrictive diet supplemented with amino acid mixtures were included. Height, weight and body mass index were measured at birth, at diagnosis, at 6 and 12 months of age, and annually until 18 years of age in patients with phenylketonuria or until 9 years of age in patients with mild hyperphenylalaninemia and compared to official national reference values. The final height of PKU patients was also compared to their expected family height. RESULTS The analysis of z scores suggested no significant differences in physical development between PKU patients and the healthy population during the study period. The final height of PKU patients revealed that they were 2 to 4 cm taller than expected when compared to the mean family height (p<0.001). The mean weight and BMI at puberty suggested that many patients with severe PKU, but not other phenotypes, were overweight during this period. CONCLUSION Physical development can be optimal in PKU patients regardless of their phenotype and the severity of the diet. A tendency to excessive weight gain is seen in adolescence in the most severe phenotypes.
Collapse
Affiliation(s)
- Amaya Belanger-Quintana
- Unidad de Enfermedades Metabólicas, Servicio de Pediatría, Hospital Ramón y Cajal, Madrid, Spain.
| | | |
Collapse
|
34
|
MacDonald A, Evans S, Cochrane B, Wildgoose J. Weaning infants with phenylketonuria: a review. J Hum Nutr Diet 2011; 25:103-10. [DOI: 10.1111/j.1365-277x.2011.01199.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Macdonald A, Nanuwa K, Parkes L, Nathan M, Chauhan D. Retrospective, observational data collection of the treatment of phenylketonuria in the UK, and associated clinical and health outcomes. Curr Med Res Opin 2011; 27:1211-22. [PMID: 21504301 DOI: 10.1185/03007995.2011.576237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To determine the percentage of phenylketonuria (PKU) subjects using current treatment strategies whose phenylalanine (Phe) concentrations diverge from the UK target guidelines for PKU. RESEARCH DESIGN AND METHODS This retrospective, observational, chart review was conducted between 2004 and 2008 at three specialist PKU treatment centres in the UK, and included 125 eligible subjects: 20 adults (18+ years, with ≥4 Phe concentrations measured per year) and 105 children (up to age 17, with ≥6 Phe concentrations measured per year). RESULTS The mean percentage of subjects with at least 70% of Phe concentrations within the target range for 0-5-year olds, 6-10 year olds and 11-17 year olds was similar across the period 2004-2008 (57.0%, 56.5% and 57.1%, respectively) and lower (39.4%) in the 18+ year age group. For all ages, across the period the mean was 54.4%. Further analysis of the adult population showed that some subjects were very good at complying with treatment and reporting Phe concentrations. Overall, the percentage of 100% compliance was 15.7% in females and 13.7% in males. The mean duration that subjects were 'out of range' of target Phe concentrations over the study period was approximately 1 year and 3 months and the mean duration for 'significantly out of range' values was approximately 9 months. The most common type of contact made with subjects was by telephone, with a mean number of 16 calls per subject per year. CONCLUSION The results support current literature showing that a proportion of subjects with PKU, in particular older subjects, are not fully compliant with their treatment and subsequently have Phe concentrations that depart from national recommendations. However, definitive conclusions may not be drawn due to the retrospective nature of the study and the small number of observed subjects.
Collapse
Affiliation(s)
- A Macdonald
- Birmingham Children's Hospital, Birmingham, UK
| | | | | | | | | |
Collapse
|
36
|
MacDonald A, Rocha JC, van Rijn M, Feillet F. Nutrition in phenylketonuria. Mol Genet Metab 2011; 104 Suppl:S10-8. [PMID: 21944460 DOI: 10.1016/j.ymgme.2011.08.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 12/31/2022]
Abstract
The same basic principles are used to deliver dietary treatment in PKU that was developed sixty years ago. Dietary treatment is undoubtedly very successful, but it has gradually evolved and been guided commonly by individual experience and expert opinion only. There is little international consensus about dietary practice with improvements in specialist dietary products concentrating on taste and presentation rather than nutritional composition. Many areas of dietary treatment have not been rigorously examined. In particular, the amino acid and micronutrient profile of Phenylalanine-free (phe-free) amino acids requires further study. In different formulations of phe-free amino acids, there are variations in the amino acid patterns as well the amount of essential and non essential amino acids per 100g/amino acids. The amount of added tyrosine and branch chain amino varies substantially, and in PKU specifically, there is little data about their relative absorption rates and bioavailability. In phe-free amino acids, there is evidence suggesting that some of the added micronutrients may be excessive and so the source and amount of each micronutrient should be scrutinized, with a need for the development of international nutritional composition standards exclusively for these products. There is a dearth of data about the life-long phenylalanine tolerance of patients or the nutritional state of adult patients treated with diet. There is a growing need to measure body composition routinely in children with PKU and with the rise in childhood obesity, it is important to measure body fatness and identify those who are at greatest risk of 'co-morbidities' of obesity. There is necessity for international collaboration to ensure robust data is collected on many basic aspects of nutritional care to guarantee that diet therapy is delivered to the highest standard.
Collapse
|
37
|
MacLeod EL, Clayton MK, van Calcar SC, Ney DM. Breakfast with glycomacropeptide compared with amino acids suppresses plasma ghrelin levels in individuals with phenylketonuria. Mol Genet Metab 2010; 100:303-8. [PMID: 20466571 PMCID: PMC2906609 DOI: 10.1016/j.ymgme.2010.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 12/14/2022]
Abstract
Phenylketonuria (PKU) requires a lifelong low-phenylalanine (phe) diet where protein needs are met by consumption of a phe-free amino acid (AA) formula; complaints of persistent hunger are common. Foods made with glycomacropeptide (GMP), an intact protein that contains minimal phe and may promote satiety, provide an alternative to AA formula. The objective was to assess the ability of a GMP breakfast to promote satiety and affect plasma concentrations of AAs, insulin, and the appetite stimulating hormone ghrelin in those with PKU, when compared to an AA-based breakfast. Eleven PKU subjects (8 adults and 3 boys ages 11-14) served as their own controls in an inpatient metabolic study with two 4-day treatments: an AA-based diet followed by a diet replacing all AA formula with GMP foods. Plasma concentrations of AAs, insulin and ghrelin were obtained before and/or 180 min after breakfast. Satiety was assessed using a visual analog scale before, immediately after and 150 min after breakfast. Postprandial ghrelin concentration was significantly lower (p=0.03) with GMP compared to an AA-based breakfast, with no difference in fasting ghrelin. Lower postprandial ghrelin concentrations were associated with greater feelings of fullness after breakfast suggesting greater satiety with GMP compared to AAs. Postprandial concentrations of insulin and total plasma AAs were higher after a GMP breakfast compared to an AA-based breakfast consistent with slower absorption and less degradation of AAs from GMP. These results show sustained ghrelin suppression, and suggest greater satiety with ingestion of a meal containing GMP compared with AAs.
Collapse
Affiliation(s)
- Erin L. MacLeod
- Department of Nutritional Sciences, 1415 Linden Dr, University of Wisconsin, Madison, Wisconsin, 53706 USA
| | - Murray K. Clayton
- Departments of Statistics and Plant Pathology, 1210 W. Dayton St, University of Wisconsin, Madison, Wisconsin, 53706 USA
| | - Sandra C. van Calcar
- Waisman Center, 1500 Highland Ave, University of Wisconsin, Madison, Wisconsin, 53706 USA
| | - Denise M. Ney
- Department of Nutritional Sciences, 1415 Linden Dr, University of Wisconsin, Madison, Wisconsin, 53706 USA
- Waisman Center, 1500 Highland Ave, University of Wisconsin, Madison, Wisconsin, 53706 USA
| |
Collapse
|
38
|
MacLeod EL, Gleason ST, van Calcar SC, Ney DM. Reassessment of phenylalanine tolerance in adults with phenylketonuria is needed as body mass changes. Mol Genet Metab 2009; 98:331-7. [PMID: 19747868 PMCID: PMC2783926 DOI: 10.1016/j.ymgme.2009.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/31/2009] [Accepted: 07/31/2009] [Indexed: 11/22/2022]
Abstract
Lifelong treatment of phenylketonuria (PKU) includes a phenylalanine (phe) restricted diet that provides sufficient phe for growth and maintenance plus phe-free amino acid formula to meet requirements for protein, energy and micronutrients. Phe tolerance (mg phe/kg body weight/day) is the amount of phe those with PKU can consume and maintain acceptable blood phe levels; it requires individual assessment because of varying phenylalanine hydroxylase activity. The objective was to reassess phe tolerance in eight adults with PKU considering phe requirements, blood phe levels, genotype and phe tolerance at 5 years of age. Subjects had not received a personalized assessment of phe tolerance in several years, and five subjects were overweight, body mass index (BMI) 25-28. With the guidance of a metabolic dietitian, seven subjects increased phe tolerance (by 15-173%) without significantly increasing blood phe concentration. Increased phe tolerance was associated with both improved dietary compliance and inadequate phe intake at the onset of the protocol compared with current requirements. Improved dietary compliance reflected increased consumption of protein equivalents from amino acid formula and increased frequency of formula intake, from 2.2 to 3 times per day. Predictors of higher final phe tolerance following reassessment included being male and having a lower BMI (R(2)=0.588). This suggests that the rising trend of overweight and obesity may affect assessment of phe tolerance in adults. Therefore, interaction with the metabolic dietitian to reassess phe tolerance in relation to body mass is essential throughout adulthood to insure adequate intake of phe to support protein synthesis and prevent catabolism.
Collapse
Affiliation(s)
- Erin L. MacLeod
- Department of Nutritional Sciences, 1415 Linden Dr; University of Wisconsin, Madison, Wisconsin, 53706 USA
| | - Sally T. Gleason
- Department of Nutritional Sciences, 1415 Linden Dr; University of Wisconsin, Madison, Wisconsin, 53706 USA
| | - Sandra C. van Calcar
- Waisman Center, 1500 Highland Ave; University of Wisconsin, Madison, Wisconsin, 53706 USA
| | - Denise M. Ney
- Department of Nutritional Sciences, 1415 Linden Dr; University of Wisconsin, Madison, Wisconsin, 53706 USA
- Waisman Center, 1500 Highland Ave; University of Wisconsin, Madison, Wisconsin, 53706 USA
| |
Collapse
|
39
|
van Calcar SC, MacLeod EL, Gleason ST, Etzel MR, Clayton MK, Wolff JA, Ney DM. Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am J Clin Nutr 2009; 89:1068-77. [PMID: 19244369 PMCID: PMC2667457 DOI: 10.3945/ajcn.2008.27280] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/22/2009] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Phenylketonuria (PKU) requires a lifelong low-phenylalanine diet that provides the majority of protein from a phenylalanine-free amino acid (AA) formula. Glycomacropeptide (GMP), an intact protein formed during cheese production, contains minimal phenylalanine. OBJECTIVE The objective was to investigate the effects of substituting GMP food products for the AA formula on acceptability, safety, plasma AA concentrations, and measures of protein utilization in subjects with PKU. DESIGN Eleven subjects participated in an inpatient metabolic study with two 4-d treatments: a current AA diet (AA diet) followed by a diet that replaced the AA formula with GMP (GMP diet) supplemented with limiting AAs. Plasma concentrations of AAs, blood chemistries, and insulin were measured and compared in AA (day 4) and GMP diets (day 8). RESULTS The GMP diet was preferred to the AA diet in 10 of 11 subjects with PKU, and there were no adverse reactions to GMP. There was no significant difference in phenylalanine concentration in postprandial plasma with the GMP diet compared with the AA diet. When comparing fasting with postprandial plasma, plasma phenalyalanine concentration increased significantly with the AA but not with the GMP diet. Blood urea nitrogen was significantly lower, which suggests decreased ureagenesis, and plasma insulin was higher with the GMP diet than with the AA diet. CONCLUSIONS GMP, when supplemented with limiting AAs, is a safe and highly acceptable alternative to synthetic AAs as the primary protein source in the nutritional management of PKU. As an intact protein source, GMP improves protein retention and phenylalanine utilization compared with AAs.
Collapse
|
40
|
Blau N, Bélanger-Quintana A, Demirkol M, Feillet F, Giovannini M, MacDonald A, Trefz FK, van Spronsen FJ. Optimizing the use of sapropterin (BH(4)) in the management of phenylketonuria. Mol Genet Metab 2009; 96:158-63. [PMID: 19208488 DOI: 10.1016/j.ymgme.2009.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 11/26/2022]
Abstract
Phenylketonuria (PKU) is caused by mutations in the phenylalanine hydroxylase (PAH) gene, leading to deficient conversion of phenylalanine (Phe) to tyrosine and accumulation of toxic levels of Phe. A Phe-restricted diet is essential to reduce blood Phe levels and prevent long-term neurological impairment and other adverse sequelae. This diet is commenced within the first few weeks of life and current recommendations favor lifelong diet therapy. The observation of clinically significant reductions in blood Phe levels in a subset of patients with PKU following oral administration of 6R-tetrahydrobiopterin dihydrochloride (BH(4)), a cofactor of PAH, raises the prospect of oral pharmacotherapy for PKU. An orally active formulation of BH(4) (sapropterin dihydrochloride; Kuvan is now commercially available. Clinical studies suggest that treatment with sapropterin provides better Phe control and increases dietary Phe tolerance, allowing significant relaxation, or even discontinuation, of dietary Phe restriction. Firstly, patients who may respond to this treatment need to be identified. We propose an initial 48-h loading test, followed by a 1-4-week trial of sapropterin and subsequent adjustment of the sapropterin dosage and dietary Phe intake to optimize blood Phe control. Overall, sapropterin represents a major advance in the management of PKU.
Collapse
Affiliation(s)
- Nenad Blau
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ney DM, Gleason ST, van Calcar SC, MacLeod EL, Nelson KL, Etzel MR, Rice GM, Wolff JA. Nutritional management of PKU with glycomacropeptide from cheese whey. J Inherit Metab Dis 2009; 32:32-9. [PMID: 18956251 PMCID: PMC3633220 DOI: 10.1007/s10545-008-0952-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/04/2008] [Accepted: 08/30/2008] [Indexed: 10/21/2022]
Abstract
Individuals with phenylketonuria (PKU) must follow a lifelong low-phenylalanine (Phe) diet to prevent neurological impairment. Compliance with the low-Phe diet is often poor owing to restriction in natural foods and the requirement for consumption of a Phe-free amino acid formula or medical food. Glycomacropeptide (GMP), a natural protein produced during cheese-making, is uniquely suited to a low-Phe diet because when isolated from cheese whey it contains minimal Phe (2.5-5 mg Phe/g protein). This paper reviews progress in evaluating the safety, acceptability and efficacy of GMP in the nutritional management of PKU. A variety of foods and beverages can be made with GMP to improve the taste, variety and convenience of the PKU diet. Sensory studies in individuals with PKU demonstrate that GMP foods are acceptable alternatives to amino acid medical foods. Studies in the PKU mouse model demonstrate that GMP supplemented with limiting indispensable amino acids provides a nutritionally adequate source of protein and improves the metabolic phenotype by reducing concentrations of Phe in plasma and brain. A case report in an adult with classical PKU who followed the GMP diet for 10 weeks at home indicates safety, acceptability of GMP food products, a 13-14% reduction in blood Phe levels (p<0.05) and improved distribution of dietary protein throughout the day compared with the amino acid diet. In summary, food products made with GMP that is supplemented with limiting indispensable amino acids provide a palatable alternative source of protein that may improve dietary compliance and metabolic control of PKU.
Collapse
Affiliation(s)
- D M Ney
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND Phenylketonuria is an inherited metabolic disorder characterised by an absence or deficiency of the enzyme phenylalanine hydroxylase. The aim of treatment is to lower blood phenylalanine concentrations to the recommended therapeutic range to prevent developmental delay and support normal growth. Current treatment consists of a low-phenylalanine diet in combination with a protein substitute which is free from or low in phenylalanine. Guidance regarding the use, dosage, and distribution of dosage of the protein substitute over a 24-hour period is unclear, and there is variation in recommendations among treatment centres. OBJECTIVES To assess the benefits and adverse effects of protein substitute, its dosage, and distribution of dose in children and adults with phenylketonuria who are adhering to a low-phenylalanine diet. SEARCH STRATEGY We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which consists of references identified from comprehensive electronic database searches and hand searches of relevant journals and abstract books of conference proceedings. We also contacted manufacturers of the phenylalanine-free and low-phenylalanine protein substitutes for any data from published and unpublished randomised controlled trials.Date of the most recent search of the Group's Trials Register: April 2008. SELECTION CRITERIA All randomised or quasi-randomised controlled trials comparing: any dose of protein substitute with no protein substitute; an alternative dosage; or the same dose, but given as frequent small doses throughout the day compared with the same total daily dose given as larger boluses less frequently. DATA COLLECTION AND ANALYSIS Both authors independently extracted data and assessed trial quality. MAIN RESULTS Three trials (69 participants) are included in this review. One trial investigated the use of protein substitute in 16 participants, while a further two trials investigated the dosage of protein substitute in a total of 53 participants. Due to issues with data presentation in each trial, described in full in the review, formal statistical analyses of the data were impossible. Investigators are being contacted for further information. AUTHORS' CONCLUSIONS No conclusions could be drawn about the short- or long-term use of protein substitute in phenylketonuria due to the lack of adequate or analysable trial data. Additional data and randomised controlled trials are needed to investigate the use of protein substitute in phenylketonuria. Until further evidence is available, current practice in the use of protein substitute should continue to be monitored with care.
Collapse
Affiliation(s)
- Sarah H L Yi
- Graduate Program in Nutrition & Health Sciences of the Graduate Division of Biological and Biomedical Sciences, Emory University, 2165 North Decatur Road, Decatur, Georgia 30033, USA
| | | |
Collapse
|
43
|
Abstract
BACKGROUND Phenylketonuria is an inherited disease characterised by an absence or deficiency of the enzyme phenylalanine hydroxylase. The aim of treatment is to lower blood phenylalanine concentrations to prevent developmental delay. Current treatment is based on a low phenylalanine diet in combination with a protein substitute (mixtures of amino acids free from or low in phenylalanine). Guidance regarding the dosage and distribution of this protein substitute, over a 24-hour period, is unclear and there is variation in recommendation between treatment centres. OBJECTIVES To assess in children and adults with phenylketonuria, who are adhering to a low phenylalanine diet, the benefits and adverse effects of protein substitute, its dosage and distribution of dose. SEARCH STRATEGY We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also contacted manufacturers of the phenylalanine-free and low phenylalanine protein substitutes for any data from published and unpublished randomised controlled trials. Date of the most recent search of the Group's Trials Register: August 2005. SELECTION CRITERIA All randomised or quasi-randomised controlled trials comparing: any dose of protein substitute with no protein substitute; an alternative dosage; or the same dose, but given as frequent small doses throughout the day compared with the same total daily dose given as larger boluses less frequently. DATA COLLECTION AND ANALYSIS Both authors independently extracted data and assessed trial quality. MAIN RESULTS The searches identified 20 trials, of which one, including a total of 28 participants, was eligible for inclusion in the review. This was a two-phase trial, with only phase one being a randomised controlled trial. As data from both phases were combined in the analysis presented in the published paper, we are currently unable to include any data from the randomised controlled trial in the analysis of this review. AUTHORS' CONCLUSIONS No conclusions could be made about the short- or long-term use of protein substitute in phenylketonuria due to the lack of adequate trial data. A randomised controlled trial is needed to investigate the use of protein substitute in phenylketonuria. Until further evidence is available current practice in the use of protein substitute should continue to be observed and monitored with care.
Collapse
Affiliation(s)
- P Rutherford
- Royal Liverpool Children's Hospital NHS Trust, Department of Nutrition and Dietetics, Eaton Road, Liverpool, Merseyside, UK L12 2AP.
| | | |
Collapse
|
44
|
Abstract
Protein substitutes are an essential component in the management of phenylketonuria. A series of studies at Birmingham Children's Hospital have investigated their optimal dosage, timing and practical administration as well as the efficacy and tolerance of novel protein substitutes. The key findings are as follows. (1). Lower dosages of protein substitute (1.2 g/kg per day of protein equivalent) adversely affect blood phenylalanine control in children aged 1-10 years. (2). There is wide variability in 24 h blood phenylalanine concentrations. (3). Adjusting protein substitute timing during daytime does not reduce blood phenylalanine variability. (4). Repeated 4 h administration of protein substitute throughout 24 h markedly reduces phenylalanine variability and leads to lower phenylalanine concentrations. (5). The new, concentrated, low-volume protein substitutes and amino acid tablet preparations are efficacious and well tolerated by patients. (6). Administration of protein substitute as a gel or paste has reduced difficulties with administration of protein substitute in children. These findings are important in rationalizing treatment strategies, improving patient compliance and overall in improving blood phenylalanine control.
Collapse
|