1
|
Windfelder AG, Steinbart J, Graser L, Scherberich J, Krombach GA, Vilcinskas A. An enteric ultrastructural surface atlas of the model insect Manducasexta. iScience 2024; 27:109410. [PMID: 38558941 PMCID: PMC10981077 DOI: 10.1016/j.isci.2024.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
The tobacco hornworm is a laboratory model that is particularly suitable for analyzing gut inflammation, but a physiological reference standard is currently unavailable. Here, we present a surface atlas of the healthy hornworm gut generated by scanning electron microscopy and nano-computed tomography. This comprehensive overview of the gut surface reveals morphological differences between the anterior, middle, and posterior midgut, allowing the screening of aberrant gut phenotypes while accommodating normal physiological variations. We estimated a total resorptive midgut surface of 0.42 m2 for L5d6 larvae, revealing its remarkable size. Our data will support allometric scaling and dose conversion from Manduca sexta to mammals in preclinical research, embracing the 3R principles. We also observed non-uniform gut colonization by enterococci, characterized by dense biofilms in the pyloric cone and downstream of the pylorus associated with pore and spine structures in the hindgut intima, indicating a putative immunosurveillance function in the lepidopteran hindgut.
Collapse
Affiliation(s)
- Anton G. Windfelder
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Experimental Radiology, Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus Liebig University Giessen, Giessen, Germany
| | - Jessica Steinbart
- Experimental Radiology, Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus Liebig University Giessen, Giessen, Germany
| | - Leonie Graser
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Jan Scherberich
- Experimental Radiology, Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus Liebig University Giessen, Giessen, Germany
| | - Gabriele A. Krombach
- Experimental Radiology, Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus Liebig University Giessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Department of Applied Entomology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Kong W, Lv X, Ran X, Mukangango M, Eric Derrick B, Qiu B, Guo C. Comprehensive Assessment of Reference Gene Expression within the Whitefly Dialeurodes citri Using RT-qPCR. Genes (Basel) 2024; 15:318. [PMID: 38540377 PMCID: PMC10970672 DOI: 10.3390/genes15030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 06/14/2024] Open
Abstract
The citrus whitefly, Dialeurodes citri, is a destructive pest that infests citrus plants. It is a major vector in transmitting plant viruses such as citrus yellow vein clearing virus (CYVCV), which has caused severe economic losses worldwide, and therefore efficient control of this pest is economically important. However, the scope of genetic studies primarily focused on D. citri is restricted, something that has potentially limited further study of efficient control options. To explore the functionalities of D. citri target genes, screening for specific reference genes using RT-qPCR under different experimental conditions is essential for the furtherance of biological studies concerning D. citri. The eight candidate reference genes were evaluated by dedicated algorithms (geNorm, Normfinder, BestKeeper and ΔCt method) under five specific experimental conditions (developmental stage, sex, tissue, population and temperature). In addition, the RefFinder software, a comprehensive evaluation platform integrating all of the above algorithms, ranked the expression stability of eight candidate reference genes. The results showed that the best reference genes under different experimental settings were V-ATP-A and RPS18 at different developmental stages; α-tubulin, 18S and V-ATP-A in both sexes; EF1A and α-tubulin in different tissues; Actin and Argk under different populations; and RPS18 and RPL13 in different temperatures. The validation of selected reference genes was further identified using heat shock protein (Hsp) 70 as a reporter gene. Our study, for the first time, provides a detailed compilation of internal reference genes for D. citri that are suitable for RT-qPCR analysis, which is robust groundwork for comprehensive investigation of the functional target genes of D. citri.
Collapse
Affiliation(s)
- Weizhen Kong
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510640, China; (W.K.); (X.L.); (X.R.)
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Xiaolu Lv
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510640, China; (W.K.); (X.L.); (X.R.)
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Xiaotong Ran
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510640, China; (W.K.); (X.L.); (X.R.)
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Marguerite Mukangango
- College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze P.O. Box 210, Rwanda; (M.M.); (B.E.D.)
| | - Bugenimana Eric Derrick
- College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze P.O. Box 210, Rwanda; (M.M.); (B.E.D.)
| | - Baoli Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Changfei Guo
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510640, China; (W.K.); (X.L.); (X.R.)
| |
Collapse
|
3
|
Windfelder AG, Steinbart J, Flögel U, Scherberich J, Kampschulte M, Krombach GA, Vilcinskas A. A quantitative micro-tomographic gut atlas of the lepidopteran model insect Manduca sexta. iScience 2023; 26:106801. [PMID: 37378344 PMCID: PMC10291339 DOI: 10.1016/j.isci.2023.106801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/26/2023] [Accepted: 04/28/2023] [Indexed: 06/29/2023] Open
Abstract
The tobacco hornworm is used extensively as a model system for ecotoxicology, immunology and gut physiology. Here, we established a micro-computed tomography approach based on the oral application of the clinical contrast agent iodixanol, allowing for a high-resolution quantitative analysis of the Manduca sexta gut. This technique permitted the identification of previously unknown and understudied structures, such as the crop or gastric ceca, and revealed the underlying complexity of the hindgut folding pattern, which is involved in fecal pellet formation. The acquired data enabled the volume rendering of all gut parts, the reliable calculation of their volumes, and the virtual endoscopy of the entire alimentary tract. It can provide information for accurate orientation in histology uses, enable quantitative anatomical phenotyping in three dimensions, and allow the calculation of locally effective midgut concentrations of applied chemicals. This atlas will provide critical insights into the evolution of the alimentary tract in lepidopterans.
Collapse
Affiliation(s)
- Anton G. Windfelder
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Jessica Steinbart
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Scherberich
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Gabriele A. Krombach
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Andreas Vilcinskas
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Xiao D, Yao J, Gao X, Zhu KY. Clathrin-dependent endocytosis plays a critical role in larval and pupal development, and female oocyte production in the red flour beetle (Tribolium castaneum). PEST MANAGEMENT SCIENCE 2023; 79:1731-1742. [PMID: 36617731 DOI: 10.1002/ps.7348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clathrin-dependent endocytosis is a vesicular transport process by which cells take macromolecules from the extracellular space to the intracellular space. It plays important roles in various cellular functions, but its biological significance in insect development and reproduction has not been well studied. RESULTS We characterized and functionally analyzed four major clathrin-dependent endocytic pathway genes (TcChc, TcAP50, TcVhaSFD, TcRab7) in Tribolium castaneum. RNA interference (RNAi) by injecting double-stranded RNA (dsRNA) targeting each gene at three doses (50, 100, or 200 ng per insect) in 20-day-old larvae led to 100% larval mortality. When the expressions of TcChc, TcVhaSFD, and TcRab7 were suppressed by injecting their respective dsRNAs at each dose in 1-day-old pupae, the adults that emerged from the dsRNA-injected pupae were deformed, with the absence of wing development. The deformed adults died within 2 days after eclosion. When the expression of TcAP50 was suppressed by injecting its dsRNA into 1-day-old pupae, although no apparent deformed adults were observed, all the adults died within 35 days after eclosion. In addition, when the expressions of TcChc and TcVhaSFD were suppressed by injecting their respective dsRNAs at a reduced dose (10 ng per insect) in 5-day-old pupae, the ovarian development and oocyte production in the resultant females were completely inhibited. CONCLUSION Our results indicate that clathrin-dependent endocytosis is essential for insect development and reproduction. The results from this study can help researchers identify potential molecular targets for developing novel strategies for insect pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Da Xiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| | - Jianxiu Yao
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
5
|
Liu XJ, Liang XY, Guo J, Shi XK, Merzendorfer H, Zhu KY, Zhang JZ. V-ATPase subunit a is required for survival and midgut development of Locusta migratoria. INSECT MOLECULAR BIOLOGY 2022; 31:60-72. [PMID: 34528734 DOI: 10.1111/imb.12738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The vacuolar-type H+ -ATPase (V-ATPase) is an ATP-dependent proton pump, which regulates various cellular processes. To date, most functional studies on V-ATPases of insects have focused on subunits of the V1 complex, and there is little information on the VO genes. In this study, two cDNA sequences of LmV-ATPase a were identified in Locusta migratoria. RT-qPCR analysis revealed that LmV-ATPase a1 and LmV-ATPase a2 are differentially expressed in various tissues and developmental stages. Injection of dsRNA for the common region of LmV-ATPase a1 and LmV-ATPase a2 into third-instar nymphs resulted in a significant suppression of LmV-ATPase a. The injected nymphs ceased feeding, lost body weight and finally died at a mortality of 98.6%. Furthermore, aberrations of midgut epithelial cells, the accumulation of electron-lucent vesicles in the cytoplasm, and a partially damaged brush border were observed in dsLmV-ATPase a-injected nymphs using transmission electron microscopy. Especially, the mRNA level of wingles, and notch genes were dramatically down-regulated in the dsLmV-ATPase a-injected nymphs. Taken together, our results suggest that LmV-ATPase a is required for survival and midgut development of L. migratoria. Hence, this gene could be a good target for RNAi-based control against locusts.
Collapse
Affiliation(s)
- X-J Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - X-Y Liang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - J Guo
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - X-K Shi
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - H Merzendorfer
- Institute of Biology, University of Siegen, Siegen, Germany
| | - K Y Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - J-Z Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Ioannidis P, Buer B, Ilias A, Kaforou S, Aivaliotis M, Orfanoudaki G, Douris V, Geibel S, Vontas J, Denecke S. A spatiotemporal atlas of the lepidopteran pest Helicoverpa armigera midgut provides insights into nutrient processing and pH regulation. BMC Genomics 2022; 23:75. [PMID: 35073840 PMCID: PMC8785469 DOI: 10.1186/s12864-021-08274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Caterpillars from the insect order Lepidoptera are some of the most widespread and destructive agricultural pests. Most of their impact is at the larval stage, where the midgut epithelium mediates the digestion and absorption of an astonishing amount of food. Although this tissue has been the subject of frequent investigation in Lepidoptera, a comprehensive expression atlas has yet to be generated. Results Here, we perform RNA-sequencing and proteomics on the gut of the polyphagous pest Helicoverpa armigera across, life stages, diet types, and compartments of the anterior-posterior axis. A striking relationship between the structural homology and expression pattern of a group of sugar transporters was observed in the early larval stages. Further comparisons were made among the spatial compartments of the midgut, which suggested a putative role for vATPases and SLC9 transporters in the generation of alkaline conditions in the H. armigera midgut. Conclusions This comprehensive resource will aid the scientific community in understanding lepidopteran gut physiology in unprecedented resolution. It is hoped that this study advances the understanding of the lepidopteran midgut and also facilitates functional work in this field. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08274-x.
Collapse
|
7
|
The Inhibitory Effect of Celangulin V on the ATP Hydrolytic Activity of the Complex of V-ATPase Subunits A and B in the Midgut of Mythimna separata. Toxins (Basel) 2019; 11:toxins11020130. [PMID: 30813232 PMCID: PMC6409644 DOI: 10.3390/toxins11020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 11/17/2022] Open
Abstract
Celangulin V (CV) is a compound isolated from Celastrus angulatus Max that has a toxic activity against agricultural insect pests. CV can bind to subunits a, H, and B of the vacuolar ATPase (V-ATPase) in the midgut epithelial cells of insects. However, the mechanism of action of CV is still unclear. In this study, the soluble complex of the V-ATPase A subunit mutant TSCA which avoids the feedback inhibition by the hydrolysate ADP and V-ATPase B subunit were obtained and then purified using affinity chromatography. The H⁺K⁺-ATPase activity of the complex and the inhibitory activity of CV on ATP hydrolysis were determined. The results suggest that CV inhibits the ATP hydrolysis, resulting in an insecticidal effect. Additionally, the homology modeling of the AB complex and molecular docking results indicate that CV can competitively bind to the AB complex at the ATP binding site, which inhibits ATP hydrolysis. These findings suggest that the AB subunits complex is one of the potential targets for CV and is important for understanding the mechanism of interaction between CV and V-ATPase.
Collapse
|
8
|
Feng M, Li Y, Chen X, Wei Q, Wu W, Hu Z. Comparative Proteomic Analysis of the Effect of Periplocoside P from Periploca sepium on Brush Border Membrane Vesicles in Midgut Epithelium of Mythimna separata Larvae. Toxins (Basel) 2017; 10:E7. [PMID: 29271902 PMCID: PMC5793094 DOI: 10.3390/toxins10010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
Periplocoside P (PSP), a novel compound isolated from Periploca sepium Bunge, possesses insecticidal activity against some lepidopterans, such as Mythimna separata. In M. separata, the brush border membrane vesicles of the midgut epithelium are the initial site of action of periplocosides. We conducted two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry analysis to analyze differentially expressed proteins (DEPs) from periplocoside P (PSP)-treated M. separata. We successfully isolated seven up-regulated and three down-regulated DEPs that have been previously identified, as well as a novel DEP. The DEPs are implicated in protein degradation, transporter, folding, and synthesis, and in juvenile hormone biosynthesis. DEPs involved in the oxidative phosphorylation energy metabolism pathway are enriched. Through real-time polymerase chain reaction assay, we confirmed that vma1 expression is significantly up-regulated expression levels in PSP-treated M. separata larvae. Enzymology validation further indicated that PSP can significantly inhibit V-type ATPase activity in a concentration-dependent manner. Given these results, we speculate that in M. separata, the V-type ATPase A subunit in the midgut epithelium is the putative target binding site of periplocosides. This finding provides preliminary evidence for the mode of action of periplocosides.
Collapse
Affiliation(s)
- Mingxing Feng
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
| | - Yankai Li
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
| | - Xueting Chen
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
| | - Quansheng Wei
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
| | - Wenjun Wu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi, Yangling, Shaanxi 712100, China.
- Key Laboratory of Crop Pest Integrated Management on the Loess Plateau, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Penkler DL, Jiwaji M, Domitrovic T, Short JR, Johnson JE, Dorrington RA. Binding and entry of a non-enveloped T=4 insect RNA virus is triggered by alkaline pH. Virology 2016; 498:277-287. [PMID: 27614703 DOI: 10.1016/j.virol.2016.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
Tetraviruses are small, non-enveloped, RNA viruses that exclusively infect lepidopteran insects. Their particles comprise 240 copies of a single capsid protein precursor (CP), which undergoes autoproteolytic cleavage during maturation. The molecular mechanisms of capsid assembly and maturation are well understood, but little is known about the viral infectious lifecycle due to a lack of tissue culture cell lines that are susceptible to tetravirus infection. We show here that binding and entry of the alphatetravirus, Helicoverpa armigera stunt virus (HaSV), is triggered by alkaline pH. At pH 9.0, wild-type HaSV virus particles undergo conformational changes that induce membrane-lytic activity and binding to Spodoptera frugiperda Sf9 cells. Binding is followed by entry and infection, with virus replication complexes detected by immunofluorescence microscopy within 2h post-infection and the CP after 12h. HaSV particles produced in S. frugiperda Sf9 cells are infectious. Helicoverpa armigera larval virus biofeed assays showed that pre-treatment with the V-ATPase inhibitor, Bafilomycin A1, resulted in a 50% decrease in larval mortality and stunting, while incubation of virus particles at pH 9.0 prior to infection restored infectivity. Together, these data show that HaSV, and likely other tetraviruses, requires the alkaline environment of the lepidopteran larval midgut for binding and entry into host cells.
Collapse
Affiliation(s)
- David L Penkler
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Tatiana Domitrovic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - James R Short
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
10
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Liu Y, Qi M, Chi Y, Wuriyanghan H. De Novo Assembly of the Transcriptome for Oriental Armyworm Mythimna separata (Lepidoptera: Noctuidae) and Analysis on Insecticide Resistance-Related Genes. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew079. [PMID: 27638951 PMCID: PMC5026479 DOI: 10.1093/jisesa/iew079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/25/2016] [Indexed: 05/10/2023]
Abstract
Mythimna separata walker (Lepidoptera: Noctuidae) is a polyphagous pest of nearly 100 families of more than 300 kinds of food and industrial crops. So far, both nucleotide and protein sequence information has been rarely available in database for M. separata, strictly limiting molecular biology research in this insect species. In this study, we carried out a transcriptome sequencing for M. separata The sequencing and subsequent bioinformatics analysis yielded 69,238 unigenes, among which 45,227 unigenes were annotated to corresponding functions by blasting with high homologous genes in database, giving annotation rate of 65.32%. Several lepidopteran insects gave best matches with the transcriptome data. To gain insight into the mechanism of insecticide resistance in M. separata, 15 families of genes encoding insecticide resistance-related proteins were investigated. Substantial numbers of unigenes in these families were identified in the transcriptome data, and 17 out of 21 selected unigenes were successfully amplified. Expressions of most of these genes were detected at larval stages and in gut tissue, as was consistent with their putative involvement in insecticide resistance. Our study provides most comprehensive transcriptome data for M. separata to date, and also provides reference sequence information for other Noctuidae family insects.
Collapse
Affiliation(s)
- Yajuan Liu
- Inner Mongolia University, No. 235 West College Road, Hohhot, 010021, Inner Mongolia, People's Republic of China
| | - Muge Qi
- Inner Mongolia University, No. 235 West College Road, Hohhot, 010021, Inner Mongolia, People's Republic of China
| | - Yuchen Chi
- Inner Mongolia University, No. 235 West College Road, Hohhot, 010021, Inner Mongolia, People's Republic of China
| | - Hada Wuriyanghan
- Inner Mongolia University, No. 235 West College Road, Hohhot, 010021, Inner Mongolia, People's Republic of China
| |
Collapse
|
12
|
Nardella J, Terrado M, Honson NS, Plettner E. Endogenous fatty acids in olfactory hairs influence pheromone binding protein structure and function in Lymantria dispar. Arch Biochem Biophys 2015; 579:73-84. [DOI: 10.1016/j.abb.2015.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/06/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
|
13
|
Lu L, Qi Z, Zhang J, Wu W. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography. Toxins (Basel) 2015; 7:1738-48. [PMID: 25996604 PMCID: PMC4448171 DOI: 10.3390/toxins7051738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 11/23/2022] Open
Abstract
Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase) were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed.
Collapse
Affiliation(s)
- Lina Lu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Zhijun Qi
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Jiwen Zhang
- College of Science, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Wenjun Wu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Pentzold S, Zagrobelny M, Rook F, Bak S. How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation. Biol Rev Camb Philos Soc 2015; 89:531-51. [PMID: 25165798 DOI: 10.1111/brv.12066] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists and specialists, and can act on different classes of defence compounds. We discuss how generalist and specialist insects appear to differ in their ability to use these different types of adaptations: in generalists, adaptations are often inducible, whereas in specialists they are often constitutive. Future studies are suggested to investigate in detail how insect adaptations act in combination to overcome plant chemical defences and to allow ecologically relevant conclusions.
Collapse
|
15
|
Cloning, expression and purification of subunit H of vacuolar H⁺-ATPase from Mythimna separata Walker (Lepidoptera: Noctuidae). Int J Mol Sci 2014; 15:15443-55. [PMID: 25257524 PMCID: PMC4200773 DOI: 10.3390/ijms150915443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/17/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022] Open
Abstract
The vacuolar (H+)-ATPase (V-ATPase) of insect, which is composed of membrane-bound V0 complex and peripheral V1 complex, participates in lots of important physiological process. Subunit H, as a subunit of V1 complex, plays a vital role in bridging the communication between V1 and V0 complexes and interaction with other proteins. Yeast subunit H has been successfully crystallized through expression in E. coli, but little is known about the structure of insect subunit H. In this study, we cloned, expressed and purified the subunit H from midgut of Mythimna separata Walker. Through RACE (rapidly amplification of cDNA ends) technique, we got 1807 bp full length of subunit H, and to keep the nature structure of subunit H, we constructed Baculovirus expression vector with His-tag in the C-terminal and expressed the recombinant protein in insect sf9 cells, thereafter, purified the recombinant protein by Ni-NTA columns. Results of SDS-PAGE, western blotting and mass spectrometry showed that the recombinant protein was successfully expressed. The method of expressing and purifying M. separata subunit H will provide a foundation for obtaining the crystal of subunit H and further study of the design of novel insecticides based on its structure and function.
Collapse
|
16
|
Matsumura F, Yamakita Y, Starovoytov V, Yamashiro S. Fascin confers resistance to Listeria infection in dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:6156-64. [PMID: 24244012 DOI: 10.4049/jimmunol.1300498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ag-presenting dendritic cells (DCs) must survive bacterial infection to present Ag information to naive T cells. The greater ability of DCs' host defense is evident from the report that DCs are more resistant to Listeria monocytogenes than macrophages. However, the molecular mechanism of this resistance is unclear. We found that Listeria replicate more slowly in wild-type DCs compared with fascin1 knockout DCs. This finding is significant because fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation of dendritic cells, but not other blood cells, including macrophages and neutrophils. Infection by Listeria makes phagosomes more acidic in wild-type DCs than in fascin1 knockout DCs, suggesting that fascin1 facilitates phagolysosomal fusion for killing of phagocytosed Listeria. We further found that fascin1 binds to LC3, an autophagosome marker, both in vivo and in vitro. Listeria are associated with LC3 to a greater extent in wild-type DCs than in fascin1 knockout DCs, suggesting that fascin1 facilitates autophagy for eradication of cytoplasmic Listeria. Taken together, our results suggest that fascin1 plays critical roles in the survival of DCs during Listeria infection, allowing DCs to function in innate and adaptive immunity.
Collapse
Affiliation(s)
- Fumio Matsumura
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | | | | | | |
Collapse
|
17
|
Hand SC, Menze MA, Borcar A, Patil Y, Covi JA, Reynolds JA, Toner M. Metabolic restructuring during energy-limited states: insights from Artemia franciscana embryos and other animals. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:584-94. [PMID: 21335009 PMCID: PMC3104064 DOI: 10.1016/j.jinsphys.2011.02.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 05/21/2023]
Abstract
Many life history stages of animals that experience environmental insults enter developmental arrested states that are characterized by reduced cellular proliferation, with or without a concurrent reduction in overall metabolism. In the case of the most profound metabolic arrest reported in invertebrates, i.e., anaerobic quiescence in Artemia franciscana embryos, acidification of the intracellular milieu is a major factor governing catabolic and anabolic downregulation. Release of ions from intracellular compartments is the source for approximately 50% of the proton equivalents needed for the 1.5 unit acidification that is observed. Recovery from the metabolic arrest requires re-sequestration of the protons with a vacuolar-type ATPase (V-ATPase). The remarkable facet of this mechanism is the ability of embryonic cells to survive the dissipation of intracellular ion gradients. Across many diapause-like states, the metabolic reduction and subsequent matching of energy demand is accomplished by shifting energy metabolism from oxidative phosphorylation to aerobic glycolysis. Molecular pathways that are activated to induce these resilient hypometabolic states include stimulation of the AMP-activated protein kinase (AMPK) and insulin signaling via suite of daf (dauer formation) genes for diapause-like states in nematodes and insects. Contributing factors for other metabolically depressed states involve hypoxia-inducible factor-1 and downregulation of the pyruvate dehydrogenase complex. Metabolic similarities between natural states of stasis and some cancer phenotypes are noteworthy. Reduction of flux through oxidative phosphorylation helps prevent cell death in certain cancer types, similar to the way it increases viability of dauer stages in Caenorhabditis elegans. Mechanisms that underlie natural stasis are being used to pre-condition mammalian cells prior to cell biostabilization and storage.
Collapse
Affiliation(s)
- Steven C Hand
- Division of Cellular, Developmental and Integrative Biology, Department of Biological, Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Bulushova NV, Zhuzhikov DP, Lyutikova LI, Kirillova NE, Zalunin IA, Chestukhina GG. Toxin-binding proteins isolated from yellow mealworm Tenebrio molitor and wax moth Galleria mellonella. BIOCHEMISTRY (MOSCOW) 2011; 76:202-8. [DOI: 10.1134/s0006297911020064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Shanbhag S, Tripathi S. Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. ACTA ACUST UNITED AC 2009; 212:1731-44. [PMID: 19448082 DOI: 10.1242/jeb.029306] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is a resurgence of interest in the Drosophila midgut on account of its potential value in understanding the structure, development and function of digestive organs and related epithelia. The recent identification of regenerative or stem cells in the adult gut of Drosophila has opened up new avenues for understanding development and turnover of cells in insect and mammalian gastrointestinal tracts. Conversely, the physiology of the Drosophila gut is less well understood as it is a difficult epithelial preparation to study under controlled conditions. Recent progress in microperfusion of individual segments of the Drosophila midgut, in both larval and adult forms, has enabled ultrastructural and electrophysiological study and preliminary characterization of cellular transport processes in the epithelium. As larvae are more active feeders, the transport rates are higher than in adults. The larval midgut has at least three segments: an anterior neutral zone, a short and narrow acid-secreting middle segment and a long and wider posterior segment (which is the best studied) that secretes base (probably HCO(3)(-)) into the lumen. The posterior midgut has a lumen-negative transepithelial potential (35-45 mV) and a high resistance (800-1400 Omega.cm(2)) that correlates with little or no lateral intercellular volume. The primary transport system driving base secretion into the lumen appears to be a bafilomycin-A(1)-sensitive, electrogenic H(+) V-ATPase located on the basal membrane, which extrudes acid into the haemolymph, as inferred from the extracellular pH gradients detected adjacent to the basal membrane. The adult midgut is also segmented (as inferred from longitudinal gradients of pH dye-indicators in the lumen) into anterior, middle and posterior regions. The anterior segment is probably absorptive. The middle midgut secretes acid (pH<4.0), a process dependent on a carbonic-anhydrase-catalysed H(+) pool. Cells of the middle segment are alternately absorptive (apically amplified by approximately 9-fold, basally amplified by >90-fold) and secretory (apically amplified by >90-fold and basally by approximately 10-fold). Posterior segment cells have an extensively dilated basal extracellular labyrinth, with a volume larger than that of anterior segment cells, indicating more fluid reabsorption in the posterior segment. The luminal pH of anterior and posterior adult midgut is 7-9. These findings in the larval and adult midgut open up the possibility of determining the role of plasma membrane transporters and channels involved in driving not only H(+) fluxes but also secondary fluxes of other solutes and water in Drosophila.
Collapse
Affiliation(s)
- Shubha Shanbhag
- Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | | |
Collapse
|
20
|
NH4+ secretion in the avian colon. An actively regulated barrier to ammonium permeation of the colon mucosa. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:258-65. [DOI: 10.1016/j.cbpa.2009.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 02/13/2009] [Accepted: 02/15/2009] [Indexed: 11/22/2022]
|
21
|
Pauchet Y, Muck A, Svatos A, Heckel DG. Chromatographic and electrophoretic resolution of proteins and protein complexes from the larval midgut microvilli of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:467-474. [PMID: 19464367 DOI: 10.1016/j.ibmb.2009.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 05/27/2023]
Abstract
The microvillar proteome of Manduca sexta larval midguts was analyzed by subjecting brush border membrane vesicles (BBMV) to two different two-dimensional approaches: (i) Anion exchange chromatography followed by SDS-PAGE and (ii) Blue Native-PAGE followed by SDS-PAGE. The first technique was superior to conventional 2-D gel electrophoresis in resolving the most abundant proteins associated with the midgut microvilli. Twenty of them were successfully identified as digestive enzymes, binding targets of the insecticidal Cry1A toxins from Bacillus thuringiensis (Bt), and signal transduction proteins. A homolog of the chlorophyllide A binding protein from the silkworm and several aminopeptidases N represent the most abundant proteins associated with the BBMV. The second technique revealed protein oligomeric complexes associated with midgut microvilli in vivo. Two such complexes contained subunits of the vacuolar ATP synthase complex, and one was an oligomer of the chlorophyllide A binding protein. An additional complex consisted of homo- or hetero-tetramers of three different aminopeptidases N (APNs). As APNs are well-known binding partners of Cry1A toxins, their quaternary structure has implications for Bt toxin mode of action. Both techniques provide a useful complement to conventional 2-D gel electrophoresis in analyzing the complex proteome of the microvillar membrane fraction.
Collapse
Affiliation(s)
- Yannick Pauchet
- Entomology Department, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
22
|
Beyenbach KW, Baumgart S, Lau K, Piermarini PM, Zhang S. Signaling to the apical membrane and to the paracellular pathway: changes in the cytosolic proteome of Aedes Malpighian tubules. ACTA ACUST UNITED AC 2009; 212:329-40. [PMID: 19151207 DOI: 10.1242/jeb.024646] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a proteomics approach, we examined the post-translational changes in cytosolic proteins when isolated Malpighian tubules of Aedes aegypti were stimulated for 1 min with the diuretic peptide aedeskinin-III (AK-III, 10(-7) mol l(-1)). The cytosols of control (C) and aedeskinin-treated (T) tubules were extracted from several thousand Malpighian tubules, subjected to 2-D electrophoresis and stained for total proteins and phosphoproteins. The comparison of C and T gels was performed by gel image analysis for the change of normalized spot volumes. Spots with volumes equal to or exceeding C/T ratios of +/-1.5 were robotically picked for in-gel digestion with trypsin and submitted for protein identification by nanoLC/MS/MS analysis. Identified proteins covered a wide range of biological activity. As kinin peptides are known to rapidly stimulate transepithelial secretion of electrolytes and water by Malpighian tubules, we focused on those proteins that might mediate the increase in transepithelial secretion. We found that AK-III reduces the cytosolic presence of subunits A and B of the V-type H(+) ATPase, endoplasmin, calreticulin, annexin, type II regulatory subunit of protein kinase A (PKA) and rab GDP dissociation inhibitor and increases the cytosolic presence of adducin, actin, Ca(2+)-binding protein regucalcin/SMP30 and actin-depolymerizing factor. Supporting the putative role of PKA in the AK-III-induced activation of the V-type H(+) ATPase is the effect of H89, an inhibitor of PKA, on fluid secretion. H89 reverses the stimulatory effect of AK-III on transepithelial fluid secretion in isolated Malpighian tubules. However, AK-III does not raise intracellular levels of cAMP, the usual activator of PKA, suggesting a cAMP-independent activation of PKA that removes subunits A and B from the cytoplasm in the assembly and activation of the V-type H(+) ATPase. Alternatively, protein kinase C could also mediate the activation of the proton pump. Ca(2+) remains the primary intracellular messenger of the aedeskinins that signals the remodeling of the paracellular complex apparently through protein kinase C, thereby increasing transepithelial anion secretion. The effects of AK-III on active transcellular and passive paracellular transport are additive, if not synergistic, to bring about the rapid diuresis.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
23
|
Ribeiro JMC, Arcà B, Lombardo F, Calvo E, Chandra PK, Wikel SK. An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genomics 2007; 8:6. [PMID: 17204158 PMCID: PMC1790711 DOI: 10.1186/1471-2164-8-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 01/04/2007] [Indexed: 11/10/2022] Open
Abstract
Background Saliva of blood-sucking arthropods contains a cocktail of antihemostatic agents and immunomodulators that help blood feeding. Mosquitoes additionally feed on sugar meals and have specialized regions of their glands containing glycosidases and antimicrobials that might help control bacterial growth in the ingested meals. To expand our knowledge on the salivary cocktail of Ædes ægypti, a vector of dengue and yellow fevers, we analyzed a set of 4,232 expressed sequence tags from cDNA libraries of adult female mosquitoes. Results A nonredundant catalogue of 614 transcripts (573 of which are novel) is described, including 136 coding for proteins of a putative secretory nature. Additionally, a two-dimensional gel electrophoresis of salivary gland (SG) homogenates followed by tryptic digestion of selected protein bands and MS/MS analysis revealed the expression of 24 proteins. Analysis of tissue-specific transcription of a subset of these genes revealed at least 31 genes whose expression is specific or enriched in female SG, whereas 24 additional genes were expressed in female SG and in males but not in other female tissues. Most of the 55 proteins coded by these SG transcripts have no known function and represent high-priority candidates for expression and functional analysis as antihemostatic or antimicrobial agents. An unexpected finding is the occurrence of four protein families specific to SG that were probably a product of horizontal transfer from prokaryotic organisms to mosquitoes. Conclusion Overall, this paper contributes to the novel identification of 573 new transcripts, or near 3% of the Æ. ægypti proteome assuming a 20,000-protein set, and to the best-described sialome of any blood-feeding insect.
Collapse
Affiliation(s)
- José MC Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, Maryland 20852, USA
| | - Bruno Arcà
- Department of Structural and Functional Biology, University 'FedericoII', Naples, Italy
- Parasitology Section, Department of Public Health, University 'LaSapienza', Rome, Italy
| | - Fabrizio Lombardo
- Parasitology Section, Department of Public Health, University 'LaSapienza', Rome, Italy
| | - Eric Calvo
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, Maryland 20852, USA
| | - Van My Phan
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, Maryland 20852, USA
| | - Prafulla K Chandra
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030, USA
| | - Stephen K Wikel
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030, USA
| |
Collapse
|
24
|
Abstract
Plasma membranes from insect midgut cells are separated into apical and basolateral domains. The apical domain is usually modified into microvilli with a molecular structure similar to other animals. Nevertheless, the microvillar structure should differ in some insects to permit the traffic inside them of secretory vesicles that may budd laterally or pinch-off from the tips of microvilli. Other microvillar modifications are associated with proton-pumping or with the interplay with an ensheathing lipid membrane (the perimicrovilllar membrane) observed in the midgut cells of hemipterans (aphids and bugs). The perimicrovillar membranes are thought to be involved in amino acid absorption from diluted diets. The microvillar and perimicrovillar membranes have densities (and protein content) that depend on the insect taxon. The role played by the microvillar and perimicrovillar proteins in insect midgut physiology is reviewed here trying to provide a coherent picture of data and highlighting further research areas.
Collapse
Affiliation(s)
- Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, 05513-970 São Paulo, SP, Brazil.
| | | | | |
Collapse
|
25
|
Fiandra L, Casartelli M, Giordana B. The paracellular pathway in the lepidopteran larval midgut: modulation by intracellular mediators. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:464-73. [PMID: 16765075 DOI: 10.1016/j.cbpa.2006.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 03/23/2006] [Accepted: 04/11/2006] [Indexed: 11/18/2022]
Abstract
The features of the paracellular pathway, an important route for the transfer of ions and molecules in epithelia, are in insects still poorly investigated and it has not yet been elucidated how the septate junction (SJ) acts as a transepithelial barrier. In this study, some properties of the paracellular pathway of Bombyx mori larval midgut, isolated in Ussing chambers, were determined and the modulation of SJ permeability by intracellular events disclosed. Diffusion potentials evoked by transepithelial gradients of different salts indicated that the junction bore weak negative charges and that the paracellular pathway was selective with respect to ion charge and size. In standard conditions, the transepithelial resistance was 28.2+/-2.1 Omega cm(2), a value indicating that the midgut is a low resistance epithelium. The modulation of midgut SJ by typical enhancers of mammalian tight junction permeability known to act on the cytoskeleton was studied by measuring the shunt resistance and the lumen-to-haemolymph flux of sucrose. An increase of the intracellular level of cAMP and Ca(2+) caused a significant decrease of the shunt resistance and an increase of SJ permeability. The attenuation of Ca(2+) effect in the presence of the calcium channel blocker nifedipine indicated that the influx of external Ca(2+) into the cytoplasm was important for the opening of the SJ, as well as the release of Ca(2+) from the intracellular stores.
Collapse
Affiliation(s)
- L Fiandra
- Department of Biology, University of Milan, Via Celoria 26, 20133 Milano, Italy.
| | | | | |
Collapse
|
26
|
Grüber G. Structural features and nucleotide-binding capability of the C subunit are integral to the regulation of the eukaryotic V1Vo ATPases. Biochem Soc Trans 2005; 33:883-5. [PMID: 16042619 DOI: 10.1042/bst0330883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
V-ATPases (vacuolar ATPases) are responsible for acidification of intracellular compartments and, in certain cases, proton transport across the plasma membrane of eukaryotic cells. They are composed of a catalytic V1 sector, in which ATP hydrolysis takes place, and the Vo sector, which functions in proton conduction. The best established mechanism for regulating the V-ATPase activity in vivo involves reversible dissociation of the V1 and Vo domains, in which subunit C is intimately involved. In the last year, impressive progress has been made in elucidating the structure of the C subunit and its arrangement inside the V-ATPase. Nucleotide occupancy by subunit C, followed by conformational changes of this subunit has shed light on the mechanism of V-ATPase regulation.
Collapse
Affiliation(s)
- G Grüber
- Universität des Saarlandes, Fachrichtung 2.5-Biophysik, Universitätsbau 76, D-66421 Homburg, Germany.
| |
Collapse
|
27
|
Wang Y, Inoue T, Forgac M. Subunit a of the yeast V-ATPase participates in binding of bafilomycin. J Biol Chem 2005; 280:40481-8. [PMID: 16216877 DOI: 10.1074/jbc.m509106200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bafilomycin and concanamycin are potent and highly specific inhibitors of the vacuolar (H(+))-ATPases (V-ATPases), typically inhibiting at nanomolar concentrations. Previous studies have shown that subunit c of the integral V(0) domain participates in bafilomycin binding, and that this site resembles the oligomycin binding site of the F-ATPase (Bowman, B. J., and Bowman, E. J. (2002) J. Biol. Chem. 277, 3965-3972). Because mutations in F-ATPase subunit a also confer resistance to oligomycin, we investigated whether the a subunit of the V-ATPase might participate in binding bafilomycin. Twenty-eight subunit a mutations were constructed just N-terminal to the critical Arg(735) residue in transmembrane 7 required for proton transport, a region similar to that shown to participate in oligomycin binding by the F-ATPase. The mutants appeared to assemble normally and all but two showed normal growth at pH 7.5, whereas all but three had at least 25% of wild-type levels of proton transport and ATPase activity. Of the functional mutants, three displayed K(i) values for bafilomycin significantly different from wild-type (0.22 +/- 0.03 nm). These included E721K (K(i) 0.38 +/- 0.03 nm), L724A (0.40 +/- 0.02 nm), and N725F (0.54 +/- 0.06 nm). Only the N725F mutation displayed a K(i) for concanamycin (0.84 +/- 0.04 nm) that was slightly higher than wild-type (0.60 +/- 0.07 nm). These results suggest that subunit a of V-ATPase participates along with subunit c in binding bafilomycin.
Collapse
Affiliation(s)
- Yanru Wang
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
28
|
Covi JA, Treleaven WD, Hand SC. V-ATPase inhibition prevents recovery from anoxia in Artemia franciscana embryos: quiescence signaling through dissipation of proton gradients. J Exp Biol 2005; 208:2799-808. [PMID: 16000548 DOI: 10.1242/jeb.01681] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The metabolic downregulation critical for long-term survival of Artemia franciscana embryos under anoxia is mediated, in part, by a progressive intracellular acidification. However, very little is known about the mechanisms responsible for the pH transitions associated with exposure to, and recovery from, oxygen deprivation. In the present study, we demonstrate with 31P-NMR that incubation of intact embryos with the V-ATPase inhibitor bafilomycin A1 severely limits intracellular alkalinization during recovery from anoxia without affecting the restoration of cellular nucleotide triphosphate levels. Based on these data, it appears that oxidative phosphorylation and ATP resynthesis can only account for the first 0.3 pH unit alkalinization observed during aerobic recovery from the 1 pH unit acidification produced during 1 h of anoxia. The additional 0.7 pH unit increase requires proton pumping by the V-ATPase. Aerobic incubation with bafilomycin also suggests that V-ATPase inhibition alone is not enough to induce an acute dissipation of proton gradients under anoxia. In intact embryos, the dissipation of proton gradients and uncoupling of oxidative phosphorylation with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) leads to an intracellular acidification similar to that seen after 1 h of anoxia. Subsequent exposure to anoxia, in the continued presence of CCCP, yields little additional acidification, suggesting that proton gradients are normally dissipated under anoxia. When combined with protons generated from net ATP hydrolysis, these data show that the dissipation of proton chemical gradients is sufficient to account for the reversible acidification associated with quiescence in these embryos.
Collapse
Affiliation(s)
- Joseph A Covi
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
29
|
Allan AK, Du J, Davies SA, Dow JAT. Genome-wide survey of V-ATPase genes inDrosophilareveals a conserved renal phenotype for lethal alleles. Physiol Genomics 2005; 22:128-38. [PMID: 15855386 DOI: 10.1152/physiolgenomics.00233.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
V-ATPases are ubiquitous, vital proton pumps that play a multiplicity of roles in higher organisms. In many epithelia, they are the major energizer of cotransport processes and have been implicated in functions as diverse as fluid secretion and longevity. The first animal knockout of a V-ATPase was identified in Drosophila, and its recessive lethality demonstrated the essential nature of V-ATPases. This article surveys the entire V-ATPase gene family in Drosophila, both experimentally and in silico. Adult expression patterns of most of the genes are shown experimentally for the first time, using in situ hybridization or reporter gene expression, and these results are reconciled with published expression and microarray data. For each subunit, the single gene identified previously by microarray, as upregulated and abundant in tubules, is shown to be similarly abundant in other epithelia in which V-ATPases are known to be important; there thus appears to be a single dominant “plasma membrane” V-ATPase holoenzyme in Drosophila. This provides the most comprehensive view of V-ATPase expression yet in a multicellular organism. The transparent Malpighian tubule phenotype first identified in lethal alleles of vha55, the gene encoding the B-subunit, is shown to be general to those plasma membrane V-ATPase subunits for which lethal alleles are available, and to be caused by failure to accumulate uric acid crystals. These results coincide with the expression view of the gene family, in which 13 of the genes are specialized for epithelial roles, whereas others have spatially or temporally restricted patterns of expression.
Collapse
Affiliation(s)
- Adrian K Allan
- Institute of Biomedical and Life Sciences Division of Molecular Genetics, University of Glasgow, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
30
|
Inoue T, Forgac M. Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 domain. J Biol Chem 2005; 280:27896-903. [PMID: 15951435 DOI: 10.1074/jbc.m504890200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar (H+)-ATPases (V-ATPases) are multisubunit complexes responsible for ATP-dependent proton transport across both intracellular and plasma membranes. The V-ATPases are composed of a peripheral domain (V1) that hydrolyzes ATP and an integral domain (V0) that conducts protons. Dissociation of V1 and V0 is an important mechanism of controlling V-ATPase activity in vivo. The crystal structure of subunit C of the V-ATPase reveals two globular domains connected by a flexible linker (Drory, O., Frolow, F., and Nelson, N. (2004) EMBO Rep. 5, 1-5). Subunit C is unique in being released from both V1 and V0 upon in vivo dissociation. To localize subunit C within the V-ATPase complex, unique cysteine residues were introduced into 25 structurally defined sites within the yeast C subunit and used as sites of attachment of the photoactivated sulfhydryl reagent 4-(N-maleimido)benzophenone (MBP). Analysis of photocross-linked products by Western blot reveals that subunit E (part of V1) is in close proximity to both the head domain (residues 166-263) and foot domain (residues 1-151 and 287-392) of subunit C. By contrast, subunit G (also part of V1) shows cross-linking to only the head domain whereas subunit a (part of V0) shows cross-linking to only the foot domain. The localization of subunit C to the interface of the V1 and V0 domains is consistent with a role for this subunit in controlling assembly of the V-ATPase complex.
Collapse
Affiliation(s)
- Takao Inoue
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
31
|
Oliveira PF, Lopes IA, Barrias C, Rebelo da Costa AM. H+-ATPase of crude homogenate of the outer mantle epithelium of Anodonta cygnea. Comp Biochem Physiol A Mol Integr Physiol 2005; 139:425-32. [PMID: 15596387 DOI: 10.1016/j.cbpb.2004.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 07/27/2004] [Accepted: 07/28/2004] [Indexed: 11/24/2022]
Abstract
The outer mantle epithelium of the freshwater bivalve, Anodonta cygnea, is responsible for the mineralisation of the shell. Under short circuit conditions, it generates a current that is due to the operation of an electrogenic proton pump located in the apical barrier of that epithelium. Bafilomycin A1 and Concanamycin A inhibited the short circuit current. The IC50 and maximum inhibition dose were 0.17 and 0.5 microM for Bafilomycin A1, and 0.7 and 5 microM for Concanamycin A. The present work was undertaken to further characterise V-type ATPase of the outer mantle cells. The V-ATPase enzymatic activity of crude homogenate, measured as the amount of inorganic phosphorous released, due to ATP hydrolysis, in the presence of Na2SO3 (200 mM) was found to be 4.6+/-1.1 micromol Pi/mg protein/h, at 27 degrees C, pH 7.0-7.4 and ATP 4.5-6.0 microM. Bafilomycin A1 and Concanamycin A inhibit the V-ATPase activity with an IC50 of 14 and 8 nmol mg(-1), respectively. Dicyclohexylcarbodiimide (DCCD; 100 mM) and NaNO3 (100 microM) inhibited the V-type ATPase in what it seems a non-specific manner and NEM (100 mM) was unable to do it. Bafilomycin A1 (10 microM) and Concanamycin A (10 microM), inhibited 50-60% of the total activity.
Collapse
Affiliation(s)
- P F Oliveira
- Transporte Iónico e Fisiologia dos Gâmetas, CECA-UP, Porto, Portugal
| | | | | | | |
Collapse
|
32
|
Donini A, O'Donnell MJ. Analysis of Na+, Cl-, K+, H+and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquitoAedes aegypti: application of self-referencing ion-selective microelectrodes. J Exp Biol 2005; 208:603-10. [PMID: 15695753 DOI: 10.1242/jeb.01422] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIon concentration gradients adjacent to the surface of the anal papillae of larvae of the mosquito Aedes aegypti were measured using self-referencing ion-selective microelectrodes. The gradients were used to calculate estimates of ion fluxes into and out of the papillae. There was a net influx of Na+, Cl- and K+ from the bathing medium and a net efflux of acid and NH4+. No Ca2+ gradients were detectable. Na+ and Cl-influx occurred against a concentration gradient suggesting active transport. Although Na+, Cl- and NH4+gradients were uniform along the length of the papillae, the proximal regions of the papillae in vivo revealed significantly higher H+and K+ gradients compared with distal regions. The calculated ion fluxes at the papillae are sufficient for complete Na+,K+ and Cl- haemolymph replacement in ∼4 h with external ion concentrations of 5 mmol l-1. Ion gradients were also detected adjacent to the surface of isolated papillae; however, Na+and H+ gradients were higher, and Cl- gradients were lower relative to papillae in vivo. The results support previous findings that the anal papillae of mosquito larvae are important structures for ion regulation, and suggest that these structures may be used for the excretion of nitrogenous waste.
Collapse
Affiliation(s)
- Andrew Donini
- Department of Biology, McMaster University, Life Sciences Building, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1.
| | | |
Collapse
|