1
|
Torretta E, Moriggi M, Capitanio D, Orfei CP, Raffo V, Setti S, Cadossi R, de Girolamo L, Gelfi C. Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis. Int J Mol Sci 2024; 25:8852. [PMID: 39201538 PMCID: PMC11354614 DOI: 10.3390/ijms25168852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Tendon disorders often result in decreased muscle function and atrophy. Pulsed Electromagnetic Fields (PEMFs) have shown potential in improving tendon fiber structure and muscle recovery. However, the molecular effects of PEMF therapy on skeletal muscle, beyond conventional metrics like MRI or markers of muscle decline, remain largely unexplored. This study investigates the metabolic and structural changes in PEMF-treated muscle tissue using proteomics in a rat model of Achilles tendinopathy induced by collagenase. Sprague Dawley rats were unilaterally induced for tendinopathy with type I collagenase injection and exposed to PEMFs for 8 h/day. Gastrocnemius extracts from untreated or PEMF-treated rats were analyzed with LC-MS/MS, and proteomics differential analysis was conducted through label-free quantitation. PEMF-treated animals exhibited decreased glycolysis and increased LDHB expression, enhancing NAD signaling and ATP production, which boosted respiratory chain activity and fatty acid beta-oxidation. Antioxidant protein levels increased, controlling ROS production. PEMF therapy restored PGC1alpha and YAP levels, decreased by tendinopathy. Additionally, myosins regulating slow-twitch fibers and proteins involved in fiber alignment and force transmission increased, supporting muscle recovery and contractile function. Our findings show that PEMF treatment modulates NAD signaling and oxidative phosphorylation, aiding muscle recovery through the upregulation of YAP and PGC1alpha and increasing slow myosin isoforms, thus speeding up physiological recovery.
Collapse
Affiliation(s)
- Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy;
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (M.M.); (D.C.)
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (M.M.); (D.C.)
| | - Carlotta Perucca Orfei
- Orthopaedic Biotechnology Laboratory, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy (V.R.); (L.d.G.)
| | - Vincenzo Raffo
- Orthopaedic Biotechnology Laboratory, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy (V.R.); (L.d.G.)
| | | | | | - Laura de Girolamo
- Orthopaedic Biotechnology Laboratory, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy (V.R.); (L.d.G.)
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (M.M.); (D.C.)
| |
Collapse
|
2
|
Watanabe A, Koike H, Kumagami N, Shimba S, Manabe I, Oishi Y. Arntl deficiency in myeloid cells reduces neutrophil recruitment and delays skeletal muscle repair. Sci Rep 2023; 13:6747. [PMID: 37185573 PMCID: PMC10130093 DOI: 10.1038/s41598-023-33830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
After a muscle injury, a process comprising inflammation, repair, and regeneration must occur in a time-sensitive manner for skeletal muscle to be adequately repaired and regenerated. This complex process is assumed to be controlled by various myeloid cell types, including monocytes and macrophages, though the mechanism is not fully understood. Aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) is a transcription factor that controls the circadian rhythm and has been implicated in regulating myeloid cell functions. In the present study, we generated myeloid cell-specific Arntl conditional knockout (cKO) mice to assess the role of Arntl expressed in myeloid cell populations during the repair process after muscle injury. Myeloid cell-specific Arntl deletion impaired muscle regeneration after cardiotoxin injection. Flow cytometric analyses revealed that, in cKO mice, the numbers of infiltrating neutrophils and Ly6Chi monocytes within the injured site were reduced on days 1 and 2, respectively, after muscle injury. Moreover, neutrophil migration and the numbers of circulating monocytes were significantly reduced in cKO mice, which suggests these effects may account, at least in part, for the impaired regeneration. These findings suggest that Arntl, expressed in the myeloid lineage regulates neutrophil and monocyte recruitment and is therefore required for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Aiko Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Naoki Kumagami
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
3
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
4
|
Wang J, Wang C, Xie H, Feng X, Wei L, Wang B, Li T, Pi M, Gong L. Case Report: Tetralogy of Fallot in a Chinese Family Caused by a Novel Missense Variant of MYOM2. Front Cardiovasc Med 2022; 9:863650. [PMID: 35872890 PMCID: PMC9300848 DOI: 10.3389/fcvm.2022.863650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Rare genetic variants have been identified to be important contributors to the risk of Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease (CHD). But relatively limited familial studies with small numbers of TOF cases have been reported to date. In this study, we aimed to identify novel pathogenic genes and variants that caused TOF in a Chinese family using whole exome sequencing (WES). Methods A Chinese family whose twins were affected by TOF were recruited for this study. A WES was performed for the affected twins, their healthy brother, and parents to identify the potential pathogenic mutated gene(s). Heterozygous variants carried by the twins, but not the unaffected brother, were retained. Public databases were used to assess the frequencies of the selected variants, and online prediction tools were accessed to predict the influences of these variants on protein function. The final candidate variant was further confirmed by Sanger sequencing in other members of the family. Results After several filtering processes, a heterozygous missense variant in the MYOM2 gene (NM_003970.4:c.3097C>T:p.R1033C) was identified and confirmed by Sanger sequencing in the affected twins and their unaffected father, suggesting an inheritance pattern with incomplete penetrance. The variant was found to be extremely rare in the public databases. Furthermore, the mutated site was highly conserved among mammals, and as shown using multiple online prediction tools, this variant was predicted to be a detrimental variant. Conclusion We assessed a family with TOF caused by a rare heterozygous missense variant of MYOM2. Our findings not only further confirm the significant role of genetics in the incidence of TOF but also expand the spectrum of the gene variants that lead to TOF.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chunyan Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Haiyang Xie
- Department of Cardiothoracic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Feng
- Department of Echocardiography, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wei
- Department of Cardiothoracic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binbin Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Mingan Pi
- Department of Cardiothoracic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Mingan Pi
| | - Li Gong
- Department of Cardiothoracic Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Gong
| |
Collapse
|
5
|
Nanosurgical Manipulation of Titin and Its M-Complex. NANOMATERIALS 2022; 12:nano12020178. [PMID: 35055197 PMCID: PMC8779236 DOI: 10.3390/nano12020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 01/21/2023]
Abstract
Titin is a multifunctional filamentous protein anchored in the M-band, a hexagonally organized supramolecular lattice in the middle of the muscle sarcomere. Functionally, the M-band is a framework that cross-links myosin thick filaments, organizes associated proteins, and maintains sarcomeric symmetry via its structural and putative mechanical properties. Part of the M-band appears at the C-terminal end of isolated titin molecules in the form of a globular head, named here the “M-complex”, which also serves as the point of head-to-head attachment of titin. We used high-resolution atomic force microscopy and nanosurgical manipulation to investigate the topographical and internal structure and local mechanical properties of the M-complex and its associated titin molecules. We find that the M-complex is a stable structure that corresponds to the transverse unit of the M-band organized around the myosin thick filament. M-complexes may be interlinked into an M-complex array that reflects the local structural and mechanical status of the transversal M-band lattice. Local segments of titin and the M-complex could be nanosurgically manipulated to achieve extension and domain unfolding. Long threads could be pulled out of the M-complex, suggesting that it is a compact supramolecular reservoir of extensible filaments. Nanosurgery evoked an unexpected volume increment in the M-complex, which may be related to its function as a mechanical spacer. The M-complex thus displays both elastic and plastic properties which support the idea that the M-band may be involved in mechanical functions within the muscle sarcomere.
Collapse
|
6
|
Auxerre-Plantié E, Nielsen T, Grunert M, Olejniczak O, Perrot A, Özcelik C, Harries D, Matinmehr F, Dos Remedios C, Mühlfeld C, Kraft T, Bodmer R, Vogler G, Sperling SR. Identification of MYOM2 as a candidate gene in hypertrophic cardiomyopathy and Tetralogy of Fallot, and its functional evaluation in the Drosophila heart. Dis Model Mech 2020; 13:dmm045377. [PMID: 33033063 PMCID: PMC7758640 DOI: 10.1242/dmm.045377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023] Open
Abstract
The causal genetic underpinnings of congenital heart diseases, which are often complex and multigenic, are still far from understood. Moreover, there are also predominantly monogenic heart defects, such as cardiomyopathies, with known disease genes for the majority of cases. In this study, we identified mutations in myomesin 2 (MYOM2) in patients with Tetralogy of Fallot (TOF), the most common cyanotic heart malformation, as well as in patients with hypertrophic cardiomyopathy (HCM), who do not exhibit any mutations in the known disease genes. MYOM2 is a major component of the myofibrillar M-band of the sarcomere, and a hub gene within interactions of sarcomere genes. We show that patient-derived cardiomyocytes exhibit myofibrillar disarray and reduced passive force with increasing sarcomere lengths. Moreover, our comprehensive functional analyses in the Drosophila animal model reveal that the so far uncharacterized fly gene CG14964 [herein referred to as Drosophila myomesin and myosin binding protein (dMnM)] may be an ortholog of MYOM2, as well as other myosin binding proteins. Its partial loss of function or moderate cardiac knockdown results in cardiac dilation, whereas more severely reduced function causes a constricted phenotype and an increase in sarcomere myosin protein. Moreover, compound heterozygous combinations of CG14964 and the sarcomere gene Mhc (MYH6/7) exhibited synergistic genetic interactions. In summary, our results suggest that MYOM2 not only plays a critical role in maintaining robust heart function but may also be a candidate gene for heart diseases such as HCM and TOF, as it is clearly involved in the development of the heart.This article has an associated First Person interview with Emilie Auxerre-Plantié and Tanja Nielsen, joint first authors of the paper.
Collapse
Affiliation(s)
- Emilie Auxerre-Plantié
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Tanja Nielsen
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Olga Olejniczak
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Perrot
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Cemil Özcelik
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Dennis Harries
- Medical School of Hannover, Institute of Molecular and Cell Physiology, 30625 Hannover, Germany
| | - Faramarz Matinmehr
- Medical School of Hannover, Institute of Molecular and Cell Physiology, 30625 Hannover, Germany
| | - Cristobal Dos Remedios
- Anatomy and Histology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Theresia Kraft
- Medical School of Hannover, Institute of Molecular and Cell Physiology, 30625 Hannover, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Georg Vogler
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Silke R Sperling
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
7
|
Shum AMY, Poljak A, Bentley NL, Turner N, Tan TC, Polly P. Proteomic profiling of skeletal and cardiac muscle in cancer cachexia: alterations in sarcomeric and mitochondrial protein expression. Oncotarget 2018; 9:22001-22022. [PMID: 29774118 PMCID: PMC5955146 DOI: 10.18632/oncotarget.25146] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/10/2018] [Indexed: 01/06/2023] Open
Abstract
Background Cancer cachexia is observed in more than 50% of advanced cancer patients, and impairs quality of life and prognosis. A variety of pathways are likely to be dysregulated. Hence, a broad-spectrum understanding of the disease process is best achieved by a discovery based approach such as proteomics. Results More than 300 proteins were identified with > 95% confidence in correct sequence identification, of which 5–10% were significantly differentially expressed in cachectic tissues (p-value of 0.05; 27 proteins from gastrocnemius, 34 proteins from soleus and 24 proteins from heart). The two most pronounced functional groups being sarcomeric proteins (mostly upregulated across all three muscle types) and energy/metabolism proteins (mostly downregulated across all muscle types). Electron microscopy revealed disintegration of the sarcomere and morphological aberrations of mitochondria in the cardiac muscle of colon 26 (C26) carcinoma mice. Materials and Methods The colon 26 (C26) carcinoma mouse model of cachexia was used to analyse soleus, gastrocnemius and cardiac muscles using two 8-plex iTRAQ proteomic experiments and tandem mass spectrometry (LCMSMS). Differentially expressed proteomic lists for protein clustering and enrichment of biological processes, molecular pathways, and disease related pathways were analysed using bioinformatics. Cardiac muscle ultrastructure was explored by electron microscopy. Conclusions Morphological and proteomic analyses suggested molecular events associated with disintegrated sarcomeric structure with increased dissolution of Z-disc and M-line proteins. Altered mitochondrial morphology, in combination with the reduced expression of proteins regulating substrate and energy metabolism, suggest that muscle cells are likely to be undergoing a state of energy crisis which ultimately results in cancer-induced cachexia.
Collapse
Affiliation(s)
- Angie M Y Shum
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Anne Poljak
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Bioanalytical Mass Spectrometry Facility, UNSW Sydney, New South Wales, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, New South Wales, Australia
| | - Nicholas L Bentley
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Timothy C Tan
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Western Clinical School and Westmead Hospital, Westmead, New South Wales, Australia
| | - Patsie Polly
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia.,Department of Pathology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| |
Collapse
|
8
|
|
9
|
Randazzo D, Pierantozzi E, Rossi D, Sorrentino V. The potential of obscurin as a therapeutic target in muscle disorders. Expert Opin Ther Targets 2017; 21:897-910. [DOI: 10.1080/14728222.2017.1361931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Mechanical forces during muscle development. Mech Dev 2017; 144:92-101. [DOI: 10.1016/j.mod.2016.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023]
|
12
|
Pernigo S, Fukuzawa A, Beedle AEM, Holt M, Round A, Pandini A, Garcia-Manyes S, Gautel M, Steiner RA. Binding of Myomesin to Obscurin-Like-1 at the Muscle M-Band Provides a Strategy for Isoform-Specific Mechanical Protection. Structure 2016; 25:107-120. [PMID: 27989621 PMCID: PMC5222588 DOI: 10.1016/j.str.2016.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/16/2016] [Accepted: 11/18/2016] [Indexed: 12/03/2022]
Abstract
The sarcomeric cytoskeleton is a network of modular proteins that integrate mechanical and signaling roles. Obscurin, or its homolog obscurin-like-1, bridges the giant ruler titin and the myosin crosslinker myomesin at the M-band. Yet, the molecular mechanisms underlying the physical obscurin(-like-1):myomesin connection, important for mechanical integrity of the M-band, remained elusive. Here, using a combination of structural, cellular, and single-molecule force spectroscopy techniques, we decode the architectural and functional determinants defining the obscurin(-like-1):myomesin complex. The crystal structure reveals a trans-complementation mechanism whereby an incomplete immunoglobulin-like domain assimilates an isoform-specific myomesin interdomain sequence. Crucially, this unconventional architecture provides mechanical stability up to forces of ∼135 pN. A cellular competition assay in neonatal rat cardiomyocytes validates the complex and provides the rationale for the isoform specificity of the interaction. Altogether, our results reveal a novel binding strategy in sarcomere assembly, which might have implications on muscle nanomechanics and overall M-band organization. The structure of the human obscurin-like-1:myomesin complex has been determined A myomesin sequence complements an immunoglobulin fold of obscurin-like-1 This binding mechanism provides mechanical stability up to forces of ∼135 pN Possible implications on muscle nanomechanics and M-band organization are discussed
Collapse
Affiliation(s)
- Stefano Pernigo
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Atsushi Fukuzawa
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Cardiovascular Division, King's College London BHF Centre of Research Excellence, London SE1 1UL, UK
| | - Amy E M Beedle
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Department of Physics, King's College London, London WC2R 2LS, UK
| | - Mark Holt
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Cardiovascular Division, King's College London BHF Centre of Research Excellence, London SE1 1UL, UK
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France; School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK
| | - Alessandro Pandini
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Department of Computer Science and Synthetic Biology Theme, Brunel University London, London UB8 3PH, UK
| | - Sergi Garcia-Manyes
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Department of Physics, King's College London, London WC2R 2LS, UK.
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Cardiovascular Division, King's College London BHF Centre of Research Excellence, London SE1 1UL, UK.
| | - Roberto A Steiner
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
13
|
Ibrahim A, Souissi A, Leray A, Héliot L, Vandenbunder B, Souissi S. Myofibril Changes in the Copepod Pseudodiaptomus marinus Exposed to Haline and Thermal Stresses. PLoS One 2016; 11:e0164770. [PMID: 27824880 PMCID: PMC5100916 DOI: 10.1371/journal.pone.0164770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 09/30/2016] [Indexed: 11/19/2022] Open
Abstract
Copepods are small crustaceans capable to survive in various aquatic environments. Their responses to changes in different external factors such as salinity and temperature can be observed at different integration levels from copepod genes to copepod communities. Until now, no thorough observation of the temperature or salinity effect stresses on copepods has been done by optical microscopy. In this study, we used autofluorescence to visualize these effects on the morphology of the calanoid copepod Pseudodiaptomus marinus maintained during several generations in the laboratory at favorable and stable conditions of salinity (30 psu) and temperature (18°C). Four different stress experiments were conducted: at a sharp decrease in temperature (18 to 4°C), a moderate decrease in salinity (from 30 to 15 psu), a major decrease in salinity (from 30 to 0 psu), and finally a combined stress with a decrease in both temperature and salinity (from 18°C and 30 psu to 4°C and 0 psu). After these stresses, images acquired by confocal laser scanning microscopy (CLSM) revealed changes in copepod cuticle and muscle structure. Low salinity and/or temperature stresses affected both the detection of fluorescence emitted by muscle sarcomeres and the distance between them. In the remaining paper we will use the term sarcomeres to describe the elements located within sarcomeres and emitted autofluorescence signals. Quantitative study showed an increase in the average distance between two consecutive sarcomeres from 2.06 +/- 0.11 μm to 2.44 +/- 0.42 μm and 2.88 +/- 0.45μm after the exposure to major haline stress (18°C, 0 psu) and the combined stress (4°C, 0 psu), respectively. These stresses also caused cuticle cracks which often occurred at the same location, suggesting the cuticle as a sensitive area for osmoregulation. Our results suggest the use of cuticular and muscle autofluorescence as new biomarkers of stress detectable in formalin-preserved P. marinus individuals. Our label-free method can be easily applied to a large number of other copepod species or invertebrates with striated musculature.
Collapse
Affiliation(s)
- Ali Ibrahim
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille –Parc scientifique de la Haute Borne, 59650, Villeneuve d'Ascq, France
- Univ. Lille, CNRS, Univ. Littoral Cote d’Opale, UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, F-62930, Wimereux, France
| | - Anissa Souissi
- Univ. Lille, CNRS, Univ. Littoral Cote d’Opale, UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, F-62930, Wimereux, France
| | - Aymeric Leray
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille –Parc scientifique de la Haute Borne, 59650, Villeneuve d'Ascq, France
| | - Laurent Héliot
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille –Parc scientifique de la Haute Borne, 59650, Villeneuve d'Ascq, France
| | - Bernard Vandenbunder
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille –Parc scientifique de la Haute Borne, 59650, Villeneuve d'Ascq, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Cote d’Opale, UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, F-62930, Wimereux, France
- * E-mail:
| |
Collapse
|
14
|
Gautel M, Djinović-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. ACTA ACUST UNITED AC 2016; 219:135-45. [PMID: 26792323 DOI: 10.1242/jeb.124941] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Highly ordered organisation of striated muscle is the prerequisite for the fast and unidirectional development of force and motion during heart and skeletal muscle contraction. A group of proteins, summarised as the sarcomeric cytoskeleton, is essential for the ordered assembly of actin and myosin filaments into sarcomeres, by combining architectural, mechanical and signalling functions. This review discusses recent cell biological, biophysical and structural insight into the regulated assembly of sarcomeric cytoskeleton proteins and their roles in dissipating mechanical forces in order to maintain sarcomere integrity during passive extension and active contraction. α-Actinin crosslinks in the Z-disk show a pivot-and-rod structure that anchors both titin and actin filaments. In contrast, the myosin crosslinks formed by myomesin in the M-band are of a ball-and-spring type and may be crucial in providing stable yet elastic connections during active contractions, especially eccentric exercise.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics, and Cardiovascular Division, New Hunt's House, London SE1 1UL, UK
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna A-1030, Austria Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, Ljubljana 1000, Slovenia
| |
Collapse
|
15
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Paesen R, Smolders S, Vega JMDH, Eijnde BO, Hansen D, Ameloot M. Fully automated muscle quality assessment by Gabor filtering of second harmonic generation images. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:26003. [PMID: 26848544 DOI: 10.1117/1.jbo.21.2.026003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
Although structural changes on the sarcomere level of skeletal muscle are known to occur due to various pathologies, rigorous studies of the reduced sarcomere quality remain scarce. This can possibly be explained by the lack of an objective tool for analyzing and comparing sarcomere images across biological conditions. Recent developments in second harmonic generation (SHG) microscopy and increasing insight into the interpretation of sarcomere SHG intensity profiles have made SHG microscopy a valuable tool to study microstructural properties of sarcomeres. Typically, sarcomere integrity is analyzed by fitting a set of manually selected, one-dimensional SHG intensity profiles with a supramolecular SHG model. To circumvent this tedious manual selection step, we developed a fully automated image analysis procedure to map the sarcomere disorder for the entire image at once. The algorithm relies on a single-frequency wavelet-based Gabor approach and includes a newly developed normalization procedure allowing for unambiguous data interpretation. The method was validated by showing the correlation between the sarcomere disorder, quantified by the M-band size obtained from manually selected profiles, and the normalized Gabor value ranging from 0 to 1 for decreasing disorder. Finally, to elucidate the applicability of our newly developed protocol, Gabor analysis was used to study the effect of experimental autoimmune encephalomyelitis on the sarcomere regularity. We believe that the technique developed in this work holds great promise for high-throughput, unbiased, and automated image analysis to study sarcomere integrity by SHG microscopy.
Collapse
Affiliation(s)
- Rik Paesen
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Sophie Smolders
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | | | - Bert O Eijnde
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, BelgiumbHasselt University, REVAL-Rehabilitation Research Center, Agoralaan Building A, 3590 Diepenbeek, Belgium
| | - Dominique Hansen
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, BelgiumbHasselt University, REVAL-Rehabilitation Research Center, Agoralaan Building A, 3590 Diepenbeek, Belgium
| | - Marcel Ameloot
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, Belgium
| |
Collapse
|
17
|
Chantler PD. Scallop Adductor Muscles. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-444-62710-0.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
18
|
Abstract
Cells sense biochemical, electrical, and mechanical cues in their environment that affect their differentiation and behavior. Unlike biochemical and electrical signals, mechanical signals can propagate without the diffusion of proteins or ions; instead, forces are transmitted through mechanically stiff structures, flowing, for example, through cytoskeletal elements such as microtubules or filamentous actin. The molecular details underlying how cells respond to force are only beginning to be understood. Here we review tools for probing force-sensitive proteins and highlight several examples in which forces are transmitted, routed, and sensed by proteins in cells. We suggest that local unfolding and tension-dependent removal of autoinhibitory domains are common features in force-sensitive proteins and that force-sensitive proteins may be commonplace wherever forces are transmitted between and within cells. Because mechanical forces are inherent in the cellular environment, force is a signal that cells must take advantage of to maintain homeostasis and carry out their functions.
Collapse
Affiliation(s)
- Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| |
Collapse
|
19
|
Xiao S, Gräter F. Molecular basis of the mechanical hierarchy in myomesin dimers for sarcomere integrity. Biophys J 2015; 107:965-73. [PMID: 25140432 PMCID: PMC4142248 DOI: 10.1016/j.bpj.2014.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/26/2014] [Accepted: 06/16/2014] [Indexed: 01/08/2023] Open
Abstract
Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunoglobulin (Ig) domains, and the dimer interface at myomesin's 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼ 15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.
Collapse
Affiliation(s)
- Senbo Xiao
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Chinese Academy of Sciences-Max-Planck-Society Partner Institute and Key Laboratory for Computational Biology, Shanghai, China; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
The sarcomeric M-region: a molecular command center for diverse cellular processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:714197. [PMID: 25961035 PMCID: PMC4413555 DOI: 10.1155/2015/714197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/08/2015] [Indexed: 02/07/2023]
Abstract
The sarcomeric M-region anchors thick filaments and withstands the mechanical stress of contractions by deformation, thus enabling distribution of physiological forces along the length of thick filaments. While the role of the M-region in supporting myofibrillar structure and contractility is well established, its role in mediating additional cellular processes has only recently started to emerge. As such, M-region is the hub of key protein players contributing to cytoskeletal remodeling, signal transduction, mechanosensing, metabolism, and proteasomal degradation. Mutations in genes encoding M-region related proteins lead to development of severe and lethal cardiac and skeletal myopathies affecting mankind. Herein, we describe the main cellular processes taking place at the M-region, other than thick filament assembly, and discuss human myopathies associated with mutant or truncated M-region proteins.
Collapse
|
21
|
Weeland CJ, van den Hoogenhof MM, Beqqali A, Creemers EE. Insights into alternative splicing of sarcomeric genes in the heart. J Mol Cell Cardiol 2015; 81:107-13. [PMID: 25683494 DOI: 10.1016/j.yjmcc.2015.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Driven by rapidly evolving technologies in next-generation sequencing, alternative splicing has emerged as a crucial layer in gene expression, greatly expanding protein diversity and governing complex biological processes in the cardiomyocyte. At the core of cardiac contraction, the physical properties of the sarcomere are carefully orchestrated through alternative splicing to fit the varying demands on the heart. By the recent discovery of RBM20 and RBM24, two major heart and skeletal muscle-restricted splicing factors, it became evident that alternative splicing events in the heart occur in regulated networks rather than in isolated events. Analysis of knockout mice of these splice factors has shed light on the importance of these fundamental processes in the heart. In this review, we discuss recent advances in our understanding of the role and regulation of alternative splicing in the developing and diseased heart, specifically within the sarcomere. Through various examples (titin, myomesin, troponin T, tropomyosin and LDB3) we illustrate how alternative splicing regulates the functional properties of the sarcomere. Finally, we evaluate opportunities and obstacles to modulate alternative splicing in therapeutic approaches for cardiac disease.
Collapse
Affiliation(s)
- Cornelis J Weeland
- Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | | | - Abdelaziz Beqqali
- Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Esther E Creemers
- Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Yang J, Hung LH, Licht T, Kostin S, Looso M, Khrameeva E, Bindereif A, Schneider A, Braun T. RBM24 is a major regulator of muscle-specific alternative splicing. Dev Cell 2015; 31:87-99. [PMID: 25313962 DOI: 10.1016/j.devcel.2014.08.025] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/23/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022]
Abstract
Cell-type-specific splicing generates numerous alternatively spliced transcripts playing important roles for organ development and homeostasis, but only a few tissue-specific splicing factors have been identified. We found that RBM24 governs a large number of muscle-specific splicing events that are critically involved in cardiac and skeletal muscle development and disease. Targeted inactivation of RBM24 in mice disrupted cardiac development and impaired sarcomerogenesis in striated muscles. In vitro splicing assays revealed that recombinant RBM24 is sufficient to promote muscle-specific exon inclusion in nuclear extracts of nonmuscle cells. Furthermore, we demonstrate that binding of RBM24 to an intronic splicing enhancer (ISE) is essential and sufficient to overcome repression of exon inclusion by an exonic splicing silencer (ESS) containing PTB and hnRNP A1/A2 binding sites. Introduction of ESS and ISE converted a constitutive exon into an RMB24-dependent alternative exon. We reason that RBM24 is a major regulator of alternative splicing in striated muscles.
Collapse
Affiliation(s)
- Jiwen Yang
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany
| | - Lee-Hsueh Hung
- Institute of Biochemistry, University of Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Thomas Licht
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany
| | - Sawa Kostin
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany
| | - Mario Looso
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany
| | - Ekaterina Khrameeva
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, Moscow 127994, Russia
| | - Albrecht Bindereif
- Institute of Biochemistry, University of Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Andre Schneider
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany.
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany.
| |
Collapse
|
23
|
Iruretagoyena JI, Gonzalez-Tendero A, Garcia-Canadilla P, Amat-Roldan I, Torre I, Nadal A, Crispi F, Gratacos E. Cardiac dysfunction is associated with altered sarcomere ultrastructure in intrauterine growth restriction. Am J Obstet Gynecol 2014; 210:550.e1-7. [PMID: 24440565 DOI: 10.1016/j.ajog.2014.01.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/27/2013] [Accepted: 01/15/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The purpose of this study was to assess whether abnormal cardiac function in human fetuses with intrauterine growth restriction (IUGR) is associated with ultrastructural differences in the cardiomyocyte sarcomere. STUDY DESIGN Nine severe early-onset IUGR fetuses and 9 normally grown fetuses (appropriate growth for gestational age) who died in the perinatal period were included prospectively. Cardiac function was assessed by echocardiography and levels of B-type natriuretic peptide and troponin-I. Heart sections were imaged by second harmonic generation microscopy, which allowed unstained visualization of cardiomyocyte's sarcomere length. RESULTS Echocardiographic and biochemical markers showed signs of severe cardiac dysfunction in IUGR fetuses. Second harmonic generation microscopy demonstrated a significantly shorter sarcomere length in IUGR as compared with appropriate growth for gestational age fetuses. CONCLUSION IUGR is associated with changes in the cardiomyocyte contractile machinery in the form of shorter sarcomere length, which could help to explain the cardiac dysfunction previously documented in IUGR.
Collapse
Affiliation(s)
- Jesus Igor Iruretagoyena
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Maternal-Fetal Medicine, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Anna Gonzalez-Tendero
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Garcia-Canadilla
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Physense, Departament de Tecnologies de la Informació i les Comunicacions (DTIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Ivan Amat-Roldan
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Iratxe Torre
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alfons Nadal
- Department of Pathology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Fatima Crispi
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Maternal-Fetal Medicine, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Eduard Gratacos
- Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Maternal-Fetal Medicine, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| |
Collapse
|
24
|
Can T, Faas L, Ashford DA, Dowle A, Thomas J, O'Toole P, Blanco G. Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections. Proteome Sci 2014; 12:25. [PMID: 25071420 PMCID: PMC4113200 DOI: 10.1186/1477-5956-12-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/25/2014] [Indexed: 12/14/2022] Open
Abstract
The myotendinous junction is a specialized structure of the muscle fibre enriched in mechanosensing complexes, including costameric proteins and core elements of the z-disc. Here, laser capture microdissection was applied to purify membrane regions from the myotendinous junctions of mouse skeletal muscles, which were then processed for proteomic analysis. Sarcolemma sections from the longitudinal axis of the muscle fibre were used as control for the specificity of the junctional preparation. Gene ontology term analysis of the combined lists indicated a statistically significant enrichment in membrane-associated proteins. The myotendinous junction preparation contained previously uncharacterized proteins, a number of z-disc costameric ligands (e.g., actinins, capZ, αB cristallin, filamin C, cypher, calsarcin, desmin, FHL1, telethonin, nebulin, titin and an enigma-like protein) and other proposed players of sarcomeric stretch sensing and signalling, such as myotilin and the three myomesin homologs. A subset were confirmed by immunofluorescence analysis as enriched at the myotendinous junction, suggesting that laser capture microdissection from muscle sections is a valid approach to identify novel myotendinous junction players potentially involved in mechanotransduction pathways.
Collapse
Affiliation(s)
- Tugba Can
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Laura Faas
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - David A Ashford
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jerry Thomas
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Peter O'Toole
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gonzalo Blanco
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
25
|
Sequeira V, Nijenkamp LLAM, Regan JA, van der Velden J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:700-22. [PMID: 23860255 DOI: 10.1016/j.bbamem.2013.07.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
Cardiac muscle cells are equipped with specialized biochemical machineries for the rapid generation of force and movement central to the work generated by the heart. During each heart beat cardiac muscle cells perceive and experience changes in length and load, which reflect one of the fundamental principles of physiology known as the Frank-Starling law of the heart. Cardiac muscle cells are unique mechanical stretch sensors that allow the heart to increase cardiac output, and adjust it to new physiological and pathological situations. In the present review we discuss the mechano-sensory role of the cytoskeletal proteins with respect to their tight interaction with the sarcolemma and extracellular matrix. The role of contractile thick and thin filament proteins, the elastic protein titin, and their anchorage at the Z-disc and M-band, with associated proteins are reviewed in physiologic and pathologic conditions leading to heart failure. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Louise L A M Nijenkamp
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jessica A Regan
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; Department of Physiology, Molecular Cardiovascular Research Program, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, The Netherlands.
| |
Collapse
|
26
|
Flix B, de la Torre C, Castillo J, Casal C, Illa I, Gallardo E. Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle. Int J Biochem Cell Biol 2013; 45:1927-38. [PMID: 23792176 DOI: 10.1016/j.biocel.2013.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/24/2013] [Accepted: 06/09/2013] [Indexed: 11/25/2022]
Abstract
Dysferlinopathies are a group of progressive muscular dystrophies characterized by mutations in the gene DYSF. These mutations cause scarcity or complete absence of dysferlin, a protein that is expressed in skeletal muscle and plays a role in membrane repair. Our objective was to unravel the proteins that constitute the dysferlin complex and their interaction within the complex using immunoprecipitation assays (IP), blue native gel electrophoresis (BN) in healthy adult skeletal muscle and healthy cultured myotubes, and fluorescence lifetime imaging-fluorescence resonance energy transfer (FLIM-FRET) analysis in healthy myotubes. The combination of immunoprecipitations and blue native electrophoresis allowed us to identify previously reported partners of dysferlin - such as caveolin-3, AHNAK, annexins, or Trim72/MG53 - and new interacting partners. Fluorescence lifetime imaging showed a direct interaction of dysferlin with Trim72/MG53, AHNAK, cytoplasmic dynein, myomesin-2 and calsequestrin-1, but not with caveolin-3 or dystrophin. In conclusion, although IP and BN are useful tools to identify the proteins in a complex, techniques such as fluorescence lifetime imaging analysis are needed to determine the direct and indirect interactions of these proteins within the complex. This knowledge may help us to better understand the roles of dysferlin in muscle tissue and identify new genes involved in muscular dystrophies in which the responsible gene is unknown.
Collapse
Affiliation(s)
- Bàrbara Flix
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Salbreux G, Charras G, Paluch E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 2012; 22:536-45. [PMID: 22871642 DOI: 10.1016/j.tcb.2012.07.001] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 12/11/2022]
Abstract
The cortex is a thin, crosslinked actin network lying immediately beneath the plasma membrane of animal cells. Myosin motors exert contractile forces in the meshwork. Because the cortex is attached to the cell membrane, it plays a central role in cell shape control. The proteic constituents of the cortex undergo rapid turnover, making the cortex both mechanically rigid and highly plastic, two properties essential to its function. The cortex has recently attracted increasing attention and its functions in cellular processes such as cytokinesis, cell migration, and embryogenesis are progressively being dissected. In this review, we summarize current knowledge on the structural organization, composition, and mechanics of the actin cortex, focusing on the link between molecular processes and macroscopic physical properties. We also highlight consequences of cortex dysfunction in disease.
Collapse
Affiliation(s)
- Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.
| | | | | |
Collapse
|
28
|
Zhou Y, Gong B, Kaminski HJ. Genomic profiling reveals Pitx2 controls expression of mature extraocular muscle contraction-related genes. Invest Ophthalmol Vis Sci 2012; 53:1821-9. [PMID: 22408009 PMCID: PMC3995565 DOI: 10.1167/iovs.12-9481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To assess the influence of the Pitx2 transcription factor on the global gene expression profile of extraocular muscle (EOM) of mice. METHODS Mice with a conditional knockout of Pitx2, designated Pitx2(Δflox/Δflox) and their control littermates Pitx2(flox/flox), were used. RNA was isolated from EOM obtained at 3, 6, and 12 weeks of age and processed for microarray-based profiling. Pairwise comparisons were performed between mice of the same age and differentially expressed gene lists were generated. Select genes from the profile were validated using real-time quantitative polymerase chain reaction and protein immunoblot. Ultrastructural analysis was performed to evaluate EOM sarcomeric structure. RESULTS The number of differentially expressed genes was relatively small. Eleven upregulated and 23 downregulated transcripts were identified common to all three age groups in the Pitx2-deficient extraocular muscle compared with littermate controls. These fell into a range of categories including muscle-specific structural genes, transcription factors, and ion channels. The differentially expressed genes were primarily related to muscle contraction. We verified by protein and ultrastructural analysis that myomesin 2 was expressed in the Pitx2-deficient mice, and this was associated with development of M lines evident in their orbital region. CONCLUSIONS The global transcript expression analysis uncovered that Pitx2 primarily regulates a relatively select number of genes associated with muscle contraction. Pitx2 loss led to the development of M line structures, a feature more typical of other skeletal muscle.
Collapse
Affiliation(s)
- Yuefang Zhou
- From the Department of Neurology and Psychiatry, Saint Louis University, St. Louis, Missouri;the Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; andthe Department of Neurology, Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Bendi Gong
- From the Department of Neurology and Psychiatry, Saint Louis University, St. Louis, Missouri;the Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; andthe Department of Neurology, Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Henry J. Kaminski
- From the Department of Neurology and Psychiatry, Saint Louis University, St. Louis, Missouri;the Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; andthe Department of Neurology, Department of Pharmacology and Physiology, George Washington University, Washington, DC
| |
Collapse
|
29
|
Xu J, Gao J, Li J, Xue L, Clark KJ, Ekker SC, Du SJ. Functional analysis of slow myosin heavy chain 1 and myomesin-3 in sarcomere organization in zebrafish embryonic slow muscles. J Genet Genomics 2012; 39:69-80. [PMID: 22361506 DOI: 10.1016/j.jgg.2012.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 11/27/2022]
Abstract
Myofibrillogenesis, the process of sarcomere formation, requires close interactions of sarcomeric proteins and various components of sarcomere structures. The myosin thick filaments and M-lines are two key components of the sarcomere. It has been suggested that myomesin proteins of M-lines interact with myosin and titin proteins and keep the thick and titin filaments in order. However, the function of myomesin in myofibrillogenesis and sarcomere organization remained largely enigmatic. No knockout or knockdown animal models have been reported to elucidate the role of myomesin in sarcomere organization in vivo. In this study, by using the gene-specific knockdown approach in zebrafish embryos, we carried out a loss-of-function analysis of myomesin-3 and slow myosin heavy chain 1 (smyhc1) expressed specifically in slow muscles. We demonstrated that knockdown of smyhc1 abolished the sarcomeric localization of myomesin-3 in slow muscles. In contrast, loss of myomesin-3 had no effect on the sarcomeric organization of thick and thin filaments as well as M- and Z-line structures. Together, these studies indicate that myosin thick filaments are required for M-line organization and M-line localization of myomesin-3. In contrast, myomesin-3 is dispensable for sarcomere organization in slow muscles.
Collapse
Affiliation(s)
- Jin Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Fast-folding alpha-helices as reversible strain absorbers in the muscle protein myomesin. Proc Natl Acad Sci U S A 2011; 108:14139-44. [PMID: 21825161 DOI: 10.1073/pnas.1105734108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The highly oriented filamentous protein network of muscle constantly experiences significant mechanical load during muscle operation. The dimeric protein myomesin has been identified as an important M-band component supporting the mechanical integrity of the entire sarcomere. Recent structural studies have revealed a long α-helical linker between the C-terminal immunoglobulin (Ig) domains My12 and My13 of myomesin. In this paper, we have used single-molecule force spectroscopy in combination with molecular dynamics simulations to characterize the mechanics of the myomesin dimer comprising immunoglobulin domains My12-My13. We find that at forces of approximately 30 pN the α-helical linker reversibly elongates allowing the molecule to extend by more than the folded extension of a full domain. High-resolution measurements directly reveal the equilibrium folding/unfolding kinetics of the individual helix. We show that α-helix unfolding mechanically protects the molecule homodimerization from dissociation at physiologically relevant forces. As fast and reversible molecular springs the myomesin α-helical linkers are an essential component for the structural integrity of the M band.
Collapse
|
31
|
Gautel M. Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 2011; 462:119-34. [PMID: 21416260 PMCID: PMC3114093 DOI: 10.1007/s00424-011-0946-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, London, SE1 1UL, UK.
| |
Collapse
|
32
|
Recher G, Rouède D, Schaub E, Tiaho F. Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser. BIOMEDICAL OPTICS EXPRESS 2011; 2:374-384. [PMID: 21339882 PMCID: PMC3038452 DOI: 10.1364/boe.2.000374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 05/29/2023]
Abstract
Femtosecond laser at 780 nm excitation wavelength was used to photo-convert the physiological sarcomeric single band (SB) second harmonic generation (SHG) pattern into double band (DB) in Xenopus laevis premetamorphic tail muscles. This photo-conversion was found to be a third order non-linear optical process and was drastically reduced at 940 nm excitation wavelength. This effect was no longer observed in paraformaldehyde fixed muscles and was enhanced by hydrogen peroxide. The action of hydrogen peroxide suggests that reactive oxygen species (ROS) could contribute to this photo-conversion. These results demonstrate that sarcomeric DB SHG pattern is a marker of sarcomere photodamage in xenopus tadpole muscles and highlight the need of being very careful at using two-photon excitation while observing living tissues. Moreover they open new avenues for in situ intravital investigation of oxidative stress effects in muscle dysfunctions and diseases.
Collapse
Affiliation(s)
- Gaëlle Recher
- Université de Rennes1, Université européenne de Bretagne, UMR CNRS 6026, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Denis Rouède
- Université de Rennes1, Université européenne de Bretagne, UMR CNRS 6251, Institut de Physique de Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Emmanuel Schaub
- Université de Rennes1, Université européenne de Bretagne, UMR CNRS 6026, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - François Tiaho
- Université de Rennes1, Université européenne de Bretagne, UMR CNRS 6026, Campus de Beaulieu, 35042 Rennes Cedex, France
| |
Collapse
|
33
|
Bershitsky SY, Koubassova NA, Bennett PM, Ferenczi MA, Shestakov DA, Tsaturyan AK. Myosin heads contribute to the maintenance of filament order in relaxed rabbit muscle. Biophys J 2011; 99:1827-34. [PMID: 20858427 DOI: 10.1016/j.bpj.2010.06.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/22/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022] Open
Abstract
Raising the temperature of rabbit skeletal muscle from ∼0°C to ∼20°C has been shown to enhance the helical organization of the myosin heads and to change the intensities of the 10 and 11 equatorial reflections. We show here by time-resolved x-ray diffraction combined with temperature jump that the movement of the heads to enhance the organized myosin helix occurs at the same fast rate as the change in the intensities of the equatorial reflections. However, model calculations indicate that the change in the equatorials cannot be explained simply in terms of the movement of myosin heads. Analysis of electron micrographs of transverse sections of relaxed muscle fibers cryofixed at ∼5°C and ∼35°C shows that in addition to the reorganization of the heads the thin and thick filaments are less constrained to their positions in the hexagonal filament lattice in the warm muscle than in the cold. Incorporating the changes in filament order in model calculations reconciles these with the observed changes in equatorial reflections. We suggest the thin filaments in the cold muscle are boxed into their positions by the thermal movement of the disordered myosin heads. In the warmer muscle, the packed-down heads leave the thin filaments more room to diffuse laterally.
Collapse
Affiliation(s)
- Sergey Y Bershitsky
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.
| | | | | | | | | | | |
Collapse
|
34
|
Gautel M. The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 2010; 23:39-46. [PMID: 21190822 DOI: 10.1016/j.ceb.2010.12.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 01/01/2023]
Abstract
In striated muscle sarcomeres, the contractile actin and myosin filaments are organised by a subset of specialised cytoskeletal proteins, the sarcomeric cytoskeleton. They include α-actinin, myomesin, and the giant proteins titin, obscurin and nebulin, which combine architectural, mechanical and signalling functions. Mechanics and signalling in the sarcomere appear tightly interdependent, but the exact contributions of the various sarcomeric cytoskeleton proteins to strain handling or signalling are only just emerging. General mechanisms of cytoskeletal mechanics and signalling may be gleaned from the sarcomere as a specialised actomyosin system. Recent work has led to insight into the interactions, structure, and mechanical stability of sarcomeric protein complexes that fulfil both structural and signalling roles.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division and Randall Division for Cell and Molecular Biophysics, London SE1 1UL, United Kingdom.
| |
Collapse
|
35
|
Ramsey KA, Bakker AJ, Pinniger GJ. Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle. Muscle Nerve 2010; 42:769-77. [PMID: 20976780 DOI: 10.1002/mus.21744] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
When an active muscle is stretched, the force increases due to strain of contractile and noncontractile proteins. We examined this force enhancement in rat extensor digitorum longus (EDL) and soleus muscles, which differ in their composition of these proteins, and their susceptibility to damage. Small stretches were applied at different velocities during isometric contractions from which we quantified the velocity-dependent contractile and velocity-independent noncontractile contributions to force enhancement. Whereas the contractile contribution was significantly greater in soleus than EDL, the noncontractile force enhancement was significantly greater in EDL than soleus, and increased ≈6-fold after damaging eccentric contractions. The increased contractile stiffness may be functionally beneficial in slow muscle, as resistance to lengthening is fundamental to maintaining posture. Following stretch-induced muscle damage this capacity is compromised, leading to increased strain of noncontractile proteins that may facilitate the activation of signaling pathways involved in muscle adaptation to injury.
Collapse
Affiliation(s)
- Kathryn A Ramsey
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | | | | |
Collapse
|
36
|
Schoenauer R, Emmert MY, Felley A, Ehler E, Brokopp C, Weber B, Nemir M, Faggian GG, Pedrazzini T, Falk V, Hoerstrup SP, Agarkova I. EH-myomesin splice isoform is a novel marker for dilated cardiomyopathy. Basic Res Cardiol 2010; 106:233-47. [PMID: 21069531 PMCID: PMC3032906 DOI: 10.1007/s00395-010-0131-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/29/2010] [Accepted: 10/25/2010] [Indexed: 11/05/2022]
Abstract
The M-band is the prominent cytoskeletal structure that cross-links the myosin and titin filaments in the middle of the sarcomere. To investigate M-band alterations in heart disease, we analyzed the expression of its main components, proteins of the myomesin family, in mouse and human cardiomyopathy. Cardiac function was assessed by echocardiography and compared to the expression pattern of myomesins evaluated with RT-PCR, Western blot, and immunofluorescent analysis. Disease progression in transgenic mouse models for dilated cardiomyopathy (DCM) was accompanied by specific M-band alterations. The dominant splice isoform in the embryonic heart, EH-myomesin, was strongly up-regulated in the failing heart and correlated with a decrease in cardiac function (R = −0.86). In addition, we have analyzed the expressions of myomesins in human myocardial biopsies (N = 40) obtained from DCM patients, DCM patients supported by a left ventricular assist device (LVAD), hypertrophic cardiomyopathy (HCM) patients and controls. Quantitative RT-PCR revealed that the EH-myomesin isoform was up-regulated 41-fold (P < 0.001) in the DCM patients compared to control patients. In DCM hearts supported by a LVAD and HCM hearts, the EH-myomesin expression was comparable to controls. Immunofluorescent analyses indicate that EH-myomesin was enhanced in a cell-specific manner, leading to a higher heterogeneity of the myocytes’ cytoskeleton through the myocardial wall. We suggest that the up-regulation of EH-myomesin denotes an adaptive remodeling of the sarcomere cytoskeleton in the dilated heart and might serve as a marker for DCM in mouse and human myocardium.
Collapse
Affiliation(s)
- Roman Schoenauer
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Maximilian Y. Emmert
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Allison Felley
- Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and the Cardiovascular Division, King’s College London, London, UK
| | - Chad Brokopp
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Benedikt Weber
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Mohamed Nemir
- Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Giuseppe G. Faggian
- Division of Cardiac Surgery and Cardiology, University of Verona, Verona, Italy
| | - Thierry Pedrazzini
- Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Volkmar Falk
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Irina Agarkova
- Swiss Center for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Surgical Research, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Taniguchi Y, Khatri BS, Brockwell DJ, Paci E, Kawakami M. Dynamics of the coiled-coil unfolding transition of myosin rod probed by dissipation force spectrum. Biophys J 2010; 99:257-62. [PMID: 20655854 DOI: 10.1016/j.bpj.2010.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 03/23/2010] [Accepted: 04/01/2010] [Indexed: 01/27/2023] Open
Abstract
The motor protein myosin II plays a crucial role in muscle contraction. The mechanical properties of its coiled-coil region, the myosin rod, are important for effective force transduction during muscle function. Previous studies have investigated the static elastic response of the myosin rod. However, analogous to the study of macroscopic complex fluids, how myosin will respond to physiological time-dependent loads can only be understood from its viscoelastic response. Here, we apply atomic force microscopy using a magnetically driven oscillating cantilever to measure the dissipative properties of single myosin rods that provide unique dynamical information about the coiled-coil structure as a function of force. We find that the friction constant of the single myosin rod has a highly nontrivial variation with force; in particular, the single-molecule friction constant is reduced dramatically and increases again as it passes through the coiled-uncoiled transition. This is a direct indication of a large free-energy barrier to uncoiling, which may be related to a fine-tuned dynamic mechanosignaling response to large and unexpected physiological loads. Further, from the critical force at which the minimum in friction occurs we determine the asymmetry of the bistable landscape that controls uncoiling of the coiled coil. This work highlights the sensitivity of the dissipative signal in force unfolding to dynamic molecular structure that is hidden to the elastic signal.
Collapse
Affiliation(s)
- Yukinori Taniguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
38
|
Al-Khayat HA, Kensler RW, Morris EP, Squire JM. Three-dimensional structure of the M-region (bare zone) of vertebrate striated muscle myosin filaments by single-particle analysis. J Mol Biol 2010; 403:763-76. [PMID: 20851129 PMCID: PMC3314970 DOI: 10.1016/j.jmb.2010.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/01/2010] [Accepted: 09/09/2010] [Indexed: 01/22/2023]
Abstract
The rods of anti-parallel myosin molecules overlap at the centre of bipolar myosin filaments to produce an M-region (bare zone) that is free of myosin heads. Beyond the M-region edges, myosin molecules aggregate in a parallel fashion to yield the bridge regions of the myosin filaments. Adjacent myosin filaments in striated muscle A-bands are cross-linked by the M-band. Vertebrate striated muscle myosin filaments have a 3-fold rotational symmetry around their long axes. In addition, at the centre of the M-region, there are three 2-fold axes perpendicular to the filament long axis, giving the whole filament dihedral 32-point group symmetry. Here we describe the three-dimensional structure obtained by a single-particle analysis of the M-region of myosin filaments from goldfish skeletal muscle under relaxing conditions and as viewed in negative stain. This is the first single-particle reconstruction of isolated M-regions. The resulting three-dimensional reconstruction reveals details to about 55 Å resolution of the density distribution in the five main nonmyosin densities in the M-band (M6′, M4′, M1, M4 and M6) and in the myosin head crowns (P1, P2 and P3) at the M-region edges. The outermost crowns in the reconstruction were identified specifically by their close similarity to the corresponding crown levels in our previously published bridge region reconstructions. The packing of myosin molecules into the M-region structure is discussed, and some unidentified densities are highlighted.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Institute of Biomedical Engineering, Imperial College London, Bessemer Building, London, UK.
| | | | | | | |
Collapse
|
39
|
Will RD, Eden M, Just S, Hansen A, Eder A, Frank D, Kuhn C, Seeger TS, Oehl U, Wiemann S, Korn B, Koegl M, Rottbauer W, Eschenhagen T, Katus HA, Frey N. Myomasp/LRRC39, a heart- and muscle-specific protein, is a novel component of the sarcomeric M-band and is involved in stretch sensing. Circ Res 2010; 107:1253-64. [PMID: 20847312 DOI: 10.1161/circresaha.110.222372] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE AND OBJECTIVE The M-band represents a transverse structure in the center of the sarcomeric A-band and provides an anchor for the myosin-containing thick filaments. In contrast to other sarcomeric structures, eg, the Z-disc, only few M-band-specific proteins have been identified to date, and its exact molecular composition remains unclear. METHODS AND RESULTS Using a bioinformatic approach to identify novel heart- and muscle-specific genes, we found a leucine rich protein, myomasp (Myosin-interacting, M-band-associated stress-responsive protein)/LRRC39. RT-PCR and Northern and Western blot analyses confirmed a cardiac-enriched expression pattern, and immunolocalization of myomasp revealed a strong and specific signal at the sarcomeric M-band. Yeast 2-hybrid screens, as well as coimmunoprecipitation experiments, identified the C terminus of myosin heavy chain (MYH)7 as an interaction partner for myomasp. Knockdown of myomasp in neonatal rat ventricular myocytes (NRVCMs) led to a significant upregulation of the stretch-sensitive genes GDF-15 and BNP. Conversely, the expression of MYH7 and the M-band proteins myomesin-1 and -2 was found to be markedly reduced. Mechanistically, knockdown of myomasp in NRVCM led to a dose-dependent suppression of serum response factor-dependent gene expression, consistent with earlier observations linking the M-band to serum response factor-mediated signaling. Finally, downregulation of myomasp/LRRC39 in spontaneously beating engineered heart tissue constructs resulted in significantly lower force generation and reduced fractional shortening. Likewise, knockdown of the myomasp/LRRC39 ortholog in zebrafish resulted in severely impaired heart function and cardiomyopathy in vivo. CONCLUSIONS These findings reveal myomasp as a previously unrecognized component of an M-band-associated signaling pathway that regulates cardiomyocyte gene expression in response to biomechanical stress.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Blotting, Northern
- Blotting, Western
- Cardiac Myosins/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/metabolism
- Cardiomyopathies/physiopathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Cloning, Molecular
- Connectin
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Growth Differentiation Factor 15/metabolism
- Humans
- Immunohistochemistry
- Immunoprecipitation
- Leucine-Rich Repeat Proteins
- Male
- Mechanotransduction, Cellular
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myosin Heavy Chains/metabolism
- Natriuretic Peptide, Brain/metabolism
- Oligonucleotide Array Sequence Analysis
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping
- Proteins/genetics
- Proteins/metabolism
- RNA Interference
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcomeres/metabolism
- Serum Response Factor/metabolism
- Stress, Mechanical
- Transfection
- Two-Hybrid System Techniques
- Zebrafish
Collapse
Affiliation(s)
- Rainer D Will
- Department of Internal Medicine III, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
RECHER G, ROUÈDE D, TASCON C, D’AMICO LA, TIAHO F. Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation. J Microsc 2010; 241:207-11. [DOI: 10.1111/j.1365-2818.2010.03425.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Recher G, Rouède D, Richard P, Simon A, Bellanger JJ, Tiaho F. Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF microscopy. OPTICS EXPRESS 2009; 17:19763-77. [PMID: 19997197 DOI: 10.1364/oe.17.019763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have extensively characterized the sarcomeric SHG signal as a function of animal species (rat versus xenopus), age (adult versus larval) and tissue preparation (fixed or fresh) and we found that the main feature of this signal is a single peak per mature sarcomere (about 85% of all sarcomeres). The remaining (15%) was found to be either double peak per mature sarcomere or mini sarcomeres (half of a sarcomere) using alpha-actinin immuno detection of the Z-band. The mini sarcomeres are often found in region of pitchfork-like SHG pattern. We suggest that double peak SHG pattern could indicate regions of sarcomeric proteolysis whereas pitchfork-like SHG pattern could reveal sarcomeric assembly.
Collapse
Affiliation(s)
- Gaëlle Recher
- Equipe SCANING, UMR UR1-CNRS 6026, Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Otey CA, Dixon R, Stack C, Goicoechea SM. Cytoplasmic Ig-domain proteins: cytoskeletal regulators with a role in human disease. ACTA ACUST UNITED AC 2009; 66:618-34. [PMID: 19466753 DOI: 10.1002/cm.20385] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunoglobulin domains are found in a wide variety of functionally diverse transmembrane proteins, and also in a smaller number of cytoplasmic proteins. Members of this latter group are usually associated with the actin cytoskeleton, and most of them bind directly to either actin or myosin, or both. Recently, studies of inherited human disorders have identified disease-causing mutations in five cytoplasmic Ig-domain proteins: myosin-binding protein C, titin, myotilin, palladin, and myopalladin. Together with results obtained from cultured cells and mouse models, these clinical studies have yielded novel insights into the unexpected roles of Ig domain proteins in mechanotransduction and signaling to the nucleus. An emerging theme in this field is that cytoskeleton-associated Ig domain proteins are more than structural elements of the cell, and may have evolved to fill different needs in different cellular compartments. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Carol A Otey
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | |
Collapse
|
43
|
Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 2009; 89:1217-67. [PMID: 19789381 PMCID: PMC3076733 DOI: 10.1152/physrev.00017.2009] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each sarcomere. Three giant, muscle-specific proteins, titin (3-4 MDa), nebulin (600-800 kDa), and obscurin (approximately 720-900 kDa), have been proposed to play important roles in the assembly and stabilization of sarcomeres. There is a large amount of data showing that each of these molecules interacts with several to many different protein ligands, regulating their activity and localizing them to particular sites within or surrounding sarcomeres. Consistent with this, mutations in each of these proteins have been linked to skeletal and cardiac myopathies or to muscular dystrophies. The evidence that any of them plays a role as a "molecular template," "molecular blueprint," or "molecular ruler" is less definitive, however. Here we review the structure and function of titin, nebulin, and obscurin, with the literature supporting a role for them as scaffolding molecules and the contradictory evidence regarding their roles as molecular guides in sarcomerogenesis.
Collapse
|
44
|
Yamaguchi M, Takemori S, Kimura M, Tanishima Y, Nakayoshi T, Kimura S, Ohno T, Yagi N, Hoh JFY, Umazume Y. Protruding masticatory (superfast) myosin heads from staggered thick filaments of dog jaw muscle revealed by X-ray diffraction. J Biochem 2009; 147:53-61. [PMID: 19762343 DOI: 10.1093/jb/mvp143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To characterize the structure of jaw muscle fibres expressing masticatory (superfast) myosin, X-ray diffraction patterns of glycerinated fibres of dog masseter were compared with those of dog tibialis anterior in the relaxed state. Meridional reflections of masseter fibres were laterally broad, indicating that myosin filaments are staggered along the filament axis. Compared with tibialis anterior fibres, the peak of the first myosin layer line of masseter fibres was lower in intensity and shifted towards the meridian, while lattice spacings were larger at a similar sarcomere length. These suggest that the myosin heads of masticatory fibres are mobile, and tend to protrude from the filament shaft towards actin filaments. Lowering temperature or treating with N-phenylmaleimide shifted the peak of the first myosin layer line of tibialis anterior fibres towards the meridian and the resulting profile resembled that of masseter fibres. This suggests that the protruding mobile heads in the non-treated masticatory fibres are in the ATP-bound state. The increased population of weakly binding cross-bridges may contribute towards the high specific force of masticatory fibres during contraction. Electron micrographs confirmed the staggered alignment of thick filaments along the filament axis within sarcomeres of masticatory fibres, a feature that may confer efficient force development over a wide range of the sarcomere lengths.
Collapse
Affiliation(s)
- Maki Yamaguchi
- Department of Molecular Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shabarchin AA, Tsaturyan AK. Proposed role of the M-band in sarcomere mechanics and mechano-sensing: a model study. Biomech Model Mechanobiol 2009; 9:163-75. [DOI: 10.1007/s10237-009-0167-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 07/22/2009] [Indexed: 01/18/2023]
|
46
|
Ford-Speelman DL, Roche JA, Bowman AL, Bloch RJ. The rho-guanine nucleotide exchange factor domain of obscurin activates rhoA signaling in skeletal muscle. Mol Biol Cell 2009; 20:3905-17. [PMID: 19605563 DOI: 10.1091/mbc.e08-10-1029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Obscurin is a large ( approximately 800-kDa), modular protein of striated muscle that concentrates around the M-bands and Z-disks of each sarcomere, where it is well positioned to sense contractile activity. Obscurin contains several signaling domains, including a rho-guanine nucleotide exchange factor (rhoGEF) domain and tandem pleckstrin homology domain, consistent with a role in rho signaling in muscle. We investigated the ability of obscurin's rhoGEF domain to interact with and activate small GTPases. Using a combination of in vitro and in vivo approaches, we found that the rhoGEF domain of obscurin binds selectively to rhoA, and that rhoA colocalizes with obscurin at the M-band in skeletal muscle. Other small GTPases, including rac1 and cdc42, neither associate with the rhoGEF domain of obscurin nor concentrate at the level of the M-bands. Furthermore, overexpression of the rhoGEF domain of obscurin in adult skeletal muscle selectively increases rhoA expression and activity in this tissue. Overexpression of obscurin's rhoGEF domain and its effects on rhoA alter the expression of rho kinase and citron kinase, both of which can be activated by rhoA in other tissues. Injuries to rodent hindlimb muscles caused by large-strain lengthening contractions increases rhoA activity and displaces it from the M-bands to Z-disks, similar to the effects of overexpression of obscurin's rhoGEF domain. Our results suggest that obscurin's rhoGEF domain signals at least in part by inducing rhoA expression and activation, and altering the expression of downstream kinases in vitro and in vivo.
Collapse
Affiliation(s)
- Diana L Ford-Speelman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover.
Collapse
|
48
|
Fukuzawa A, Lange S, Holt M, Vihola A, Carmignac V, Ferreiro A, Udd B, Gautel M. Interactions with titin and myomesin target obscurin and obscurin-like 1 to the M-band – implications for hereditary myopathies. J Cell Sci 2008; 121:1841-51. [DOI: 10.1242/jcs.028019] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Obscurin, a giant modular muscle protein implicated in G-protein and protein-kinase signalling, can localize to both sarcomeric Z-disks and M-bands. Interaction of obscurin with the Z-disk is mediated by Z-disk titin. Here, we unravel the molecular basis for the unusual localization of obscurin, a Z-disk-associated protein, to the M-band, where its invertebrate analogue UNC-89 is also localized. The first three domains of the N-terminus of obscurin bind to the most C-terminal domain of M-band titin, as well as to the M-band protein myomesin. Both proteins also interact with the N-terminal domains of obscurin-like 1 (Obsl1), a small homologue of obscurin. Downregulation of myomesin by siRNA interference disrupts obscurin–M-band integration in neonatal cardiomyocytes, as does overexpression of the binding sites on either myomesin, obscurin or Obsl1. Furthermore, all titin mutations that have been linked to limb-girdle muscular dystrophy 2J (LGMD2J) or Salih myopathy weaken or abrogate titin-obscurin and titin-Obsl1 binding, and lead to obscurin mislocalization, suggesting that interference with the interaction of these proteins might be of pathogenic relevance for human disease.
Collapse
Affiliation(s)
- Atsushi Fukuzawa
- King's College London, The Randall Division for Cell and Molecular Biophysics, and Cardiovascular Division, New Hunt's House, London SE1 1UL, UK
| | - Stephan Lange
- King's College London, The Randall Division for Cell and Molecular Biophysics, and Cardiovascular Division, New Hunt's House, London SE1 1UL, UK
| | - Mark Holt
- King's College London, The Randall Division for Cell and Molecular Biophysics, and Cardiovascular Division, New Hunt's House, London SE1 1UL, UK
| | - Anna Vihola
- The Folkhälsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Biomedicum, Helsinki, Finland
| | - Virginie Carmignac
- INSERM, U582, Institut de Myologie, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Ana Ferreiro
- INSERM, U582, Institut de Myologie, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Bjarne Udd
- The Folkhälsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Biomedicum, Helsinki, Finland
- Department of Neurology, Vasa Central Hospital, Vasa, Finland
| | - Mathias Gautel
- King's College London, The Randall Division for Cell and Molecular Biophysics, and Cardiovascular Division, New Hunt's House, London SE1 1UL, UK
| |
Collapse
|
49
|
Early incorporation of obscurin into nascent sarcomeres: implication for myofibril assembly during cardiac myogenesis. Histochem Cell Biol 2008; 129:463-78. [PMID: 18219491 DOI: 10.1007/s00418-008-0378-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2008] [Indexed: 10/22/2022]
Abstract
Obscurin is a recently identified giant multidomain muscle protein whose functions remain poorly understood. The goal of this study was to investigate the process of assembly of obscurin into nascent sarcomeres during the transition from non-striated myofibril precursors to striated structure of differentiating myofibrils in cell cultures of neonatal rat cardiac myocytes. Double immunofluorescent labeling and high resolution confocal microscopy demonstrated intense incorporation of obscurin in the areas of transition from non-striated to striated regions on the tips of developing myofibrils and at the sites of lateral fusion of nascent sarcomere bundles. We found that obscurin rapidly and precisely accumulated in the middle of the A-band regions of the terminal newly assembled half-sarcomeres in the zones of transition from the continuous, non-striated pattern of sarcomeric alpha-actinin distribution to cross-striated structure of laterally expanding nascent Z-discs. The striated pattern of obscurin typically ended at these points. This occurred before the assembly of morphologically differentiated terminal Z-discs of the assembling sarcomeres on the tips of growing myofibrils. The presence of obscurin in the areas of the terminal Z-discs of each new sarcomere was detected at the same time or shortly after complete assembly of sarcomeric structure. Many non-striated fibers with very low concentration of obscurin were already immunopositive for sarcomeric actin and myosin. This suggests that obscurin may serve for organization and alignment of myofilaments into the striated pattern. The comparison of obscurin and titin localization in these areas showed that obscurin assembly into the A-bands occurred soon after or concomitantly with incorporation of titin. Electron microscopy of growing myofibrils demonstrated intense formation and integration of myosin filaments into the "open" half-assembled sarcomeres in the areas of the terminal Z-I structures and at the lateral surfaces of newly formed, terminally located nascent sarcomeres. This process progressed before the assembly of the second-formed, terminal Z-discs of new sarcomeres and before the development of ultrastructurally detectable mature M-lines that define the completion of myofibril assembly, which supports the data of immunocytochemical study. Abundant non-aligned sarcomeres in immature myofibrils located on the growing tips were spatially separated and underwent the transition to the registered, aligned pattern. The sarcoplasmic reticulum, the organelle known to interact with obscurin, assembled around each new sarcomere. These results suggest that obscurin is directly involved in the proper positioning and alignment of myofilaments within nascent sarcomeres and in the establishment of the registered pattern of newly assembled myofibrils and the sarcoplasmic reticulum at advanced stages of myofibrillogenesis.
Collapse
|
50
|
Vikhlyantsev IM, Podlubnaya ZA. Structure and functions of titin, a giant protein of skeletal and cardiac muscle: Evidence and suppositions. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907060061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|