1
|
Ndongo Sonfack DJ, Tanguay Boivin C, Touzel Deschênes L, Maurand T, Maguemoun C, Berthod F, Gros-Louis F, Champagne PO. Bioengineering Human Upper Respiratory Mucosa: A Systematic Review of the State of the Art of Cell Culture Techniques. Bioengineering (Basel) 2024; 11:826. [PMID: 39199784 PMCID: PMC11352167 DOI: 10.3390/bioengineering11080826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The upper respiratory mucosa plays a crucial role in both the physical integrity and immunological function of the respiratory tract. However, in certain situations such as infections, trauma, or surgery, it might sustain damage. Tissue engineering, a field of regenerative medicine, has found applications in various medical fields including but not limited to plastic surgery, ophthalmology, and urology. However, its application to the respiratory system remains somewhat difficult due to the complex morphology and histology of the upper respiratory tract. To date, a culture protocol for producing a handleable, well-differentiated nasal mucosa has yet to be developed. The objective of this review is to describe the current state of research pertaining to cell culture techniques used for producing autologous healthy human upper respiratory cells and mucosal tissues, as well as describe its clinical applications. METHODS A search of the relevant literature was carried out with no time restriction across Embase, Cochrane, PubMed, and Medline Ovid databases. Keywords related to "respiratory mucosa" and "culture techniques of the human airway" were the focus of the search strategy for this review. The risk of bias in retained studies was assessed using the Joanna Briggs Institute's (JBI) critical appraisal tools for qualitative research. A narrative synthesis of our results was then conducted. RESULTS A total of 33 studies were included in this review, and thirteen of these focused solely on developing a cell culture protocol without further use. The rest of the studies used their own developed protocol for various applications such as cystic fibrosis, pharmacological, and viral research. One study was able to develop a promising model for nasal mucosa that could be employed as a replacement in nasotracheal reconstructive surgery. CONCLUSIONS This systematic review extensively explored the current state of research regarding cell culture techniques for producing tissue-engineered nasal mucosa. Bioengineering the nasal mucosa holds great potential for clinical use. However, further research on mechanical properties is essential, as the comparison of engineered tissues is currently focused on morphology rather than comprehensive mechanical assessments.
Collapse
Affiliation(s)
- Davaine Joel Ndongo Sonfack
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
- Department of Neurosurgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Clémence Tanguay Boivin
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - Lydia Touzel Deschênes
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
| | - Thibault Maurand
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - Célina Maguemoun
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - François Berthod
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
| | - François Gros-Louis
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
| | - Pierre-Olivier Champagne
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
- Department of Neurosurgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Bendas S, Koch EV, Nehlsen K, May T, Dietzel A, Reichl S. The Path from Nasal Tissue to Nasal Mucosa on Chip: Part 1-Establishing a Nasal In Vitro Model for Drug Delivery Testing Based on a Novel Cell Line. Pharmaceutics 2023; 15:2245. [PMID: 37765214 PMCID: PMC10536430 DOI: 10.3390/pharmaceutics15092245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, there has been a significant increase in the registration of drugs for nasal application with systemic effects. Previous preclinical in vitro test systems for transmucosal drug absorption studies have mostly been based on primary cells or on tumor cell lines such as RPMI 2650, but both approaches have disadvantages. Therefore, the aim of this study was to establish and characterize a novel immortalized nasal epithelial cell line as the basis for an improved 3D cell culture model of the nasal mucosa. First, porcine primary cells were isolated and transfected. The P1 cell line obtained from this process was characterized in terms of its expression of tissue-specific properties, namely, mucus expression, cilia formation, and epithelial barrier formation. Using air-liquid interface cultivation, it was possible to achieve both high mucus formation and the development of functional cilia. Epithelial integrity was expressed as both transepithelial electrical resistance and mucosal permeability, which was determined for sodium fluorescein, rhodamine B, and FITC-dextran 4000. We noted a high comparability of the novel cell culture model with native excised nasal mucosa in terms of these measures. Thus, this novel cell line seems to offer a promising approach for developing 3D nasal mucosa tissues that exhibit favorable characteristics to be used as an in vitro system for testing drug delivery systems.
Collapse
Affiliation(s)
- Sebastian Bendas
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany;
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
| | - Eugen Viktor Koch
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - Kristina Nehlsen
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.N.); (T.M.)
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.N.); (T.M.)
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany;
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
| |
Collapse
|
3
|
Silva S, Bicker J, Falcão A, Fortuna A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm 2023; 184:62-82. [PMID: 36696943 DOI: 10.1016/j.ejpb.2023.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/24/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Applicability of RPMI 2650 and Calu-3 Cell Models for Evaluation of Nasal Formulations. Pharmaceutics 2022; 14:pharmaceutics14020369. [PMID: 35214101 PMCID: PMC8877043 DOI: 10.3390/pharmaceutics14020369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
The RPMI 2650 and Calu-3 cell lines have been previously evaluated as models of the nasal and airway epithelial barrier, and they have demonstrated the potential to be used in drug permeation studies. However, limited data exist on the utilization of these two cell models for the assessment of nasal formulations. In our study, we tested these cell lines for the evaluation of in vitro permeation of intranasally administered drugs having a local and systemic effect from different solution- and suspension-based formulations to observe how the effects of formulations reflect on the measured in vitro drug permeability. Both models were shown to be sufficiently discriminative and able to reveal the effect of formulation compositions on drug permeability, as they demonstrated differences in the in vitro drug permeation comparable to the in vivo bioavailability. Good correlation with the available bioavailability data was also established for a limited number of drugs formulated as intranasal solutions. The investigated cell lines can be applied to the evaluation of in vitro permeation of intranasally administered drugs with a local and systemic effect from solution- and suspension-based formulations.
Collapse
|
5
|
Kreft ME, Tratnjek L, Lasič E, Hevir N, Rižner TL, Kristan K. Different Culture Conditions Affect Drug Transporter Gene Expression, Ultrastructure, and Permeability of Primary Human Nasal Epithelial Cells. Pharm Res 2020; 37:170. [PMID: 32820417 DOI: 10.1007/s11095-020-02905-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to characterize a commercially available primary human nasal epithelial cell culture and its gene expression of a wide range of drug transporters under different culture conditions. METHODS Human nasal cells were cultured in three different types of culture media at the air-liquid (A-L) or liquid-liquid (L-L) interfaces for 1 or 3 wks. The effects of the different cell culture conditions were evaluated using light and electron microscopy, transepithelial electrical resistance (TEER) measurements, permeation studies with dextran, and gene expression profiling of 84 drug transporters. RESULTS The type of culture medium affected cell ultrastructure, TEER, and dextran permeation across epithelia. The expression of 20 drug transporter genes depended on the culture interface and/or time in culture; the A-L interface and longer time in culture favored higher expression levels of five ABC and seven SLC transporters. CONCLUSIONS Culture conditions influence the morphology, barrier formation, permeation properties, and drug transporter expression of human nasal epithelial cells, and this must be taken into consideration during the establishment and validation of in vitro models. A thorough characterization of a nasal epithelial model and its permeability properties is necessary to obtain an appropriate standardized model for the design of aerosol therapeutics and drug transport studies.
Collapse
Affiliation(s)
- Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Lasič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neli Hevir
- Lek Pharmaceuticals d.d, Biopharma Process & Product Development, Mengeš, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. .,Lek Pharmaceuticals, d.d, Sandoz Development Center Slovenia, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Cai Y, Varasteh S, van Putten JPM, Folkerts G, Braber S. Mannheimia haemolytica and lipopolysaccharide induce airway epithelial inflammatory responses in an extensively developed ex vivo calf model. Sci Rep 2020; 10:13042. [PMID: 32747652 PMCID: PMC7400546 DOI: 10.1038/s41598-020-69982-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/20/2020] [Indexed: 01/27/2023] Open
Abstract
Pulmonary infection is associated with inflammation and damage to the bronchial epithelium characterized by an increase in the release of inflammatory factors and a decrease in airway barrier function. Our objective is to optimize a method for the isolation and culture of primary bronchial epithelial cells (PBECs) and to provide an ex vivo model to study mechanisms of epithelial airway inflammation. PBECs were isolated and cultured from the airways of calves in a submerged cell culture and liquid-liquid interface system. A higher yield and cell viability were obtained after stripping the epithelium from the bronchial section compared to cutting the bronchial section in smaller pieces prior to digestion. Mannheimia haemolytica and lipopolysaccharide (LPS) as stimulants increased inflammatory responses (IL-8, IL-6 and TNF-α release), possibly, by the activation of "TLR-mediated MAPKs and NF-κB" signaling. Furthermore, M. haemolytica and LPS disrupted the bronchial epithelial layer as observed by a decreased transepithelial electrical resistance and zonula occludens-1 and E-cadherin expression. An optimized isolation and culture method for calf PBECs was developed, which cooperated with animal use Replacement, Reduction and Refinement (3R's) principle, and can also contribute to the increased knowledge and development of effective therapies for other animal and humans (childhood) respiratory diseases.
Collapse
Affiliation(s)
- Yang Cai
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Soheil Varasteh
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Ciliary beat frequency of in vitro human nasal epithelium measured with the simple high-speed microscopy is applicable for safety studies of nasal drug formulations. Toxicol In Vitro 2020; 66:104865. [DOI: 10.1016/j.tiv.2020.104865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/04/2023]
|
8
|
Sibinovska N, Žakelj S, Kristan K. Suitability of RPMI 2650 cell models for nasal drug permeability prediction. Eur J Pharm Biopharm 2019; 145:85-95. [PMID: 31639418 DOI: 10.1016/j.ejpb.2019.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
Abstract
The RPMI 2650 cell line has been a subject of evaluation as a physiological and pharmacological model of the nasal epithelial barrier. However, its suitability for drug permeability assays has not yet been established on a sufficiently large set of model drugs. We investigated two RPMI 2650 cell models (air-liquid and liquid-liquid) for nasal drug permeability determination by adopting the most recent regulatory guidelines on showing suitability of in vitro permeability methods for drug permeability classification. The permeability of 23 model drugs and several zero permeability markers across the cell models was assessed. The functional expression of two efflux transporters P-glycoprotein (P-gp) and Breast Cancer Resistant Protein (BCRP) was shown to be negligible by bidirectional transport studies using appropriate transporter substrates and inhibitors. The model drug permeability determined in the two RPMI 2650 cell models was correlated with the fully differentiated nasal epithelial model (MucilAir™). Additionally, correlations between the drug permeability in the investigated cell models and the ones determined in the Caco-2 cells and isolated rat jejunum were established. In conclusion, the air-liquid RPMI 2650 cell model is a promising pharmacological model of the nasal epithelial barrier and is much more suitable than the liquid-liquid model for nasal drug permeability prediction.
Collapse
Affiliation(s)
- Nadica Sibinovska
- University of Ljubljana, Faculty of Pharmacy, Chair of Biopharmaceutics and Pharmacokinetics, Aškerčeva c. 7, SI- 1000 Ljubljana, Slovenia
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Chair of Biopharmaceutics and Pharmacokinetics, Aškerčeva c. 7, SI- 1000 Ljubljana, Slovenia
| | - Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; Lek Pharmaceuticals, d.d., Sandoz Development Center Slovenia, Verovškova 57, 1526 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Ladel S, Schlossbauer P, Flamm J, Luksch H, Mizaikoff B, Schindowski K. Improved In Vitro Model for Intranasal Mucosal Drug Delivery: Primary Olfactory and Respiratory Epithelial Cells Compared with the Permanent Nasal Cell Line RPMI 2650. Pharmaceutics 2019; 11:pharmaceutics11080367. [PMID: 31374872 PMCID: PMC6723747 DOI: 10.3390/pharmaceutics11080367] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The epithelial layer of the nasal mucosa is the first barrier for drug permeation during intranasal drug delivery. With increasing interest for intranasal pathways, adequate in vitro models are required. Here, porcine olfactory (OEPC) and respiratory (REPC) primary cells were characterised against the nasal tumour cell line RPMI 2650. Methods: Culture conditions for primary cells from porcine nasal mucosa were optimized and the cells characterised via light microscope, RT-PCR and immunofluorescence. Epithelial barrier function was analysed via transepithelial electrical resistance (TEER), and FITC-dextran was used as model substance for transepithelial permeation. Beating cilia necessary for mucociliary clearance were studied by immunoreactivity against acetylated tubulin. Results: OEPC and REPC barrier models differ in TEER, transepithelial permeation and MUC5AC levels. In contrast, RPMI 2650 displayed lower levels of MUC5AC, cilia markers and TEER, and higher FITC-dextran flux rates. Conclusion: To screen pharmaceutical formulations for intranasal delivery in vitro, translational mucosal models are needed. Here, a novel and comprehensive characterisation of OEPC and REPC against RPMI 2650 is presented. The established primary models display an appropriate model for nasal mucosa with secreted MUC5AC, beating cilia and a functional epithelial barrier, which is suitable for long-term evaluation of sustained release dosage forms.
Collapse
Affiliation(s)
- Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany
| | - Harald Luksch
- School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 4, 85354 Freising-Weihenstephan, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany.
| |
Collapse
|
10
|
Salade L, Wauthoz N, Goole J, Amighi K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int J Pharm 2019; 561:47-65. [PMID: 30822505 DOI: 10.1016/j.ijpharm.2019.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Nasal delivery offers many benefits over other conventional routes of delivery (e.g. oral or intravenous administration). Benefits include, among others, a fast onset of action, non-invasiveness and direct access to the central nervous system. The nasal cavity is not only limited to local application (e.g. rhinosinusitis) but can also provide direct access to other sites in the body (e.g. the central nervous system or systemic circulation). However, both the anatomy and the physiology of the nose impose their own limitations, such as a small volume for delivery or rapid mucociliary clearance. To meet nasal-specific criteria, the formulator has to complete a plethora of tests, in vitro and ex vivo, to assess the efficacy and tolerance of a new drug-delivery system. Moreover, depending on the desired therapeutic effect, the delivery of the drug should target a specific pathway that could potentially be achieved through a modified release of this drug. Therefore, this review focuses on specific techniques that should be performed when a nasal formulation is developed. The review covers both the tests recommended by regulatory agencies (e.g. the Food and Drug Administration) and other complementary experiments frequently performed in the field.
Collapse
Affiliation(s)
- Laurent Salade
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Karim Amighi
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
11
|
Fallacara A, Busato L, Pozzoli M, Ghadiri M, Ong HX, Young PM, Manfredini S, Traini D. In vitro characterization of physico-chemical properties, cytotoxicity, bioactivity of urea-crosslinked hyaluronic acid and sodium ascorbyl phosphate nasal powder formulation. Int J Pharm 2019; 558:341-350. [PMID: 30659923 DOI: 10.1016/j.ijpharm.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
An innovative lyophilized dry powder formulation consisting of urea-crosslinked hyaluronic acid (HA-CL) and sodium ascorbyl phosphate (SAP) - LYO HA-CL - SAP- was prepared and characterized in vitro for physico-chemical and biological properties. The aim was to understand if LYO HA-CL - SAP could be used as adjuvant treatment for nasal inflammatory diseases. LYO HA-CL - SAP was suitable for nasal delivery and showed to be not toxic on human nasal septum carcinoma-derived cells (RPMI 2650 cells) at the investigated concentrations. It displayed porous, polygonal particles with unimodal, narrow size distribution, mean geometric diameter of 328.3 ± 27.5 µm, that is appropriate for nasal deposition with no respirable fraction and 88.7% of particles with aerodynamic diameter >14.1 µm. Additionally, the formulation showed wound healing ability on RPMI 2650 cells, and reduced interleukin-8 (IL-8) level in primary nasal epithelial cells pre-induced with lipopolysaccharide (LPS). Transport study across RPMI 2650 cells showed that HA-CL could act not only as carrier for SAP and active ingredient itself, but potentially also as mucoadhesive agent. In conclusion, these results suggest that HA-CL and SAP had anti-inflammatory activity and acted in combination to accelerate wound healing. Therefore, LYO HA-CL - SAP could be a potential adjuvant in nasal anti-inflammatory formulations.
Collapse
Affiliation(s)
- Arianna Fallacara
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia; Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Laura Busato
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia; Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Michele Pozzoli
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia
| | - Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| |
Collapse
|
12
|
Mercier C, Perek N, Delavenne X. Is RPMI 2650 a Suitable In Vitro Nasal Model for Drug Transport Studies? Eur J Drug Metab Pharmacokinet 2018; 43:13-24. [PMID: 28688000 DOI: 10.1007/s13318-017-0426-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evaluation of new intranasal medications requires the development of in vitro cell model suitable for high-throughput screening studies. The aim of a pharmacological model is to closely mimic the barrier properties of human nasal mucosa that will influence drug pharmacokinetics. In this context, the human nasal cell line RPMI 2650 has been investigated over these last years. Although the initial studies tended to demonstrate strong physiological correlations between RPMI 2650 cells and nasal mucosa, the variability of experimental designs does not allow a clear comparison of actual data. Thereby, the standardization of cell culture parameters is crucial to obtain a stronger reproducibility and increase the relevance of data. Indeed, RPMI 2650 barrier properties are heavily dependent of cell culture conditions, especially of the physiological air-liquid interface that strengthen the expression of both tight junction proteins and drug transporters. Conversely, cell culture medium and insert composition showed a minor impact on the four key parameters of a nasal barrier. Despite the recent advances in the physiological characterization of RPMI 2650 model, only limited pharmacological data are available concerning the involvement of drug transporters in drug bioavailability. The deployment of standardized bi-directional permeability studies using reference compounds is required to determine the relevance of RPMI 2650 model in the field of drug transport studies.
Collapse
Affiliation(s)
- Clément Mercier
- INSERM, SAINBIOSE U1059, Dysfonction Vasculaire et de l'Hémostase, Université de Lyon, 42023, Saint-Etienne, France.
| | - Nathalie Perek
- INSERM, SAINBIOSE U1059, Dysfonction Vasculaire et de l'Hémostase, Université de Lyon, 42023, Saint-Etienne, France
| | - Xavier Delavenne
- INSERM, SAINBIOSE U1059, Dysfonction Vasculaire et de l'Hémostase, Université de Lyon, 42023, Saint-Etienne, France
| |
Collapse
|
13
|
Dolberg AM, Reichl S. Expression analysis of human solute carrier (SLC) family transporters in nasal mucosa and RPMI 2650 cells. Eur J Pharm Sci 2018; 123:277-294. [PMID: 30041030 DOI: 10.1016/j.ejps.2018.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
With nearly 400 members, the solute-linked carrier (SLC) superfamily is one of the most important gene classes concerning the disposition of drugs and the transport of physiological substrates in the human body. The mapping of related transport proteins is already well advanced for the intestines, kidneys and liver, but it has recently been brought into focus for various respiratory epithelia. The aim of this study was to evaluate the expression of several SLC transporters in differently cultured RPMI 2650 cells, as well as in specimens of the human nasal mucosa. The expression profiles of PEPT2, OATP1A2, OATP4C1, OCT2, OCTN1 and OCTN2 were investigated at the gene and protein levels by performing RT-PCR, western blot analysis and immunohistological staining. Uptake assays using appropriate substrates and inhibitory substances were performed to compare the activity of peptide, organic anion and organic cation transporters, respectively, among the three models. Expression of the six SLC transporters under investigation was confirmed at the mRNA and protein levels in human nasal mucosa ex vivo as well as in RPMI 2650 cells grown under different culture conditions. The functionality was almost equal among all of the models for the PEPT and OCT(N) transporters, while the functional activity of the OATP transporters was more pronounced for both in vitro models than for excised nasal tissue. Despite negligible variations in transporter capacities, the RPMI 2650 cell cultures and freshly isolated human nasal epithelium showed nearly comparable expression patterns for the examined SLC proteins. Therefore, in vitro models based on the RPMI 2650 cell line could provide helpful data during the preclinical investigation of intranasally administered drug formulations and in the development of strategies to target nasal drug transporters for either local or systemic drug delivery.
Collapse
Affiliation(s)
- Anne M Dolberg
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany; Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
14
|
Schuerer N, Stein E, Inic-Kanada A, Ghasemian E, Stojanovic M, Montanaro J, Bintner N, Hohenadl C, Sachsenhofer R, Barisani-Asenbauer T. Effects of chitosan and chitosan N-acetylcysteine solutions on conjunctival epithelial cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.xjec.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Zhang L, Du SY, Lu Y, Liu C, Wu HC, Tian ZH, Wang M, Yang C. Puerarin transport across rat nasal epithelial cells and the influence of compatibility with peoniflorin and menthol. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2581-2593. [PMID: 28919709 PMCID: PMC5590686 DOI: 10.2147/dddt.s143029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nose-to-brain transport can provide an excellent pathway for drugs of the central nervous system. Consequently, how to make full use of this pathway in practical applications has become a focus of drug design. However, many aspects affecting drug delivery from the nose to the brain remain unclear. This study aimed to more deeply investigate the transport of puerarin and to explore the mechanism underlying the influence of compatible drugs on puerarin permeability in a primary cell model simulating the nasal mucosa. In this research, based on rat nasal epithelial cells (RNECs) cultured in vitro and cytotoxicity assays, the bidirectional transport of puerarin across RNEC monolayers and the effect of its compatibility with peoniflorin and menthol were analyzed. The apparent permeability coefficient was <1.5×10−6 cm/s, and the efflux ratio of puerarin was <2, indicating that puerarin had poor absorption and that menthol but not peoniflorin significantly improved puerarin transport. Simultaneously, through experiments, such as immunofluorescence staining, transepithelial electrical resistance measurement, rhodamine 123 efflux evaluation, the cell membrane fluorescence recovery after photobleaching test, and ATPase activity determination, the permeability promoting mechanism of menthol was confirmed to be closely related to disruption of the tight junction protein structure, to the P-glycoprotein inhibitory effect, to increased membrane fluidity, and to the promotion of enzyme activity. These results provide reliable data on nasal administration of the studied drugs and lay the foundation for a deeper investigation of the nose–brain pathway and nasal administration.
Collapse
Affiliation(s)
- Lin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Shou-Ying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Yang Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Chang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Hui-Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Zhi-Hao Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Min Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Chang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
16
|
Liu SC, Lu HH, Fan HC, Wang HW, Chen HK, Lee FP, Yu CJ, Chu YH. The identification of the TRPM8 channel on primary culture of human nasal epithelial cells and its response to cooling. Medicine (Baltimore) 2017; 96:e7640. [PMID: 28767579 PMCID: PMC5626133 DOI: 10.1097/md.0000000000007640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND It has been proposed that the transient receptor potential (TRP) channel Melastatin 8 (TRPM8) is a cold-sensing TRP channel. However, its presence and its role in the nasal cavity have not yet been fully studied. METHODS Immunohistology was used to study TRPM8 receptors in both the nasal mucosa tissue and the primary cultures of human nasal cells. Cells from primary cultures were immunostained with antibodies to TRPM8, mucin, cytokeratin (CK)-14, CK-18, and vimentin. Western blotting and real-time polymerase chain reaction (PCR) were used to determine the physiological role of TRPM8 in mucus production in the nasal cavity, with and without its agonist and antagonist. RESULTS The TRPM8 is clearly present in the epithelium, mucous glands, and vessels. No obvious TRPM8-immunoreactive cells were detected in the connective tissue. Immunostaining of cytospin preparations showed that epithelial cells test positive for CK-14, CK-18, TRPM8, and mucin 5AC (MUC5AC). Fibroblastic cells are stained negative for TRPM8. Secreted mucins in the cultured supernatant are detected after exposure to menthol and moderate cooling to 24°C. Both induce a statistically significant increase in the level of MUC5AC mRNA and mucin production. BCTC, a TRPM8 antagonist, has a statistically significant inhibitory effect on MUC5AC mRNA expression and MUC5AC protein production that is induced by menthol and moderate cooling to 24°C. CONCLUSIONS The study demonstrates that TRPM8 is present in the nasal epithelium. When it is activated by moderate cooling to 24°C or menthol, TRPM8 induces the secretion of mucin. This study shows that TRPM8 channels are important regulators of mucin production. Therefore, TRPM8 antagonists could be used to treat refractory rhinitis.
Collapse
Affiliation(s)
- Shao-Cheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
| | - Hsuan-Hsuan Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metro Harbor Hospital
| | - Hsing-Won Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
- Department of Otolaryngology-Head and Neck Surgery, Shuang Ho Hospital, Taipei, Taiwan, Republic of China
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
| | - Fei-Peng Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University
| | - Yueng-Hsiang Chu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
| |
Collapse
|
17
|
Na K, Lee M, Shin HW, Chung S. In vitro nasal mucosa gland-like structure formation on a chip. LAB ON A CHIP 2017; 17:1578-1584. [PMID: 28379223 DOI: 10.1039/c6lc01564f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The emergence of microfluidic epithelial models using diverse types of cells within a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug screening and pathophysiological studies. However, to date, few studies have reported the development of a complicated in vitro human nasal epithelial model. The aim of this study was to produce an in vitro human nasal mucosa model for reliable drug screening and clinical applications. Here, we integrated and optimized several culture conditions such as cell type, airway culture conditions, and hydrogel scaffolds into a microfluidic chip to construct an advanced in vitro human nasal mucosa model. We observed that the inducing factors for nasal gland-like structures were secreted from activated human dermal microvascular endothelial cells. Furthermore, our in vitro nasal mucosa presented different appearance and characteristics under hypoxic conditions. Morphological and functional similarities between in vivo nasal mucosa and our model indicated its utilization as a reliable research model for nasal diseases including allergic rhinitis, chronic sinusitis, and nasal polyposis.
Collapse
Affiliation(s)
- Kyuhwan Na
- School of Mechanical Engineering, Korea University, Seoul, Korea.
| | | | | | | |
Collapse
|
18
|
Gonçalves VSS, Matias AA, Poejo J, Serra AT, Duarte CMM. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs. Int J Pharm 2016; 515:1-10. [PMID: 27702697 DOI: 10.1016/j.ijpharm.2016.09.086] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
During the development of intranasal drug delivery systems for local/systemic effect or brain targeting, it is necessary to assess its cytotoxicity and drug transport through nasal epithelium. In order to avoid animal experiments or the use of excised tissues, in vitro cell models, such as RPMI 2650 cells, are being preferred during recent years. Nevertheless, the deposition of solid formulations into nasal cell layers with further transepithelial transport rate of drugs has been poorly studied or reported. Thus, the purpose of this work is to further investigate RPMI 2650 cell line as an effective alternative to animal tissues for solid drug-loaded formulations cytotoxicity and drug permeation studies in order to become an option as a tool for drug discovery. Furthermore, we wanted to determine the extent to which the administration of drugs in particulate forms would differ in relation to the permeability of the same compounds applied as solutions. RPMI 2650 cells were cultured in submersed or at air-liquid interface conditions and characterized regarding transepithelial electrical resistance (TEER) and production of mucus. Pure ketoprofen (used as model compound) and five formulations loaded with same drug, namely solid lipid particles (Gelucire 43/01™), structured lipid particles (Gelucire 43/01™:Glyceryl monooleate) and aerogel microparticles (Alginate, Alginate:Pectin, Alginate:Carrageenan), were evaluated with RPMI 2650 model in terms of cytotoxicity and permeability of drug (applied as solution, dispersion or powder+buffer). RPMI 2650 cells were capable to grow in monolayer and multilayer, showing the same permeability as excised human nasal mucosa for sodium fluorescein (paracellular marker), with analogous TEER values and production of mucus, as referred by other authors. None of the powders showed cytotoxicity when applied to RPMI 2650 cells. Regarding permeation of drug through cell layers, not only the form of application of powders but also their physical and chemical properties affected the final permeation of active pharmaceutical ingredient. Aerogel microparticles administered directly to the cell layer (powder+buffer) exhibited the highest permeation-enhancing effect compared to the pure drug, which can be attributed to the mucoadhesive properties of the materials composing the carriers, proving to be an attractive formulation for nasal drug delivery. According to these results, RPMI 2650 showed to be a promising alternative to ex vivo or in vivo nasal models for cytotoxicity and evaluation of drug permeability of nasal drug-loaded formulations.
Collapse
Affiliation(s)
- Vanessa S S Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Escuela de Ingenierías Industriales, Universidad de Valladolid, C/Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Ana A Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| | - Joana Poejo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Ana T Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Catarina M M Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| |
Collapse
|
19
|
Ong HX, Jackson CL, Cole JL, Lackie PM, Traini D, Young PM, Lucas J, Conway J. Primary Air–Liquid Interface Culture of Nasal Epithelium for Nasal Drug Delivery. Mol Pharm 2016; 13:2242-52. [DOI: 10.1021/acs.molpharmaceut.5b00852] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Xin Ong
- Faculty
of Health Sciences, Southampton University, Southampton SO16 6YD, U.K
- NIHR
Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, U.K
- Respiratory
Technology, Woolcock Institite of Medical Research, Glebe, New South Wales 2037, Australia
- Discipline
of Pharmacology, Sydney Medical School, Sydney, New South Wales 2006, Australia
| | - Claire L. Jackson
- NIHR
Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, U.K
- Primary
Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, U.K
| | - Janice L. Cole
- NIHR
Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, U.K
- Primary
Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, U.K
| | - Peter M. Lackie
- NIHR
Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, U.K
- Primary
Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, U.K
| | - Daniela Traini
- Respiratory
Technology, Woolcock Institite of Medical Research, Glebe, New South Wales 2037, Australia
- Discipline
of Pharmacology, Sydney Medical School, Sydney, New South Wales 2006, Australia
| | - Paul M. Young
- Respiratory
Technology, Woolcock Institite of Medical Research, Glebe, New South Wales 2037, Australia
- Discipline
of Pharmacology, Sydney Medical School, Sydney, New South Wales 2006, Australia
| | - Jane Lucas
- NIHR
Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, U.K
- Primary
Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, U.K
| | - Joy Conway
- Faculty
of Health Sciences, Southampton University, Southampton SO16 6YD, U.K
- NIHR
Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, U.K
| |
Collapse
|
20
|
Dolberg AM, Reichl S. Expression of P-glycoprotein in excised human nasal mucosa and optimized models of RPMI 2650 cells. Int J Pharm 2016; 508:22-33. [PMID: 27155589 DOI: 10.1016/j.ijpharm.2016.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 01/30/2023]
Abstract
To assess the transmucosal drug transport in the development of medications for intranasal administration, cellular in vitro models are preferred over the use of animal tissues due to inter-species variations and ethical concerns. With regard to the distribution of active agents and multidrug resistance, the ABC transporter P-glycoprotein plays a major role in several mammalian tissues. The present study compares the expression of this efflux pump in optimized in vitro models based on the human RPMI 2650 cell line with specimens of human turbinate mucosa. The presence of the ABCB1 gene was investigated at the mRNA and protein levels using RT-PCR and Western blot analysis in differently cultured RPMI 2650 cells and excised human nasal epithelium. Furthermore, the localization and activity of P-gp was examined by immunohistochemical staining and functionality assays using different substrates in both in vitro and ex vivo models. Both mRNA and protein expression of P-gp was found in all studied models. Furthermore, transporter functionality was detected in both RPMI 2650 cell culture models and excised human mucosa. The results demonstrated a highly promising comparability between RPMI 2650 models and explants of human nasal tissue concerning the influence of MDR1 on drug disposition. The RPMI 2650 cell line might become a useful tool in preclinical trials to improve reproducibility and achieve greater applicability to humans of experimental data regarding passive diffusion and active efflux of drug candidates.
Collapse
Affiliation(s)
- Anne M Dolberg
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany; Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
21
|
Kalashnikova I, Albekairi N, Ali S, Al Enazy S, Rytting E. Cell Culture Models for Drug Transport Studies. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Min KA, Rosania GR, Shin MC. Human Airway Primary Epithelial Cells Show Distinct Architectures on Membrane Supports Under Different Culture Conditions. Cell Biochem Biophys 2016; 74:191-203. [PMID: 26818810 DOI: 10.1007/s12013-016-0719-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
Abstract
To facilitate drug development for lung delivery, it is highly demanding to establish appropriate airway epithelial cell models as transport barriers to evaluate pharmacokinetic profiles of drug molecules. Besides the cancer-derived cell lines, as the primary cell model, normal human bronchial epithelial (NHBE) cells have been used for drug screenings because of physiological relevance to in vivo. Therefore, to accurately interpret drug transport data in NHBE measured by different laboratories, it is important to know biophysical characteristics of NHBE grown on membranes in different culture conditions. In this study, NHBE was grown on the polyester membrane in a different medium and its transport barrier properties as well as cell architectures were fully characterized by functional assays and confocal imaging throughout the days of cultures. Moreover, NHBE cells on inserts in a different medium were subject to either of air-interfaced culture (AIC) or liquid-covered culture (LCC) condition. Cells in the AIC condition were cultivated on the membrane with medium in the basolateral side only, whereas cells with medium in apical and basolateral sides under the LCC condition. Quantitative microscopic imaging with biophysical examination revealed distinct multilayered architectures of differentiated NHBE cells, suggesting NHBE as functional cell barriers for the lung-targeting drug transport.
Collapse
Affiliation(s)
- Kyoung Ah Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109, USA
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109, USA
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
23
|
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. ACTA ACUST UNITED AC 2015; 20:107-26. [PMID: 25586998 DOI: 10.1177/2211068214561025] [Citation(s) in RCA: 1287] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) is a widely accepted quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial and epithelial monolayers. TEER values are strong indicators of the integrity of the cellular barriers before they are evaluated for transport of drugs or chemicals. TEER measurements can be performed in real time without cell damage and generally are based on measuring ohmic resistance or measuring impedance across a wide spectrum of frequencies. The measurements for various cell types have been reported with commercially available measurement systems and also with custom-built microfluidic implementations. Some of the barrier models that have been widely characterized using TEER include the blood-brain barrier (BBB), gastrointestinal (GI) tract, and pulmonary models. Variations in these values can arise due to factors such as temperature, medium formulation, and passage number of cells. The aim of this article is to review the different TEER measurement techniques and analyze their strengths and weaknesses, determine the significance of TEER in drug toxicity studies, examine the various in vitro models and microfluidic organs-on-chips implementations using TEER measurements in some widely studied barrier models (BBB, GI tract, and pulmonary), and discuss the various factors that can affect TEER measurements.
Collapse
Affiliation(s)
- Balaji Srinivasan
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Aditya Reddy Kolli
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | | | | | | | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
24
|
Chen Z, Gong X, Lu Y, Du S, Yang Z, Bai J, Li P, Wu H. Enhancing effect of borneol and muscone on geniposide transport across the human nasal epithelial cell monolayer. PLoS One 2014; 9:e101414. [PMID: 24992195 PMCID: PMC4081582 DOI: 10.1371/journal.pone.0101414] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
Geniposide is widely used in the treatment of cerebral ischemic stroke and cerebrovascular diseases for its anti-thrombotic and anti-inflammatory effects. Recent studies demonstrated that geniposide could be absorbed promptly and thoroughly by intranasal administration in mice and basically transported into the brain. Here, we explored its transport mechanism and the effect of borneol and muscone on its transport by human nasal epithelial cell (HNEC) monolayer. The cytotoxicity of geniposide, borneol, muscone and their combinations on HNECs was evaluated by the MTT assay. Transcellular transport of geniposide and the influence of borneol and muscone were studied using the HNEC monolayer. Immunostaining and transepithelial electrical resistance were measured to assess the integrity of the monolayer. The membrane fluidity of HNEC was evaluated by fluorescence recovery after photobleaching. Geniposide showed relatively poor absorption in the HNEC monolayer and it was not a P-gp substrate. Geniposide transport in both directions significantly increased when co-administrated with increasing concentrations of borneol and muscone. The enhancing effect of borneol and muscone on geniposide transport across the HNEC may be attributed to the significant enhancement on cell membrane fluidity, disassembly effect on tight junction integrity and the process was reversible. These results indicated that intranasal administration has good potential to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Zhenzhen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Gong
- Reproductive Endocrinology Centre, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yang Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- * E-mail:
| | - Zhihui Yang
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huichao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Ontsouka EC, Huang X, Stieger B, Albrecht C. Characteristics and functional relevance of apolipoprotein-A1 and cholesterol binding in mammary gland tissues and epithelial cells. PLoS One 2013; 8:e70407. [PMID: 23936200 PMCID: PMC3729845 DOI: 10.1371/journal.pone.0070407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022] Open
Abstract
Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of (125)I-apoA-I and (3)H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular (3)H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell(®) plates. The amounts of isolated EPM and the maximal binding capacity of (125)I-apoA-I to EPM differed depending on the MG's physiological state, while the kinetics of (3)H-cholesterol and (125)I-apoA-I binding were similar. (3)H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of (125)I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of (125)I-apoA-I ranged between 40-74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and (125)I-apoA-I binding. The ABCA1 inhibitor Probucol displaced (125)I-apoA-I binding to EPM and reduced (3)H-cholesterol efflux in MeBo. Time-dependent (3)H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell(®) plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of (3)H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects. Our findings support the importance of the apoA-I/ABCA1 pathway in MG cholesterol transport and suggest its role in influencing milk composition and directing cholesterol back into the bloodstream.
Collapse
Affiliation(s)
- Edgar Corneille Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Bruno Stieger
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Shao D, Massoud E, Clarke D, Cowley E, Renton K, Agu RU. Optimization of human nasal epithelium primary culture conditions for optimal proton oligopeptide and organic cation transporters expression in vitro. Int J Pharm 2012. [PMID: 23178597 DOI: 10.1016/j.ijpharm.2012.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM To investigate the effect of key tissue culture conditions on cell growth, gene expression and functional uptake of peptide and organic cation transporter substrates in the human nasal epithelium (HNE). METHODS HNE were cultured on different growth surfaces (polystyrene plastic, collagen film, and hydrated collagen gel) and were maintained with three popular nasal tissue culture media supplements [DMEM/F12 supplemented with Ultroser(®) G (2%), FBS (10%) and NuSerum(®) (10%)], respectively. The expression of gene transcripts for organic cation and peptide transporters were screened using qPCR and substrate uptake studies. RESULTS Cell growth surface (polystyrene plastic surface, dried collagen film and hydrated collagen gel) did not significantly alter gene expression levels. However, Ultroser(®) G and FBS caused significant increase in PEPT1, PEPT2, PHT1, OCT3, and OCTN1 levels (~/=2-5-fold for FBS and 2-8-fold for Ultroser(®) G). In terms of the degree to which the supplements affected gene expression, the following observations were made: effect on OCTN1>PEPT2>OCT3>PHT1>PEPT1. Functional uptake of organic cation (4-Di-1-ASP) and peptide [β-Ala-Lys (AMCA)] transporter substrates was significantly lower in cells cultured with NuSerum(®) compared to Ultroser(®) G and FBS cultured cells (p>0.05). CONCLUSIONS Tissue culture media had a major effect on SLC gene expression levels of the human nasal epithelium in primary culture. Ultroser(®) G was identified as the most efficient culture supplement in maintaining SLC transporter expression under most culture conditions, whereas FBS appears to be an economical choice. We do not recommend the use of NuSerum(®) as a supplement for growing HNE for transport studies involving SLC transporters.
Collapse
Affiliation(s)
- Di Shao
- Biopharmaceutics and Drug Delivery Laboratory, Dalhousie University, Halifax, NS, Canada B3H 3J5
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Intranasal drug delivery has attracted increasing attention as a noninvasive route of administration for therapeutic proteins and peptides. The delivery of therapeutic peptides through the nasal route provides an alternative to intravenous or subcutaneous injections. This review highlights the drug-development considerations unique to nasal therapeutics and discusses some of the factors and strategies that affect and can improve nasal absorption of peptides. The selectivity and good safety profile typical of peptide therapeutics, along with the dose limitation for intranasal administration, can provide challenges in drug development. Therefore, nasal peptide therapeutics often require special considerations in the nonclinical safety evaluations, such as determining drug exposure in the context of the maximum feasible dose in order to adequately prepare nasal products for clinical studies.
Collapse
|
28
|
Cho HJ, Balakrishnan P, Lin H, Choi MK, Kim DD. Application of biopharmaceutics classification system (BCS) in drug transport studies across human respiratory epithelial cell monolayers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2012. [DOI: 10.1007/s40005-012-0020-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Reichl S, Becker K. Cultivation of RPMI 2650 cells as an in-vitro model for human transmucosal nasal drug absorption studies: optimization of selected culture conditions. ACTA ACUST UNITED AC 2012; 64:1621-30. [PMID: 23058049 DOI: 10.1111/j.2042-7158.2012.01540.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES The kinetics of drug absorption for nasally administered drugs are often studied using excised mucosal tissue. To avoid the disadvantages of animal experiments, cellular in-vitro models have been established. This study describes the optimization of culture conditions for a model based on the RPMI 2650 cell line, and an evaluation of this model's value for drug absorption studies. METHODS The cells were cultured in two serum-free media, serum-reduced variants or minimum essential medium (MEM) containing 5-20% serum. Cell seeding efficiency and proliferation behavior were evaluated in addition to viability and attachment following cryopreservation and thawing. Cells were cultured on different filter inserts for varying cultivation times. The epithelial barrier properties were determined by measuring transepithelial electrical resistance (TEER). Permeability was assessed using marker substances. KEY FINDINGS Serum supplementation of medium was necessary for cultivation, whereas the serum concentration showed little impact on proliferation and attachment following cryopreservation. A pronounced dependence of TEER on medium and filter material was observed. An optimized model cultured with MEM containing 10% serum on polyethylene terephthalate exhibited permeability that was similar to excised nasal mucosa. CONCLUSIONS These data indicate that this model could be an appropriate alternative to excised mucosa for the in-vitro evaluation of nasal drug absorption.
Collapse
Affiliation(s)
- Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany.
| | | |
Collapse
|
30
|
Yu JY, Zheng N, Mane G, Min KA, Hinestroza JP, Zhu H, Stringer KA, Rosania GR. A cell-based computational modeling approach for developing site-directed molecular probes. PLoS Comput Biol 2012; 8:e1002378. [PMID: 22383866 PMCID: PMC3285574 DOI: 10.1371/journal.pcbi.1002378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
Modeling the local absorption and retention patterns of membrane-permeant small molecules in a cellular context could facilitate development of site-directed chemical agents for bioimaging or therapeutic applications. Here, we present an integrative approach to this problem, combining in silico computational models, in vitro cell based assays and in vivo biodistribution studies. To target small molecule probes to the epithelial cells of the upper airways, a multiscale computational model of the lung was first used as a screening tool, in silico. Following virtual screening, cell monolayers differentiated on microfabricated pore arrays and multilayer cultures of primary human bronchial epithelial cells differentiated in an air-liquid interface were used to test the local absorption and intracellular retention patterns of selected probes, in vitro. Lastly, experiments involving visualization of bioimaging probe distribution in the lungs after local and systemic administration were used to test the relevance of computational models and cell-based assays, in vivo. The results of in vivo experiments were consistent with the results of in silico simulations, indicating that mitochondrial accumulation of membrane permeant, hydrophilic cations can be used to maximize local exposure and retention, specifically in the upper airways after intratracheal administration. We have developed an integrative, cell-based modeling approach to facilitate the design and discovery of chemical agents directed to specific sites of action within a living organism. Here, a computational, multiscale transport model of the lung was adapted to enable virtual screening of small molecules targeting the epithelial cells of the upper airways. In turn, the transport behaviors of selected candidate probes were evaluated to establish their degree of retention at a site of absorption, using computational simulations as well as two in vitro cell-based assay systems. Lastly, bioimaging experiments were performed to examine candidate molecules' distribution in the lungs of mice after local and systemic administration. Based on computational simulations, the higher mitochondrial density per unit absorption surface area is the key parameter determining the higher retention of small molecule hydrophilic cations in the upper airways, relative to lipophilic weak bases, specifically after intratracheal administration.
Collapse
Affiliation(s)
- Jing-Yu Yu
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cho HJ, Choi MK, Lin H, Kim JS, Chung SJ, Shim CK, Kim DD. Expression and functional activity of P-glycoprotein in passaged primary human nasal epithelial cell monolayers cultured by the air-liquid interface method for nasal drug transport study. ACTA ACUST UNITED AC 2011; 63:385-91. [PMID: 21749386 DOI: 10.1111/j.2042-7158.2010.01221.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES P-glycoprotein (P-gp) is an efflux transporter encoded by the multidrug resistance gene (MDR1), which is also known as the human ABCB1 gene (ATP-binding cassette, subfamily-B). The objectives of this study were to investigate the expression of P-gp in passaged primary human nasal epithelial (HNE) cell monolayer, cultured by the air-liquid interface (ALI) method, and to evaluate its feasibility as an in-vitro model for cellular uptake and transport studies of P-gp substrates. METHODS Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to verify the expression of the MDR1 gene. Transport and cellular uptake studies with P-gp substrate (rhodamine123) and P-gp inhibitors (verapamil and cyclosporin A) were conducted to assess the functional activity of P-gp in HNE cell monolayers cultured by the ALI method. KEY FINDINGS MDR1 gene expression in primary HNE cell monolayers cultured by ALI method was confirmed by RT-PCR. The apparent permeability coefficient (P(app) ) of the P-gp substrate (rhodamine123) in the basolateral to apical (B to A) direction was 6.9 times higher than that in the apical to basolateral (A to B) direction. B to A transport was saturated at high rhodamine123 concentration, and the treatment of P-gp inhibitors increased cellular uptake of rhodamine123 in a time- and concentration-dependent manner. CONCLUSIONS These results support the MDR1 gene expression and the functional activity of P-gp in primary HNE cell monolayers cultured by the ALI method.
Collapse
Affiliation(s)
- Hyun-Jong Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Cros CD, Toth I, Blanchfield JT. Lipophilic derivatives of leu-enkephalinamide: in vitro permeability, stability and in vivo nasal delivery. Bioorg Med Chem 2010; 19:1528-34. [PMID: 21273080 DOI: 10.1016/j.bmc.2010.12.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
Abstract
Leu-enkephalin is an endogenous pain modulating opioid pentapeptide. Its development as a potential pharmaceutic has been hampered by poor membrane permeability and susceptibility to enzymatic degradation. The addition of an unnatural amino acid containing a lipidic side chain at the N-terminus and the modification of the C-terminus to a carboxyamide was performed to enhance the nasal delivery of the peptide. Two lipidic derivatives with varying side chain lengths (C(8)-Enk-NH(2) (1), C(12)-Enk-NH(2) (2)) and their acetylated analogues were successfully synthesised. Caco-2 cell monolayer permeability and Caco-2 cell homogenate stability assays were performed. C(8)-Enk-NH(2) (1) and its acetylated analogue Ac-C8-Enk-NH(2) (3) exhibited apparent permeabilities (mean±SD) of 2.51±0.75×10(-6)cm/s and 1.06±0.62×10(-6), respectively. C12-Enk-NH(2) (2) exhibited an apparent permeability of 2.43±1.26×10(-6) cm/s while Ac-C12-Enk-NH(2) (4) was not permeable through the Caco-2 monolayers due to its poor solubility. All analogues exhibited improved Caco-2 homogenate stability compared to Leu-Enk-NH(2) with t(½) values of: C8-Enk-NH(2) (1): 31.7 min, C(12)-Enk-NH(2) (2): 14.7 min, Ac-C8-Enk-NH(2) (3): 83 min, Ac-C(12)-Enk-NH(2) (4): 27 min. However, plasma stability assays revealed that the diastereoisomers of C8-Enk-NH(2) (1) did not degrade at the same rate, with the l isomer (t(1/2)=8.9 min) degrading into Leu-enkephalinamide and then des-Tyr-Leu-Enk-NH(2), whereas the d isomer was stable (t(1/2)=120 min). In vivo nasal administration of C(8)-Enk-NH(2) to male rats resulted in concentrations of 5.9±1.84×10(-2) μM in the olfactory bulbs, 1.35±1.01×10(-2) μM in the brain and 6.53±1.87×10(-3) μM in the blood 10 min after administration.
Collapse
Affiliation(s)
- Cécile D Cros
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | | | | |
Collapse
|
33
|
|
34
|
Co-culture Based Blood-brain Barrier In Vitro Model, a Tissue Engineering Approach using Immortalized Cell Lines for Drug Transport Study. Appl Biochem Biotechnol 2010; 163:278-95. [DOI: 10.1007/s12010-010-9037-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/04/2010] [Indexed: 11/26/2022]
|
35
|
Mallants R, Vlaeminck V, Jorissen M, Augustijns P. An improved primary human nasal cell culture for the simultaneous determination of transepithelial transport and ciliary beat frequency. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.07.0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The aim was to establish a preclinical in-vitro system of the nasal mucosa for the simultaneous evaluation of nasal absorption and effects on ciliary activity.
Methods
Human nasal epithelial cells were grown in collagen-coated transport inserts with transparent polyethylene terephthalate membranes (3 μm). Transepithelial transport and ciliary beat frequency values were measured every 15 min for 1 h.
Key findings
The apparent permeability coefficients (Papp) for atenolol (mainly paracellular transport) and propranolol (transcellular transport) amounted to 0.1 ± 0.1 and 23.7 ± 0.6 × 10−6 cm/s, respectively, illustrating that the system can be used to discriminate between high permeability and low permeability compounds. Transport of talinolol (substrate for the P-glycoprotein efflux carrier) did not reveal polarity (0.3 ± 0.2 and 0.2 ± 0.1 × 10−6 cm/s for absorptive and secretory transport, respectively) and was not affected by verapamil (10 μm), suggesting the absence of P-glycoprotein in the nasal cell culture. No significant effects of atenolol, propranolol and talinolol on ciliary beat frequency were observed (98 ± 20% of the control condition after 60 min). Chlorocresol significantly decreased the ciliary activity but this decrease was not accompanied by effects on the transepithelial transport of atenolol, propranolol and talinolol.
Conclusions
A new system was developed which offers possibilities as a fast screening tool for studying the potential of compounds for nasal drug administration, since permeability and a possible cilio-toxic effect can be assessed simultaneously.
Collapse
Affiliation(s)
- Roel Mallants
- Laboratory for Pharmacotechnology and Biopharmacy, Katholieke Universiteit Leuven, Belgium
| | - Valerie Vlaeminck
- Laboratory for Experimental Otorhinolaryngology, Universitaire Ziekenhuizen Leuven, Belgium
| | - Mark Jorissen
- Laboratory for Experimental Otorhinolaryngology, Universitaire Ziekenhuizen Leuven, Belgium
| | - Patrick Augustijns
- Laboratory for Pharmacotechnology and Biopharmacy, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
36
|
Lee MK, Yoo JW, Lin H, Kim YS, Kim DD, Choi YM, Park SK, Lee CH, Roh HJ. Air-Liquid Interface Culture of Serially Passaged Human Nasal Epithelial Cell Monolayer forIn VitroDrug Transport Studies. Drug Deliv 2008; 12:305-11. [PMID: 16188730 DOI: 10.1080/10717540500177009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The objective of this study was to establish a drug transport study using human nasal epithelial (HNE) cell monolayers cultured by the air-liquid interface (ALI) method using serum-free medium (BEGM:DME/F12, 50:50). The cells were developed and characterized in comparison to those that have been previously cultured by the liquid-covered culture (LCC) method. The epithelial cell monolayer cultured by the ALI method resulted in a significantly higher transepithelial electrical resistance value (3,453 +/- 302 ohm x cm(2)) that was maintained (>1,000 ohm x cm(2)) for up to 20 days compared with that cultured by the LCC method. Observation by scanning electron microscopy revealed mature cilia after 2 weeks in the ALI culture, while flatten unhealthy ciliated cells were observed in the LCC method. After 21 days, higher level of MUC5AC and 8 mRNA were expressed in ALI culture which confirmed the secretory differentiation of HNE monolayers in vitro. No significant difference in the permeability coefficients of a model hydrophilic marker ((14)C-mannitol) and a lipophilic drug (budesonide) was observed between the two conditions on day 7. The passage 2-3 of the HNE monolayer using ALI condition retained the morphology and differentiated features of normal epithelium. Thus it would be a suitable model for in vitro nasal drug delivery studies.
Collapse
Affiliation(s)
- Min-Ki Lee
- College of Medicine, Pusan National University, Busan, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Koizumi JI, Kojima T, Ogasawara N, Kamekura R, Kurose M, Go M, Harimaya A, Murata M, Osanai M, Chiba H, Himi T, Sawada N. Protein kinase C enhances tight junction barrier function of human nasal epithelial cells in primary culture by transcriptional regulation. Mol Pharmacol 2008; 74:432-42. [PMID: 18477669 DOI: 10.1124/mol.107.043711] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The epithelium of upper respiratory tissues such as human nasal mucosa forms a continuous barrier via tight junctions, which is thought to be regulated in part through a protein kinase C (PKC) signaling pathway. To investigate the mechanisms of the regulation of PKC-mediated tight junction barrier function of human nasal epithelium in detail, primary human nasal epithelial cells were treated with the PKC activator 12-O-tetradecanoylophorbol-13-acetate (TPA). In primary human nasal epithelial cells, treatment with TPA led not only to activation of phosphorylation of PKC, myristoylated alanine-rich C kinase substrate, and mitogen-activated protein kinase but also expression of novel PKC-delta, PKC-theta, and PKC-epsilon. Treatment with TPA increased transepithelial electrical resistance, with tight junction barrier function more than 4-fold that of the control, together with up-regulation of tight junction proteins, occludin, zona occludens (ZO)-1, ZO-2 and claudin-1 at the transcriptional level. Furthermore, it affected the subcellular localization of the tight junction proteins and the numbers of tight junction strands. The up-regulation of barrier function and tight junction proteins was prevented by a pan-PKC inhibitor, and the inhibitors of PKC-delta and PKC-theta but not PKC-epsilon. In primary human nasal epithelial cells, transcriptional factors GATA-3 and -6 were detected by reverse transcription-polymerase chain reaction. The knockdown of GATA-3 using RNA interference resulted in inhibition of up-regulation of ZO-1 and ZO-2 by treatment with TPA. These results suggest that TPA-induced PKC signaling enhances the barrier function of human nasal epithelial cells via transcriptional up-regulation of tight junction proteins, and the mechanisms may contribute to a drug delivery system.
Collapse
Affiliation(s)
- Jun-ichi Koizumi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, S1. W17. Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bai S, Yang T, Abbruscato TJ, Ahsan F. Evaluation of human nasal RPMI 2650 cells grown at an air-liquid interface as a model for nasal drug transport studies. J Pharm Sci 2008; 97:1165-78. [PMID: 17628494 DOI: 10.1002/jps.21031] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study tests the hypothesis that human nasal RPMI 2650 cells grown at an air-liquid interface is a feasible model for drug transport studies via the nasal route. RPMI 2650 cells were cultured in Eagle's minimal essential medium (MEM) at both air-liquid and liquid-liquid interfaces. For each culture regimen, monolayer integrity was tested by measuring the transepithelial resistance (TEER) as well as the transport of paracellular and transcellular markers across the monolayer. The expression of tight junction proteins-differentiation markers-in cells of the different monolayers was studied by western blot analysis and confocal microscopy. The highest TEER values (192 +/- 3 Omega . cm2) were observed for RPMI 2650 cells seeded onto collagen-coated permeable polytetrafluoroethylene inserts and grown at an air-liquid interface for 10 days; a seeding density of 4 x 10(5)/cm2 generated and maintained a cell monolayer with suitable barrier properties at days 9-12. Microscopic examination showed that RPMI 2650 cells grown on filter inserts formed a fully confluent monolayer. The apparent permeability coefficients of the paracellular marker, [14C] mannitol, and the transcellular marker, [3H] propranolol, were 5.07 +/- 0.01 x 10(-6) cm/s and 16.1 +/- 0.1 x 10(-6) cm/s, respectively. Western blot analysis indicated the presence of four tight junction proteins: ZO-1, occludin, claudin-1 and E-cadherin; and the quantities of ZO-1, occludin, and E-cadherin were significantly higher in cells grown at an air-liquid interface than in cells grown at a liquid-liquid interface. Confocal microscopic studies showed ZO-1, F-actin, occludin and claudin-1 proteins at cell-cell contacts and revealed significant differences in the distributions and densities of ZO-1 protein in cells grown at the two types of interface. The data indicate that RPMI 2650 cells grown at an air-liquid interface form polarized monolayers with the cells interconnected by tight junction proteins. This human nasal cell line model could provide a useful tool for in vitro screening of nasal drug candidates.
Collapse
Affiliation(s)
- Shuhua Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | |
Collapse
|
39
|
Choi MK, Arote R, Kim SY, Chung SJ, Shim CK, Cho CS, Kim DD. Transfection of primary human nasal epithelial cells using a biodegradable poly (ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. J Drug Target 2008; 15:684-90. [PMID: 18041636 DOI: 10.1080/10611860701603331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to prepare and characterize poly (ester amine) (PEA)/pGL3 complexes and investigate their transfection efficiency in human nasal epithelial (HNE) cells. Particle size, zeta potential, and gel retardation characteristics of PEA /pGL3 complexes were also measured. After treatment of DNase-I, protection and release assay of PEA/pGL3 complexes were performed. To assess the transfection efficiency and cytotoxicity, measurement of relative luciferase activity and MTS assay were performed. PEA/pGL3 complexes showed effective and stable DNA condensation with the particle sizes below 200 nm, implicating their potential for intracellular delivery. PEA/pGL3 complexes successfully transfected into the HNE cells with higher viability of the cells. These results suggested that, the PEA can be used as an efficient cationic polymeric vehicle which provides a versatile platform for further investigation of structure property relationship along with the controlled degradation, significant low cytotoxicity, and high transfection efficiency of the primary HNE cells.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.
| | | | | | | | | | | | | |
Collapse
|
40
|
Takano KI, Kojima T, Ogasawara N, Go M, Kikuchi S, Ninomiya T, Kurose M, Koizumi JI, Kamekura R, Murata M, Tanaka S, Chiba H, Himi T, Sawada N. Expression of tight junction proteins in epithelium including Ck20-positive M-like cells of human adenoids in vivo and in vitro. J Mol Histol 2008; 39:265-73. [PMID: 18246436 DOI: 10.1007/s10735-008-9162-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 01/16/2008] [Indexed: 11/26/2022]
Abstract
The human adenoid epithelium forms a continuous barrier against a wide variety of exogenous antigens. In this study, to elucidate the structures of the epithelial barrier in the human adenoid, including M-cells, we identified M-cells using an anti-cytokeratin 20 (Ck20) antibody and investigated expression of tight junction proteins in human adenoid epithelium in vivo and in vitro. In human adenoid epithelium and primary cultures, mRNAs of occludin, junctional adhesion molecule-A, ZO-1, and claudin-1, -4, -7, and -8 were detected by reverse transcription-polymerase chain reaction, whereas claudin-2 and -9 were expressed in vitro. In the epithelium in vivo, some Ck20-positive cells were randomly observed and indicated pocket-like structures, whereas Ck7 was positive in almost cells. Transmission electron microscopy revealed that Ck20-associated gold particles could be identified in M-like cells which had short microvilli and harboured the lymphocyte in the pocket-like structure. In primary cultures in vitro, Ck20-positive cells were also detected and had a function to take up fluorescent microparticles. In Ck20-positive cells in vivo and in vitro, expression of occludin, ZO-1, claudin-1 and -7 were observed at cell borders. These results indicate that the epithelial barrier of the human adenoid is stably maintained by expression of tight junction proteins in the epithelium including Ck20-positive M-like cells.
Collapse
Affiliation(s)
- Ken-ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kurose M, Kojima T, Koizumi JI, Kamekura R, Ninomiya T, Murata M, Ichimiya S, Osanai M, Chiba H, Himi T, Sawada N. Induction of claudins in passaged hTERT-transfected human nasal epithelial cells with an extended life span. Cell Tissue Res 2007; 330:63-74. [PMID: 17701057 DOI: 10.1007/s00441-007-0453-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 06/21/2007] [Indexed: 12/17/2022]
Abstract
The epithelial barrier of the upper respiratory tract, such as that of the nasal mucosa, plays a crucial role in host defense. The epithelial barrier is regulated in large part by the apical-most intercellular junctions, referred to as tight junctions. However, the mechanisms regulating of tight junction barrier in human nasal epithelial cells remain unclear because the proliferation and storage of epithelial cells in primary cultures are limited. In the present study, we introduced the catalytic component of telomerase, the hTERT gene, into primary cultured human nasal epithelial cells and examined the properties of the transfectants, including their expression of tight junctions, compared with primary cultures. The ectopic expression of hTERT in the epithelial cells resulted in adequate growth potential and a longer lifespan of the cells. The properties of the passaged hTERT-transfected cells including tight junctions were similar to those of the cells in primary cultures. The barrier function in the transfectants after treatment with 10% FBS was significantly enhanced with increases of integral tight junction proteins claudin-1 and -4. When the transfectants were treated with TGF-beta, which is assosciated with nasal polyposis and chronic rhinosinusitis, upregulation of only claudin-4 was observed, without a change of barrier function. In human nasal epithelial cells, the claudins may be important for barrier function and a novel target for a drug-delivery system. Our results indicate that hTERT-transfected human nasal epithelial cells with an extended lifespan can be used as an indispensable and stable model for studying the regulation of claudins in human nasal epithelium.
Collapse
Affiliation(s)
- Makoto Kurose
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lin H, Li H, Cho HJ, Bian S, Roh HJ, Lee MK, Kim JS, Chung SJ, Shim CK, Kim DD. Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci 2007; 96:341-50. [PMID: 17080426 DOI: 10.1002/jps.20803] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Serially passaged normal human bronchial epithelial (NHBE) cell monolayers were established on Transwell inserts via an air-liquid interface (ALI) culture method. NHBE cells were seeded on polyester Transwell inserts, followed by an ALI culture from day 3, which resulted in peak TEER value of 766+/-154 Omegaxcm2 on the 8th day. Morphological characteristics were observed by light microscopy and SEM, while the formation of tight junctions was visualized by actin staining, and confirmed successful formation of a tight monolayer. The transepithelial permeability (Papp) of model drugs significantly increased with the increase of lipophilicity and showed a good linear relationship, which indicated that lipophilicity is an important factor in determining the Papp value. The expression of P-gp transporter in NHBE cell monolayers was confirmed by the significantly higher basolateral to apical permeability of rhodamine123 than that of reverse direction and RT-PCR of MDR1 mRNA. However, the symmetric transport of fexofenadine.HCl in this NHBE cell monolayers study seems to be due to the low expression of P-gp transporter and/or to its saturation with high concentration of fexofenadine.HCl. Thus, the development of tight junction and the expression of P-gp in the NHBE cell monolayers in this study imply that they could be a suitable in vitro model for evaluation of systemic drug absorption via airway delivery, and that they reflect in vivo condition better than P-gp over-expressed cell line models.
Collapse
Affiliation(s)
- Hongxia Lin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chan MPL, Morisawa S, Nakayama A, Kawamoto Y, Yoneda M. Development of an in vitro blood-brain barrier model to study the effects of endosulfan on the permeability of tight junctions and a comparative study of the cytotoxic effects of endosulfan on rat and human glial and neuronal cell cultures. ENVIRONMENTAL TOXICOLOGY 2006; 21:223-35. [PMID: 16646017 DOI: 10.1002/tox.20175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endosulfan, an organochlorine (OC) insecticide that belongs to the cyclodiene group, is one of the most commonly used pesticides to control pests in vegetables, cotton, and fruits. Porcine brain microvascular endothelial cells were used to develop a model to study the effects of endosulfan on the permeability of tight junctions in the blood-brain barrier (BBB). BBB permeability, measured as transendothelial electrical resistance, decreased in a dose- and time-dependent manner when treated with alpha-endosulfan, beta-endosulfan, or endosulfan sulfate. Cytotoxicity testing revealed that the three endosulfans did not cause cell death at concentrations of 10 microM and below. The ratio of the average permeability of the filter-grown endothelial cell monolayer to 14C-endosulfan (Pe) going from the outer to the inner compartments with that going from the inner to the outer compartments was approximately 1:1.2-2.1 after exposure to concentrations of 0.01-10 microM. alpha-Endosulfan, beta-endosulfan, and endosulfan sulfate had cytotoxic effects on rat glial (C6) and neuronal (PC12) cell cultures as well as on human glial (CCF-STTG1) and neuronal (NT2) cell cultures. The effects of alpha-endosulfan were highly selective, with a wide range of LC50 values found in the different cultures, ranging from 11.2 microM for CCF-STTG1 cells to 48.0 microM for PC12 cells. In contrast, selective neurotoxicity was not so manifest in glial and neuronal cell cultures after exposure to endosulfan sulfate, as LC50 values were in the range of 10.4-21.6 microM. CCF-STTG1 cells were more sensitive to alpha-endosulfan and endosulfan sulfate, whereas NT2 cells were more sensitive to beta-endosulfan.
Collapse
Affiliation(s)
- Melissa P L Chan
- Department of Global Environment Engineering, Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
44
|
Lin H, Yoo JW, Roh HJ, Lee MK, Chung SJ, Shim CK, Kim DD. Transport of anti-allergic drugs across the passage cultured human nasal epithelial cell monolayer. Eur J Pharm Sci 2006; 26:203-10. [PMID: 16087322 DOI: 10.1016/j.ejps.2005.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 05/03/2005] [Accepted: 06/02/2005] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate the nasal absorption characteristics of a series of anti-allergic drugs across the human nasal epithelial cell monolayer, which was passage cultured by the liquid-covered culture (LCC) method on Transwell. Characterization of this cell culture model was achieved by bioelectric measurements and morphological studies. The passages 2--4 of cell monolayers exhibited the TEER value of 1731+/-635 Omega cm(2) after 2 days of seeding and maintained high TEER value for 4--6 days. Morphological study by TEM and SEM showed the existence of the tight junctions, and the cuboidal shaped epithelial cells monolayer. A series of anti-allergic drugs, albuterol hemisulfate, albuterol, fexofenadine HCl, dexamethasone, triamcinolon acetonide, and budesonide were selected as model compounds for transport studies. All the drugs were assayed using reversed-phase HPLC under isocratic conditions. Results indicated that within the logP (apparent 1-octanol/water partition coefficient) range from --1.58 (albuterol) to 3.21 (budesonide), there existed 100-fold difference in the apparent permeability coefficients (P(app)). A log-linear relationship was shown between the drug logP and the P(app) across passaged human nasal epithelial monolayers. The amount of fexofenadine HCl and dexamethasone across passaged human nasal cell monolayers was concentration-dependent in the direction of apical to basolateral. The direction dependent transport studies were investigated among all these drugs and no significant difference in the two directions was observed. In conclusion, this LCC passaged human nasal epithelial culture model may be a useful in vitro model for studying the passive transport processes in nasal drug delivery.
Collapse
Affiliation(s)
- Hongxia Lin
- College of Pharmacy, Pusan National University, Pusan 609-735, South Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Bahadduri PM, D'Souza VM, Pinsonneault JK, Sadée W, Bao S, Knoell DL, Swaan PW. Functional Characterization of the Peptide Transporter PEPT2 in Primary Cultures of Human Upper Airway Epithelium. Am J Respir Cell Mol Biol 2005; 32:319-25. [PMID: 15626774 DOI: 10.1165/rcmb.2004-0322oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study characterizes the expression and function of the peptide transporter hPepT2 (SLC15A2) in differentiated primary cultures of human upper airway lung epithelia obtained from six human donors. Genotype analysis of a SNP in exon 15 of hPepT2 genotypes in six donors revealed an expected distribution of the two main variants present at similar frequency (two AA homozygotes, two BB homozygotes, and two AB heterozygotes). Real-time PCR analysis of the hPepT2 mRNA message revealed no significant differences among genotypes. hPEPT2 was expressed on the apical membrane in all donor specimens, demonstrated by cell surface biotinylation and Western analysis (104 kD). We then compared transepithelial transport of the prototypical substrate (3)H-glycylsarcosine in all donor cultures in the absence and presence of known inhibitors of hPEPT2 to ascertain the phenotype of functionally expressed hPepT2 in the upper airway epithelium. An array of inhibitors included dipeptides, beta-lactam antibiotics, bestatin, and ACE inhibitors. hPEPT2 exhibited saturable Michaelis-Menten-type kinetic parameters for GlySar, corroborating previously reported values for K(T) and J(max). Donor-to-donor variation of transport for different substrates did not correlate with hPepT2 haplotypes in this sample cohort. These findings demonstrate functional hPEPT2 transporter expression in primary cultures of human lung epithelial cells. hPEPT2-mediated transport could serve as a strategy for noninvasive systemic delivery of peptides and peptidomimetics drugs.
Collapse
Affiliation(s)
- Praveen M Bahadduri
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|