1
|
Ashe K, Kelso W, Farrand S, Panetta J, Fazio T, De Jong G, Walterfang M. Psychiatric and Cognitive Aspects of Phenylketonuria: The Limitations of Diet and Promise of New Treatments. Front Psychiatry 2019; 10:561. [PMID: 31551819 PMCID: PMC6748028 DOI: 10.3389/fpsyt.2019.00561] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Phenylketonuria (PKU) is a recessive disorder of phenylalanine metabolism due to mutations in the gene for phenylalanine hydroxylase (PAH). Reduced PAH activity results in significant hyperphenylalaninemia, which leads to alterations in cerebral myelin and protein synthesis, as well as reduced levels of serotonin, dopamine, and noradrenaline in the brain. When untreated, brain development is grossly disrupted and significant intellectual impairment and behavioral disturbance occur. The advent of neonatal heel prick screening has allowed for diagnosis at birth, and the institution of a phenylalanine restricted diet. Dietary treatment, particularly when maintained across neurodevelopment and well into adulthood, has resulted in markedly improved outcomes at a cognitive and psychiatric level for individuals with PKU. However, few individuals can maintain full dietary control lifelong, and even with good control, an elevated risk remains of-in particular-mood, anxiety, and attentional disorders across the lifespan. Increasingly, dietary recommendations focus on maintaining continuous dietary treatment lifelong to optimize psychiatric and cognitive outcomes, although the effect of long-term protein restricted diets on brain function remains unknown. While psychiatric illness is very common in adult PKU populations, very little data exist to guide clinicians on optimal treatment. The advent of new treatments that do not require restrictive dietary management, such as the enzyme therapy Pegvaliase, holds the promise of allowing patients a relatively normal diet alongside optimized mental health and cognitive functioning.
Collapse
Affiliation(s)
- Killian Ashe
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Wendy Kelso
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Sarah Farrand
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Julie Panetta
- Statewide Adult Metabolic Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Tim Fazio
- Statewide Adult Metabolic Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard De Jong
- Statewide Adult Metabolic Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Melbourne Neuropsychiatry Centre, University of Melbourne and North-Western Mental Health, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Bruinenberg VM, Gordijn MCM, MacDonald A, van Spronsen FJ, Van der Zee EA. Sleep Disturbances in Phenylketonuria: An Explorative Study in Men and Mice. Front Neurol 2017; 8:167. [PMID: 28491049 PMCID: PMC5405067 DOI: 10.3389/fneur.2017.00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/07/2017] [Indexed: 11/24/2022] Open
Abstract
Sleep problems have not been directly reported in phenylketonuria (PKU). In PKU, the metabolic pathway of phenylalanine is disrupted, which, among others, causes deficits in the neurotransmitters and sleep modulators dopamine, norepinephrine, and serotonin. Understanding sleep problems in PKU patients may help explain the pathophysiology of brain dysfunction in PKU patients. In this explorative study, we investigated possible sleep problems in adult treated PKU patients and untreated PKU mice. In the PKU patients, sleep characteristics were compared to healthy first degree relatives by assessment of sleep disturbances, sleep–wake patterns, and sleepiness with the help of four questionnaires: Holland sleep disorder questionnaire, Pittsburgh sleep quality index, Epworth sleepiness scale, and Munich Chronotype Questionnaire. The results obtained with the questionnaires show that PKU individuals suffer more from sleep disorders, a reduced sleep quality, and an increased latency to fall asleep and experience more sleepiness during the day. In the PKU mice, activity patterns were recorded with passive infrared recorders. PKU mice switched more often between active and non-active behavior and shifted a part of their resting behavior into the active period, confirming that sleep quality is affected as a consequence of PKU. Together, these results give the first indication that sleep problems are present in PKU. More detailed future research will give a better understanding of these problems, which could ultimately result in the improvement of treatment strategies by including sleep quality as an additional treatment target.
Collapse
Affiliation(s)
- Vibeke M Bruinenberg
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Marijke C M Gordijn
- Chrono@work B.V., Groningen, Netherlands.,Chronobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | | | | | - Eddy A Van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2014; 49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level.
Collapse
Affiliation(s)
- Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Nian Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Qi-Cheng Qiao
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| | - Jun Zhang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| |
Collapse
|
4
|
Compensatory actions of orexinergic neurons in the lateral hypothalamus during metabolic or cortical challenges may enable the coupling of metabolic dysfunction and cortical dysfunction. Med Hypotheses 2013; 80:520-6. [DOI: 10.1016/j.mehy.2013.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/03/2013] [Accepted: 02/07/2013] [Indexed: 11/20/2022]
|
5
|
Solverson P, Murali SG, Brinkman AS, Nelson DW, Clayton MK, Yen CLE, Ney DM. Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria. Am J Physiol Endocrinol Metab 2012; 302:E885-95. [PMID: 22297302 PMCID: PMC3330708 DOI: 10.1152/ajpendo.00647.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/25/2012] [Indexed: 11/22/2022]
Abstract
Phenylketonuria (PKU) is caused by a mutation in the phenylalanine (phe) hydroxylase gene and requires a low-phe diet plus amino acid (AA) formula to prevent cognitive impairment. Glycomacropeptide (GMP) contains minimal phe and provides a palatable alternative to AA formula. Our objective was to compare growth, body composition, and energy balance in Pah(enu2) (PKU) and wild-type mice fed low-phe GMP, low-phe AA, or high-phe casein diets from 3-23 wk of age. The 2 × 2 × 3 design included main effects of genotype, sex, and diet. Fat and lean mass were assessed by dual-energy X-ray absorptiometry, and acute energy balance was assessed by indirect calorimetry. PKU mice showed growth and lean mass similar to wild-type littermates fed the GMP or AA diets; however, they exhibited a 3-15% increase in energy expenditure, as reflected in oxygen consumption, and a 3-30% increase in food intake. The GMP diet significantly reduced energy expenditure, food intake, and plasma phe concentration in PKU mice compared with the casein diet. The high-phe casein diet or the low-phe AA diet induced metabolic stress in PKU mice, as reflected in increased energy expenditure and intake of food and water, increased renal and spleen mass, and elevated plasma cytokine concentrations consistent with systemic inflammation. The low-phe GMP diet significantly attenuated these adverse effects. Moreover, total fat mass, %body fat, and the respiratory exchange ratio (CO(2) produced/O(2) consumed) were significantly lower in PKU mice fed GMP compared with AA diets. In summary, GMP provides a physiological source of low-phe dietary protein that promotes growth and attenuates the metabolic stress induced by a high-phe casein or low-phe AA diet in PKU mice.
Collapse
Affiliation(s)
- Patrick Solverson
- Department of Nutritional Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Viggiano D. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity. Behav Brain Res 2008; 194:1-14. [PMID: 18656502 DOI: 10.1016/j.bbr.2008.06.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 06/26/2008] [Accepted: 06/29/2008] [Indexed: 01/01/2023]
Abstract
The large number of transgenic mice realized thus far with different purposes allows addressing new questions, such as which animals, over the entire set of transgenic animals, show a specific behavioural abnormality. In the present study, we have used a metanalytical approach to organize a database of genetic modifications, brain lesions and pharmacological interventions that increase locomotor activity in animal models. To further understand the resulting data set, we have organized a second database of the alterations (genetic, pharmacological or brain lesions) that reduce locomotor activity. Using this approach, we estimated that 1.56% of the genes in the genome yield to hyperactivity and 0.75% of genes produce hypoactivity when altered. These genes have been classified into genes for neurotransmitter systems, hormonal, metabolic systems, ion channels, structural proteins, transcription factors, second messengers and growth factors. Finally, two additional classes included animals with neurodegeneration and inner ear abnormalities. The analysis of the database revealed several unexpected findings. First, the genes that, when mutated, induce hyperactive behaviour do not pertain to a single neurotransmitter system. In fact, alterations in most neurotransmitter systems can give rise to a hyperactive phenotype. In contrast, fewer changes can decrease locomotor activity. Specifically, genetic and pharmacological alterations that enhance the dopamine, orexin, histamine, cannabinoids systems or that antagonize the cholinergic system induce an increase in locomotor activity. Similarly, imbalances in the two main neurotransmitters of the nervous system, GABA and glutamate usually result in hyperactive behaviour. It is remarkable that no genetic alterations pertaining to the GABA system have been reported to reduce locomotor behaviour. Other neurotransmitters, such as norepinephrine and serotonin, have a more complex influence. For instance, a decrease in norepinephrine synthesis usually results in hypoactive behaviour. However, a chronic increase in norepinephrine may result in hypoactivity too. Similarly, changes in both directions of serotonin levels may reduce locomotor activity, whereas alterations in specific serotonin receptors can induce hyperactivity. The lesion of at least 12 different brain regions can increase locomotor activity too. Comparatively, few focal lesions decrease locomotor activity. Finally, a large number of toxic events can increase locomotor activity, particularly if delivered during the prepuberal time window. These data show that there is a net imbalance in the number of altered genes/brain lesions/toxics that induce hyperactivity versus hypoactive behaviour. Although some of these data may be explained in terms of the activating role of subcortical systems (such as catecholamines), the larger number of alterations that induce hyperactivity suggests a different scenario. Specifically, we hypothesize (i) the existence of a control system that continuously inhibit a basally hyperactive locomotor tone and (ii) that this control system is highly vulnerable (intrinsic fragility) to any change in the genetic asset or to any toxic/drug delivered during prepuberal stages. Brain lesion studies suggest that the putative control system is located along an axis that connects the olfactory bulb and the enthorhinal cortex (enthorhinal-hippocampal-septal-prefrontal cortex-olfactory bulb axis). We suggest that the increased locomotor activity in many psychiatric diseases may derive from the interference with the development of this brain axis during a specific postnatal time window.
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Health Sciences, Faculty of Scienze del Benessere, University of Molise, Via De Sanctis III Edificio Polifunzionale, 86100 Campobasso, Italy.
| |
Collapse
|
7
|
Surendran S, Tyring SK, Matalon R. Expression of calpastatin, minopontin, NIPSNAP1, rabaptin-5 and neuronatin in the phenylketonuria (PKU) mouse brain: Possible role on cognitive defect seen in PKU. Neurochem Int 2005; 46:595-9. [PMID: 15863237 DOI: 10.1016/j.neuint.2005.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/18/2005] [Accepted: 02/28/2005] [Indexed: 11/29/2022]
Abstract
Phenylketonuria (PKU) is an inborn error of amino acid metabolism. Phenylalanine hydroxylase (PAH) deficiency results in accumulation of phenylalanine (Phe) in the brain and leads to pathophysiological abnormalities including cognitive defect, if Phe diet is not restricted. Neuronatin and 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) reportedly have role in memory. Therefore, gene expression was examined in the brain of mouse model for PKU. Microarray expression analysis revealed reduced expression of calpastatin, NIPSNAP 1, rabaptin-5 and minopontin genes and overexpression of neuronatin gene in the PKU mouse brain. Altered expression of these genes was further confirmed by one-step real time RT-PCR analysis. Western blot analysis of the mouse brain showed reduced levels of calpastatin and rabaptin-5 and higher amount of neuronatin in PKU compared to the wild type. These observations in the PKU mouse brain suggest that altered expression of these genes resulting in abnormal proteome. These changes in the PKU mouse brain are likely to contribute cognitive impairment seen in the PKU mouse, if documented also in patients with PKU.
Collapse
Affiliation(s)
- Sankar Surendran
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555-0632, USA.
| | | | | |
Collapse
|
8
|
Surendran S, Ezell EL, Quast MJ, Wei J, Tyring SK, Michals-Matalon K, Matalon R. Aspartoacylase deficiency does not affect N-acetylaspartylglutamate level or glutamate carboxypeptidase II activity in the knockout mouse brain. Brain Res 2004; 1016:268-71. [PMID: 15246864 DOI: 10.1016/j.brainres.2004.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Aspartoacylase (ASPA)-deficient patients [Canavan disease (CD)] reportedly have increased urinary excretion of N-acetylaspartylglutamate (NAAG), a neuropeptide abundant in the brain. Whether elevated excretion of urinary NAAG is due to ASPA deficiency, resulting in an abnormal level of brain NAAG, is examined using ASPA-deficient mouse brain. The level of NAAG in the knockout mouse brain was similar to that in the wild type. The NAAG hydrolyzing enzyme, glutamate carboxypeptidase II (GCP II), activity was normal in the knockout mouse brain. These data suggest that ASPA deficiency does not affect the NAAG or GCP II level in the knockout mouse brain, if documented also in patients with CD.
Collapse
Affiliation(s)
- Sankar Surendran
- Department of Pediatrics, Childrens Hospital, The University of Texas Medical Branch, Rm# 3.350, Galveston, TX 77555-0359, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Surendran S, Rady PL, Szucs S, Michals-Matalon K, Tyring SK, Matalon R. High level of orexin A observed in the phenylketonuria mouse brain is due to the abnormal expression of prepro-orexin. Biochem Biophys Res Commun 2004; 317:522-6. [PMID: 15063788 DOI: 10.1016/j.bbrc.2004.03.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Indexed: 11/22/2022]
Abstract
Orexins/hypocretins are recently discovered neuropeptides, synthesized mainly in the lateral hypothalamus of the brain. Orexins regulate various functions including sleep and apetite. We recently reported increased amount of orexin A in the phenylketonuria (PKU) mouse brain. Whether this is caused by overexpression of the precursor for orexins, prepro-orexin was studied in the PKU mouse brain. Microarray expression analysis revealed overexpression of orexin gene in the brain of PKU mouse. Quantitative real-time RT-PCR showed increased level of prepro-orexin mRNA in the PKU mouse brain. In addition, expression of genes associated with cell signal and growth regulation was also affected in the PKU mouse brain, as observed by microarray analysis. These data suggest that up-regulation of orexin mRNA expression is the possible factor for inducing high orexin A in the brain of PKU mouse. The metabolic environment in the brain of PKU mouse affects normal expression of other genes possibly to result in pathophysiology seen in the PKU mouse, if documented also in patients with PKU.
Collapse
Affiliation(s)
- Sankar Surendran
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|