1
|
Liu T, Fujita T, Nakatsuka T, Kumamoto E. Phospholipase A2 Activation Enhances Inhibitory Synaptic Transmission in Rat Substantia Gelatinosa Neurons. J Neurophysiol 2008; 99:1274-84. [DOI: 10.1152/jn.01292.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phospholipase A2 (PLA2) activation enhances glutamatergic excitatory synaptic transmission in substantia gelatinosa (SG) neurons, which play a pivotal role in regulating nociceptive transmission in the spinal cord. By using melittin as a tool to activate PLA2, we examined the effect of PLA2 activation on spontaneous inhibitory postsynaptic currents (sIPSCs) recorded at 0 mV in SG neurons of adult rat spinal cord slices by use of the whole cell patch-clamp technique. Melittin enhanced the frequency and amplitude of GABAergic and glycinergic sIPSCs. The enhancement of GABAergic but not glycinergic transmission was largely depressed by Na+ channel blocker tetrodotoxin or glutamate-receptor antagonists (6-cyano-7-nitroquinoxaline-2,3-dione and/or dl-2-amino-5-phosphonovaleric acid) and also in a Ca2+-free Krebs solution. The effects of melittin on glycinergic sIPSC frequency and amplitude were dose-dependent with an effective concentration of ∼0.7 μM for half-maximal effect and were depressed by PLA2 inhibitor 4-bromophenacyl bromide or aristolochic acid. The melittin-induced enhancement of glycinergic transmission was depressed by lipoxygenase inhibitor nordihydroguaiaretic acid but not cyclooxygenase inhibitor indomethacin. These results indicate that the activation of PLA2 in the SG enhances GABAergic and glycinergic inhibitory transmission in SG neurons. The former action is mediated by glutamate-receptor activation and neuronal activity increase, possibly the facilitatory effect of PLA2 activation on excitatory transmission, whereas the latter action is due to PLA2 and subsequent lipoxygenase activation and is independent of extracellular Ca2+. It is suggested that PLA2 activation in the SG could enhance not only excitatory but also inhibitory transmission, resulting in the modulation of nociception.
Collapse
|
2
|
Yue HY, Fujita T, Kumamoto E. Phospholipase A2 activation by melittin enhances spontaneous glutamatergic excitatory transmission in rat substantia gelatinosa neurons. Neuroscience 2006; 135:485-95. [PMID: 16111827 DOI: 10.1016/j.neuroscience.2005.05.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/18/2005] [Accepted: 05/25/2005] [Indexed: 11/30/2022]
Abstract
In order to know a role of phospholipase A2 in modulating nociceptive transmission, the effect of a secreted phospholipase A2 activator melittin on spontaneous glutamatergic excitatory transmission was investigated in substantia gelatinosa neurons of an adult rat spinal cord slice by using the whole-cell patch-clamp technique. Bath-applied melittin at concentrations higher than 0.5 microM increased both the amplitude and the frequency of spontaneous excitatory postsynaptic current in a manner independent of tetrodotoxin; the latter effect of which was examined in detail. In 80% of the neurons examined (n = 64), melittin superfused for 3 min gradually increased spontaneous excitatory postsynaptic current frequency (by 65+/-6% at 1 microM; n = 51) in a dose-dependent manner (effective concentration for half-maximal effect = 1.1 microM). This effect subsided within 3 min after washout. The spontaneous excitatory postsynaptic current frequency increase produced by melittin was reduced by the phospholipase A2 inhibitor 4-bromophenacryl bromide (10 microM) while being unaffected by the cyclooxygenase inhibitor indomethacin (100 microM) and the lipoxygenase inhibitor nordihydroguaiaretic acid (100 microM). A similar increase in spontaneous excitatory postsynaptic current frequency was produced by exogenous arachidonic acid (50 microM); this effect was also unaffected by the cyclooxygenase or lipoxygenase inhibitor. Melittin failed to increase spontaneous excitatory postsynaptic current frequency in a nominally Ca2+-free or La3+-containing Krebs solution. We conclude that melittin increases the spontaneous release of L-glutamate to substantia gelatinosa neurons by activating secreted phospholipase A2 and increasing Ca2+ influx through voltage-gated Ca2+ channels in nerve terminals, probably with an involvement of arachidonic acid but not its metabolites produced by cyclooxygenase and lipoxygenase. Considering that the substantia gelatinosa plays an important role in regulating nociceptive transmission, it is suggested that this transmission may be positively modulated by secreted phospholipase A2 activation in the substantia gelatinosa.
Collapse
Affiliation(s)
- H-Y Yue
- Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | |
Collapse
|
3
|
Lee SY, Park HS, Lee SJ, Choi MU. Melittin exerts multiple effects on the release of free fatty acids from L1210 cells: lack of selective activation of phospholipase A2 by melittin. Arch Biochem Biophys 2001; 389:57-67. [PMID: 11370672 DOI: 10.1006/abbi.2001.2314] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melittin is known as a phospholipase A2 (PLA2) activator, but the selectivity of its effect on PLA2 is uncertain. We examined the selectivity of melittin effect on the release of free fatty acids (FFAs) from L1210 cells using various inhibitors. A systemic lipid analysis by HPLC and GLC revealed that melittin induced release of various FFAs including saturated, monounsaturated, and polyunsaturated FFAs. Various PLA2 inhibitors examined exerted only minimal effects on the melittin-induced arachidonic acid (AA) and palmitic acid (PAL) releases. Specific inhibitors of phosphatidylinositol-phospholipase C (U73122) and diacylglycerol lipase (RHC80267) exerted significant inhibitory effects on both AA and PAL releases. These results suggest that melittin-induced FFA release is most likely due to multiple participations of various types of lipases. Since BAPTA/AM, an intracellular Ca2+ chelator, did not influence the FFA release, the Ca2+ influxed by melittin appeared not to be a key factor for the FFA release. The mimicking of the melittin-induced FFA release by digitonin, a membrane-permeabilizing agent, implies that the membrane-perturbing action of melittin is likely the cause of the FFA release. Melittin also induced release of multiple FFAs from other cell lines including P388D1 and HL60. The rapid melittin-stimulated phospholipase D (PLD) observed in L1210 cells appeared not directly related to the steady release of FFA, as indicated by the fact that the PLD was not blocked by RHC80267. In view of melittin's multiple effects on the composition of cellular lipids, we conclude that melittin does neither exclusively release any single FFA nor selectively activate PLA2 in L1210 cells. The problem of using melittin as a PLA2 activator is discussed.
Collapse
Affiliation(s)
- S Y Lee
- School of Chemistry and Molecular Engineering and Center for Molecular Catalysis, Seoul National University, South Korea
| | | | | | | |
Collapse
|
4
|
Muzzio IA, Gandhi CC, Manyam U, Pesnell A, Matzel LD. Receptor-stimulated phospholipase A(2) liberates arachidonic acid and regulates neuronal excitability through protein kinase C. J Neurophysiol 2001; 85:1639-47. [PMID: 11287487 DOI: 10.1152/jn.2001.85.4.1639] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Type B photoreceptors in Hermissenda exhibit increased excitability (e.g., elevated membrane resistance and lowered spike thresholds) consequent to the temporal coincidence of a light-induced intracellular Ca(2+) increase and the release of GABA from presynaptic vestibular hair cells. Convergence of these pre- and postsynaptically stimulated biochemical cascades culminates in the activation of protein kinase C (PKC). Paradoxically, exposure of the B cell to light alone generates an inositol triphosphate-regulated rise in diacylglycerol and intracellular Ca(2+), co-factors sufficient to stimulate conventional PKC isoforms, raising questions as to the unique role of synaptic stimulation in the activation of PKC. GABA receptors on the B cell are coupled to G proteins that stimulate phospholipase A(2) (PLA(2)), which is thought to regulate the liberation of arachidonic acid (AA), an "atypical" activator of PKC. Here, we directly assess whether GABA binding or PLA(2) stimulation liberates AA in these cells and whether free AA potentiates the stimulation of PKC. Free fatty-acid was estimated in isolated photoreceptors with the fluorescent indicator acrylodan-derivatized intestinal fatty acid-binding protein (ADIFAB). In response to 5 microM GABA, a fast and persistent increase in ADIFAB emission was observed, and this increase was blocked by the PLA(2) inhibitor arachidonyltrifluoromethyl ketone (50 microM). Furthermore, direct stimulation of PLA(2) by melittin (10 microM) increased ADIFAB emission in a manner that was kinetically analogous to GABA. In response to simultaneous exposure to the stable AA analogue oleic acid (OA, 20 microM) and light (to elevate intracellular Ca(2+)), B photoreceptors exhibited a sustained (>45 min) increase in excitability (membrane resistance and evoked spike rate). The excitability increase was blocked by the PKC inhibitor chelerythrine (20 microM) and was not induced by exposure of the cells to light alone. The increase in excitability in the B cell that followed exposure to light and OA persisted for > or =90 min when the pairing was conducted in the presence of the protein synthesis inhibitor anisomycin (1 microm), suggesting that the synergistic influence of these signaling agents on neuronal excitability did not require new protein synthesis. These results indicate that GABA binding to G-protein-coupled receptors on Hermissenda B cells stimulates a PLA(2) signaling cascade that liberates AA, and that this free AA interacts with postsynaptic Ca(2+) to synergistically stimulate PKC and enhance neuronal excitability. In this manner, the interaction of postsynaptic metabotropic receptors and intracellular Ca(2+) may serve as the catalyst for some forms of associative neuronal/synaptic plasticity.
Collapse
Affiliation(s)
- I A Muzzio
- Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
5
|
Cunha RA, Almeida T, Ribeiro JA. Modification by arachidonic acid of extracellular adenosine metabolism and neuromodulatory action in the rat hippocampus. J Biol Chem 2000; 275:37572-81. [PMID: 10978314 DOI: 10.1074/jbc.m003011200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenosine and arachidonate (AA) fulfil opposite modulatory roles, arachidonate facilitating and adenosine inhibiting cellular responses. To understand if there is an inter-play between these two neuromodulatory systems, we investigated the effect of AA on extracellular adenosine metabolism in hippocampal nerve terminals. AA (30 microm) facilitated by 67% adenosine evoked release and by 45% ATP evoked release. These effects were not significantly modified upon blockade of lipooxygenase or cyclooxygenase and were attenuated (52-61%) by the protein kinase C inhibitor, chelerythrine (6 microm). The ecto-5'-nucleotidase inhibitor, alpha,beta-methylene ADP (100 microm), caused a larger inhibition (54%) of adenosine release in the presence of AA (30 microm) compared with control (37% inhibition) indicating that the AA-induced extracellular adenosine accumulation is mostly originated from an increased release and extracellular catabolism of ATP. This AA-induced extracellular adenosine accumulation is further potentiated by an AA-induced decrease (48%) of adenosine transporters capacity. AA (30 microm) increased by 36-42% the tonic inhibition by endogenous extracellular adenosine of adenosine A(1) receptors in the modulation of acetylcholine release and of CA1 hippocampal synaptic transmission in hippocampal slices. These results indicate that AA increases tonic adenosine modulation as a possible feedback loop to limit AA facilitation of neuronal excitability.
Collapse
Affiliation(s)
- R A Cunha
- Laboratory of Neurosciences, Faculty of Medicine, and Department of Chemistry & Biochemistry, Faculty of Sciences, University of Lisbon, 1649-028 Lisbon, Portugal.
| | | | | |
Collapse
|
6
|
Phillis JW, Song D, O'Regan MH. Melittin enhances amino acid and free fatty acid release from the in vivo cerebral cortex. Brain Res 1999; 847:270-5. [PMID: 10575097 DOI: 10.1016/s0006-8993(99)02061-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of the phospholipase activator melittin on amino acid and free fatty acid release from the rat cerebral cortex were monitored and compared with those of a secretory PLA(2), using a cortical cup technique with topical application of these agents in artificial cerebrospinal fluid. Melittin (10 microg/ml; 3.5 microM) elicited a rapid increase in the levels of superfusate amino acids; aspartate, glutamate, GABA, glycine, taurine, glutamine, phosphoethanolamine, alanine, serine and the free fatty acids arachidonic, linoleic, palmitic and oleic acid. PLA(2) (25 microg/ml) also enhanced amino acid efflux but its effects were significantly slower to develop than those of melittin. The results confirm previous indications of an ability of phospholipases to augment extracellular levels of several amino acids, including the excitotoxins glutamate and aspartate, and further implicate phospholipase activation as a significant contributor to cerebral ischemic injury. Melittin has the potential to be a useful tool with which to evaluate the role of phospholipases in ischemia injury.
Collapse
Affiliation(s)
- J W Phillis
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
7
|
Cunha RA, Ribeiro JA. Facilitation of GABA release by arachidonic acid in rat hippocampal synaptosomes. Eur J Neurosci 1999; 11:2171-4. [PMID: 10336686 DOI: 10.1046/j.1460-9568.1999.00661.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arachidonic acid (AA) is proposed to be a facilitatory retrograde messenger in hippocampal glutamatergic synapses. In this study, we found that AA (10 microM) increased the basal outflow (19 +/- 4%) and the K+-evoked release of [3H]GABA (38 +/- 3%) from rat hippocampal synaptosomes. This effect is likely to be a direct action of AA, as it was not mimicked by arachidic acid (10 microM) and was not modified by inhibition of either lipooxygenase with nordihydroguaiaretic acid (50 microM) or cyclooxygenase with indomethacin (100 microM). Activation of protein kinase C may be involved, as chelerythrine (6 microM), a protein kinase C inhibitor, attenuated the AA (10 microM)-facilitation of K+-evoked [3H]GABA release by 58 +/- 5%. Phospholipase A2 (2 U/mL), an enzyme that releases AA, and melittin (1 microM), a phospholipase A2 activator, mimicked the AA-facilitation of evoked [3H]GABA release (70 +/- 6% and 76 +/- 7% facilitation, respectively). These results show that exogenously added and endogenously produced AA increased basal outflow and K+-evoked release of [3H]GABA from rat hippocampal synaptosomes. Thus, AA can no longer be considered solely a facilitatory neuromodulator in the hippocampus, as this AA-facilitation of the release of the main inhibitory neurotransmitter may predominate under certain circumstances.
Collapse
Affiliation(s)
- R A Cunha
- Laboratory of Neurosciences, Faculty of Medicine, Department of Chemistry and Biochemistry, University of Lisbon, Lisboa, Portugal.
| | | |
Collapse
|
8
|
L'hirondel M, Chéramy A, Artaud F, Godeheu G, Glowinski J. Contribution of endogenously formed arachidonic acid in the presynaptic facilitatory effects of NMDA and carbachol on dopamine release in the mouse striatum. Eur J Neurosci 1999; 11:1292-300. [PMID: 10103124 DOI: 10.1046/j.1460-9568.1999.00534.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arachidonic acid stimulated the release of [3H]-dopamine from striatal microdiscs in a concentration-dependent and partially calcium-dependent manner. Inhibitors of cytosolic and membrane-bound phospholipase A2 were used to determine whether endogenously formed arachidonic acid also contributes to the release of [3H]-DA (previously taken up in tissues or endogenously synthesized from [3H]-tyrosine) evoked by N-methyl-d-aspartate (NMDA) and carbachol alone or in combination. In the presence of magnesium, carbachol was found to remove the magnesium block of NMDA receptors and to facilitate the NMDA-evoked release of [3H]-DA from striatal microdiscs and synaptosomes. In addition, in the absence of magnesium, synergistic responses were induced by both agonists on microdiscs but not on synaptosomes. Responses induced by NMDA, carbachol or both agonists on microdiscs were reduced by phospholipase A2 inhibitors, the most striking effects being observed with mepacrine. Mepacrine was also shown to reduce the oxotremorine, but neither the nicotine- nor the potassium-evoked release of [3H]-DA. Tetrodotoxin decreased the release of [3H]-DA evoked by the co-application of NMDA and carbachol on microdiscs, but mepacrine still decreased this tetrodotoxin-resistant response. Similarly, mepacrine still decreased the release of [3H]-DA evoked by NMDA and carbachol on synaptosomes. Altogether, these results indicate that arachidonic acid which is formed in striatal neurons, and to a lesser extent in DA fibres, under stimulation of NMDA and muscarinic receptors, partially contributes to the presynaptic facilitation of DA release evoked by NMDA and carbachol.
Collapse
|
9
|
Sitges M, Peña F, Chiu LM, Guarneros A. Study on the possible involvement of protein kinases in the modulation of brain presynaptic sodium channels; comparison with calcium channels. Neurochem Int 1998; 32:177-90. [PMID: 9580510 DOI: 10.1016/s0197-0186(97)00065-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A possible modulatory role of kinases on voltage sensitive Na+ channels of presynaptic brain nerve endings was investigated by testing the effect of several kinase activators and inhibitors on the elevation of [Nai] induced by veratridine in mouse brain synaptosomes loaded with a selective Na+ indicator dye. Veratridine (20 microM) increases the basal [Nai] level (20 mM) more than twofold. This increase is independent of external Ca2+, but abolished by tetrodotoxin (1 microM). Activation of cAMP dependent protein kinase with forskolin or cAMP analogs, or of protein kinase C with diacylglycerol did not affect the veratridine-induced elevation in [Nai]. Drugs reported to inhibit calmodulin-dependent events, as well as the regulatory domain of protein kinase C, were potent and effective inhibitors of the increase in [Nai] induced by veratridine, as well as other veratridine induced responses, namely elevation of [Cai] (monitored with the Ca2+ indicator dye fura-2) and neurotransmitter (GABA) release. Drugs that inhibit kinases by binding to the catalytic site were ineffective, however, as was the phosphatase inhibitor, okadaic acid. A selective inhibitor of Ca2+ and calmodulin dependent protein kinase II also did not affect the elevation of [Nai] induced by veratridine, but markedly diminished the elevation of [Cai] induced by depolarization either with veratridine or with high K+ (15 and 30 mM). On the basis of these results it is concluded that, the dramatic inhibition exerted by some of the drugs tested on the elevation of [Nai] induced by veratridine is not due to their effects on kinases, but to a possible interaction of these compounds with an intracellular site of the Na+ channel. On the other hand, while Ca2+ and calmodulin dependent protein kinase II is unable to modulate brain presynaptic voltage sensitive Na+ channels, it facilitates the activation of brain presynaptic voltage sensitive Ca2+ channels.
Collapse
Affiliation(s)
- M Sitges
- Depto. de Biología Celular, Instituto de Investigaciones Biomédicas, México, México.
| | | | | | | |
Collapse
|